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Abstract   
 
Computer vision-based solutions are a promising tool for structural health monitoring 

(SHM) and asset management of civil engineering infrastructure. Computer vision 

(CV) systems offer many advantages over existing sensor technologies: non-contact, 

long-distance and precise measurements without  complex installations, with lower 

cost and labor intensity. However, the robustness of CV-SHM remains significantly 

unexplored. Insights into limitations and challenges of various CV-SHM methods must 

be investigated, before automated input-output systems can be developed for quick 

analysis and asset management. The paper presents the results of literature review 

about applications of computer vision in short and long term bridge monitoring and 

damage detection. Moreover, paper presents findings from two sets of measurements 

collected with a use of consumer grade cameras (GoPro Hero 5/8) to extract structural 

displacement of 1) aluminum beam in a laboratory set-up and 2) steel girder footbridge 

subjected to a variety of different loading scenarios. The cameras are modified with a 

mounted varifocal zoom lenses recording at high resolution (720 x 1280 px) and high 

frame rate (240 FPS). Based on the data collection process and analysis of the results 

a set of conclusions is drawn, especially with regard to limitations of proposed 

computer vision-based structural health monitoring methodology and its potential in 

dynamic analysis, namely identification of modal shapes. The proposed methodology 

has proven successful in identification of three natural frequencies in laboratory setting 

within 0 - 120 Hz frequency spectrum. In the field conditions, the researcher was able 

to identify the natural frequencies at lower bandwidth (0 – 5 Hz). Both in laboratory 

and field environment, it has been proven successful to extract the dynamic signature 

of the structure in the form of 1st and 2nd mode shapes. The results obtained via image 

processing, namely template matching, are compared against accelerometry findings. 

No significant differences have been found between accelerometers and image 

processing. Furthermore, limitations in terms of hardware specification, environmental 

factors, operational conditions, and others are discussed.  

 
 
Keywords: Computer vision • Structural health monitoring • Bridge deflection • Mode 

identification • Experimental modal analysis • Limitations 
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1 Introduction 
 
Civil infrastructure such as buildings, bridges, wind turbines towers, dams or others 

are exposed to a variety of external loads throughout their lifetime. Although both live 

and dead loads are taken into account during their design, effects of loads over long 

periods of time might result in structural damages such as corrosion, cracking, overall 

degradation among others. Through the use of SHM overall structural health can be 

monitored and operational safety can be ensured by providing real-time data for 

structural assessment. Application of SHM solutions are especially desirable for 

condition assessment and management of bridges. Majority of bridges in the 

Netherlands and Europe was built decades ago, notably between 1950 and 1970 

(Lourens et al. n.d.). Many of these bridges have already reached end of their 

designed life or will soon do. Furthermore, the design standards and requirements 

based on which these bridges have been designed have changed considerably since 

then, as today’s traffic loads from EN 1991-2, no longer reflect the loading scenarios 

from the 1950-1970 period (NEN Connect 2019).  

 

The SHM has been evolving over the decades and maturing with development and 

lowering of costs of relevant technologies. One of the strategies to capture bridge 

behavior characteristics is a CV based measurement  approach. The  approach for 

measuring displacement-based structural characteristics has gained a lot of attention 

and publicity within the academia and in practice in the recent years (Kromanis and 

Kripakaran 2021; Xu, Brownjohn, and Kong 2018; Lydon et al. 2019). Video cameras 

can be easily and inexpensively used to collect information remotely from structures, 

even through the use of modern smartphones that are easily accessible in the current 

era of technology. Computer and vision-based monitoring offers many advantages 

relative to conventional inspection methods, which are costly and often infeasible due 

to difficult access to certain structural elements of the bridge or requiring interference 

to the daily operation of the structure. Furthermore, deploying a dense network of 

sensors throughout the bridge can be quite costly and comes with tedious 

maintenance work besides the troublesome installation and reoccurring malfunctions. 

Huge amount of data collected on daily basis can be a challenge in itself, as the ‘big 

data’ has to be properly managed and analyzed in order to draw relevant and 

informative conclusions or maintenance recommendations. Vision-based approach 

provides the opportunity of long distance, non-contact, low cost and low labor intensity 

as complementary and supportive tool for short-term maintenance planning, design 

verification, assessment of bridge’s performance or prediction of structure’s potential 

lifespan (Dong and Catbas 2021). 

 

The planned thesis project has been proposed by University of Twente (UT) with aim 

to support research efforts concerning computer vision-based (CV) structural health 

monitoring (SHM) systems. The project has been initiated in consultancy with dr.ing. 

Rolands Kromanis, assistant professor at the UT with research focus on resilient 
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engineering, computer vision, and SHM data collection and interpretation. The 

research process is overseen by ing. M. Xofi, PhD researcher at UT working on bridge 

monitoring and development of sensor technologies for structural condition and 

damage assessment of bridges in the Netherlands.  

 

This paper studies dynamic bridge response in order to extract its dynamic properties 

(natural frequency, mode shapes) from data collected through CV approach. The 

method is first applied in laboratory setting on the aluminum beam. The data is 

analyzed and insights gained are later utilized on real-life footbridge (UT Campus 

bridge) case in order to investigate its dynamic properties and potential limitations of 

modal analysis of associated method in a field setting. 

 

1.1 Problem statement 
 
Recent advancements in CV SHM approaches including development of low-cost and 

high-quality cameras, image processing algorithms and computer vision software 

present a promising method for bridge characterization and asset management. 

However, limitations of aforementioned approach exist. In order to develop a 

standardized strategy for vision-based SHM and make informed decisions based on 

reliable data, influence factors and relations between camera set-up and resulting 

displacement-derived structural characteristics (modal shapes) must be explored. At 

the current stage, the opportunities and limitations of CV-SHM have not been fully 

investigated in the field conditions on operational bridges. The research aims to 

support this direction of CV-SHM.  

 

1.2 Goals & research objectives  
 

The planned research and accompanying experiments will be carried out on the UT 

campus, specifically on the footbridge. Furthermore the research not only combines 

in-situ methods, but also makes use of experimental methods conducted in controlled 

environment of the UT Department of Mechanical Engineering’s Dynamics lab.  

 

The goal of the research is to establish and investigate limitations of CV SHM for 

measuring bridge’s dynamic response and its potential in modal shape identification. 

The UT campus bridge will serve as the test-bed for this study, and aluminum beam 

in the laboratory is used for method validation purposes.   

 

The overall motivation for this study is to support vibration field tests for modes shapes 

identification and characterization. The research objectives can be summarized as 

presented below: 

 

1) Identify main natural frequencies and associated vibration modes in: 

a. laboratory aluminum beam,  

b. UT Campus bridge. 
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2) Determine accuracy relative to accelerometry of the CV hardware system in 

controlled environment. 

