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Summary 
This research investigates the application of a regression model, which is built using distributed 
temperature and response (strain) measurements to predict the thermal response of the bio-based 
bridge in Ritsumasyl. The aim is to have an accurate regression model that can predict the response 
of the bridge over diurnal and seasonal temperature changes, which cause large deformations that 
exceed live loads. The regression-based thermal response prediction (RBTRP) methodology was used 
to determine the relationship between strain and temperature distribution during a reference period. 
A multiple linear regression algorithm (MLR) has been applied. By applying data pre-processing and 
an iterative process to find the smallest prediction error by varying the thermal inertia and number of 
input measurements for the regression analysis, the thermal response was successfully predicted with 
a maximal prediction error of 4.5% for the monitoring period. This involved a shift correcting measured 
data for all strain gauges. This shift was necessary since strain data in the monitoring period deviated 
significantly from strain data in the reference period at the same temperatures. The first measured 
value of the monitoring period is set equal to the first predicted strain value of the monitoring period. 
The difference between these two values is applied to all other measured values. The reason for the 
deviation is unknown and should be further investigated in a follow-up study. The research also shows 
that the thermal response can be well predicted using temperature distributions, but the prediction 
error does differ per strain gauge. Whether this depends on factors like sensor location, applied loads, 
wind or humidity cannot be concluded from this study. This also requires further research.  
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1 Introduction 
Nowadays, many changes are taking place in the current environment. Climate change is an issue, but 
CO2 and nitrogen emissions are also major problems. To become more sustainable, it is important that 
new and current bridges meet the CO2 emission standards and the nitrogen limits during construction. 
The use of new sustainable materials can be beneficial in solving these problems. In addition, 
structural health monitoring (SHM) is important in extending the life span of a bridge. This can give an 
adequate indication of the ‘fitness for purpose’ of a bridge under gradual changes of their state. With 
this, a lot can be learned from, for example load, but also response mechanisms (Brownjohn, 2006). 
Bridge thermal response is the dominant response in long-term. Previous studies have shown that 
diurnal and seasonal temperature variations have a major influence on the structural response. This 
effect is perhaps even greater than the response for vehicular traffic (Hua et al., 2007). This report 
looks at the effect of diurnal and seasonal temperature variations on a special bio-composite bridge. 
It is situated in the small town Ritsumasyl, located in Friesland. The bicycle bridge is made of bio-
composite consisting of balsa wood, flax, resin and harder. 80% of the bridge consists of natural 
materials. Because this material is so new, not much is known about the behaviour of the bridge under 
certain circumstances. According to Witteveen+Bos, the bridge has a lifespan of 100 years. However, 
they want to monitor whether the bridge has already shown signs of weakness. Temperature and 
strain are important indicators for weaknesses in the bridge. Especially because the application is so 
new, it is interesting to gain more insight into this (Sweco & Witteveen+Bos, 2020).  

The structure of the report is the following. First, the context of the problem is made clear. 
The stakeholders involved, the study area and the temperature strain problem are discussed here. 
Next, the problem statement and theoretical framework are elaborated, this then leads to the 
research questions. This is continued with the methodology that will be used to answer the research 
questions. This is followed by results and a discussion. Finally, a conclusion is given on the research 
questions and recommendations are given. 
 

1.1 Problem context 

1.1.1 Involved parties 
The province of Friesland is the initiator of the replacement of the old bridge and the installation of 
the new bridge near Ritsumasyl. The bridge was built by a special team consisting of contractor 
Strukton-Spie, composite producer Delft Infra Composites and a combination of 
Sweco/Witteveen+Bos went through the challenging development process. This also involved close 
collaboration with Green PAC. These are all parties involved in the construction of the bridge. In 
addition, of course, there are the users of the bridge. This includes cyclists and walkers, but also water 
traffic that passes under or along the bridge. It is important to them that the bridge is always passable 
and does not require frequent maintenance. To ensure that this is not the case, several sensors have 
been placed on the bridge that provide data that is managed by Sweco, with support from 
Witteveen+Bos. Because they manage this data, they can also monitor how the bridge is responding 
and how the bridge is doing. The most important party for predicting the temperature-strain response 
of the bridge is therefore Witteveen+Bos.  
 

1.1.2 The bio-based bridge 
The bridge is located near Ritsumasyl in Friesland. The bridge has been there approximately 2.5 
years now. The location is indicated with an arrow in Figure 1. This figure shows provincially and 
locally where the bridge is located. It can also be seen that the bridge is oriented from North to 
South.  
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Figure 1: Bio-based bridge location provincially (left) and location locally (right) (Google, (n.d.)) 

The bridge consists of a fixed part of 34 meters and a rotating part of 32 meters. It opens a few times 
during the day. In Figure 2, the bridge can be seen when its closed. The left part in the figure is the 
part that can be turned open. Figure 3 shows the situation when the left part of the bridge is open.  
 

