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Abstract

Breast cancer is the leading cause of cancer death among women worldwide. The
breast screening programmes now active in many countries help to reduce the mor-
tality rate, but result in a large number of images for radiologists to process. Tools
based on deep learning have been developed to aid radiologists to diagnose breast
cancer from mammograms more efficiently and with better accuracy. However,
many of the datasets available to train these deep learning models have a class
imbalance problem, i.e., there are fewer images of breasts with malignant lesions
than images with no malignancies, which can bias trained models towards the non-
malignant class. This report is based on a six month internship at Hera-MI, Nantes,
France. During the internship, a systematic study of common techniques for deal-
ing with class imbalanced was carried out on several public and private datasets.
Inserting synthetic lesions was also examined as a method to tackle class imbalance.
It was found that although class imbalance does indeed shift predictions towards
the majority class, models were still able to separate benign from malignant as much
as when common class imbalance techniques were applied. Furthermore, synthetic
lesions showed significant promise, with improvements in AUC-ROC of 0.02 on an
in-distribution test set and up to 0.07 on out-of-distribution test sets.

Résumé

Le cancer du sein est la principale cause de décès par cancer chez les femmes. Le
dépistage du cancer du sein peut réduire le taux de mortalité, mais il crée de nom-
breux images qui nécessitent l’attention des radiologues. Des outils utilisant la tech-
nologie d’apprentissage profond sont disponibles depuis récemment pour aider les
radiologues à traiter toutes ces images. Cependant, parmi les données utilisées pour
créer ces outils, il y a plus d’exemples de seins normaux que de seins présentant
des anomalies malignes, ce qui peut causer un biais vers la classe normale dans les
modèles prédictifs. Ce rapport présente une étude sur ce problème de déséquilibre
des classes, qui a été réalisée lors d’un stage chez Hera-MI, une société d’imagérie
médicale à Nantes. Les résultats montrent que bien qu’il y ait du biais en cas de
déséquilibre, le modèle peut encore séparer les deux classes aussi bien que lorsque
des techniques sont appliqués pour contrer le déséquilibre. Par ailleurs, l’étude dé-
montre l’utilité d’une méthode d’insertion de lésions malignes synthetiques pour
équilibrer les classes.
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Preface
When I decided in 2020 to return to university to complete a master’s degree, I

did not know quite what to expect. Having already worked four years in the data
domain, I found myself wanting more. I wanted a challenge. I wanted to explore. I
wanted to learn. I pursued the degree primarily to deepen my technical skills and
broaden my horizons, believing that this would give me the opportunity to work on
more diverse, more complex problems, and hopefully experience the joy of solving
them. The innovation and entrepreneurship aspects of the European Institute of
Innovation & Technology (EIT) master’s programme also appealed to me, perhaps
allowing me to take those technical skills and find ways of applying them to solve
real-world problems.

I have learned a lot over the past two years, well beyond the subjects taught in
the curriculum. The interminable lock-downs during the early days of the Covid-19
pandemic provided me with time for reflection and introspection. New countries
and cultures, and diverse groups of international friends, opened my eyes to in-
teresting differences but also significant similarities between us all. Most recently,
a year in France, and six months spent at Hera-MI, have satisfied a long-standing
wish of mine to immerse myself in the French culture and language. And most im-
portantly, I became a connoisseur of Breton galettes!

During the master’s programme I discovered the transformative effect that data
and machine learning projects can have on healthcare. This appealed to me tremen-
dously, showing me a way to apply my skills to complex problems to find solutions
that might improve the lives of others in some way. Thus, I worked on as many
projects in this area as possible as part of my studies, and was lucky enough that
one of these projects led to a publication in a scientific journal. This initial experi-
ence of research gave me a taste for more, motivating me to seek similar experiences
in the internship on which this report is based, and ultimately led to me applying
for a PhD that I will begin later this year, on automated detection and segmentation
of multiple sclerosis lesions in spinal cord Magnetic Resonance Imaging (MRI).

When I discovered Hera-MI and the work they do in helping to detect breast
cancer using artificial intelligence, it was the perfect fit for me. Breast cancer affects
so many people and almost everyone knows someone whose life has been changed,
or taken, by this disease. I was excited to be part of an effort to catch breast cancer
early, and thus to improve patient outcomes. My personal goals for the internship
were to gain practical experience in the AI for medical imaging domain, improve
my research skills, gain an insight into life in a startup in this area, and, in effect,
to do something useful. My main focus during the internship was on investigating
techniques to deal with an imbalance between the number of cancerous (malignant)
and non-cancerous (benign or normal) cases in datasets used to create models which
classify images as to whether the breast shows signs of cancer or not. We plan to
submit our research on this topic for publication during the coming months.

This report is divided into four main chapters. Chapter 1 provides a brief back-
ground on Hera-MI and the industry context. Chapter 2 discusses the internship as
a whole, the goals of the internship, how it progressed, and the format it took. Chap-
ter 3 presents the scientific research undertaken, including a literature review of the
state of the art, and the various experiments performed. This makes up the majority
of this report, and is based on the text of the journal article to be published. Finally,
Chapter 4 offers some reflections on the internship, both from a personal perspective
and examining the impact of the six months.
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Chapter 1

Company and Industry Context

1.1 AI for Healthcare

Techniques based on Artificial Intelligence (AI) have shown great promise over the
last decade. The capabilities of Deep Learning (DL) methods in particular have been
underpinned by improvements in hardware and processing power, enabling ever
more powerful models to automate complex tasks. One domain in which AI has
proved useful is healthcare, in areas as wide as genomics, drug discovery, inter-
preting electrocardiograms, and, most commonly, medical imaging (Rajpurkar et
al., 2022). The use of AI in medical imaging encapsulates several different tasks
and many types of medical images. Applications of the technology include diagnos-
ing skin cancer using natural images of skin lesions (Dildar et al., 2021), identifying
signs of multiple sclerosis in Magnetic Resonance Imaging (MRI) images of the brain
(Shoeibi et al., 2021), or localising bone fractures in an X-ray (Cheng et al., 2021).

There has been much study of these new solutions in the academic literature,
and an industry is now growing to commercialise products built on this technology,
with global market size projected to grow 300% to $3.2 billion in 2027 by one esti-
mate.1 This industry is not confined to existing medical technology companies, as
tech giants like Microsoft, IBM and Google have also invested significantly in var-
ious ventures (Lundervold and Lundervold, 2019), and many startups have been
created with a focus on AI for medical imaging (Zhou et al., 2021). According to
a database of the American College of Radiology’s (ACR) Data Science Institute2,
nearly 200 products based on AI for medical imaging have been approved by the
FDA (Food and Drug Administration) in the USA. More than 10% of these licensed
products are focused on breast imaging, which gives an indication of the significance
of breast cancer, and the level of innovation dedicated to tackling this disease.

1.2 Breast Cancer

Breast cancer is the leading cause of cancer death among women worldwide, and
was responsible for an estimated 680,000 deaths in 2020 (Sung et al., 2021). As a re-
sult, many countries have introduced breast screening programs which, along with
early treatment, can reduce mortality rates by 26-38% (Broeders et al., 2012; Man-
delblatt et al., 2016). Mammography is the most widely used imaging modality in
screening programs (Peintinger, 2019).

A mammogram is an X-ray image of the breast. The breast is compressed and
spread out, then beams of low-dose radiation are passed through and captured in

1https://www.researchandmarkets.com/reports/5337141/artificial-intelligence-in-
medical-imaging-market - accessed 15 August 2022

2https://aicentral.acrdsi.org/ - accessed 7 August 2022

https://www.researchandmarkets.com/reports/5337141/artificial-intelligence-in-medical-imaging-market
https://www.researchandmarkets.com/reports/5337141/artificial-intelligence-in-medical-imaging-market
https://aicentral.acrdsi.org/
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FIGURE 1.1: Illustration of the two most common views acquired with mammog-
raphy. Left: diagram explaining acquisition (Tardy and Mateus, 2022). Right: Ex-

ample of two views of the same breast.

a receptor at the other side. Areas of higher density, such as a mass or a build-up
of calcium deposits, absorb more of the passing x-rays and appear brighter in the
resulting image, allowing radiologists to identify potential malignancies. Typically,
two images of each breast are acquired from different angles, Craniocaudal (CC) and
Mediolateral Oblique (MLO), illustrations of which are given in Figure 1.1. Further
imaging, such as ultrasound, MRI, tomosynthesis or further mammograms, can be
used when a lesion is suspected, if the results are unclear from the first set of mam-
mograms, or for women with a higher risk of developing breast cancer (Rebolj et al.,
2018; Kriege et al., 2004; Bevers et al., 2018).

Breast cancer screening programs produce a large number of images requiring
the attention of radiologists for diagnosis, which can be a tedious, time-consuming
and costly process (Geller et al., 2009; Ribli et al., 2018). There are already signs of
professional burnout among breast imaging radiologists (Parikh, Sun, and Mainiero,
2020), which could be compounded by the large number of images produced as well
as expected increases in workforce shortages over the next number of years (Wing
and Langelier, 2009). Moreover, increasing an already high workload for radiologists
may lead to an increase in errors (Brady, 2017).

