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About the effect of white-box membership inference attacks on
federated learning in large networks

ABSTRACT
Deep learning algorithms have a wide variety of applications,
such as simulating chess, image recognition, and assistance
withmedical diagnosis. These deep learningmethods require
a vast amount of data to performwell on their tasks. In appli-
cations that involve sensitive data, there are various security
and privacy concerns for sharing them for deep learning.
Federated learning is a novel decentralized deep learning
approach used to protect better the confidentiality of individ-
ual training datasets from multiple data owners. In contrast
to traditional learning methods that collect all data in a cen-
tral place to do training, federated learning shares a model
throughout a network for participants to use for training on
their local data records. Once sufficiently trained, the model
weights are sent back to the central entity that aggregates
them into a new global model. Recent research shows vari-
ous ways to extract information from these updates to infer
properties about the training data in small networks. There-
fore the effects of inference attacks in larger networks are
currently unknown, while current applications of federated
learning can have thousands of network participants. In this
work, we expand the state of the art by studying the attack
performance of membership inference attacks from Nasr et
al. [16] in a federated network with an increased number
of participants. This research shows that when increasing
the number of participants to 25, the membership inference
attack accuracy increases up to 84.85%.

CCS CONCEPTS
• Security and privacy→ Privacy protections.

KEYWORDS
DEEP LEARNING, FEDERATED LEARNING, MEMBERSHIP IN-
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1 INTRODUCTION
Deep learning is a set of machine learningmethods that use artificial
neural networks to simulate a similar learning process, although
simplified, to the behaviour of the human brain [8]. This allows
these neural networks to interpret and analyze vast amounts of
data records. To train deep learning models, there is a need for
quality training data. Nowadays more and more data is recorded
and hence available for such training tasks. Companies collect user
data to provide them with online services they require, for example,
Google [21], Facebook or Amazon [20]. The collection and use of
personal information are protected by various privacy laws such
as the General Data Protection Regulation (GDPR) [6]. Examples
of personal data are identifiable data records such as addresses or
pictures and medical records.

Figure 1: FL Training cycle
Visualization of a Federated Learning training cycle. The main entity shares a
model inside a network of learning participants. Then each participant trains
their copy of the model on their local dataset. After a predetermined training
cycle, the updated model is sent back to the main entity which aggregates the
updates into a new model. The process is repeated until either the model

converges or a pre-defined training time has expired.

This raises various legal and ethical problems when training
machine learning applications on these types of data. The compa-
nies are responsible for keeping these records secure and hence
are reluctant to share the data at the risk of data breaches. A pro-
posed solution is called Federated Learning (FL)[4]. In figure 1 an
overview of the FL training cycle is provided. The cycle starts with
a central entity that shares the models with the participants, who
in turn start training their model copies on their local dataset. The
updated models are then sent back to the central entity and aggre-
gated into a new global model. This solution has been proposed
as a privacy-preserving mechanism for settings with high privacy
concerns such as medical research [3, 18]. The main benefit of FL
is that the data from various sources does not need to be trans-
ferred to remote cloud networks to train a global model. Instead,
the model weights are shared rather than the data. These weights
can be seen as a mathematical aggregation of all the training data
that it has been trained on. Recent research [2, 14–17, 19] shows
that there is still a large amount of information stored inside the
model updates. Hence an attacker that knows how to extract this
information summary can infer properties about the training data.
For example, Zhu et al. [29] devised a so-called Deep Leakage of
Gradients (GLD) attack, where the attacker tries to minimize the
loss between the received model updates of another network partic-
ipants and its own randomly generated dummy gradients. Once this
loss is minimized the attacker can reconstruct data that is similar
to the original dataset with a high accuracy rate.

In this work, we focus on white-box membership inference at-
tacks. White-box refers to the visibility of the attacker, where the
entire model and the intermediate computations are visible to the
attacker as opposed to black-box where only the input or output
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is visible. With membership inference, the attacker wants to infer
if a data sample x was used during training or not. This can lead
to privacy leaks as the attacker can thus identify if personal data
from a person was used inside a dataset. One of the most extensive
works of the last years is the paper by Nasr et al. [16]. They per-
formed both active and passive membership inference attacks in
different threat scenarios. An overview of these scenarios and their
definitions can be found in appendix A. The scenario we focus on
is that of the local attacker, who has access to the entire model and
dataset of one participant. In the passive setting, the local attacker
has access but only observes the target model while in the active
setting the local attacker tries to actively manipulate the target
model to increase the attack accuracy. Under the assumption that
the attacker has prior knowledge of a subset of the target dataset,
their attacks show high attack accuracy across all scenarios. From
their work, we identified new questions to investigate further to
expand the state of the art in FL research.

We contribute by taking a look at the impact of passive and
active attacks on federated learning in networks with an increasing
number of participants. The current state of the art proved various
attacks are possible and effective. However, they are limited in the
number of participants used in the FL networks. We specifically
answer the question:What is the impact of different network sizes
and data distribution on the accuracy of passive/active membership
inference attack models? As federated learning techniques become
more popular [7, 22], it is crucial to identify the impact of privacy
leakage attacks in large networks. To answer our main research
question, we divided the problem into sub-questions. The first is
how can the white-box membership inference attacks by Nasr et
al. [16] be reproduced on a large dataset? Second, what are the
effects of different data distributions and input model selections on
the membership inference attack accuracy? Finally, what are the
effects of membership inference attacks on federated learning in
large networks?

This document is structured in the following way, in section 2
we provide an overview of the current state of the art. Section 3
provides the necessary background knowledge for our topic. Section
4 states our contributions andmethodology. In section 5, we provide
an overview of our experiments and their results. In section 6, we
show an extended discussion of our results and directions for future
work. Section 7 gives a short conclusion of our work.