 

3) Investigate limitations of CV approach in the identification of vibration mode and 

frequencies. 

 

1.3 Research Questions 
 
The following research questions follow from the stated objectives, which the 

presented report tries to answer:  

 

• Which vibration modes with their natural frequencies can be identified through 

proposed computer vision-based SHM method? 

o in a lab setting  

o in UT Campus bridge 

 

• What are potential limitations of vision-based SHM method on operational 

footbridge measurements? 

 

• To what extent can modes of vibration be identified in operational footbridges? 

 

1.4 Thesis scope and organization  
 

The scope of the thesis revolves around remote displacement measurements, which 

are used to derive dynamic characteristic of bridges – namely, the modal parameters. 

The research focuses on studies related to identification of natural frequencies and 

their associated mode shapes. During the analysis dynamic response is of the main 

interest. 

 

The report is organized into six chapters. A literature review is presented in Chapter 

2. The review is split into three main sections, first one introduces the topic of structural 

dynamics, next past and recent advancements in CV related to displacement 

measurement are presented and the most important findings are summarized in the 

last section – conclusions. Chapter 3 describes the proposed methodology and 

explanation of image processing technique. A detailed experimental setup together 

with results of the two studied cases – aluminum beam in a lab and UT Campus 

footbridge are presented in Chapters 4 and 5 respectively. The chapters introduce 

both of the cases as well as present the results. In Chapter 5, a discussion is 

presented. Finally, Chapter 6 summarizes the findings as set of conclusions as well 

as points out future research directions.  
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2 Literature Review 
 
The study combines testing of structures both in laboratory and field conditions as well 

as a literature review with respect to applications of computer vision in structural health 

monitoring and dynamic analysis of civil infrastructure, especially bridges. This chapter 

first introduces the topic of structural dynamics, then presents advancements in CV 

approaches in SHM, especially modal analysis.  

 

2.1 Structural dynamics  
 
Structural dynamics describes and studies the effects of external and dynamic forces 

and loads that induce high acceleration vibrations on structural systems. Forces and 

loads that vary in time are referred to as dynamic forces. Dynamic loads acting on a 

bridge can be induced by people, traffic, winds, or earthquakes. The need for dynamic 

assessment and analysis due to moving loads was motivated by the rise of rail 

transport, and erection of many bridges that came with it. Moving loads (such as a 

pedestrian or a truck traversing through the structure) have a great effect on dynamic 

stresses within the structure and result in intensive vibrations (Fryba 1999). The effects 

of footsteps or traversing vehicles are dissipated within the bridge’s structure in form 

of vibrations, through resonant vibrations. Resonance vibrations can cause significant 

damage to the structure and shorten their lifespan if not designed appropriately. In the 

past a number of fatal failures has occurred caused by resonance response, e.g. the 

infamous collapse of Tacoma highway bridge in 1940 or Chester rail bridge in 1947 

among others.   

 

Nowadays, structural dynamics and analysis are very important with applications in 

multiple fields from car manufacturing ensuring sufficient comfort of driving, through 

design of earthquake resistant buildings, to safe operation of aircrafts, or deep sea oil 

platforms withstanding wave action. In these and many other fields of engineering, 

structural dynamics and analysis play a key role in design, testing and functioning of 

various products and solutions, through process known as structural characterization. 

Structural characterization refers to the process in which physical quantities such as 

accelerations, displacements, or strains are measured in order to obtain a qualitative 

and quantitative assessment of the tested structure. One of the key dynamic properties 

that provide insight into condition and behavior of a structure are modal parameters – 

natural frequency with an associated mode shape and damping value. 

 

Except for the direct dynamic loads, the bridge response is driven by environmental 

conditions such as humidity and temperature. The same modal parameters can be 

sensitive to changes in environmental factors, especially temperature. This adds to 

the complexity of measuring and defining the response of the bridge in form of natural 

frequencies and mode shapes, which can not only be affected by local damage or 

change in boundary conditions, but also temperature, which in most of the global 

regions changes quite significantly on average with seasons (Zolghadri et al. 2015).  
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Nowadays, measurement of bridge vibration is incorporated in regulations and 

standards of many countries – natural frequency, mode shape, the dynamic 

coefficient, and damping. All of the aforementioned properties describe the dynamic 

bridge characteristic. These properties, thanks to years of research, can be measured 

and verified via in-situ experimental methods. Traditionally the response of the 

structure due to natural or experimental excitements was measured using dense 

sensor networks (accelerometers, strain gauges, etc.); however in recent years with 

growing interest and development of image processing technologies, a new direction 

of bridge monitoring and testing is on the rise – computer vision-based SHM (CV-

SHM).  

 

2.2 Computer vision  
 
When studying civil infrastructure, especially long spanning structures such as towers 

or bridges, deflections are of key interest when measuring the structural health and 

behavior. Through deflection measurements, one can investigate both the static and 

dynamic responses of the structure. Static response is caused by e.g. pedestrian or 

vehicle moving through the bridge.  

 

As mentioned before bridge’s are subjected to continuous loading and environmental 

conditions. With time the damage, aging, and environmentally-induced deterioration 

may result in change of the physical and structural properties of a bridge (e.g. 

damping, stiffness or deflection). The fundamental idea behind measuring bridge’s 

vibrations is to track these changes or abnormal responses of bridge’s vibration in 

aforementioned properties. When such (significant) change is detected, inspection 

and appropriate maintenance works can be scheduled to manage a given asset.  

 

However, when it comes to modal identification, through CV based approaches, there 

remains a significant knowledge gap; possibilities as well as limitations of such 

methods have not been fully researched and identified. Modal shapes and their 

corresponding frequencies are known based on series on experiments conducted in 

the past for structures with well-defined boundary conditions. For instance, pin-pin 

beam modal vibrations have been identified and normalized to better visualize and 

understand their shapes and relations, as shown in Figure 1 below. When modal 

shapes are known, annual measurements can be conducted with purpose of damage 

identification by means of modal shape analysis. In this study, the research focuses 

on vibration measurements and visualization of modal shapes of footbridges through 

CV methods.  
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Figure 1 Mode shapes of the pinned-pinned beam, from (Eschkabilov, 2011) 

 
Figure 2 Identified two mode shapes: (a) 1st mode shape and (b) 2nd mode shape,  from (Feng, 2016) 

 
There exists a number of non-contact sensing methods, which include Laser Doppler 

Vibrometry (LDV), synthetic aperture radar (SAR), ultra-sound or camera based 

systems (Shang and Shen 2017). In this study camera based system is considered. 

Initially the most common CV-SHM methodology required manual installation of 

artificial markers, combined with various tracking algorithms. The principle is quite 

simple, a marker (of known dimensions and shape) is manually attached to relevant 

structural component and a camera mounted on a tripod is focused on the target. 