Computer-aided Diagnosis (CADx) tools were proposed to deal with these prob-
lems and the use of these increased in the early 2000s, albeit with mixed results (Doi,
2007; Lehman et al., 2015). More recently, automated diagnosis systems have been
developed based on DL models which learn to distinguish between benign and ma-
lignant lesions in breasts from many retrospective examples. These models have
shown improved performance and large clinical studies have demonstrated their
usefulness as an aid to radiologists in screening mammography (McKinney et al.,
2020; Schaffter et al., 2020; Conant et al., 2019; Rodriguez-Ruiz et al., 2019).

1.3 Company Overview

The internship took place in Hera-MI, a medical imaging company based in Nantes,
France. The company was set up in 2017 with the aim of improving the early
detection of breast cancer by creating AI solutions for mammography. Their pri-
mary product, Breast-SlimView, is an aid to radiologists in mammography screen-
ing. Through a patented process the company calls "negativation", normal areas of
the breast are masked automatically (see Figure 1.2), thus focusing the attention of
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FIGURE 1.2: Demonstration of Breast SlimView software. Left: Original CC views
for two breasts of one patient. Right: Output of Breast SlimView - normal areas are

masked, and malignant mass is highlighted.

radiologists on abnormalities. The tool helps to reduce the amount of time needed
by clinicians in screening mammography, while also improving detection rates.

The company follows a typical business model for this domain in selling the
software to radiologists and clinics, both directly and through distributors. Two key
partnerships with Fujifilm and Medecom, who incorporate the software into the di-
agnostic workstations they sell, enable the company to reach more radiologists, and
thus benefit more patients. Competitors propose other CAD tools in mammography
based on AI, both in France (Therapixel) and abroad (e.g., Screenpoint, Kheiron, and
i-CAD), but Hera-MI point to their unique value proposition in negativation, rather
than inserting bounding boxes around lesions, which allows radiologists to avoid
an information overload.

Early funding from angel investors, regional initiatives, and innovation prizes
allowed the company to develop in the early years, enabling the significant research
required to create diagnostic software in the medical domain. In 2019, the company
then became the first French company to receive CE certification for an AI solution
to diagnose breast cancer in mammography. Now, after several years of success
with Breast Slim-View and a solid base in France, Hera-MI is expanding its net-
work across Europe, and is in the process of seeking FDA approval. Moreover, the
company has broadened its research focus to the detection of different cancers, e.g.,
prostate cancer, and to different imaging modalities, with the tool already capable of
processing Digital Breast Tomosynthesis (DBT) and breast MRI being an active area
of development. Indeed as the AI for medical imaging industry matures, companies
will compete increasingly on the breadth of their offering to radiologists.
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Chapter 2

Internship Journey

2.1 Internship Context

For the duration of the internship, I was a member of the research team in Hera-MI.
The company supervisor of the internship, Mickael Tardy, is Chief Scientific Officer
and leads the research team. The team has eight members and so accounts for a
significant portion of the company’s overall headcount of 20. The other members of
the research team work on related topics in AI for classification and segmentation
of medical images, as well as general image processing, and their experience and
helpfulness provided me with valuable insights throughout the internship.

The research team has a weekly meeting where each member presents some of
the work they did that week, which I found to be useful during the internship, both
to learn from the other researchers, and to share my progress and get feedback and
ideas. Being in the office several days each week next to my supervisor and the
other researchers also allowed me to quickly share any thoughts or questions I had.
Moreover, my supervisor and I met several times throughout the internship when I
wanted to share in-depth results or ask more detailed questions. Most researchers
at the company work in a hybrid fashion, working remotely for part of the week
and spending the other days at the office. I found this setup suited me well, as
working remotely allowed more focus for bibliographic research or complex coding
tasks, whereas being at the office provided the opportunity to easily ask colleagues
for advice and helped me to feel part of the team.

2.2 Internship Mission

The internships that take place at Hera-MI vary in scope and in nature, depending on
the needs of the company at the time, as well as the profile and interests of the intern.
Some, including mine, take a relatively narrow focus on a single research topic, while
others work on research questions that arise from the broader team during the course
of the internship. After starting the internship, I began with exploratory analysis
on breast imaging datasets while my supervisor and I discussed potential research
topics, until we settled on the problem of class imbalance.

Frequently, the public and private datasets that the company works with have
an over-representation of images without signs of cancer, relative to images with
cancerous lesions. In a classification problem, this is referred to as class imbalance.
Although this may not be a problem if there were millions of malignant images avail-
able for use, this is not the case as, in fact, most datasets in the area comprise thou-
sands of images. Therefore, researchers must attempt to learn generalisable charac-
teristics of malignancy from a small number of cancerous cases. This is compounded
by somewhat noisy labels, for example, a malignant lesion in a breast might show
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up in the MLO view and not the corresponding CC image. The image labels are
dependent on the breast, though, so this latter CC image is likely to be included as
malignant during training without any visible signs of malignancy.

The internship mission was thus to investigate how best to utilise these relatively
small sets of images under situations of class imbalance. Upon reviewing the litera-
ture (detailed in Section 3.2), it was evident that there were many techniques avail-
able, but no systematic review of their effects on a breast cancer classification prob-
lem. Furthermore, other studies of class imbalance showed that the effect of tech-
niques can vary from domain to domain. Therefore, the agreed internship mission
was to conduct a set of systematic experiments on several heterogeneous datasets
using the most commonly used class imbalance techniques. We further planned
to explore the effect of inserting synthetic malignant lesions into images of normal
breasts as an alternative technique to balance the malignant and benign classes. This
innovative synthetic lesion methodology had been developed in-house as a way to
train segmentation models, and the team was keen to explore further uses.

2.3 Planning and Initial Steps

Figure 2.1 presents an overview of the progression of the internship. Exploratory
analysis and a literature review were essential first steps in getting familiar with the
domain, the state of the art, and the available data. I was able to apply visualisation
techniques I had learned during my work as a data analyst, as well as image pro-
cessing and programming skills that I developed during the master’s degree, while
at the same time deepening my knowledge of the domain with, for example, a one
week company training on mammography and breast MRI.

May June July AugustAprilMarch

Exploratory Analysis

Literature Review

Experimental
Framework & Planning

Class Imbalance Experiments  
(incl. development in corporate codebase)

Writing  
(Intro &
Related
Work)

Writing
(Methods
& Data)

Writing
(Results &

Discussion)

Writing
(Thesis)

Preprocessing
Data

Results
Analysis

FIGURE 2.1: High-level overview of internship timeline.

Figure 2.2 is an example of the output of my work at that time. The INBreast
and CMMD (Chinese Mammography Database) datasets in these plots will be in-
troduced in more detail in the body of the report (see Section 3.4). We can see that,
initially, the three datasets have quite different distributions over the range of inten-
sities. This is important because a machine learning model trained on data from one
distribution may fail to generalise to different distributions. We see in the second
plot that histogram normalisation can partly resolve this, reducing the differences
between datasets. Histogram normalisation involves stretching the histogram of in-
tensities in each image to ensure the full range of available intensities is used. A fur-
ther insight that we gained from this analysis is that the CMMD images are already
quite stretched across the intensity range, and so histogram normalisation has less
of an effect on this distribution than for other datasets. This can impact the choice of
normalisation applied before training a new model, and indeed we later confirmed
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FIGURE 2.2: Comparison of intensity distributions of three datasets, and the effect
of histogram normalisation. Shown are the average intensity distributions across

all images in each dataset.

that this normalisation did not greatly affect classification results for CMMD data. In
general, insights gathered during this initial exploration period can benefit the team
by informing decisions of the other researchers when using those datasets, and thus
reducing necessary research times.

As mentioned in Section 2.2, my supervisor and I agreed that the experimental
framework would be to systematically carry out a series of experiments applying
several class imbalance techniques, which I identified in the literature, to several
different datasets, including most of the publicly available Full-Field Digital Mam-
mography (FFDM) datasets. We initially identified a larger set of techniques, and
I started with the most commonly applied, knowing that we may not be able to
complete everything in a matter of months. The main constraint on the number of
possible experiments was the significant time required to train the models, as each
experiment might run for one day or for several weeks, depending on the dataset,
the method applied, and the hardware used. Therefore, as the experiments pro-
gressed, we reviewed the time taken for each experiment and were better able to
forecast the time needed for the remaining experiments, to ensure we would have a
complete, valid set of results that could be published.