2 RELATEDWORK
During the last five years, the topic of membership inference attacks
has been widely researched. This section has an overview of what
has been done so far. In 2017 Shokri et al.[19] first showed the
vulnerability of deep learning models to membership inference
attacks. This attack was in the black-box setting, which means that
the attack only had query access to the target model. The attack was
launched on theMachine-learning-as-a-servicemodels fromGoogle
and Amazon. They created several shadow models of different data
distributions to train their attack model. In addition, they concluded
that the overfitting of amodel increases its vulnerability to inference
attacks. Later on, several other works looked at improving the black-
box inference attacks from Shokri et al. [5, 9, 25, 26].

Another class of inference attacks called reconstruction attacks,
or label inference, is where the attacker tries to reconstruct the
original input data based on the gradient[13, 28, 29]. By setting
dummy input values and using Stochastic Gradient Descent (SGD)
to update dummy inputs towards the gradients of the target, the
dummy inputs are reconstructed into the original data.

The attacks were first expanded into a white box setting by
Nasr et al. [16]. They investigated white-box inference attacks
against centralized and federated learning. Their research found
that current black-box attacks were ineffective if applied in a white-
box setting. Therefore, they developed new algorithms specifically
for the white-box setting. This was a comprehensive study where
they tested various attack scenarios. They looked at passive/active
attacks and (un)supervised settings. Using publicly available pre-
trained models, they show that their attacks show good perfor-
mance against well-generalized models. Together with research by
Pustozerova and Melis et al., [12, 15, 17] these were the first works
with a federated learning setting. They used networks of up to 5
participants to see the effects on the accuracy of their attacks.

Recently, Hu et al. [9] proposed a new version of the member-
ship inference attack called Source Inference Attacks (SIA). They
saw that most inference attacks were performed without knowing
the source of a data sample while knowing this can cause further
privacy issues. In their setting, an honest-but-curious server can
infer the source of a data sample without interrupting the training
process. The attack tries to exploit the property that the source
model of a data sample has the lowest loss value on that sample.

3 BACKGROUND
This section provides the necessary background knowledge for
understanding our research domain.

3.1 Machine learning definitions
Neural Networks. In deep learning, we use Neural Networks

(NNs), which are layers of functions used to transform training
data into a prediction value[1]. The weights of these functions can
adjust or "learn" depending on the training data. A training cycle of
a single data record is divided into two steps: forward and backward
propagation. The network makes all the intermediate computations
in the forward pass to arrive at the output prediction value. The
input features are put through each layer in the network. Each layer
consists of nodes with an input and an output. Each node applies
its weight to the received input and puts it through an activation
function.

An activation function shows how "active" the input of a node is.
An example is the ReLU activation function, which transforms an
input to a number between 0 and infinity. An example of a ReLU
function is depicted in figure 3. The figure shows that the function
outputs between 0 and infinity. An activation function clips the
impact of each node on the training. A node that does not provide
relevant information for computing the correct prediction value
contains a negative value and is therefore clipped to zero.

The output of the final layer is the prediction value, which be-
comes the input for the error function together with the label. The
error function outputs the difference or error between the predic-
tion value and the ground truth. Then the gradient of the error
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Figure 2: Neural Network Example
The first layer is the input layer with one node, this connects to two nodes in
the second layer. In this ’hidden’ layer, the inputs are adjusted according to
the weights and put through a ReLU activation function. Then the two nodes
pass their input to the output layer node, which outputs a prediction value

value for the parameters of each layer, 𝜗𝐸
𝜗𝑊𝑖

, is computed. Then, the
weights in the network are updated to help reduce the error on this
input. This process refers to the actual learning phase or backward
pass. We use SGD to compute the contribution of each parameter
to the error and adjust the parameters to reduce the error on that
data record. Once this is done, we take a new data record and again
perform a forward and backward pass, and this way, the network
"learns" from the training data. A network only consisting of fully
connected layers is called a Fully Connected Neural Network (FCN).
Fully connected means that a node in a layer is connected to every
node in the next layer.

Figure 3: ReLU activation function
Image of the ReLU activation function. The image shows a graph, and the

ReLU transforms numbers to fit into the interval of zero to infinity.

Convolutional Neural Network. This research uses another type
of NN called a Convolutional Neural Network (CNN). A CNN con-
sists of several convolutional, pooling and fully connected layers.
In the convolutional layer, feature extraction is performed on the
input, such as identifying edges and shapes. In the pooling layer,
this feature map is reduced to improve performance. Finally, the
features are put through the fully connected layer. An image is

represented as a series of values in a grid with pixel values indicat-
ing brightness or ’activation’ levels. There is an extra dimension
of the grid for the colour channels. Similarly to the human brain,
each feature map in a CNN focuses on a specific image region. The
first layers focus on identifying simple structures, such as lines or
curves, and the later layers identify more complex patterns, such
as faces or objects. [1]

Stochastic Gradient Descent. Gradient Descent is an optimization
algorithm for finding a local minimum of a differentiable function.
In deep learning, this is used to optimize the parameters of the
neural networks. By finding the gradient of the error function for
each parameter, we know the impact of each parameter on the error
value. By reducing this impact and thus the gradient, we minimize
the error and improve the neural network’s performance. Gradient
descent does this by taking small steps to increase or decrease
parameters to reduce the error. By finding the gradient of the error
function, we know in which direction to reduce the parameter to
decrease our gradient. [1]

At first, the ideal step size or learning rate is relatively large to
reach a minimum fast. Then the step size is dynamically decreased
to find the minimum. The ideal learning rate depends on many
factors, including task and batch size. An example of these steps can
be found in figure 4. In gradient descent, onewould first run through
all the data samples in the dataset before updating the weights. This
may take a long time if the dataset is large. This is where Stochastic
Gradient Descent (SGD) comes in. Instead of working through the
entire dataset, SGD takes a random data sample and updates the
model immediately. This way, the model converges much faster.
Stochastic refers to a random value in a distribution, so during
training, we pick a random data record from the training set for
gradient descent of a certain number of times. SGD is used in deep
learning to optimize the parameters of neural networks.