Since the size and geometry of the marker are known, the displacements of the 

bridge’s structure can be directly measured from the marker. This approach requires 

less advanced tracking algorithms and offers confident results; however as it requires 

manual installation of the markers at measured locations, the benefit of ease and 

convenience that non-contact methods offer is lost, especially at difficult to reach parts 

of the structure (Jiang, Jáuregui, and White 2008). New direction of research towards 

bridge engineering and monitoring uses distinctive features of the structure to track 

and measure its displacement. As tracking algorithms, image processing and 

hardware technologies have matured over the years, possibilities to extract 2D 

displacement no longer requires use of artificial markers. Distinctive features of the 

bridge’s structure are chosen as targets such as bolts, deck components or cables 

among others. This method offers truly non-contact procedure for extracting bridge’s 

deflection under one significant condition – it requires evident and notable movements 
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of chosen targets. This can be a major drawback as some types of bridges depending 

on design have lower deflection limits, while others have higher degree of deflection 

(e.g. cable stayed bridges). Through the use of CV methods even the tiniest structural 

responses can be tracked; when it comes to footbridges it can be as small as a fraction 

of a millimeter, resulting in sub-pixel level changes (Kromanis 2021).  

 

As mentioned in the previous paragraph, CV-SHM methods make use of various 

image-processing and signal interpretation technologies. In this section the overview 

of main image processing algorithms is presented. Through research and field tests, 

two most prevalent algorithmic methods have been identified: digital image correlation 

(DIC) and feature matching (Lydon et al. 2019; Xu and Brownjohn 2018). Both 

methods require fixed camera locations and notable distortion deformations or 

displacements. DIC compares two digital images of the selected target at different 

stages of displacement by tracking blocks of pixels and computing the difference 

between them (McCormick and Lord 2010). Feature matching technique uses existing 

characteristic features in the bridge’s structure to track pixel movements, which are 

later converted to engineering units.  In this study template matching is deployed, used 

in previous studies (Kromanis, 2021; Voordijk & Kromanis, 2022). 

 

The final data collection step concerns camera calibration, which is the main source 

of the measurement error in the CV based approaches. The camera is sensitive to 

background vibrations, which result in camera movements. Actual structural response 

must be separated from noisy measurements. This can be achieved by applying 

various statistical techniques and decomposing camera movements from the 

measurements to determine actual structural deflection at the target location.  

 
Recorded displacement data is represented as time series. In order to gain insights 

into dynamic properties of the structure, the data must be first transformed from the 

time domain to the frequency domain. This is achieved using fast Fourier 

Transformation (FFT) to obtain frequency spectrum, represented by power spectral 

density function (PSD). From the plot main frequencies and frequency range of bridge 

vibrations can be identified. Since the expected displacements are really tiny – as 

small as fraction of a millimeter, logarithmic scale is applied in order to identify 

dominant frequencies. 
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Figure 3 Fourier transform visualized, from (Chen, 2021) 

 

The research makes use of mode-shape-based methods, which can be used for 

structural health monitoring purposes. Modal shape is an unique characteristic of all 

structures, which can determined based on dynamic vibrations measurements. Mode 

shapes are distinctive to their ‘natural frequency’ and represent a particular 

displacement pattern of the structure through its entire length, thus providing a global 

structural health characteristic. Mode shapes can be used to assess structure’s health 

and identify damage at early stage. If a structure deforms under the loads and stresses 

or suffers fatigue or other type of damage, it is expected to see changes in the modal 

shape in vicinity of the damage location (Dackermann 2009). The method described 

in the next section aims to capture dynamic vibrations and resulting modal shapes.   

 

The natural frequency is relatively simple to identify, it is represented by distinctive 

peak in PSD function plot. Such plot is visualized via MATLAB graphing tools, a peak 

is determined and corresponding frequency and its amplitude are recorded. The 

frequency range and resolution determine the accuracy of frequency measurement 

and thus potential for modal shape identification. Some modes of vibration occur at 

lower frequencies, while others at higher magnitudes; generally civil structures such 

as bridges have lower natural frequencies, which are easier to capture (Allada, 

Saravanan, and Mariani 2021). The lower the natural frequency range, the lower the 

required rate of recording of the hardware used to capture the vibrations. Similarly the 

higher the rate of recording (more FPS), the more detailed and accurate response 

measurement and greater range of frequency domain.  
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2.3 Conclusions 

 
The review of the technical literature of the computer vision-based laboratory and field 

applications presented in this paper led to the formulation of the following overview 

and conclusions.  

 

Published works in the field of CV-SHM can be split into two main categories: (1) field 

measurements of displacement time histories or (2) measurements and validation of 

displacement time histories of various small scale models or prototypes in controlled 

laboratory environments. The capabilities and accuracy of the vision-based systems 

has been thoroughly tested in various experiment setups proving the CV successful 

in recording of displacement measurements and modal analysis.  

 

Although many different image processing algorithms and approaches coexist within 

the literature with various advantages over each other, the most prevalent and 

commonly deployed image processing algorithm are template matching, feature 

matching, and optical flow.  

 

The most commonly used method of validation of CV-SHM systems is through 

comparison against data obtained through deployment of conventional contact 

sensors such as accelerometers or linear variable differential transformer (LVDT). 

Accelerometers are deployed at the same location as targets tracked through the 

cameras, and resulting measurements histories are transformed (usually via FFT) to 

a frequency domain. In majority of the reviewed studies the comparisons of results 

between image processing (various algorithms) and accelerometers have shown no 

significant differences; Zona has reviewed sixteen case studies, which have shown 

good correlation between image processing algorithm and other sensing technologies 

(mainly accelerometers and strain gauges), only in one case the differences were not  

negligible (2020). Furthermore, accelerometers were used to assess the error due to 

camera movements by attaching one directly onto a camera and later removing the 

camera noise, to obtain actual structural displacement.  

 

With respect to deployed cameras, which together with image processing algorithm 

are one of the most important part of CV system. Cameras act as sensors, which 

transform light into electrical signal, which is displayed as image. Researchers have 

used different types of cameras ranging from regular smartphone cameras, through 

low-cost action cameras, to more expensive specialized super slow motion cameras.  

 

Another way to split recent advancements in CV-SHM is to distinguish between local 

and global levels of monitoring. At local level CV-SHM can be used for early damage 

detection of various structural components; such detection may include: cracking, 

spalling, rusting, or loose bolts (Dong and Catbas 2021). SHM at global level refers to 

measurement of parameters that reveal whole structure behavior, especially related 

to structural response in form of displacement and displacement-derived data.   
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3 Methodology 
 

The methodology borrows and builds upon research methods and strategies from 

existing literature on CV field testing approaches, especially (Lydon et al. 2019; 

Voordijk and Kromanis 2022; Kromanis 2021). 