The time spent on class imbalance experiments included 1) implementing each
technique, 2) developing evaluation methodologies, 3) training the models, 4) as-
sessing results, and 5) exploring some of the hyperparameters and pre-processing
techniques. Although in Section 3.5 I present results of 14 experiments, the number
of training runs I launched is closer to 100, with extra runs to explore configurations,
or to troubleshoot when certain experiments were not working as well as expected.
A Graphical Processing Unit (GPU) is essential for extensive deep learning experi-
ments of this kind to accelerate the training process. Many members of the research
team are working on deep learning research, so the GPU resources are shared. For
most of the internship, I had access to one GPU and occasionally two, so it was im-
portant to plan to keep the available GPU occupied as much as possible, allowing
more experiments to be run over the full period. Therefore, when model training for
each experiment was finished, the code and configuration for the next experiment
was ready to run, and this helped to create mini-deadlines throughout the intern-
ship. Then, when time allowed, I progressively wrote the sections of the paper we
aim at submitting for publication.
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Chapter 3

Study on Class Imbalance

3.1 Introduction

As stated in Section 1.2, automated diagnosis of breast cancer based on DL models
is becoming more widely used and showing promising results. However, datasets
used to train these models are often highly imbalanced, i.e., they contain more be-
nign samples than malignant, as most women who undergo mammography screen-
ing do not have breast cancer. This problem of different proportions of each class
of interest is called class imbalance, and numerous studies have shown that it can
be detrimental to the performance of a classification model (Japkowicz and Stephen,
2002; Buda, Maki, and Mazurowski, 2018). The imbalance can cause models to be
biased towards the majority class, which is of particular concern in mammography
screening as this may lead to models being more likely to predict images as being
benign, potentially leading to missed cancers.

Many techniques have been proposed to tackle the effect of class imbalance, but
their impacts can vary depending on the complexity of the task and the distribu-
tion of the dataset (Buda, Maki, and Mazurowski, 2018; Johnson and Khoshgoftaar,
2019). In other words, a method that is well suited to optical character recognition,
for example, may be unsuitable for cancer classification. This motivates the need for
a broad study of these techniques applied to breast cancer diagnosis using various
mammography datasets, to determine whether certain techniques are best suited to
this task.

The task considered is to classify whether a breast contains cancerous lesions or
not based on the information presented in a mammogram. Although the focus of this
study is on mammography, many other medical imaging tasks share the same main
characteristics, namely, high-resolution images, a clinical context where the trade-off
between sensitivity and specificity is important, and often a high level of imbalance
between classes. Thus, the results of this study could have wider applicability for
medical imaging in general.

The aim of this study can be summarised in the following Research Questions
(RQ):

RQ1 What effect does class imbalance in various mammography datasets have on
cancer classification performance and the generalisability of a deep learning
model?

RQ2 How do common techniques for tackling class imbalance compare for cancer
classification in mammography?

RQ3 To what extent does the addition of images with synthetic lesions during train-
ing improve classification performance?
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To answer these questions, extensive experiments were conducted on several
mammography datasets with different data distributions and levels of class imbal-
ance, including two recently released datasets, Chinese Mammography Database
(CMMD) (Cui et al., 2021) and VinDr-Mammo (Nguyen et al., 2022), as well as the
popular INBreast dataset (Moreira et al., 2012). A selection of the most popular tech-
niques for handling class imbalance were chosen from the literature and applied to
evaluate their effects on classification performance and generalisability of a standard
Convolutional Neural Network (CNN) used for breast cancer classification.

This chapter is structured as follows. Section 3.2 discusses related work in auto-
mated cancer diagnosis and studies on class imbalance for DL. Section 3.3 details the
models, class imbalance techniques, and experiments carried out in this study, while
Section 3.4 presents the datasets used. The results of the experiments are presented
in Section 3.5. Finally, Section 3.6 contextualises and summarises the key findings
from the experiments and their implications.

3.2 Related Work

3.2.1 Breast Cancer Classification

The current state of the art in automated breast cancer classification from mammo-
grams involves CNNs trained to classify full resolution images (Wu et al., 2019),
subsets of images in the form of patches (Choukroun et al., 2017), or a combination
of the two (Shen et al., 2019). Areas showing promising results in the domain include
Multi-Task Learning (Tardy and Mateus, 2022), where supplementary information in
the data annotations such as breast density and the Breast Imaging-Reporting and
Data System (BI-RADS) risk rating can be used during training to help the model
to converge. Multiple instance learning has also proved useful as it can provide a
way of localising abnormalities in images using only image-wise malignancy labels
rather than pixel-wise ground truth annotations of abnormalities (Choukroun et al.,
2017; Bakalo, Ben-Ari, and Goldberger, 2019).

The majority of the studies in this area, however, use datasets with a higher num-
ber of benign samples than malignant. Although some common measures are used
to counteract this imbalance, such as over-sampling and class weighting, the ques-
tion remains as to how impactful class imbalance is in this domain, and how well
different techniques resolve the problem.

3.2.2 Effects of Class Imbalance

Study of the class imbalance problem is not new in the literature. As early as 1993,
Anand et al. (1993) showed that when training a shallow neural network with back-
propagation on an imbalanced dataset, the gradient contribution of the majority
class dominates that of the minority class, which leads to slow convergence of the
error for the minority class. As machine learning techniques became more widely
studied, a significant amount of research was dedicated to class imbalance, with
a number of workshops and special issues in the early 2000s (Chawla, Japkowicz,
and Kotcz, 2004). More recently, Li, Kamnitsas, and Glocker (2021) used two differ-
ent CNNs for the segmentation of brain tumours and other anatomical structures
in various datasets, testing different levels of imbalance. The authors demonstrated
that for a higher level of imbalance, the model overfits more on the majority class.
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Japkowicz and Stephen (2002) demonstrated that class imbalance can be more
detrimental for more complex tasks. The authors also found, however, that imbal-
ance was less problematic for larger datasets, and that the impact varied depending
on the classification algorithm used. Mazurowski et al. (2008) focused on the task of
medical diagnosis, training a Multi-Layer Perceptron (MLP) to classify breast cancer
from manually extracted features of masses in mammograms. The authors found
that increasing class imbalance in the training set was generally associated with a
lower test performance, and that the impact was stronger for a real breast cancer
dataset than for an artificial dataset, likely due to increased complexity of the data.

Buda, Maki, and Mazurowski (2018) studied class imbalance in the context of
CNN models trained to recognise digits using the MNIST dataset, or to classify ten
everyday objects from the popular CIFAR-10 image dataset. The authors confirmed
that class imbalance remains a problem even for advanced models such as CNNs,
leading to reduced classification performance. Moreover, class imbalance was more
impactful on the more complex CIFAR-10 dataset than for MNIST, providing further
evidence that the effect depends on the complexity of the dataset.

In summary, while the class imbalance problem has been well studied over the
past twenty years and its impact has been observed for many domains and datasets,
the effect of class imbalance can vary considerably depending on the complexity
of the task at hand and the characteristics of the dataset. Moreover, a broad study
on class imbalance in automated cancer detection in mammography across several
datasets has not been carried out. Although Bria, Marrocco, and Tortorella (2020)
explored similar questions, they used a dataset of 14 × 14 pixel patches extracted
from the INBreast dataset with the aim of classifying micro-calcifications, which re-
veals little about the effect when processing whole images, as the task becomes more
complex.

3.2.3 Methods for Dealing with Class Imbalance

Common Techniques

Techniques proposed to deal with the class imbalance problem are often categorised
as algorithm-level, data-level, and a combination of the two (Chawla, Japkowicz,
and Kotcz, 2004; Krawczyk, 2016). The most widely used algorithm-based tech-
niques involve changes to the loss function, for example, weighting by the inverse
of the class proportions such that the contribution from the majority class and mi-
nority class are balanced (Johnson and Khoshgoftaar, 2019). This has previously
been used for studies in deep learning in mammography (Shen et al., 2019; Zhu et
al., 2017), though Bria, Marrocco, and Tortorella (2020) found it less effective than
over-sampling in their study.

The primary techniques in the data-level group include sampling, where either
the minority class is over-sampled or the majority class is under-sampled, creating
an artificially balanced dataset. There are some potential drawbacks, in that under-
sampling may remove important, informative examples, and over-sampling may
lead to overfitting (Chawla, Japkowicz, and Kotcz, 2004). However, in the context
of CNNs, the extensive use of data augmentation during training often reduces the
risk of overfitting in general (Taylor and Nitschke, 2019), and so might help to avoid
overfitting on over-sampled minority examples. Despite these sampling methods
being some of the earliest techniques addressing the class imbalance problem, they
remain popular, perhaps due to their simplicity and ostensible effectiveness. For
example, one review of the use of CNNs in mammography (Abdelhafiz et al., 2019)
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discusses the problem of class imbalance and mentions only these two techniques to
counter the imbalance effect.

In comparing several different sampling strategies, Bria, Marrocco, and Tortorella
(2020) found that over-sampling the malignant class was the most effective for their
problem, along with directed under-sampling of the normal samples. This latter
technique, also known as hard sample mining, involves selecting only the samples
in the training set on which the model is performing poorly. Qu et al. (2020) found
over-sampling and under-sampling both to be effective in reducing the class imbal-
ance effect for classification of X-rays, although they evaluated performance only for
one threshold on the softmax outputs, rather than assessing the overall model per-
formance with a metric such as the Area Under the Curve of the Receiving Operating
Characteristic (AUC-ROC).

The most common methods used to tackle class imbalance in medical imag-
ing studies include the aforementioned over-sampling, under-sampling, and class
weighting. However, the effectiveness of these techniques varies depending on the
task being performed and the dataset (Johnson and Khoshgoftaar, 2019; Buda, Maki,
and Mazurowski, 2018). Therefore, this study examines how effective these common
techniques are in dealing with class imbalance in three heterogeneous mammogra-
phy datasets.