Figure 4: Gradient Descent steps
Example Image to visualize the workings of gradient descent. The line

represents the gradient, and the dots represent the steps taken during training.

3.2 Federated Learning
Federated Learning[4, 27] or collaborative learning is a machine
learning technique that allows multiple data owners to train a joint
model over their private datasets without sharing the latter. This
technique shares the model instead of the data, so the participants
can train their model copy locally before returning it to the central
server where the updates get aggregated. This proposed solution
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differs from more traditional machine learning approaches that
share both the model and data. In FL, there is a group of 𝑘 partic-
ipants with their own local dataset 𝐷𝑖 for 1 ≤ 𝑖 ≤ 𝑘 . A central
server keeps track of the current version of the model parameters
𝑊 . All participants decide upon a single machine-learning task and
model. During each training phase, a participant downloads the
current global model parameters; the parameters are updated using
SGD on their local dataset 𝐷𝑖 . Once the local models have been
sufficiently trained, their parameters are sent to the central server.
This transfer can be done simply by storing the model as a file and
sending it to the central server. There, they are aggregated together
using the FedAvg algorithm [4]. This algorithm takes the average
of every weight of the models from the participants to create a new
set of global model parameters. A new cycle starts with the central
entity sending a copy of the new global model to all the participants.
The training process is repeated until the model converges to an
optimal set of parameters.

3.3 Defining the membership inference attack
For our work, we use the white-box membership inference attack
developed by Nasr et al. [16]. They provide an extensive description
of the attack in their work, but we shall reiterate this description
for completeness.

Supervised training. To construct an inference attack model,
the attacker needs to identify a meaningful mapping between the
model’s behaviour on a given data record and whether the record is
a member of the dataset or not. In order to learn this relation, the at-
tackermust have access to some knownmembers and non-members
of a dataset. This access is one of our research assumptions, similar
to Nasr et al. [16]. This work focuses on the local attacker, which
means the attacker has white-box access to the target model 𝑓𝑖 of a
single participant 𝑖 . In addition, the attacker knows the membership
of some data records from the target dataset 𝐷𝑖 and the aggregated
model 𝑓 . In other words, there is an overlap between 𝐷𝑎𝑡𝑡𝑎𝑐𝑘 and
𝐷𝑖 , and the attacker knows which records are part of this overlap.
Using this overlap, he can train the attack model in a supervised
way and use the attack model to attack the rest of the dataset 𝐷𝑖 .
While training in an unsupervised setting is possible, it was out of
scope for this research due to time constraints. Therefore, we do
not describe the unsupervised training, but a description can be
found in the original paper by Nasr et al. [16].

Attack model. In a forward pass, the attacker can input the target
record 𝑥 through model 𝑓 and compute all the hidden layers ℎ𝑖 (𝑥),
the output prediction 𝑓 (𝑥) and the error function 𝐿(𝑓 (𝑥), 𝑦;𝑊 ).
These values can be found in the attack model overview in figure
5. The attacker then computes the gradient of the error value for
the parameters of each layer 𝜗𝐸

𝜗𝑊𝑖
in a backward pass. All these

components, together with a one-hot encoding of true label 𝑦, are
the input features for the attack model. As the label can also be
categorical, it is transformed into numerical data using one-hot en-
coding. The attack model consists of convolutional neural networks
(CNN) and fully connected networks (FCN) at the base. The reason
for this is that these layers serve as feature extraction components.
Here, feature extraction means that during training, these neural
networks learn to focus on a subset of features or properties of the

Figure 5: Attack model architecture. Source: Nasr[16]
This attack model architecture is similar to the attack model provided by Nasr
et al.[16]. The only difference is that the unsupervised training component
was removed in this version as it was not used in this research. It shows the
input flow from the target model into the attack model towards the inference

attack output.

input data that benefit the prediction value the most. As the attacker
receives target model updates at various times during a training
cycle, we have several distinct computations of the same hidden
layer at different times. Once the attack is started, all computations
from subsequent time frames are added to the CNN and FCN layers.
This setup is meant to preserve the relation across time for the
individual components of the target model. Then the outputs of
every CNN and FCN layer get passed through a single FCN into a
single score value. This value represents the probability that (𝑥,𝑦)
is a member or not, or more formally 𝑃𝑟 {(𝑥,𝑦) ∈ 𝐷𝑖 }. A visual
overview of this attack architecture can be found in figure 5.

Passive attack. The goal of the attacker is to correctly predict
whether a given data record (𝑥,𝑦) is part of the target dataset 𝐷𝑖 .
The entire process of the attack goes as follows. After a single
round or epoch of training of a federated learning network, the
local attacker saves a snapshot of the target model 𝑓𝑖 . For this
explanation, we assume a single model snapshot, but the attacker
can use multiple snapshots as input for the attack model𝑔 by simply
appending them to the input vector. The attacker loads a target
model snapshot to generate inputs for the attack model 𝑔. Each
data record (𝑥,𝑦) ∈ 𝐷𝑎𝑡𝑡𝑎𝑐𝑘 is passed through the target model and
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the prediction value, the gradients of the final layer, the one-hot
encoding of label 𝑦 and the loss value are collected. These four
elements are then appended into four separate arrays that serve
as the input vector for the attack model 𝑔. The same process is
repeated for additional target model snapshots that are used for the
attack. Next, inputs from each snapshot are passed into the attack
model 𝑔. figure 5 shows the flow of this for a single snapshot. In
the case of multiple snapshots, the bottom process of the attack
model is repeated for each snapshot. For each snapshot, all separate
neural network components compute a forward pass. The outputs
from every snapshot are concatenated into a single input array
for the final FCN. This final component outputs the membership
prediction values, which is the probability of membership: 𝑔(𝑥,𝑦) =
𝑃𝑟 ((𝑥,𝑦) ∈ 𝐷𝑖 ; 𝑓𝑖 ). The probability is a value between 0 and 1,
with 0 as a non-member and 1 as a member. The accuracy of the
attack is then the amount of correctly classified data records, i.e.
the membership prediction value is higher than 0.5. When training,
the attack model also performs a backward pass to adjust the attack
model weights to predict the data records’ membership better.