 

An overview of basic methodology process is visualized in figure 4. A detailed 

description of experimental setup together with equipment list and procedural steps 

for data collection can be found in Chapters 4 & 5. Once the displacement histories 

have been extracted and transformed into engineering units via template matching 

technique, the plots are further transformed into frequency domain via FFT in order to 

reveal patterns, which are difficult to be distinguished with simple visual inspection.  In 

cases where in all four measurement locations a given natural frequency with 

associated signal peaks is identified, it is possible to reveal the modal shapes. In this 

study the shapes are determined by polynomial curve fitting methods. Once the curve 

is fitted to the four data points and its equation is known with resulting data set points, 

it is normalized between 0 and 1 based on the following formula:  

 

𝑧𝑖 =
𝑥𝑖 −min(𝑥)

max(𝑥) − min(𝑥)
 (1) 

  

where: zi is the ith normalized value in the dataset  
   xi  is the ith value in the dataset 
  min(x) is the minimum value in the dataset  
  max(x) is the maximum value in the dataset  
 
 
 
 

 

 

Figure 4  (left) Basic process for CV-SHM and (right) steps for modal shape identification  
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3.1 Image processing 
 

As mentioned previously a number of different image processing methods exist with 

various advantages and shortcomings between them. Different computer vision 

studies have compared their accuracies and reliability based on analysis of different 

measurements. In this study in particular image processing algorithm by (Kromanis) 

is used. The algorithm has been created in MATLAB environment and requires 

installation of Computer Vision Toolbox for its operation (MATLAB 2021.). 

Furthermore, the algorithm makes use of template matching technique. First a starting 

reference frame is selected from the video. It is desired for the reference frame to 

represent the structure at its resting state. The position of the ‘template box’ is tracked 

frame by frame, and corresponding x and y coordinates are saved as time series 

history, and later used for further processing and analysis. Image processing steps for 

generating displacement are visualized in Figure 5. An example of target 

characterization for template matching technique is shown in Figure 6. 

 
Figure 5 Flowchart of template matching 

 

Template matching manifests limitation in terms of computational resource intensity. 

The high computational cost is a result of two factors. Often, due to complexity of 

recorded image and objects, multiple templates must be selected within the frame to 

arrive with accurate measurements. Secondly, the resolution of the recorded video, 

which refers to the number of pixels per x and y direction; the larger the number of 

pixels (higher resolution), the greater the computational cost of running the algorithm 

(Brunelli 2009). The computation time of the algorithm is dependent on few factors, 

related to both the video characteristics and configuration of template matching. 

Firstly, the length of the video, as the longer the video or the period of interest the 

more frames, one by one, must be processed. Next, the size of the selected ROI, as 

the larger the ROI, the bigger the size of the image that the algorithm must ‘search’ 

through for the selected ‘template box’, frame by frame. Finally, the algorithm’s search 

resolution can put a significant strain in terms of computational cost. 
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Figure 6 Image characterization: (left) reference frame with chosen ROI and (right) selected template box within 

ROI for template matching processing 
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4 Aluminum beam in a lab 
 
This section provides overview of the experimental set-up and methodology for 

measurements on the aluminum channel section beam in a laboratory setting.  

 

4.1 Experimental set-up 
 

The first stage of this study involves experimental investigation on the aluminum 

channel section beam which is fixed via makeshift clamp supports. The support is 

meant to resemble pin-roller or pin-pin support. The laboratory set-up acts as testing 

grounds with purpose of laying a basis for field testing; it provides grounds for 

validation of proposed CV method. The experimental set-up can be seen in figure 7 

below.  

 

 
Figure 7 Experimental test set-up 

The markers are first attached on the side of the beam section, with equal spacings 

every 400 mm. Next, four accelerometers are connected to National Instruments data 

acquisition unit and attached on the beam with honey wax at the same locations as 

markers. The aluminum section beam is firmly fastened at both ends to two tables with 

two clamps.  The zoom cameras are set-up approx. 1.5 m away on tripods at the same 

height level as the beam section. The beam is struck with a rubber end of metal rod 

between the support and first marker. The cameras recording is synced via Remote 

Control, the accelerometers measurement is automatically initiated upon beam 

excitation.  
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4.1.1 Aluminum beam  
 
The tested channel section beam is made out of aluminum with dimensions 20 mm by 

30 mm by 2,000 mm. Aluminum is a light and ductile material: it can undergo large 

deformations before a fracture occurs. Aluminum’s modulus of elasticity is 70GPa, 

whereas for steel it is three times larger – 210GPa. This means that “in elastic stage 

the deformations of an aluminum structure are about three times as large as 

deformations of the same [steel] structure” (Hartsuijker & Welleman, 2007, p. 9). This 

makes it a perfect experimental material, as responses due to the forces applied (and 

induced vibrations) are the largest, i.e. easier to detect via CV approach and 

investigate potential limitations in modal analysis and consequently in identification of 

vibration modes shapes. Furthermore, the channel section vaguely resembles the 

structure of bridge deck with railing on each side.  

 

4.1.2 Accelerometers  
 
Acceleration of the beam was measured with four low cost isotron accelerometers of 

model 256-100 with sensitivity of 9.191, 10.20, 9.41, 10.62 mV/m/s2 respectively. The 

accelerometers are attached in same locations as artificial markers in order to record 

the dynamic response at the same location for data quality assessment and validation. 

Accelerometers measure the response of the beam due to induced vibrations, namely 

acceleration forces, both static (constant force of gravity) and dynamic (moving or 

vibrating the accelerometer) components. Processed acceleration data is transformed 

into frequency domain via Fast Fourier Transform (FFT) with automatic built in feature 

from National Instruments data collection and acquisition system.  

 

4.1.3 Computer vision system 
 
The computer vision system consists of two GoPro HERO 8 with Computar H6Z0812 

8-48mm 1:1.2 lens and two GoPro 5 with Computar MEGAPIXEL f=25-155mm 1:1.8 

1/1.8C lens. All four of the cameras are mounted on a tripod. The camera recording 

synchronization is achieved by pairing the cameras together via Smart Control remote. 

Moreover the system consists of four artificial markers obtained from existing ArUco 

library (“Online ArUco Markers Generator” 2022). The markers are printed in black & 

white with dimensions of 57 x 57 mm, attached to a piece of firm cardboard. As the 

measurements are conducted indoors the use firm cardboard is sufficient to ensure 

stability of the marker during the measurements.  The markers are equally spaced out 

along the length of the beam. As four markers are used, they are distributed every 400 

mm on the side of the beam, as shown in figure 4. In order to achieve optimal zoom 

and image sharpness, the camera-to-beam distance is 1,5 m. The cameras are 

positioned at the same height level as the markers via tripod regulation. The horizontal 

stability is ensured via built in level scale in the tripods. The final element of the CV 

system is the image processing algorithm, which is explained in section 3.1 Image 

processing.  