Synthesizing Images

To avoid overfitting on over-sampled minority examples, further data augmentation
can be applied (Parmar et al., 2018), and one step further is to create new synthetic
images for the minority class. Generative Adversarial Networks (GAN) are often
used for this latter task, and several studies used this as an additional type of data
augmentation during training, alongside typical image flipping, rotation, etc. They
have been shown capable of producing realistic images at a low-resolution, and the
added synthetic images helped to improve model performance in studies of classifi-
cation of liver lesions (Frid-Adar et al., 2018), chest X-ray abnormalities (Ali Madani
et al., 2018), and breast masses (Alyafi, Diaz, and Martí, 2020), and in a study on
segmentation in brain scans (Bowles et al., 2018). GANs have also shown some suc-
cess for explicitly tackling class imbalance in mammogram classification (Wu et al.,
2018), although the authors did not compare their approach to other common class
imbalance techniques.

In all of the above cited studies, the GANs were trained to produce lower reso-
lution images or patches between 64 × 64 and 256 × 256 pixels, and so it is unclear
how well a GAN would handle whole high resolution mammograms where lesions
might appear in less than 1% of the pixels in the image. Although Korkinof et al.
(2018) succeeded in synthesising higher resolution (1280 × 1024) mammograms us-
ing a GAN, the model needed 450,000 images for training, and the training process
remained relatively unstable, with several training runs failing unexpectedly. More-
over, many studies on GANs dealing with breast lesions require explicit pixel-wise
ground truth for lesion locations, that are rarely available in clinical practice.

In this study, an alternative method of artificial lesion generation is used to insert
masses, calcifications, and architectural distortions into benign images to tackle class
imbalance. The mass generation is based on a computational model by Sisternes et
al. (2015), and was previously shown to be useful as a data augmentation technique
in training a deep learning model for mass detection (Cha et al., 2019). The method
used here was used previously for lesion segmentation (Tardy and Mateus, 2021), to
deal with the absence of ground truth lesion locations.
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There are three main advantages of this method compared to the GAN tech-
niques discussed earlier. Firstly, they can be used with images of any resolution,
in particular high resolution images. Secondly, ground truth lesion locations are
not required, which are expensive and rare. Finally, whereas a GAN is confined to
the distribution of the dataset at hand, controlling the artificial lesion characteristics
with the current method allows domain knowledge on the appearance of different
lesions to be incorporated, regardless of whether certain lesion types or shapes are
represented in the training dataset. Moreover, this method could be used to balance
datasets where there is a known shortage of certain types of masses, for example.

In summary, the contributions of the current study are: an analysis of the ef-
fect of class imbalance on breast cancer classification using high resolution images
from several different mammography datasets, a systematic comparison of the most
popular methods for dealing with this class imbalance problem, and a novel use of
synthetically generating abnormalities as an alternative to over-sampling the malig-
nant class.

3.3 Methods

3.3.1 Dealing with Class Imbalance

Several of the most popular methods for addressing class imbalance were exam-
ined, namely class weighting, under-sampling, and over-sampling. A synthetic le-
sion generation technique, referred to here as Artifacting, was also explored and em-
ployed in a novel way for tackling class imbalance in classification problems.

Class Weighting

One of the simplest approaches is to apply a higher weight to the minority class
during training when calculating the loss. Eq. 3.1 below shows how the weights
were calculated. These were global weights, i.e., using the total numbers of minority
and majority samples in the training dataset rather than, for example, calculating
the ratio for each mini-batch during training. This decision was based on the small
batch size of 8 images relative to the large class imbalance ratio of 19:1 (i.e., 19 benign
images for every one malignant image) in the VinDR dataset. Thus, re-calculating
class weights dynamically for each batch would mean the largest weight any mi-
nority sample could possibly receive would be 7, which would not balance the loss
contributions of both classes.

wminority =
# o f Majority Samples
# o f Minority Samples

, wmajority = 1 (3.1)

Under-sampling

With this approach, a fixed random sample of the majority class is taken before train-
ing so that the number of minority and majority examples are balanced. For datasets
with large imbalance between classes, this leads to a dramatic reduction of the train-
ing data size, e.g., a 90% reduction of the training data size for the VinDR dataset,
having a benign to malignant ratio of 19:1. For cases where the class imbalance is
less severe, like the other two datasets used, under-sampling removes fewer samples
and thus less potentially valuable information is lost.
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Over-sampling

For this method, each majority class example is seen exactly once in every epoch
whereas minority class examples can be seen multiple times. More specifically, each
batch is first half-filled with unseen majority examples and then minority examples
are randomly selected to complete the rest of the batch. The epoch is complete when
all majority examples have been seen.

Artifacting

The final method involves inserting synthetic malignant lesions, or artifacts, into
benign images during training to balance the benign and malignant classes. In the
current study, this method was used only for datasets where there are more benign
samples than malignant (i.e., VinDR and HMI), as if a malignant lesion is inserted
into a benign image it can be considered malignant, but inserting a benign lesion
into a malignant image does not change the class of the image, as the source of
malignancy would still be there.

Three types of malignant lesions were inserted, namely masses, calcifications,
and architectural distortions, examples of which are shown in Figure 3.1 below.
The methodology underlying the generation of these synthetic lesions has been de-
scribed in detail by Tardy (2021) and has previously been employed for lesion seg-
mentation (Tardy and Mateus, 2021). A brief description is given in the following
paragraphs.

FIGURE 3.1: Examples of images from HMI dataset with synthetic lesions inserted
(from left to right: mass, cluster of calcifications, architectural distortion).

The mass generation is based on an independent implementation1 of the com-
putational model designed by Sisternes et al. (2015). This method uses a stochastic
Gaussian random sphere model to generate synthetic masses and then adds spicules
to these with an iterative branching algorithm. The authors showed that both radi-
ologists and CAD tools had difficulty in separating real masses from the generated
synthetic masses.

1https://breastmass.readthedocs.io/en/latest/

https://breastmass.readthedocs.io/en/latest/
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A calcification is an accumulation of hardened calcium in the breast tissue. While
most calcifications seen in mammograms are benign, some types of calcification are
more indicative of malignancy such as smaller calcifications and clusters (Muttarak,
Kongmebhol, and Sukhamwang, 2009). Therefore, malignant clusters were imitated
by inserting localised regions of small bright spots where each calcification has a
diameter of between 0.25mm-1mm, formed in round or elliptical groups of high
intensity pixels.

An architectural distortion, defined as a distortion of the breast parenchymal ar-
chitecture without a definable mass (Bahl et al., 2015), is another type of finding
which can be indicative of malignancy. The synthetic distortions were designed to
simulate the case where these manifest in a mammogram as a twisting or compres-
sion of the tissue in a localised region. These artifacts were thus created with a local
non-linear geometric transformation from scikit-image2.

These three types of synthetic lesion were inserted in a randomised fashion dur-
ing training. Firstly, each training mini-batch of eight images was half-filled with be-
nign samples. Then, two real malignant samples were added, and the remaining two
places were filled by randomly selecting two of the benign samples in the batch and
inserting one, two, or three random synthetic lesions. This means that for VinDR,
which has a benign to malignant ratio of 19:1, there is both over-sampling of the real
malignant examples in addition to the synthetic malignant examples. Ensuring that
there are both real and synthetic examples in each batch was found experimentally
to yield the best results.

3.3.2 Experimental Framework

The experimental methodology involved applying all of the aforementioned tech-
niques for tackling class imbalance to each of the datasets and training a deep learn-
ing model for classification.

Pre-processing

The images were pre-processed before being used for training or testing a classifi-
cation model. Background noise and labels were first removed from the images by
locating the breast as the largest object on the image and setting the other pixels to
zero. Images of right breasts were flipped so that all breasts were located at the left
side of the images. The height was cropped to the size of the breast, and re-sized
to 2,048 pixels. The aspect ratio was maintained between the height and width, but
the right side of the image was padded with zero intensity pixels to give a square
2048 × 2048 image. Finally, the images were scaled to values between 0 and 1, and
histogram normalisation was used to enhance the contrast of the images.

Training

A ResNet-22 architecture, which has previously been used for breast cancer classifi-
cation (Wu et al., 2019) was used as the deep learning classifier. The same version
was used in this study as in the encoder block of Tardy and Mateus (2022), with five
residual blocks and an increasing number of filters (16, 32, 64, 128, 256), and using
separable convolutions and instance normalisation as in Tardy and Mateus (2022).
During training, the images were augmented in a randomised fashion, including

2https://scikit-image.org/docs/stable/auto_examples/transform/plot_swirl.html

https://scikit-image.org/docs/stable/auto_examples/transform/plot_swirl.html
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vertical flipping and translation (< 100 pixels), rotation (±10 degrees), and zooming,
as well as inpainting random patches in the image similar to Zhou et al. (2019).

For each experiment, the model was trained from scratch for 100 epochs with
a categorical cross-entropy loss, using the Adam optimiser with a learning rate of
5 × 10−4, informed by previous experiments on the same data and a small number
of tests during this study. The batch size was set to 8, which was the maximum pos-
sible without exceeding available RAM during training. The training times of the 14
experiments varied between 1-8 days each, and so extensive hyperparameter tuning
for each experiment was not feasible. During training, the Area Under the Curve of
the Receiver Operating Characteristic (AUC-ROC) was calculated on the validation
set, and the five models which achieved the best AUC were selected. Metrics on the
test sets were ultimately calculated for each of these five models, and the mean score
for each experiment is reported in Section 3.5.