While the original idea by Nasr et al. [16] was to use the weights
and gradient from all layers of the target model as input, their work
showed that using all hidden layers was equally effective, only the
last layer. Therefore, we chose only to select the last layer1.

Active attack. The active attack is similar to the passive attack
only before the membership inference attack is performed. A gradi-
ent ascent attack is performed on the target model to extract more
information about members of other participants. The active mem-
bership inference attack exploits the SGD algorithm’s functionality.
Nasr et al. [16] do this by reversing the algorithm to perform gra-
dient ascent instead of descent. Using the attack dataset 𝐷𝑎𝑡𝑡𝑎𝑐𝑘 ,
the attacker trains the target model again using the gradient ascent
version of the SGD algorithm. In other words, the loss on each
data record is maximized instead of minimized for data records in
𝐷𝑎𝑡𝑡𝑎𝑐𝑘 . The weights from the now manipulated target model are
sent to the central entity and aggregated into a new version of the
global model. Then the next epoch starts, the new global model
is shared, and the participants train their target model. Now the
attacker can perform the membership inference attack as described
in the previous paragraph. The difference to the passive setting is
that the attacker manipulated the target model to maximize the loss
on the data records from 𝐷𝑎𝑡𝑡𝑎𝑐𝑘 . Regular training continues in the
next epoch, and the target model again reduces the loss on all data
records from𝐷𝑖 . However, the loss of data records on non-members
of 𝐷𝑖 is not minimized. As a result, when the attack generates the
inputs for the attack model. There will be a bigger difference be-
tween the gradients of members and non-members. So the active
attack manipulates the model to increase the difference between
the gradient of members and non-members samples.

3.4 Evaluation Metrics
Accuracy. The output of the attack model has two classes, "Mem-

ber" and "Non-member". The accuracy of the attack is the number
of correctly classified samples divided by the total number of clas-
sified samples. Accuracy is used best when the dataset is balanced,
1Making this attack quite similar to a membership inference attack in the black-box
setting.

meaning all classes have the same number of samples. This metric
is a good fit for our experiments, as we have an equal or balanced
number of member and non-member samples.

Precision & Recall. [23] In addition to the accuracy, the precision
and Recall are also reported. The precision metric is calculated
by dividing the number of correct classified members by the total
number of samples classified as members. This metric shows how
accurate the member classifications are. Recall shows how many
member data samples are correctly classified as a member.

4 EXPERIMENT SETUP
This work aims to measure the effect of the white-box membership
inference attack scales across different federated learning network
sizes. At the start, we identified two key challenges we needed to
solve to reach our goal. The first challenge was searching for a
larger dataset similar to CIFAR100 for comparison. The second was
implementing a simulation of an FL training network that was scal-
able according to the number of participants. The main reason was
to test the effect of removing overlap between participant datasets
and performing the attacks with large participant counts. The third
is implementing the membership inference attacks from Nasr et
al. [16]. On GitHub, we found a small snippet of the code used
by Nasr et al. [16]. While this snippet contains the attack model
and functions, the code was outdated. Therefore we updated all
the code to Pytorch2 version 1.12 and expanded it for simulating
a federated learning network with a variable number of partici-
pants. The details of our implementation will be explained in the
following paragraphs, and the code can be found on GitHub3 for
reproducibility.

4.1 datasets
CIFAR100. First introduced by Alex Krizhevsky [10], the CI-

FAR100 dataset with 60.000 32x32 pixel images with 100 classes.
Each class has 500 training and 100 testing images. The images
are selected from the Imagenet dataset. Imagenet4 is a database of
millions of images for free to researchers for non-commercial use.

Tiny ImageNet. For our experiments, wewanted to use a different
dataset. There were two criteria for this dataset; it needed to contain
more samples than the CIFAR100 dataset. Since our goal was to
measure the effect of the white-box membership inference attack
scales across different federated learning network sizes, we needed
enough samples. The second criterion is that it needed to be similar
in terms of characteristics to the CIFAR100 dataset to make the
comparison between them possible. For example, it needs to contain
images and samples with the exact dimensions and number of
classes. We chose to use the Tiny ImageNet dataset from Kaggle5.
The original Tiny Imagenet dataset has 200 classes, but we used a
version that clustered the classes into 100 classes. The total dataset
contains 100.000 training images, 10.000 validation, and 10.000 test
images. Only the training and validation set had truth labels for
each data sample. Since we focus on supervised training in this

2https://pytorch.org/
3https://github.com/known5/FederatedLearning_MIA
4https://www.image-net.org/index.php
5https://www.kaggle.com/competitions/thu-deep-learning/data
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work, we use the validation set as test data. In order to match
the exact dimensions of the CFIAR100 dataset, we down-sampled
the images from 64x64 to 32x32 pixels. Tiny ImageNet has twice
the number of data samples as CIFAR100 while having similar
characteristics in terms of dimensions and amount of classes. We
did not move to an even larger dataset because more data also
means more computational power. Therefore, an increase of 100%
in the number of samples was enough.

4.2 Implementation details
FL Implementation. Our first contribution is to reproduce the

results byNasr et al. [16] on a new dataset.We chose to use Pytorch6,
a deep-learning framework for Python. All the code is open-source
to make our results reproducible7. This framework is similar to the
one used by Nasr et al.. To simulate an FL learning network, we
implemented a server class that creates 𝑁 clients class instances
that all participate in training.We used the CIFAR100 dataset during
our implementation phase for debugging and testing. The dataset
contains a training and test set, and the test set is stored on the
server side for testing the global model. How we distribute our data
among the participants is explained in paragraph Data Distribution.