 20 

 
Table 1 Inventory specification, lab setting 

 
Equipment Quantity Specifications 

Channel section beam 1 

 
2m long 

Channel approx. 20x30 mm 
Aluminum 

GoPro HERO 8  2 
 

240 FPS 
1080p 

GoPro Hero 5 2 
 

240 FPS 
720 x 1280 px 

GoPro Smart Remote 1 - 

 Varifocal zoom lens 4 

2x Computar MEGAPIXEL f=25-
155mm 1:1.8 1/1.8C 

 
2x Computar H6Z0812 8-48mm 

1:1.2 
Tripod 4 - 

Isotron Accelerometer 
 

4 
92.28 mV/g (or 9.410mV/m/s2) 

Model 256-100 
 

Data acquisition system 1 by National Instruments 
Modal hammer 1 - 

Artificial marker 4 

From ArUco library 
57 x 57 mm 

look Appendix A 
 

Image processing system 1 look Image Processing 
 
 

4.2 Results 
 
A total of five experiments was carried out on the aluminum beam, with a use of four 

cameras to track the motion of four equally spaced out markers, resulting in analysis  

of twenty videos in total. The total size of the 20 lab videos was 959,2 MB with an 

average length of approximately 6 seconds per video.  

 

The displacement histories generated via template matching and scale transformation 

to engineering units (mm) for experiment 4 are presented in figure 4 for cameras one 

to four (markers one to four). From the displacement histories, the moment of 

excitation is clearly visible, indicated with a downward drop (as the beam is struck from 

above). Then the beam dynamic response can be traced, until it dampens to pre-

excitation noise levels.  
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Figure 8 Displacement histories per camera for experiment 4 

From the displacement history dampening of the vibration pattern can be observed. 

Through further analysis and transformation of displacement measurements into a 

frequency domain, particularly via FFT, more information can be accessed with regard 

to displacement patterns. The total duration of recorded signals is around 5 seconds.  

 

The frequency bandwidth of the generated PSD plot is 120 Hz. On the specified range, 

three distinct signal peaks can be observed, corresponding to the first three modes of 

vibration. The frequency values associated with the peaks, represent natural 

frequencies of the tested aluminum beam. Figure 9 shows all of the individual signal 

peaks, which indicate natural frequencies - 18.75 Hz, 51.75 Hz and 102.8 Hz 

respectively. The data of identified natural frequencies for each experiment per 

camera is shown in Appendix B. As can be noted from these tables, the recorded 

frequency tables exhibit value variability, when theoretically all of the frequency values 

for a given peak should be the same. By analyzing the identified frequencies with basic 

descriptive statistics, the standard deviation was determined for modes 1 to 3 – 0.118 

Hz, 0.192 Hz and 0.530 Hz as summarized in Table 2. It can be noted, that the 

frequency differences between experiments are larger when the mode is higher. This 

means that higher natural frequencies and higher modes are more difficult to be 

accurately measured.  
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Table 2 Identified Natural Frequencies from the laboratory, based on 5x4 measurements 

Frequency 
[Hz] 

Standard deviation [Hz] 
# of successful identifications 

(max 20) 

18,75 0,118 20 

51,75 0,192 20 

102,8 0,530 13 
 

 

Figure 9 PSD plots generated from (left) displacement and (right) acceleration histories via FFT, experiment 3 

 

From figure 9, it can be noted that both the image processing and accelerometers 

have successfully identified first three natural frequencies. A direct comparison is 

made of natural frequencies values identified from PSD plots between accelerometry 

and image processing data, and an absolute difference is computed. This is 

summarized in table 3, from the table it can be observed that the natural frequency 

value differ in all of the cases. However, the differences are quite low and comparable 

to the differences between various experiment trials obtained with image processing. 

The average absolute difference for identified natural frequencies from third 

experiment, between template matching and accelerometry is 0,16 Hz, which can be 

considered negligible difference. For the first frequency this is only a relative error of 

0,85%, for the higher frequencies this would be even smaller. The maximum and 

minimum difference is 0,19 Hz and 0,02 Hz respectively.  
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Table 3 Natural frequencies identified, image processing vs accelerometry, laboratory 

Frequency 
Image processing 

[Hz] 
Accelerometry 

[Hz] 
Abs. difference 

[Hz] 

f1 

18.79 18.97 0.18 

18.75 18.77 0.02 

18.75 18.77 0.02 

19 18.77 0.23 

f2 

51.79 51.96 0.17 

51.75 51.96 0.21 

51.75 51.96 0.21 

51.75 51.96 0.21 

f3 

102.9 102.7 0.2 

x 102.7 x 

x 102.7 x 

102.8 102.7 0.1 

 

 
In the experimental cases, where in all four marker locations, the frequency peaks 

have been identified from FFT plots, the line scatter plots are generated, which reveal 

the outlines of the modal shapes. For f3, the mode shape was not identified as the 

PSD plots generated from displacement history, has not picked up the natural 

frequency and its amplitude in all four marker location in all experiments. Similarly, for 

the 2nd mode shape, the first experiment has proven unsuccessful in picking up the f2 

and its amplitude, thus only experiments two to four are presented. In the figure 10, 

an example of polynomial curve fitting is presented. The four data points are plotted 

with a line scatter, which reveals the rough outline of the mode shape. In the next step 

a polynomial trendline is fitted to the data, for first mode this is a 2nd degree polynomial, 

for second this is 3rd degree, etc. Based on the equation of the curve, a new data set 

is generated, which is later normalized on 0 – 1 interval based on equation 1 from 

Chapter 3: Methodology.  

 

 
Figure 10 Polynomial curve fitting for 1st Mode, experiment 4 
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Figure 11 Normalized 1st & 2nd mode shapes of fixed-fixed beam 

 
In ideal theoretical scenario, the resulting normalized mode shapes for all five 
experiments should look exactly the same; however from figure 11 it is apparent, that 
it is not the case. For the first vertical mode shape, the results are quite close to 
achieve it - all five normalized curves almost overlap each other, there is very small 
difference between all five experiments. For the second vertical mode shape, these 
differences are much larger, especially on the 0 – 0,5 interval. Moreover, only the 
mode shape resulting from experiment 5 (yellow curve) attains both the values of 1 
and -1; the other three experiments have much lower degree of horizontal symmetry.   
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5 UT Campus footbridge 
 
The second stage of the methodology involves field testing, where the UT Campus 

footbridge serves as the test-bed. The bridge has been a study subject in Kromanis 

(2021) and (Voordijk and Kromanis 2022; Kromanis 2021) as well as testing grounds 

for MSc and PhD students from the UT with focus on Smart infrastructure and CV-

SHM.  