Evaluation

When evaluating predictions on the test set, the breast-wise predictions were as-
sessed, similar to Stadnick et al. (2021). For many of the patients in the datasets,
there were two images of each breast, one from each of the CC and MLO views.
Signs of malignancy might appear on only one of these views, so the predictions of
each view were combined at test-time by taking the average of the model’s predicted
probability of malignancy for each breast.

The performance of each trained model was evaluated on a test set from the same
distribution as the training set, as well as on the other out-of-distribution test sets,
exploring the generalisation capabilities of each method. The primary evaluation
metric was AUC-ROC. ROC is a plot of sensitivity vs. (1-specificity) for many op-
erating points of the model, i.e., thresholds on the softmax outputs used to decide
whether to classify an example as malignant or benign. AUC-ROC captures the in-
formation in this curve in one single metric, allowing the overall quality of the model
to be evaluated, without choosing a specific threshold. One of the benefits of this for
the current study is that setting a different threshold for a trained model is itself a
technique for tackling class imbalance (Buda, Maki, and Mazurowski, 2018; Johnson
and Khoshgoftaar, 2019), allowing for a different balance between sensitivity and
specificity to be achieved. Therefore, assessing the overall model performance is
more informative here than performance at one single threshold.

There has been some criticism of AUC-ROC for classification with imbalanced
classes, in favour of the alternative Area Under the Precision-Recall Curve (AUC-
PR) (Saito and Rehmsmeier, 2015). On the other hand, some studies (Bradley, 1997;
Boughorbel, Jarray, and El-Anbari, 2017) have found AUC-ROC to perform well
under class imbalance. The main reason, however, that AUC-ROC was chosen for
the current study is that the metric is commonly used in studies of breast cancer
classification and segmentation, allowing comparisons to other works (Shen et al.,
2019; Wu et al., 2019; Tardy and Mateus, 2022).

Model predictions were also assessed with standard metrics at an operating point
of 0.5. Sensitivity (Se) and Specificity (Sp) were calculated to evaluate how biased
each trained model was towards malignant or benign samples. Matthews Correla-
tion Coefficient (MCC) was used to have a single evaluation metric which incorpo-
rates information from True Positives (TP), True Negatives (TN), False Positives (FP)
and False Negatives (FN). Several studies have shown this to be an informative met-
ric in the study of class imbalance problems (Chicco and Jurman, 2020; Boughorbel,
Jarray, and El-Anbari, 2017). The formulae for calculating these three metrics are
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shown below. To get an estimate of the standard error of the metrics for each exper-
iment, bootstrapping (Efron and Tibshirani, 1993) was used with 1,000 samples.

Se = TP
TP+FN , Sp = TN

TN+FP , MCC = TP·TN−FP·FN√
(TP+FP)·(TP+FN)·(TN+FP)·(TN+FN)

3.4 Data

Several heterogeneous public datasets and a private dataset were used, each based
on different geographical locations and with different levels of class imbalance, to
assess the performance of class imbalance techniques. Each of the datasets contains
high resolution Full Field Digital Mammography (FFDM) images.

The first dataset used was VinDr-Mammo (Nguyen et al., 2022), consisting of
20,000 images from 5,000 patients. The images were collected in two hospitals in
Vietnam, Hanoi Medical University Hospital and Hospital 108, using mammog-
raphy systems from three vendors (Siemens, Planmed, and Giotto). This dataset
presents a large class imbalance, where only 998 (5%) images are labelled as ma-
lignant (BI-RADS 4 or 5), and reflects a typical mammography screening scenario
where most of the images acquired are normal or benign. The dataset authors have
already split the data into training (16,000) and test (4,000) images to ensure con-
sistency in results reported. Hereafter, these will be referred to as DVinDRtrain and
DVinDRtest , respectively.

The second public dataset used for training was the relatively new Chinese Mam-
mography Database (CMMD) (Cui et al., 2021), which contains 3,728 images of 1,775
patients. The dataset was published by the South China University of Technology,
and the images were obtained using a GE Senographe DS mammography system. In
this dataset there are more malignant images than benign, reflecting the diagnostic
clinical context, where suspicious findings have been identified and further imag-
ing is required to diagnose whether they are malignant or benign. The dataset was
split into training (2,982 images – 80%) and test (746 images – 20%) sets, stratifying
by class and ensuring that the images for a single patient remained in a single set.
These datasets are denoted as DCMMDtrain and DCMMDtest .

The third and final dataset used for training was a private dataset of 3,851 im-
ages, containing mammograms from four different vendors, namely Fujifilm, GE,
Hologic, and Planmed. A modest class imbalance is present in this dataset with
benign images accounting for 70% of the training dataset. A test split previously
created within the company containing 504 images was used, allowing comparisons
to other results internally. These datasets are denoted as DHMItrain and DHMItest .

For each of the datasets, the training set was further split into separate training
and validation sets, using the validation set to tune hyper-parameters and to find
the epoch of the “best” models during training. These splits were stratified based on
class, and images for each patient appeared in only one of the splits. A summary of
the number of images in each split for each dataset is presented in Table 3.1, as well
as the class representations.

For each assessed technique for tackling class imbalance, models were separately
trained on each of the three above datasets, and the performance was assessed on
each of the test sets. Taking a model trained on DVinDRtrain and testing it on DCMMDtest ,
for example, allows the assessment of the generalisation capability on new datasets.
Finally, the popular public INBreast (Moreira et al., 2012) dataset was used solely
for testing performance across all experiments, allowing the comparison to other
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TABLE 3.1: Summary of the number of images in each dataset and subset by class.

Dataset
Training Validation Test

Total
Normal/Benign Malignant Normal/Benign Malignant Normal/Benign Malignant

VinDR 13286 (95%) 704 (5%) 1924 (96%) 86 (4%) 3802 (95%) 198 (5%) 20000
CMMD 678 (30%) 1574 (70%) 216 (29%) 530 (71%) 218 (29%) 528 (71%) 3744
HMI 1952 (70%) 856 (30%) 402 (75%) 133 (25%) 257 (51%) 247 (49%) 3847
INBreast 310 (76%) 100 (24%) 410

studies in the area (Stadnick et al., 2021). This dataset consists of 410 FFDM images
taken with a Siemens mammography system.

The task considered by this study is to classify images as malignant or non-
malignant (which could include normal cases or benign lesions). In most cases, the
BI-RADS rating from the American College of Radiology (ACR) was used to deter-
mine malignancy, where the scores are categorised as follows: 1 - negative or normal,
2 - benign, 3 - probably benign, 4 - suspicious for malignancy, 5 - highly suggestive
of malignancy, and 6 - known biopsy-proven malignancy. The rating for each image
was binarised by considering BI-RADS 1, 2, and 3 to be non-malignant and ratings
4, 5, and 6 to be malignant. In the case of the CMMD dataset the BI-RADS ratings
are not available but each breast has been confirmed by biopsy to be benign or ma-
lignant, so these binary labels were used.

3.5 Results

In this section, overall performance of each experiment on all test sets is first re-
ported in Subsection 3.5.1, based on the breast-wise AUC-ROC scores in Table 3.2.
Secondly, in Subsection 3.5.2 the sensitivity and specificity resulting from the various
treatments is analysed, as captured by Table 3.3.

TABLE 3.2: AUC (±standard error) for each combination of training data and test
data, for the various experimental treatments. Shaded are results where the training

and test sets are from the same distribution.

Test Dataset
Training Dataset Treatment HMI VinDR CMMD INBreast

HMI

Imbalanced 0.776 (±0.021) 0.700 (±0.032) 0.646 (±0.029) 0.818 (±0.033)
Under-sampled 0.767 (±0.023) 0.664 (±0.027) 0.654 (±0.030) 0.803 (±0.040)
Over-sampled 0.762 (±0.023) 0.699 (±0.028) 0.641 (±0.031) 0.789 (±0.039)
Class Weighting 0.786 (±0.021) 0.650 (±0.030) 0.660 (±0.030) 0.795 (±0.037)
Artifacted 0.807 (±0.021) 0.760 (±0.025) 0.730 (±0.028) 0.845 (±0.030)

VinDR

Imbalanced 0.622 (±0.026) 0.757 (±0.028) 0.671 (±0.027) 0.732 (±0.045)
Under-sampled 0.630 (±0.026) 0.691 (±0.027) 0.680 (±0.030) 0.744 (±0.045)
Over-sampled 0.646 (±0.028) 0.752 (±0.027) 0.668 (±0.030) 0.824 (±0.038)
Class Weighting 0.589 (±0.027) 0.739 (±0.030) 0.685 (±0.029) 0.691 (±0.048)
Artifacted 0.686 (±0.025) 0.768 (±0.027) 0.644 (±0.030) 0.799 (±0.039)

CMMD

Imbalanced 0.516 (±0.027) 0.520 (±0.032) 0.727 (±0.026) 0.656 (±0.049)
Under-sampled 0.559 (±0.028) 0.513 (±0.032) 0.690 (±0.028) 0.702 (±0.045)
Over-sampled 0.614 (±0.026) 0.667 (±0.031) 0.719 (±0.028) 0.711 (±0.048)
Class Weighting 0.495 (±0.027) 0.541 (±0.027) 0.681 (±0.027) 0.624 (±0.048)
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3.5.1 AUC Results

When training on DHMItrain and testing on the corresponding test set DHMItest , there
are no significant differences between simply training on the imbalanced dataset
(AUC=0.776) and applying standard class imbalance techniques. Whereas the class
weighting leads to a slight increase in AUC (∆=0.01), over-sampling is associated
with a decrease of 0.014 to 0.762. There is a wider range of results when consider-
ing out-of-distribution generalisation. Of these four initial experiments, the imbal-
anced training leads to the best performance on DVinDRtest and INBreast, whereas the
models trained with class weighting perform slightly better on DCMMDtest (0.660 vs.
0.646), although the generalisation to this dataset remains poor.