Target model training. For our target model, we used the same
version for AlexNet as Nasr et al.. The model is a modified version of
the original AlexNet[11] that contains less fully connected layers.
Upon initialisation, each client gets a copy of the global model
stored in the server class. We then start a training cycle where all
clients perform training on their local training data. The server
then aggregates the local model updates to create a new version of
the global model, which is then shared with all the clients. After
this, it is possible to evaluate the global model. Model versions can
be stored every epoch to be used later for launching our attacks.

Training cycles. The attack was implemented to be run separately
from the target training cycle. During training, the model version
at each epoch is stored. This feature allows us to fine-tune the
target training and run attacks with different parameters on the
same target models without retraining them. The attacker loads
a subset of these models to generate inputs for the attack model.
For example, we select models at epochs 100, 150, 200, 250 and 300.
From each model, we collect the last layer’s predictions, the loss
value and the gradients. These are then stored in a list and passed to
the attack model. The attack model then outputs a prediction value
about the membership of the input data. The number of members
and non-members in each batch is equally distributed to avoid bias
towards one class.

Data distribution. The dataset is loaded at the start and then
distributed across the participants. We can choose to work with
and without overlap. Without overlap, we draw𝐷𝑖 random samples
without replacement for participant 𝑖 , such that𝐷𝑖∩𝐷 𝑗 = ∅(𝑓 𝑜𝑟 𝑗 ≠
𝑖). Here the dataset size per participant decreases as the number
of participants increases. If we allow overlap, We draw 𝐷𝑖 random
samples with replacement for participant 𝑖 , such that 𝐷𝑖 ∩ 𝐷 𝑗 ≠

∅(𝑓 𝑜𝑟 𝑗 ≠ 𝑖). We randomly draw samples without replacement from
the entire training dataset for the member data for the attack data.
6https://pytorch.org/
7https://github.com/known5/FederatedLearning_MIA

The non-member samples are drawn from the test set as these are
not used by the target models for training. For the attack model,
we create a balanced training and testing dataset. For the last set
of experiments in section 5.2, the distribution method for the no
overlap setting was adjusted. Now each client gets an equal number
of samples per class. The reason for this change was to provide
the attacker with only samples from one client dataset. Therefore,
measure the footprint of one participant in the global model.

Passive attack. The passive attack implementation works with
the attack model we explained in section 3.3. At the start of the
simulation, we load a subset of target models, for example, 5. Then,
we load the models for epochs 100, 150, 200, 250, and 300 and
initialise them. At each batch, all the data is sequentially passed
through these models. The last layer output, gradients and the
loss value are collected and passed on to the attack model. The
attackmodel then passes each component through a separate neural
network and outputs a prediction value. Depending on the batch
size, this can be a different number of prediction values. The loss
is then calculated using the Mean Squared Error Loss function of
Pytorch. Finally, the loss gets back-propagated through the network,
and the weights adjust accordingly.

Active attack. The active attack works the same as the passive
attack, except that the target models are influenced during their
training cycle. When training the target models, the attacker can
pass the attack data through its local copy and use gradient ascent
to increase the loss, as described in section 3. When training the
target models, the gradient ascent attack can be run at every epoch
or a specific interval. By tweaking the batch size and the learning
rate, the impact of the gradient ascent can be adjusted. In the next
section, we elaborate more on our findings for these parameters.

4.3 Resources
In order to run the experiments, we used the hardware cluster of
various computers and GPUs provided by the University of Twente
for its research groups. Using the SLURM scheduling protocol8,
experiments were submitted as jobs to the cluster and used the
resources available moment or otherwise specified. Therefore, the
experiments ran on several different GPUs. As this work focuses
on the attack accuracy and not run-time performance, this did not
matter in achieving our goal. However, for completeness, we want
to specify the minimal specs of the used GPU—a Dell T630 server
with an E5-2683-v4 processor and an Nvidia 1080-Ti with 11Gb of
RAM. In general, running our experiments on the GPU required
around 10Gb and the system required around 10-14Gb of RAM. On
average training, the target model took 2 seconds per batch and
training the attack model took around 4 seconds per batch.

5 RESULTS
Benchmark. The first step in achieving the goal of this work was

to reproduce the membership inference attack from Nasr et al. [16].
Before moving on to other experiments, this step was important
to serve as a baseline. These initial runs will be compared to the
results of Nasr et al. for the local attacker to see if they are similar.
In addition to the two settings similar to Nasr et al., we performed
8https://slurm.schedmd.com/sched_config.html
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Target model - 4 clients Inference attack model
Type Train Test Training member Training non-member Test members Test non-members
Normal 30.000 10.000 5.000 5.000 5.000 5.000
Gradient Ascent 30.000 10.000 5.000 5.000 100 100
Gradient Ascent - large test set 30.000 10.000 5.000 5.000 5.000 5.000

Table 1: Data distribution for attack reproduction

Data distribution for reproducing the attack from Nasr et al.[16]. The large test set row was added later to compare the active and passive attacks.

the active attack with a test set with 10.000 samples for comparison.
In table 1 we can see the data distribution we used for these ex-
periments. A total of 4 target models were trained with an overlap
in their training data. These target models were trained for 300
epochs with a learning rate of 0.01, 0.001 and 0.0001 starting from
epochs 0, 50 and 100. Every epoch, the aggregated global model
is evaluated and stored to be used later for the attacks. The attack
model learning rate is 0.0001 and is trained for 100 epochs. The
attack model is also stored at every epoch as a backlog. All experi-
ments are run with five different seeds9 to counter randomness in
our results. We took the highest training and testing accuracy from
every seed and reported the average accuracy in all the tables. In
some experiments, the standard deviation of the test accuracy is
also shown, as the accuracy was not very consistent.

The target model training scores are shown in table 2. To com-
pare, 99% for training and 44% for testing were the results on
Alexnet with CIFAR100 by Nasr et al.. At the same time, we have
99% training and 28% testing. Both of the test accuracy are quite
low, but it is most important that the training accuracy is 100%. The
membership inference attack works best with overfitted models
[19, 24]. We could not compare the target training scores for the
active attack as these were not reported by Nasr et al..