 

5.1 Experimental setup  
 

 
 

Figure 12 (left) UT Campus footbridge from above and (right) up-close 

The UT campus bridge is a simple steel girder and timber deck and railing bridge. The 

structure consists of three steel girders, on which rests the timber deck. A total of 

twenty-two timber railing posts is bolted to both of outer girders. The footbridge is 2 m 

wide and spans 27 m over a man-made canal. During the measurements the 

temperature was approximately between 25°C and 27°C.  

 
The very same computer vision system is used as in the laboratory, with exception for 

artificial markers, which in this case are bigger (10 cm x 10 cm). Artificial markers are 

attached to a small right angle iron plate via magnets. The four plates are then firmly 

attached with zip ties to the railing posts of the footbridge. Similarly to laboratory set-

up, the goal was to distribute the markers as evenly as possible, the markers were 

attached at 5.5 m, 11 m, 16.6 m, and 22.1 m of footbridge’s length, which corresponds 

to normalized lengths of 0.20, 0.41, 0.61, and 0.82. This is almost identical marker 

placement as the one implemented on the aluminum beam in laboratory. The cameras 

were located next to each other on South-Eastern side, pointed at markers one to four, 

where the first marker was the closest to the camera location. The deck of the 
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footbridge is split into three axis – left side, center, and right side as shown in Figure 

12. The markers are attached to the railing posts on the right side. 

 
Table 4 Inventory specification, UT campus footbridge 

Equipment Quantity Specifications 

GoPro HERO 8 2 
240 FPS 

1080p 

GoPro HERO 5 2 
240FPS 

720p 
Smart Control remote 1 - 

 Varifocal zoom lens 4 

 
2x Computar MEGAPIXEL f=25-

155mm 1:1.8 1/1.8C 
2x Computar H6Z0812 8-48mm 

1:1.2 
Tripod 4 - 

Large zip ties 8 - 
Iron angle 4 - 
Magnet 4 - 

Scale 1 
Simple bathroom scale was used 

 

Marker 4 
1000 x 1000 mm 
look Appendix A 

 
Image processing algorithm  look Image Processing 

 

 

A total of four experimental cases was carried out as summarized in Table 5. All of the 

cases were conducted on each of the axis of the bridge as shown in figure 12 – left 

side, center, and right side. The loading in kilograms was measured with a simple 

bathroom scale. The crossings are initiated in a sequence one after another, from both 

sides of bridge, from northeastern and southwestern sides. The cameras are synced 

via Smart Remote and recording is initiated few second before the subject enters the 

footbridge and is terminated few seconds after the subject has passed through the 

footbridge.  

 
Table 5 Footbridge load cases 

Case # Loading [kg] Description  

1 88.75 Jogging left, centre, right 

2 108.10 Cycling left, centre, right 

3 243.75 Jogging as group left, center, right 

4 243.75 Jumping as group at midspan left, centre, right 
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5.2 Results 
 
A total of thirty-six videos from the UT Campus footbridge have been analyzed with the 
template matching image processing algorithm. As a result three natural frequencies, 
corresponding to vertical modes, were identified, within 5 Hz bandwidth. The displacement 
time histories for four selected cases are presented on the next page in figure 13. The 
displacement patterns differ significantly between the different cases, meaning the bridge’s 
dynamic response varies depending on excitation method. In majority of the analyzed videos, 
the static component is difficult to extract, with the exception for cycling cases, in which the 
static response can be quite easily spotted, especially if a moving average was to be applied; 
however the static response was not in the scope of this study. When more load is applied 
(jogging group) the oscillating displacements  are of much higher magnitude, relative to single 
person jogging through the structure. From the simple visual inspection the displacement 
pattern seems quite stochastic, in order to reveal the response patterns, the displacement 
time histories are again, analyzed with FFT to obtain PSD plot on frequency domain. Based on 
first few initial transformations and visual inspection of the resulting signals, it has been found 
that only at lower frequency, clear signal peaks are picked up. Therefore, the presented PSD 
plots are terminated at 5 Hz. The first two signal peaks correspond to the first two vertical 
modal shapes – 1st Mode at 2.60 Hz, and 2nd Mode at 3,23 Hz. The frequencies in the table 6 
are chosen based on the median value. A PSD plot in which all three natural frequencies have 
been identified is presented in figure 14. 
 

Table 6 Identified Natural Frequencies on UT Campus bridge, based on analysis of 9x4 measurements 

Frequency [Hz] Standard deviation [Hz] 
# of successful 

identifications (max 36) 

2,60 0,183 27 

3,23 0,136 20 

3,68 0,0537 12 

 
In case of UT Campus footbridge, the trend is quite different, the first natural frequency 
represents the largest standard deviation of 0,183 Hz, the standard deviation then decreases 
with larger frequencies – opposite to what was observed in the laboratory, where the 
standard deviation increased with higher frequencies. In significant proportion of analyzed 
videos and resulting PSD plots, the first natural frequency was represented with two peaks 
almost at the same frequency (look fig. 14). This explains the largest standard deviation as 
well the largest range of 0,629 Hz. Jogging and cycling measurements were closer to median 
value of 2,60 Hz, for jumping, the peak was on average closer to 2,30 Hz, with lowest peak 
frequency at 2,101 Hz (Jumping group right). Detailed overview of all of the recorded natural 
frequencies can be found in Appendix C.  
 
 
 



 

 

Figure 13 Displacement histories for selected cases, (a) Jogging Group Left (b) Cycling Right (c) Jogging Center (d) Jumping Group Right

(a) 

(c) 

(b) 

(d) 



 
 

 

 

 

 

 

 

 

 

Figure 14 PSD plot generated via FFT from Jumping Group Right 

 

 
 
 
 
 
 
 
 

 

 
 
 

 
Figure 15 Normalized 1st & 2nd mode shapes of UT Campus footbridge 
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From all of the analyzed videos, the following cases have yielded identification of mode 

shapes. Similarly as in the lab, the normalized curves show discrepancies between each other, 

especially for the second vertical mode. However, the curves associated with the first modal 

shape can be considered as quite satisfying, especially on 0 – 0,5 interval. At support in all 

cases the value is 0 and the curves overlap almost perfectly over each other reaching the 

maximum value of 1. On the 0,5 – 1 interval, the curves no longer coincide and value at the 

support differs from 0. This interval is fitted based on measurements from third and fourth 

markers, which were located the furthest away from the camera position. Moreover, the 

image quality of the fourth marker was the worst out of all recorded cases. This could partially 

explain the differences on 0,5 – 1 interval for the first mode shape. The normalized curves for 

the second mode shape vary even more between each other – similarly as in the lab. Higher 

modes could be more difficult to identify, as they manifest themselves with lower 

displacement magnitudes relative to the first mode. 