The models trained on DHMItrain using the synthetic lesions (Artifacted) method
achieve the best results on the related DHMItest , with an improvement of ∆=0.021 over
the next best AUC score. Moreover, this method achieves a noticeable increase in
generalisability to out-of-distribution test sets, with improvements over the next best
result for DVinDRtest (∆=0.060), DCMMDtest (∆=0.070), and INBreast (∆=0.027). Most
notably, the resulting generalisability leads to achieving the same performance on
out-of-distribution datasets as when training directly on the regular images from
those distributions (DVinDRtest : 0.760 vs. 0.757, DCMMDtest : 0.730 vs. 0.727).

Evaluating the models trained on DVinDRtrain , there are minor drops in the AUC on
DVinDRtest when comparing the imbalanced training (0.757) to over-sampling (0.752),
and class weighting (0.739). However, a larger decrease occurs when under-sampling
(0.691, ∆=-0.066), where a large portion of the benign samples are removed from the
training set. The over-sampled model achieves the best results on INBreast (0.824),
and DHMItest (0.646), although this latter result indicates that the models trained on
VinDR data fail to generalise well to HMI images in general.

The Artifacted method, trained on DVinDRtrain , demonstrates an improvement in
AUC over the next best method on DVinDRtest , i.e., the imbalanced training (∆=0.011),
as well as better generalisability to DHMItest (∆=0.040). It also yields the second best
AUC score on INBreast (0.799) among the five results in this second set of exper-
iments. In contrast, the Artifacted method with DVinDRtrain delivers the lowest re-
sult when generalising to DCMMDtest , with a difference of ∆=-0.041 compared to class
weighting.

The models in the final set of experiments are trained on DCMMDtrain , and in this
case, there is no Artifacted experiment as the nature of the imbalance is different
in the CMMD dataset, i.e., there are more malignant samples than benign (see Ta-
ble 3.1). The imbalanced (0.727) and over-sampled (0.719) experiments offer similar
AUC performance when tested on DCMMDtest , with a sizeable gap over the next two
results, under-sampled (0.690) and class weighting (0.681). Most of the trained mod-
els perform very poorly when applied to DHMItest and DVinDRtest , with AUC scores
close to 0.5, which would be achieved by a predictor making random guesses. The
over-sampling experiment is an exception to this with higher AUC scores for DHMItest

(0.614), DVinDRtest (0.667), and INBreast (0.711). These results are still poor, however,
and indeed the CMMD dataset is associated with the lowest results across all exper-
iments, both in terms of evaluating directly on DCMMDtest , and the ability of a model
trained on DCMMDtrain to generalise to any of the other three datasets.

3.5.2 Sensitivity & Specificity

The first result that is evident from the sensitivity and specificity results reported in
Table 3.3 is that an imbalance in the training data is reflected in imbalances between
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TABLE 3.3: Metrics (±standard error) where the test set and training set come from
the same distribution.

Training Dataset Treatment Sensitivity Specificity MCC

HMI

Imbalanced 0.574 (±0.033) 0.824 (±0.027) 0.418 (±0.042)
Under-sampled 0.690 (±0.034) 0.709 (±0.029) 0.399 (±0.043)
Over-sampled 0.595 (±0.033) 0.776 (±0.031) 0.379 (±0.037)
Class Weighting 0.515 (±0.034) 0.857 (±0.023) 0.398 (±0.044)
Artifacted 0.753 (±0.028) 0.689 (±0.031) 0.443 (±0.043)

VinDR

Imbalanced 0.004 (±0.010) 1.000 (±0.000) 0.033 (±0.063)
Under-sampled 0.400 (±0.048) 0.837 (±0.008) 0.141 (±0.032)
Over-sampled 0.263 (±0.046) 0.989 (±0.004) 0.378 (±0.046)
Class Weighting 0.644 (±0.043) 0.708 (±0.011) 0.170 (±0.022)
Artifacted 0.499 (±0.052) 0.873 (±0.009) 0.253 (±0.030)

CMMD

Imbalanced 0.781 (±0.027) 0.479 (±0.047) 0.261 (±0.052)
Under-sampled 0.336 (±0.028) 0.894 (±0.029) 0.236 (±0.040)
Over-sampled 0.803 (±0.026) 0.433 (±0.047) 0.246 (±0.055)
Class Weighting 0.520 (±0.030) 0.727 (±0.032) 0.245 (±0.041)

sensitivity and specificity in the trained models. 70% of training samples in DHMI
are benign, resulting in a lower sensitivity (Se) than specificity (Sp) in the trained
model (Se=0.574, Sp=0.824). Similarly, 70% of the images in DCMMD are malignant,
resulting in a higher sensitivity (Se=0.781, Sp=0.479). The most severe example of
this phenomenon is visible with DVinDR, where benign samples outnumber malig-
nant 19:1, and as a result nearly all test samples are classified as benign by the trained
model (Se=0.004, Sp=1.0). In general, the techniques employed to tackle class imbal-
ance reduced this disparity between sensitivity and specificity. The only exceptions
to this were the application of class weighting with DHMI, where sensitivity reduced
from the imbalanced case, and over-sampling with DCMMD, which saw a decrease in
specificity.

Despite the imbalance between sensitivity and specificity when training on the
imbalanced datasets, the results for MCC are in fact higher than when applying
the three standard class imbalance tecniques (under-sampling, over-sampling, and
class weighting) for both DHMI and DCMMD. This observation does not hold when
the class imbalance is more severe with DVinDR, where the near-zero sensitivity con-
tributes to a low MCC of 0.033.

The Artifacted method achieves the highest MCC score for DHMI (MCC=0.443), as
well as the second best result for DVinDR (0.253). The highest result for the latter case
is given by the oversampled experiment (0.378); however, this coincides with a low
sensitivity (0.263), which indicates that the model may have difficulty generalising
to malignant samples different from those in the training set.

Figure 3.2 demonstrates the behaviour of the models trained on DVinDRtrain un-
der different treatments. When trained on the imbalanced dataset, the model has a
strong bias towards the benign class, meaning that essentially every sample is pre-
dicted to have a low probability of malignancy at test-time, resulting in the low sen-
sitivity and high specificity seen at an operating point of 0.5. However, the trained
model remains capable of achieving some separation between malignant and benign
samples, leading to the second highest AUC score among the VinDR experiments.
For example, over 70% of truly benign samples gain a predicted malignancy score
between 0-0.05, whereas less than 40% of truly malignant are placed in this bracket.

Over-sampling resolves the problem of every sample being classified as benign.
However, the resulting behaviour remains unusual and undesirable. Nearly 100% of
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FIGURE 3.2: Distributions of predictions for selected models, trained on DVinDRtrain
and applied to DVinDRtest . Malignancy score is the softmax output of the model -
at an operating point of 0.5, for example, the model would predict malignant for
samples above 0.5, and benign for those below. The distributions in the plot are

normalised so that bar heights sum to 1 for each class in each plot.

normal or benign breasts, as well as over 60% of breasts with malignant lesions, are
assigned a low score of malignancy between 0-0.05. Conversely, almost 20% of ma-
lignant samples attain a high malignancy score between 0.9-1. This behaviour may
indicate overfitting on the small number of malignant samples in the training set,
leading the model to correctly predict malignancy with high confidence for samples
who share some characteristics with those in the training set, while predicting most
samples in the test set to be benign with high confidence.

The Artifacted model yields a more natural distribution of predictions on the test
set in that the range is more spread, allowing high confidence predictions to be sep-
arated more easily from low confidence predictions. However, two problems are
evident in the third histogram in Figure 3.2. Firstly, a large proportion of truly ma-
lignant breasts still attain predicted malignancy scores similar to those assigned to
benign samples, particularly in the range 0.3-0.45. Secondly, virtually zero samples
are assigned a malignancy score less than 0.25. The exact reason for this behaviour
remains unclear, but potential causes and solutions are discussed in Section 3.6.