Type Train Loss Test Loss
Normal 99.99 0.0205 27.99 3.0529
Gradient Ascent 99.99 0.0203 28.06 3.1013

Table 2: Target training accuracy and loss values

Train and test accuracy for the target models. The datasets of the participants
overlap. During the active training, the attacker manipulated the target model
on epochs 99, 149, 199, 249, and 299. The highest scores are reported, but not

on the same epoch. The loss values are associated with the scores.

In figure 6, the effects of the gradient ascent attack on the
train/test accuracy can be seen. The rapid increase around epoch
50 is due to decreasing learning rate. The graph shows that the
highest test accuracy is achieved around epoch 25, while the high-
est training accuracy is achieved around epoch 300. The accuracy
for the benchmark attacks based on Nasr et al. is shown in table 4.
Here the highest train and test, along with the standard deviation
of the test accuracy across five seeds, is given. In addition, we pro-
vide precision and recall scores. For Comparison, Nasr et al. [16]
reported a passive attack test accuracy of 73.1% and 76.3% for the
active attack. Our higher score could be because there is no overlap
between participant datasets resulting in more unique data samples

9Seeds refers to the seed used in random generators. In our framework, we added the
option of setting the seeds for deterministic results

Figure 6: Target model accuracy for the active setting.
Train and test accuracy across 300 epochs is plotted, with the epochs on the
𝑥-axis and the accuracy in percentage on the 𝑦-axis. At epochs 99, 149, 199,
249, and 299, a gradient ascent attack was performed on the local model.

Therefore the train and test accuracy is lower at epochs 100, 150, 200, 250, and
300

to distinguish members from non-members. There is no overlap
since we could divide a larger dataset of 100,000 samples instead of
60,000 between the 4 participants.

Type Train Test Precision Recall
Passive 97.90 80.57 ± (0.697) 0.809 0.800
Active 98.10 82.50 ± (3.482) 0.822 0.830
Active - large test set 97.69 80.41 ± (0.533) 0.808 0.798
Table 4: Reproduced attack scores on Tiny imageNet

Train and test accuracy for the passive and active membership inference
attacks. In addition, Standard Deviation (SD), precision and recall are

reported. The SD value can be found in brackets next to the test accuracy

Initially, the active attack test accuracy seemed slightly higher
than the passive test score. However, there was an inconsistency
when looking at the standard deviation of the test accuracy. This
inconsistency might be because Nasr et al. [16] tested their active
attack on a test set of only 100/100 members/non-members. There-
fore we performed the same experiment with a test set similar to
the passive attack. The result was a lower but more consistent test
accuracy as the standard deviation had decreased.

5.1 Exploring the passive attack
No overlap. From the initial results, the question about the effects

of overlap arose. In the paper by Nasr et al. [16], the participants’
training data overlapped because the dataset was too small to give
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Target model - 4 clients Inference attack model
Type Train Test Training members Training non-members Test members Test non-members
Normal 25,000 10,000 5,000 5,000 5,000 5,000
Gradient Ascent 25,000 10,000 5,000 5,000 5,000 5,000

Table 3: Data distribution for attack without overlap

Data distribution for testing without overlap between the client datasets. Since Tiny ImageNet contains 100,000 training samples, each client gets 25,000 samples.

each participant adequate data samples. With the larger Tiny Ima-
geNet dataset, we tried to see the difference between having overlap
and no overlap between participants. The data distribution for this
setting can be found in table 3. We generated 4 participants, with
each 25,000 data samples that did not overlap with each other. All
parameters, such as the learning rate and the number of epochs,
are similar to the previous experiment. The results for the target
training can be found in table 5. The difference between these scores
and the target model accuracy from table 2 is that the test accuracy
is slightly higher. This difference further supports our previous the-
ory that reducing the overlap between participants results in more
unique data samples and, therefore, a higher attack test accuracy.

Type Train Loss Test Loss
Normal 99.89 0.054 31.21 3.387
Gradient Ascent 99.68 0.078 31.07 3.377

Table 5: Target training scores without overlap

Train and test accuracy and loss values for the target models for the no
overlap setting.

The attack scores for the membership inference attack with no
overlap between participant datasets can be found in table 6. The
no overlap passive attack scores are significantly higher compared
to the scores in table 4 with overlap. The active attack also performs
better but is not outperforming the passive attack. When comparing
the precision and recall scores between tables 4 and 6 the recall
score is significantly higher for both the passive and the active
setting. The attacks on the no-overlap target models can identify
more members than the attacks from the previous experiment.
However, it is unexpected that the passive attack scores higher
than the active attack. A reason for this can be that the gradient
ascent attack changes the model weight so that the model is less
capable of distinguishing between members and non-members.

Type Train Test Precision Recall
Passive 98.13 89.47 0.832 0.989
Active 98.92 85.49 0.793 0.960
Table 6: Attack scores without overlap

Attack scores for the no overlap case. Next to the training and testing
accuracy, the standard deviation of the test accuracy across the five seeds, the

precision and recall are reported.

Data Distribution. In addition to the no overlap setting, different
data distributions are assessed. It was clear from Nasr et al. that
the more data the attacker has, the better the model will perform.
However, would the train test split matter in this case? Therefore

we set up three cases of train test splits, as seen in table 7. For this
experiment, we only performed the passive membership inference
attack. These attacks were performed on the same target models
used for the benchmark. Although there is only a slight increase in
the attack’s test accuracy, it supports the theory that more training
data results in higher test accuracy.

Type Train set Test set Accuracy Precision Recall
case 1 2,500/2,500 2,500/2,500 80.26 0.800 0.812
case 2 5,000/5,000 2,500/2,500 80.51 0.806 0.804
case 3 7,500/7,500 2,500/2,500 80.96 0.813 0.803

Table 7: Data distribution comparison

Train test split score comparison results, there are three cases with a different
train test split. The highest test accuracy, associated precision, and recall are

reported for each case.