 

5.3 Comparison with parallel study 
 
Parallel to this study fellow BSc Civil Engineering student has tested the potential of 

using a smartphone, namely its built in accelerometer feature, in identification of 

natural frequencies of the same UT Campus footbridge as part of his thesis work. The 

researcher would walk across the UT Campus footbridge with the smartphone. The 

obtained results, in form of identified natural frequencies are presented in Table 7. The 

table contains natural frequencies identified in all three planes – x, y, and z directions, 

frequencies in vertical direction are highlighted with green color. The results from 

smartphone accelerometer show greater potential in picking up the natural 

frequencies relative to CV method as the number of successful identifications is 

greater. Moreover, the researcher has distinguished between 2,41 Hz and 2,79 Hz as 

separate frequencies. The results from image processing for that frequency range 

were often overlapping between each other or in many cases only peaks closer to 2,79 

Hz were identified, thus treated as single frequency, rather than two separate ones. 

The natural frequencies identified at 3,29 Hz and 3,73 Hz, are quite comparable to 

results obtained via image processing – 3,23 Hz and 3,68 Hz, with smaller standard 

deviations than the ones from table 7. This proves that modern computer vision-based 

modal testing can match the accuracy of accelerometers, as the differences between 

the two methods can be considered negligible.  
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Table 7 Identified Natural Frequencies from walking across the footbridge, smartphone accelerometer 

Frequency [Hz] Standard deviation [Hz] 
# of successful 

identifications (max 30) 

2.41 0.086 22 

2.79 0.065 20 

3.29 0.135 29 

3.73 0.109 30 

4.31 0.129 30 

4.74 0.076 22 

5.59 0.097 29 
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6 Discussion 
 

During the data collection of experimental measurements on the UT Campus bridge, 

although it was a day with near perfect weather conditions, wind, with occasional 

stronger gusts was present. A phenomena that does not occur at the laboratory 

setting, can pose quite a challenge in the field conditions. A lot of bridges and other 

civil infrastructure are situated at locations known for windy conditions, such as bodies 

of water (rivers, canals), highways among open fields or hilly landscapes, or within 

cities, where due to high-rise buildings, the wind can be accelerated significantly. This 

can cause quite a nuisance, or even all together prevent data collection, as cameras 

are sensitive to unwanted movement or drift caused by weather conditions.  

 

In order to achieve measurement synchroneity, the cameras must be synced and 

paired together to ensure recording time alignment. This was achieved via the use of 

GoPro’s Smart Remote. Although usually the cameras are recording in close proximity 

to one another, in operational conditions, it could be desirable to place the cameras 

on both ends of the bridge, in order to be closer to targets/features distributed along 

the structure’s length, to acquire a sharper image quality. Although the manufacturer 

claims operational range of approximately 60 m, in this study, after multiple efforts, it 

was not possible to pair the cameras between both sides of the canal banks (approx. 

30m) (GoPro 2022). Thus, the cameras were located on one side of the footbridge.  

 

Personal data protection and privacy laws may interfere with data collection process. 

Depending on the structure, environment around, and set-up, the cameras may 

capture not only the specific parts of the bridge, but also people and commuters in the 

fore/background. In this study, it was possible to wait for moments, where no one was 

crossing the bridge; however this is usually not the case, especially in urban zones 

and cities. Presented experimental cases and recorded subjects, provided a 

permission to store the videos for analysis purposes; thus there was no privacy 

conflict.  

 

Collecting a series of different measurements can be a matter of day’s work, however 

the management and analysis of collected data can take much longer and is an overall 

tedious and complex process. In order to extract and obtain an accurate 

representation of bridge’s signature many experimental cases must be carried out and 

recorded, which can results in hundreds of videos that require a thorough analysis. 

This poses a limitation, as such data can be not only troublesome to process, but also 

store. As highlighted by Spencer et. al. with regard to SHM of infrastructure, “big data 

needs big data management” (2019, pg. 16). 
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6.1 Data quality 
 

The baseline for data quality assessment of the proposed CV approach is built upon 

comparison against data obtained from the accelerometers attached to the aluminum 

beam as well as comparison to a parallel study conducted on the UT Campus 

footbridge with a use of smartphone’s built in accelerometer. The results and direct 

comparison between image processing and accelerometry is presented separately for 

both cases in Chapters 4 and 5.  

 

Another factor to consider is the image quality, which plays an important role in 

effectiveness of the image processing algorithms. As one would expect, the more 

sharp and clear image, the more effective the template matching. When the video is 

blurry or grainy it creates interference of the ‘real’ image and reducing the quality and 

resolution of the image frames processed by the algorithm. In the figure 16, the 

disparity in image quality between the two frames can be easily observed. This image 

quality difference translates into poorer performance of template matching technique. 

The potential of natural frequency identification from fourth marker (worse quality 

image), is smaller relative to other three markers – out of the twenty-seven analyzed 

cases, the natural frequencies for the fourth marker were picked up twelve times. For 

first, second, and third markers this was sixteen successful identifications.  
 

Figure 16 Image quality comparison (left) 3rd and (right) 4th marker 

 

From the displacements histories the error due to camera movement can be easily 

obtained by analyzing the first few seconds of the recorded videos; the interval 

between the start of video and moment of excitation provides insight into measurement 

error due to background vibrations of the camera. This was performed for one video 

each from lab and field measurements. The error (in mm) due to camera movement 

is presented in the figure 17 below. By looking at the y-axis of both plots, it is apparent 

that the error associated with the camera movement is larger in the field conditions, 

than in the laboratory setting. In the laboratory, the maximum displacement due to 

camera movement is 0.015 mm, for bridge this is 1.5 mm. However, the camera 
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movement mainly oscillates with a magnitude of approximately 1 mm – between -0.5 

mm up to 0.5 mm. Camera shaking in the lab can be explained by background 

vibrations of the floor due movement of people throughout the building. In the field 

conditions the camera movement are of larger magnitude due to greater number of 

factors that can potentially influence the stability of camera. There are many 

contributors that can occur in the field setting - wind and other background and 

environmental vibrations e.g. nearby traffic (car, bus, train) or wind (Zhuang et al. 

2022). In the study location there was no significant traffic nearby; however slight wind 

with occasional stronger gusts was present, which could explain the camera 

movement captured in the displacement histories.  

 

 
Figure 17 Camera movement extracted from (left) lab and (right) field conditions  



 35 

7 Conclusions and further research 
 
The proposed computer vision-based structural health monitoring methodology has 

been proven successful in identification of natural frequencies in both of the tested 

scenarios – aluminum beam in laboratory and UT Campus footbridge.  