3.6 Discussion

RQ1 – Class Imbalance Effect

For each of the three imbalanced datasets, the class imbalance caused the classi-
fier to bias towards the majority class. As might be expected, a higher imbalance
resulted in a higher bias, i.e., a standard classifier trained on the VinDR dataset pre-
dicted every test sample to be benign. On the other hand, models trained on im-
balanced datasets unexpectedly achieved comparable AUC-ROC scores to models
trained with common class imbalance techniques, indicating that despite predic-
tions shifting towards the majority class, the model still learns to separate the two
classes. This lends credence to setting a new threshold on the output scores post-
training as an effective technique of dealing with class imbalance (Buda, Maki, and
Mazurowski, 2018). New thresholds can also be set in practice, regardless of class
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imbalance, to achieve a certain balance between sensitivity and specificity. There-
fore, threshold setting may be the simplest approach to tackling class imbalance,
while remaining relatively effective.

RQ2 – Common Techniques

Among over-sampling, under-sampling, and class weighting, no single technique
consistently achieved the best AUC-ROC nor MCC scores across all experiments.
Over-sampling performed best of these techniques on the VinDR and CMMD ex-
periments, in the latter case also leading to a significant improvement when testing
on out-of-distribution datasets. However, over-sampling performed worst on three
out of four test sets when trained on HMI. Therefore, there is clearly no one sin-
gle best approach for every mammography dataset. However, one useful lesson
is that experimenting with different techniques may allow for an improved out-of-
distribution generalisation without sacrificing in-distribution performance, as in the
case of over-sampling on CMMD.

There is a notable drop in classification performance in the VinDR and CMMD
experiments when under-sampling is applied. This aligns with expectations that
using only a subset of data may remove informative samples and thus may hinder
performance, particularly in the case of VinDR where 90% of the dataset is removed.
Furthermore, the model began to learn only after several attempts with different
random seeds for the initialisation of model weights and taking a different random
sample of benign images. The training process was not straightforward either for the
imbalanced experiment nor class weighting on the VinDR dataset, which may have
been due to the low frequency with which malignant samples were seen during
training, and taking a different random order of the training data was necessary for
the model to begin learning.

Over-sampling, together with the Artifacted method, were the only VinDR exper-
iments that worked without further adjustment. Moreover, the model trained on
VinDR with over-sampling performed well on the test set relative to the other meth-
ods according to the AUC-ROC and MCC metrics, so over-sampling could be seen as
a promising approach for cases with high imbalance between classes. On the other
hand, the distribution of predictions of this model showed signs of overfitting on the
small number of minority samples in the training set, which is a common concern
of using over-sampling. This output distribution may be problematic in cases where
the softmax outputs are used to gain information about the prediction uncertainty,
e.g., in Tardy, Scheffer, and Mateus (2019). Future research is required to determine
whether this behaviour can be resolved by, for example, further data augmentation
or a combined over-sampling/under-sampling approach such as that used by Buda,
Maki, and Mazurowski (2018).

RQ3 – Synthetic Lesions

The results showed that inserting synthetic lesions into benign samples during train-
ing can be a useful technique to balance classes. When applied to the HMI data, the
Artifacted method achieves an improvement of 0.021 in ROC-AUC over the next best
method, as well as significant improvements in ROC-AUC on the out-of-distribution
test sets, up to ∆=0.07. Applied to the more highly imbalanced data, VinDR, the per-
formance improvement is more modest (∆=0.011), and the out-of-distribution per-
formance is mixed. Despite these mixed results, the Artifacted model shows more
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promise as it does not suffer from the overfitting behaviour demonstrated by the
model trained with over-sampling.

The distribution of output predictions for the Artifacted model (Figure 3.2) shows
that no samples were given a malignancy score less than 0.25 (where if a sample
receives a low score, the model is more confident it is benign). The cause of this is
unclear, but perhaps either noisy labels during training, or difficulty in distinguish-
ing malignant lesions from benign lesions may lead to this behaviour. Firstly, with
regard to noisy labels, for approximately 10% of malignant breasts in the VinDR
dataset, malignant lesions appear in only one of the two views (CC or MLO), and
so the other image will be included as malignant during training despite contain-
ing no signs of malignancy. Predicting these images to be benign during training
would lead to a high contribution to the loss, perhaps causing the model to avoid
classifying images as benign with high confidence. Secondly, benign masses and cal-
cifications can appear in breasts in the non-cancerous group of images. If the model,
for example, learns during training that masses in general are correlated with malig-
nancy, it may incorrectly predict a non-cancerous breast containing a benign mass to
be malignant. Again, this would lead to a large contribution to the loss, potentially
preventing the model from predicting samples to be benign with high confidence. If
this were the case, improved results might be gained by a two-model process where
the first model classifies normal (i.e., no lesions) from abnormal breasts, and the
second model determines whether the detected lesion is benign or malignant.

Comparison to previous work

Our findings both support and disagree with some of the findings of Buda, Maki,
and Mazurowski (2018) who carried out a systematic review of the behaviour of
CNNs for digit recognition under class imbalance. That study found that over-
sampling generally performed best in terms of AUC-ROC results, but in fact the per-
formance diverged from the baseline only as the number of minority classes and the
imbalance ratio increased. In the current study, there is only one minority class, and
smaller imbalance ratios (at most 19:1) than many of the situations they examined,
so this aligns with the current results which show that most standard techniques
for dealing with class imbalance provided no significant benefit to AUC-ROC over
the baseline. The authors also claimed that over-sampling with CNNs did not cause
overfitting. However, the overconfidence of the model trained on the VinDR dataset
with oversampling in the current study indicates that overfitting may still remain a
problem.

The aim of this study was not to achieve state-of-the-art performance, but rather
to take a relatively standard methodology and conduct a fair and thorough compar-
ison of common techniques used to tackle class imbalance in mammography. It is
therefore no surprise that the results achieve lower performance than current state-
of-the-art methods, which focus on optimising a single method on a single dataset
to achieve the best results possible.

Stadnick et al. (2021) test several state-of-the-art models on multiple datasets,
including INBreast and CMMD. However, they use only 28% of the INBreast data
in their test set, and test on the full CMMD dataset, so the results are not directly
comparable to this study, but may provide an indication of performance. The re-
ported AUC-ROC scores vary between 0.612-0.980 on INBreast and 0.449-0.831 for
CMMD. The Artifacted method achieves an AUC-ROC of 0.845 on INBreast and 0.730
on CMMD, comparable to the model of Wu et al. (2019), which scores 0.802 and
0.740, respectively (Stadnick et al., 2021).
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The VinDR and CMMD datasets are both relatively new, and so are not as well
studied as INBreast or other older public mammography datasets. Thus, this study
provides a useful reference and baseline for other researchers using these datasets.
Generally low results were achieved on the CMMD dataset, both in this study and
found by Stadnick et al. (2021), and one potential cause of this is the composition
of the dataset. All breasts in the CMMD dataset have been biopsied, indicating that
there are suspicious abnormalities in both the malignant and benign images, making
the task of separating malignant from non-malignant more difficult. Wu et al. (2019)
conducted experiments on a different dataset, and found lower classification perfor-
mance on a biopsied sub-population compared to the overall screening population.

Implications and Recommendations

Why is class imbalance detrimental? Because it biases trained models towards pre-
dicting the majority class. The results show that despite this shift in output predic-
tion scores towards the majority class, however, the model can still learn to separate
malignant from benign samples as much as when typical class imbalance techniques
are applied, as evidenced by the similar AUC-ROC scores. Thus, if the imbalance ra-
tio is not extremely high, setting a (data-specific) threshold on the softmax outputs
should suffice to achieve the desired trade-off between sensitivity and specificity.
On the other hand, if the context necessitates more realistic predicted probabilities
of malignancy, indicative of the confidence of the predictions for individual samples,
then applying a technique for dealing with this imbalance will be important.

For higher class imbalances, the experiment with VinDR indicates that over-
sampling may provide the best separation between malignant and benign, but the
output distributions of the predictions should be assessed to ensure the model does
not overfit on the small number of minority samples. Finally, if feasible within the
context of the study, whether on mammography or medical imaging more broadly,
generating synthetic lesions could provide a good way of balancing the classes while
also introducing prior knowledge from domain experts, and potentially improving
both in-distribution and out-of-distribution generalisation.

Limitations

Due to the large number of experiments, and the training times for each training run
of 1-8 days, it was not feasible to conduct extensive hyperparameter tuning. While
the application of techniques such as Batch Normalisation and Instance Normalisa-
tion have been shown to increase robustness with respect to hyperparameters, better
results may have been possible for each experiment by finding the best hyperparam-
eters in each case. Instead, the same treatment is given to all experiments to allow a
fair comparison of many methods within a reasonable time frame.

There are many proposed techniques for tackling class imbalance, and only a
small subset of these are considered here, i.e., the most common methods. However,
it is possible that other, and in particular, more complex, methods may improve re-
sults similar to Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et
al., 2002) improving performance for traditional machine learning problems. More
complex methods are, by their nature, more difficult to implement, which means
that it may take time for a single technique to become more popular than simpler
sampling and weighting strategies. Until such time as one of the many techniques
available proves superior for many domains and tasks, this study will provide a use-
ful reference to researchers in mammography, and medical imaging more broadly.
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Chapter 4

Evaluation

4.1 Internship Review

The internship was a highlight of the two year master’s programme, and I believe
that I achieved the goals I set out for myself, i.e., to do something useful while gain-
ing experience in research, in a start-up, and in AI for medical imaging. The six
months at Hera-MI gave me a view of the team dynamic and camaraderie across
the whole company, while the small size of the company provided a stronger sense
of connection to the overall activities of the company. I learned about the develop-
ment of commercial solutions based on AI for medical imaging, and the inherent
challenges and opportunities. Carrying out wide ranging experiments and staying
up-to-date with the latest works helped me to improve my research skills, which I
will further hone over the next three years during my PhD. My final goal was to do
work that is useful, i.e., make a meaningful contribution to a worthwhile industry
and have an impact on company activity, and in my opinion I also achieved this.