Model Inference Count. The initial benchmark attack takes five
models from different epochs to generate input for the attack model.
Models 100, 150, 200, 250 and 300 were selected in the bench-
mark. Multiple models were selected to preserve the changes across
time between members and non-members in the models. However,
would the number of models make a difference in attack accuracy?
To investigate this, we lowered the number of models used by the
attack, starting with the lowest number. Table 9 shows that one or
five models do not make a significant difference. This lack of differ-
ence can be because the models have already reached a plateau as
their training accuracy is around 99%, as seen in figure 6. Therefore,
the number of selected models does not significantly influence the
attack test accuracy.

Selected Models Test Accuracy Precision Recall
100 - 150 - 200 - 250 - 300 80.57 0.809 0.800

150 - 200 - 250 - 300 80.45 0.808 0.799
200 - 250 - 300 80.54 0.808 0.802

250 - 300 80.37 0.808 0.796
300 80.46 0.807 0.801
Table 9: Input model count comparison

Comparison for using a different number of input models. The highest test
accuracy, associated precision, and recall are reported for each case.

5.2 Large networks
This work aims to measure the effect of the white-box membership
attack on federated learning in large networks. Therefore we assess
the accuracy of the attack when the number of participants in the
network is increased. Six sets of participants were tested, that is, 1,
5, 10, 15, 20 and 25 participants. Since having no overlap between
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Target model Inference attack model
Type Train Test Training members Training non-members Test members Test non-members
Normal 4,000 10,000 2,000 2,000 2,000 2,000
Gradient Ascent 4,000 10,000 2,000 2,000 2,000 2,000

Table 8: Data distribution for membership inference in large networks

Data distribution for the experiments about attack accuracy performance in large networks. The participant dataset is kept constant at 4,000 samples. The attack
dataset contains 2,000 members along with 2,000 non-members from the test set, both for training and testing the attack model.

participants performed the best, it is also used here. Therefore, the
training dataset was scaled to the largest setting, as seen in table 8.
The training dataset was kept constant to remove the adverse effects
of decreasing the training dataset when the number of participants
increased. All target models were trained for 300 epochs, after
which the last epoch was selected to be used for inference. The
epochs at which the learning rate is decreased change from 50
and 100 to 100 and 200. For participants sizes 1 and 5, the learning
rate starts at 0.01, while the other cases start at 0.1. The learning
rate needed to be changed to ensure the target model could overfit
the training data. The final change is that the attack data is only
sampled from one participant. Therefore we can measure to what
extent that single dataset is represented in the global model. The
results for training the target models can be found in table 10. As
the amount of participants increases, the test accuracy increases
as well. The reason for this can be that the global model has seen
much more data samples when the number of participants is higher.
Therefore it is capable of performing better on the test set. The
changes in learning rate do not seem to affect the increase of test
accuracy, as the test accuracy already increases by 10% when the
number of participants increases from 1 to 5.

Participants Train Loss Test Loss
1 100.00 0.001 7.65 14.793
5 99.46 0.083 17.90 4.473
10 100.00 0.022 22.60 3.696
15 100.00 0.026 25.90 3.350
20 99.82 0.057 28.05 3.170
25 97.06 0.210 29.34 3.049

Table 10: Target training scores for large networks

Target model training scores for large networks. The table shows the highest
train and test accuracy and associated loss values.

Participants Train Test Precision Recall
1 98.14 51.39 ± (0.646) 0.512 0.580
5 96.38 55.93 ± (4.548) 0.563 0.527
10 93.44 66.60 ± (0.696) 0.738 0.515
15 92.66 74.03 ± (1.440) 0.775 0.678
20 92.51 80.76 ± (0.697) 0.796 0.827
25 90.72 84.85 ± (1.852) 0.792 0.944

Table 11: Passive attack scores for large networks

Inference attack scores for the passive local attacker. Next to the highest train
and test accuracy, the standard deviation precision and recall associated with

the test accuracy are reported.

In table 11, the scores for the passive membership inference
attack on large networks can be found. The number of required
training epochs was lowered from 100 to 25 for the attack model,
as the highest test accuracy was already achieved in the first five
epochs. As a result, the model overfits on the attack data, and
the test accuracy decreases. The reason for lowering the number
of epochs was to lower the run times of the experiments. The
results show that the attack test accuracy increases when more
participants are added. This behaviour can be explained by the fact
that the global model has seen more data samples during training,
as it is the average of multiple models that have seen separate
parts of the primary dataset. Therefore, the attack model can make
a much clearer distinction between members and non-members.
This explanation follows the theory that more data means higher
membership prediction accuracy.

Participants Train Loss Test Loss
1 100.00 0.004 7.64 14.668
5 99.42 0.086 17.35 3.801
10 100.00 0.023 22.93 3.754
15 99.99 0.026 26.06 3.313
20 99.82 0.056 28.02 3.185
25 96.94 0.214 29.32 3.040

Table 12: Target training scores, with gradient ascent attack,
for large networks

Target model training scores, with gradient ascent attack, for large networks.
The table shows the highest train and test accuracy and associated loss values.

Gradient Ascent attack in large networks. For the active set, the
target models were trained using the same parameters as the pas-
sive setting. Only the learning rate of the gradient ascent attack
was multiplied by 10 for the experiments with 10, 15, 20 and 25
participants, similar to the target model learning rate. The target
training scores for the active attack can be found in table 12. These
results are similar to the passive target training results in table
10. A reason for this could be that the effect of the active attack is
decreased due to the local model updates being aggregated with a
higher number of other model updates.