 

In the laboratory three natural frequencies associated with vertical modes were 

identified on entire recording bandwidth of 120 Hz. The first mode at 18.75 Hz, the 

second at 51.75 Hz and third at 102.7 Hz. The analysis of measurements from the UT 

Campus bridge has shown that only lower frequency modes can be identified, no clear 

identifiable signal peaks were detected above 5 Hz. The identified natural frequencies 

of UT Campus footbridge are 2.60 Hz (1st mode), 3.29 Hz (2nd mode) and 3,68 Hz. In 

both of the studied cases the researcher was able to determine the first two vertical 

modal shapes. 

 

The proposed CV-SHM methodology for modal parameters identification has a 

number of challenges and limitations. Based on the findings from literature review and 

experiences gained through conducted measurements, the following limitations are 

highlighted: 

 

• Computer vision-based monitoring of displacement histories can be easily 

affected by environmental and site conditions, while conducting in-situ tests. 

Various influencing factors will lead to unwanted change in camera’s position 

or image quality degradation, these may include nearby traffic or weather 

conditions (wind, rain, fog).  

 

• The system is susceptible to changes and variations in illumination levels. 

Illumination leads to degradation of image quality or even failure to produce 

image sharp enough for further processing. The shadows casted by nearby 

buildings, trees or the studied structure itself can reduce the image processing 

capabilities. This has been observed in this study, where the 4th marker from 

UT Campus footbridge, captured by cameras was significantly darker, as a 

result less natural frequencies were identified relative to other markers. The 

proposed system is not robust to various weather and environmental factors, 

which can be a significant limitation.   

 

• Various limitations due to hardware specifications exist and can restrict the 

potential of modal analysis. Important camera specifications include recording 

resolution (number of pixels), recording rate (frames per second) and zoom 

capabilities. All of these three variables are desired to be as high as possible. 

Greater resolution results in better image quality, higher recording rate provides 

insight into larger frequency range (thus higher-frequency modes) and more 
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powerful zoom lens allows to zoom in closer on the target/feature from further 

distance.  

 

• As shown in this study, not all recordings will yield a successful identification of 

natural frequencies (and associated mode shapes). The displacements 

associated with bridge structures are often very small and are simply difficult to 

capture. Moreover, the possibility to place the camera in an optimal spot – with 

good viewing position, stability, little to no perspective distortions, and outlook 

on vital structural elements, are some of the most important limiting factors. 

 

7.1 Further research 
 

Significant progress has been made by research community in the field of CV-SHM 

and modal analysis over the past 20-30 years, yet a number of technical and 

operational obstacles remains, before the development of automated CV-SHM can be 

fully realized and implemented as standard SHM procedures.  

 

Further research should focus on quantifying the effects of influence factors and 

robustness of main image processing techniques, especially with regard to illumination 

effects. If an illumination correction model or coefficients are developed, the CV-SHM 

could be realized at any time of the day, no matter the weather or season. Additionally, 

a lot of structures cast a shadow on itself, including vital structural components, this 

was the case on UT Campus footbridge, in all four marker locations, the shadows of 

balusters were partially obstructing the measurement.  

 

Another direction for CV-SHM is research into identification of higher-frequency 

modes of operational bridges with the use of super slow motion cameras, which can 

capture higher frequency domain, due to faster recording rate. This and other studies 

have proven that lower natural frequencies and lower-frequency mode shapes can be 

identified via proposed method; however what is the limit of CV-SHM, up until which 

mode, can the shapes be accurately determined? The more natural frequencies and 

associated mode shapes that can be identified via presented methodology, the more 

extensive and detailed signature of a bridge can be drawn.  
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Appendix A: Markers 
 

 
Figure 18 ArUco Markers (57x57 mm) used in laboratory set-up 

 
Figure 19 Marker (10 x 10 cm) used on UT Campus footbridge 
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Appendix B: data lab 
 
The tables 8 to 10 below show the exact values of first three natural frequencies 

identified for all marker location, for all five of the carried out experiments.  

 
Table 8 Peak frequencies identified for given camera per experiment, frequency 1 [Hz] 

Exp. # CAM-1 CAM-2 CAM-3 CAM-4 

1 18,80 18,88 19 19 

2 18,92 18,75 19 18,75 

3 18,79 18,75 18,75 19 

4 18,80 18,75 18,75 18,75 

5 19 18,75 19 19 

 
 

Table 9  Peak frequencies identified for given camera per experiment, frequency 2 [Hz] 

Exp. # CAM-1 CAM-2 CAM-3 CAM-4 

1 51,49 x 51,75 51,75 

2 51,75 52 51,75 52 

3 51,79 51,75 51,75 51,75 

4 52 52,25 52 52,25 

5 51,75 51,75 52 51,75 

 
Table 10 Peak frequencies identified for given camera per experiment, frequency 3 [Hz] 

Exp. # CAM-1 CAM-2 CAM-3 CAM-4 

1 103,1 x x 102,8 

2 102,1 102,5 x 103 

3 102,9 x x 102,8 

4 102,2 101,2 x 102 

5 102,2 102 x 102,5 
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Appendix C: data UT Campus footbridge 
 
 

Table 11 Peak frequencies identified for given scenario per marker, frequency 1 [Hz] 

Marker  
1st 2nd 3rd 4th 

Case  

Cycling left 2,549 2,536 2,523 x 

Cycling center x 2,675 x x 

Cycling right x x x x 

Jogging left 2,726 2,713 2,692 2,675 

Jogging center 2,683 2,662 2,694 2,690 

Jogging right x 2,571 2,534 2,633 

Jogging group left 2,625 2,637 2,610 2,603 

Jumping group left 2,326 2,343 2,315 2,300 

Jumping group right 2,101 2,097 2,393 2,381 
 

Table 12 Peak frequencies identified for given scenario per marker, frequency 2 [Hz] 

Marker  
1st 2nd 3rd 4th 

Case  

Cycling left 3,238 3,27 3,34 x 

Cycling center 3,41 3,477 3,423 3,407 

Cycling right 3,213 3,263 3,26 x 

Jogging left x x x x 

Jogging center x x x 3,322 

Jogging right x x x x 

Jogging group left x x 3,228 x 

Jumping group left 3,041 3,013 3,059 2,997 

Jumping group right 3,201 3,195 3,225 3,21 

 
Table 13 Peak frequencies identified for given scenario per marker, frequency 3 [Hz] 

Marker  
1st 2nd 3rd 4th 

Case  

Cycling left 3,651 3,604 3,636 x 

Cycling center x x x x 

Cycling right 3,785 x x x 

Jogging left x x x x 

Jogging center x x x x 

Jogging right x x x x 

Jogging group left x x x x 

Jumping group left 3,668 3,682 3,638 3,624 

Jumping group right 3,702 3,694 3,745 3,727 
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