The impact that I had on the company came both from my research outputs, as
well as the development of the techniques used during the course of this research.
The conclusions from the class imbalance study inform future work in several ways.
Firstly, when using datasets with a minor imbalance, researchers in the company
may use the imbalanced datasets, without spending time on implementing methods
to tackle the imbalance. Secondly, my results on the more recent datasets (CMMD
and VinDR) can serve as a baseline and reference for research on these datasets,
and similarly with the outputs of the exploratory analysis on these datasets. Finally,
building on the results of this study, the artifacted method for classification problems
will be further investigated, and integrated into models for new releases of Breast-
SlimView if it continues to show promising results.

My other contribution to the company was in developing code in the shared
codebase. My implementation of the class imbalance techniques was directly inte-
grated into a generalised model training framework within the company, and other
team members can easily use these methods in the future in a flexible manner. Other
utility functions that I created will also be useful for the team, including a function
converting detailed JSON files of image annotations data into Pandas DataFrames
for easy manipulation, as well as code I wrote for various data visualisation tasks,
e.g., intensity distribution comparisons and plots of a model’s latent space with t-
SNE representations, which will be useful to the team for future data exploration,
quality documentation, and when writing papers.

Overall, I believe that I worked well with the team, building positive relation-
ships with my supervisor, the other members of the research team, and beyond.
In general, I worked with a high degree of autonomy, investigating problems and
potential solutions before asking the advice of others. However, in hindsight, there
remains some room for improvement in this aspect of my working style, as at times I
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worked too autonomously, perhaps spending an hour investigating how a particular
piece of code works when asking someone else may have been much more efficient.

4.2 Technical Lessons

Although I had worked on several deep learning projects before starting the in-
ternship, the large number of experiments that I conducted brought up problems
that I had not encountered before, and which I resolved by exploring and by dis-
cussing with the rest of the team, who may have had experienced similar problems.
For example, for one experiment the model learned nothing for several epochs and
then started learning normally, and a colleague suggested that the initial random
weights might be sub-optimal, and so simply setting a different random seed and
re-initialising the model resolved this behaviour.

For several experiments, the order in which the data appeared during each epoch
had a significant effect on the results. For example, seeing mostly benign images for
the first half of an epoch and then balanced data for the second half prevented the
model from learning in one case (i.e., AUC-ROC on the validation remained close
to 0.5), and simply shuffling the data resolved this. Similarly, when training with
synthetic lesions, if the real malignant images were all processed first in an epoch
and the synthetic lesions came only at the end of an epoch, the resulting model per-
formed worse than those trained with other class imbalance techniques. Ensuring
that both real and synthetic malignant lesions occur together in each batch led to the
higher results shown in Section 3.5. Indeed, the order of the data during training
was not something to which I had previously given much thought, but I wish to
investigate this further in future research, as well as other ordering techniques (e.g.,
curriculum learning).

During most of my university projects, I worked on Jupyter Notebooks or Google
Colab, managing a single relatively simple model on one dataset, and so conducting
experiments on a larger scale in the internship certainly presented some new chal-
lenges and lessons. I developed code to run in multiple environments, i.e., locally
for development and de-bugging, as well as on three different servers for various
purposes. Therefore, setting up isolated environments with virtual environments
in Python proved very useful to manage package dependencies, and quickly set up
a new environment when needed. Working with a Git version control system was
important in ensuring the code running on each system was up-to-date and was the
same in all cases. This was also essential for collaboration on code with the rest of
the team.

I improved my coding practices based on observing the more experienced mem-
bers of my team. Investing time at the start to set up a good project framework saved
countless hours later on in the project. For example, making my experiments config-
urable by providing arguments in files rather than hard-coding them into code, al-
lowed me to be quickly change parameters between experiments and store them for
future reference. Furthermore, informative logs were important to ensure the train-
ing was progressing as expected or to enable quick de-bugging if not, and tracking
the evolution of training using Tensorboard allowed me to observe when an ex-
periment was not working, and change it, rather than waiting several days for the
training to finish.

Much of my time was spent on developing code in Python, which I had been
using throughout my master’s programme, and the internship provided further op-
portunity to develop my skills. On the advice of other team members, I began using
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the PyCharm Integrated Development Environment (IDE) for developing code, and
I found the real-time error and warning flags particularly useful. Another recom-
mendation was Conda for installing Python packages, and I found this especially
convenient for installing Tensorflow and its various dependencies, as otherwise it
can be tedious to find and install the correct dependencies. I also improved my
knowledge of Linux and writing bash scripts for running code on servers. Finally, I
used Fiji ImageJ for viewing and manual adjustment of images (such as increasing
contrast), which will prove useful in my future research on medical images.

4.3 Personal Experience

4.3.1 Internship in a Foreign Country

Hera-MI is a French company with international aspirations, and it was interesting
to see how this manifested in the day-to-day activities fo the company. For exam-
ple, most documentation is prepared, as standard, in both English and French, and
the presentation slides of the research team are also prepared in English. I was one
of only two non-French people working in the Hera-MI office in Nantes, however,
so daily communication was of course through French, although I spoke English
during one-on-one meetings with my supervisor, and when presenting at weekly
meetings. Given that my level of spoken French is not quite adequate, I had known
prior to commencing the internship that this would present challenges, but I be-
lieved that this was one of the best ways to improve – to ”dive in at the deep end“,
so to speak. Indeed, I believe language barriers hindered my full integration into
the office culture, as I often struggled to keep up with the pace of group conversa-
tions. On the other hand, the team were welcoming and patient with me, and we
shared many friendly moments together. Moreover, my level of French has certainly
improved over these six months, as well as my knowledge of and appreciation for
French culture, so the extra challenge proved worthwhile.

4.3.2 Reflections

My experience with deep learning projects during university was useful prepara-
tion for the internship at Hera-MI. One difference between these two activities was
immediately evident: the synergy of many researchers working together on simi-
lar tasks. Each university project involved coding from scratch for everything from
data handling, pre-processing and modelling, whereas Hera-MI has built up a solid
codebase over several years. As the team grows, this is becoming more structured,
better documented, and more diverse, allowing team members to easily move and
clean raw images, utilise ready-to-use deep learning model architectures, and per-
form standardised evaluation of results. The company has also curated many pri-
vate and public datasets, processing and storing them in a standardised way to make
access and analysis easier. The accumulation of these efforts allows each researcher
to work more efficiently, and the efficiency gains will grow as the team and codebase
develop.

I worked in data analytics for four years in a Fast-Moving Consumer Goods
(FMCG) company before commencing the master’s degree, and so it was interest-
ing for me to compare my experience during the internship to my previous work.
The difference stood out to me in three aspects in particular: 1) the length of research
cycles, 2) working within a specialised team at the heart of the business, and 3) the
awareness of the uncertain nature of machine learning projects.
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Firstly, research in AI takes time. Although during the latter stages of a project, it
may be possible to quickly iterate through several versions of the developed model,
at the start of a project it is necessary to thoroughly plan experiments, investigating
the data to be used, setting up the model and training framework, etc. Furthermore,
in medical contexts patient safety is paramount, so everything that is implemented
must be thoroughly evaluated before deployment. This was different to some of
the previous teams I worked with, particularly during a period working in the e-
commerce part of my previous company, where new small-scale projects could be
conceived and concluded within the same week.

Secondly, whereas my previous role as a data analyst was to support the main
business activities by providing insights to help decision-making, the main product
of Hera-MI is built on data and machine learning. This means that there is a large
research and development team whose members can communicate effectively with
each other using technical language. If I presented a graph at the weekly meeting,
for example, and stated simply that my model was ’overfitting‘, this would be un-
derstood without further elaboration or explanation, and moreover other members
of the team might offer ways to deal with the problem. In this way, working on a
specialised team like this enabled more fluid communication and a quicker devel-
opment of deep technical skills.

Finally, again because the company is built around data and machine learning,
there is an understanding in the team and broader company of the inherent uncer-
tainty of machine learning projects. For a data analytics project where the objective
is to answer a question from data, or to create a report on historical data, as long as
the data is available and relatively accurate, there is a strong chance the project will
be successful, i.e., the question will be answered or or the report built. In contrast,
the idea of success in a predictive machine learning project is to predict phenom-
ena with a certain level of accuracy, which simply may not be possible at the time
given the available data and techniques. This is something that is well understood in
companies like Hera-MI, and to which more traditional businesses who experiment
with machine learning must learn to adapt. Some attempts will not work, but some
will, and so the old proverb rings true: ”If at first you don’t succeed, try, try, and try
again“.
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