In table 13 the attack scores for the active attack in large networks
are reported. While higher in some cases, the active attack scores
are not significantly different compared to the passive attack scores.
This lack of difference can be to the minimal nature of the active
attack, as we implemented it only to occur one epoch before we
used the target models and with a small learning rate. Another
possible explanation is our theory for the passive attack. With a
higher number of participants, the influence of the active attack
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Participants Train Test Precision Recall
1 97.72 51.19 ± (0.612) 0.514 0.451
5 96.78 57.86 ± (0.996) 0.626 0.552
10 96.01 65.53 ± (1.672) 0.711 0.524
15 95.10 74.57 ± (0.992) 0.795 0.662
20 94.23 81.69 ± (0.326) 0.812 0.824
25 94.34 85.16 ± (1.190) 0.796 0.946

Table 13: Active attack scores for large networks

Inference attack scores for the passive local attacker. Next to the highest train
and test accuracy, the standard deviation precision and recall associated with

the test accuracy are reported.

gets negated as the footprint of a single participants model updates
into the global model is smaller.

6 DISCUSSION
This work gives new insights into the workings of white box mem-
bership inference attacks on federated learning in large networks
of multiple participants. The main conclusion is that the white-box
membership inference attack accuracy increases as the number of
participants in the network increases. This conclusion contradicts
our hypothesis that the accuracy decreases by increasing the num-
ber of participants due to the FedAvg algorithm. While this is a
similar theory to Nasr et al. [16], one of the key differences here
is that we have the additional assumption that the attacker only
has access to data from one participant. Our experiment shows that
the capability of the attack model to distinguish members from
non-members increases as the number of participants increases.

While the attack scores are significant, the setting for the exper-
iments holds the following assumptions: The attacker has access to
at least one target model and can use this to compute the forward
and backward pass of the model. Furthermore, the attack dataset
contains enough members, and the attack has knowledge of which
samples are members. The experiment results indicate that remov-
ing overlap between target datasets improves the attack model
accuracy by around 9% and, therefore, should be investigated as to
why that is. An example setup could be to take two participants
and gradually increase the intersection of their data samples. Then
assess the attack accuracy for each interval. Since the setting with
non-overlapping datasets performed best in our findings, we expect
the attack accuracy to decrease as the number of overlapping data
records increases.

After the last run of experiments, another question arose. Is the
attack model predicting that a data record is a specific member of a
particular dataset, or has it the general characteristics of a member?
The reason for the question is that with a low number of partic-
ipants, the footprint of the model updates of a single participant
is more significant compared to a higher number of participants.
Furthermore, one would expect more information in the target
model for a high membership inference score compared to a higher
number of participants. An experiment setup to verify this would
be to train five target models with federated learning and one target
model on its own. There is no overlap between the target datasets.
The attack dataset only contains member samples from the first
five target models. Then the attack is performed on both the global

model of the 5 participants and the stand-alone model. If they report
the same accuracy, the model is simply predicting that a sample
has the characteristics of a member and not that it is a member of
the actual dataset.

In addition, while the active membership inference attack is
featured in the findings, it was applied to a limited extent. Finding
the ideal gradient ascent learning rate and epochs to launch the
attack was out of the scope of this research. Instead, we decided to
take a minimal version of the active attack and focus on exploring
the passive attack. Therefore it would be interesting to assess further
when to perform the gradient ascent attack and how to tune the
attack parameters accordingly to maximize the attack accuracy.

7 CONCLUSION
In this work, a framework for simulating attacks in Pytorch was
constructed. With this framework, the attacks from Nasr et al.[16]
were reproduced and compared. Then the passive attack was fur-
ther explored by accessing the effect of no overlap between target
datasets, exploring different data distributions for the train and
test sets and changing the number of input models. Finally, we
performed membership inference attacks in networks with increas-
ing participants. The active and passive settings increased to 85%
on average with 25 participants by keeping the target datasets
constant.
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About the effect of white-box membership inference attacks on federated learning in large networks

A THREAT SCENARIOS

Criteria Attacks Description

Observation
Black-box The attacker can obtain the prediction vector f(x) on arbitrary input x, but cannot access the model parameters, nor

the intermediate computations of f(x).

x f f(x)

White-box The attacker has access to the full model f(x;W), notably its architecture and parameters W, and any hyper-parameter
that is needed to use the model for predictions. Thus, he can also observe the intermediate computations at hidden layers
hi(x).

x W1 h1(x) W2 h2(x) · · · Wi f(x)

Target
Stand-alone The attacker observes the final target model f , after the training is done (e.g., in a centralized manner) using dataset D.

He might also observe the updated model fΔ after it has been updated (fine-tuned) using a new dataset DΔ.

xD

f

DΔ

fΔ
fine-tune

Federated The attacker could be the central aggregator, who observes individual updates over time and can control the view of the
participants on the global parameters. He could also be any of the participants who can observe the global parameter
updates, and can control his parameter uploads.

x

Aggregator (global parameters W)

D1

f(x;W
{t}
1 )

D2

f(x;W
{t}
2 )

DN

f(x;W
{t}
N )

· · ·

down=W{t}

up=W{t}
i

Mode
Passive The attacker can only observe the genuine computations by the training algorithm and the model.

Active The attacker could be one of the participants in the federated learning, who adversarially modifies his parameter uploads
W

{t}
i , or could be the central aggregator who adversarially modifies the aggregate parameters W{t} which he sends

to the target participant(s).

Knowledge
Supervised The attacker has a data set D′, which contains a subset of the target set D, as well as some data points from the same

underlying distribution as D that are not in D. The attacker trains an inference model h in a supervised manner, by
minimizing the empirical loss function

∑
d∈D′ (1 − �d∈D)h(d) + �d∈D(1 − h(d)), where the inference model h

computes the membership probability of any data point d in the training set of a given target model f , i.e., h(d) =
Pr(d ∈ D; f).

Data Universe

D

D′

D′
∼ Pr(X = x)

∼ Pr(X = x)

Unsupervised The attacker has data points that are sampled from the same underlying distribution as D. However, he does not have
information about whether a data sample has been in the target set D.

Table 14: Overview of inference attacks categories. Based on
observation, target, mode of operation and prior knowledge.
Source: Nasr[16]
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