 
Figure 2: Bio-based bridge (closed) 

 
Figure 3: Bio-based bridge (open) 
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As mentioned before, it is a bridge made of special material. It consists of 80% natural materials such 
as balsa wood, flask, harder and resin. The bridge is equipped with sensors that provide a lot of data 
and can be used for monitoring. The goal of this is to gain insight into the life expectancy and to 
optimize the maintenance of the bridge. The bridge is equipped with 184 optic fiber sensors. These 
are strategically placed on the bridge along the bridge deck at the bottom and top. In total, 82 sensor 
points have been installed on the fixed part. These exist out of 76 strain sensors and 6 temperature 
sensors. 124 sensor points consisting of 112 strain sensors and 12 temperature sensors are placed on 
the moving part. With all these sensors, data has been collected from the bridge for more than 2 years.  
 

1.2 Research question 
The aim of the research is to generate an accurate regression model that is capable to accurately 
predict bridge thermal response. This involves looking at temperature and strain. This gives the 
following main research question and sub-questions. 
Main question:  

- Can bridge thermal response be accurately predicted using the knowledge of bridge response 
and distributed temperature? 

Sub-questions: 
- How can temperature measurements and strain be used to accurately make a regression 

model to predict the thermal response of the bridge. 
- Which steps need to be taken for appropriate data pre-processing? 
- How can the number of input measurements be used to increase the prediction accuracy? 
- How can thermal inertia be used to increase the prediction accuracy? 
- Is multiple linear regression an adequate algorithm to predict thermal response? 

2 Theoretical framework 
The bridge in Ritsumasyl is made of a special type of material called bio composite. Bio composite 
often consists of materials from local and renewable sources that offer significant sustainability. 
Different types of bio composites have already been successfully applied in domestic sectors such as 
the aerospace industry, circuit boards and automotive applications (Bharath & Basavarajappa, 2016). 
The properties of this material can influence aspects such as the lifespan of structures. But it can also 
affect weaknesses in the bridge and where they might arise.  

Structural health monitoring (SHM) is very important to identify these aspects. This term is 
increasingly used to describe various systems that are widely used in civil infrastructure. The aim of 
SHM is to contribute to and inform about the ‘fitness for purpose’ of structures under gradual changes 
in their state in order to learn about load and response mechanisms (Brownjohn, 2006). This allows 
for forehanded action if structural damage is identified Structural damage is defined as changes to the 
material and/or geometric properties, including changes to the boundary conditions and system 
connectivity, which negatively affect the systems performance (Farrar & Worden, 2006).  

There are fundamentally two approaches for damage identification. Model-driven methods 
establish a high-fidelity physical model of the structure often using finite element analysis. This model 
is then compared with the measured data of the real structure. Data-driven approaches also establish 
a model, but with using a statistical representation of the system (Worden & Manson, 2006). Statistical 
learning algorithms are often used for this, which aid in the construction of a data-driven model. The 
use of a data-driven model instead of a high-fidelity model comes from the idea that capturing all the 
physics involved becomes increasingly difficult as the complexity of a system increases (Sen & 
Nagarajaiah, 2018). Several forms of SHM have been used over the past half century, but it has been 
a few years since computer-based systems have been designed with the aim of assisting operators of 
outdated infrastructure with timely information about their safe and economic operation. Another 
problem why SHM has been used less before is that it is very difficult to extract meaningful information 
from large amounts of data (Kromanis & Kripakaran, 2016).  
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In research from Kromanis and Kripakaran (2014), a generic approach to evaluate thermal 
response of bridges from temperature measurements has been conducted as part of structural health 
monitoring. It elaborates on the challenge of accounting for the thermal response in measurements 
collected during quasi-static monitoring of bridges. Quasi static is defined as a process that proceeds 
at a low speed. Quasi-static signals are more commonly used for load identification and damage 
identification. The quasi-static strain response of the bridge is useful information for a condition 
assessment, which the SHM of a bridge usually depends on (Lu et al., 2019). These quasi-static 
reactions of the bridge are often mainly caused by slow temperature changes that follow diurnal and 
seasonal cycles. Most materials contract or expand with a change in temperature. This therefore also 
takes place in structures such as bridges. These deform continuously with changes in weather 
conditions. Previous studies have shown that deformations caused by seasonal temperature effects 
in large bridges can be up to 10 times greater than when caused by traffic (Catbas et al., 2008). 
However, it is very difficult to predict what the temperature distribution in a structure will be. It is 
often assumed by engineers that there are linear temperature gradients to evaluate thermal response. 
However, this is not appropriate enough for long-term monitoring. The largest response is mainly 
caused by temperature variations (Kromanis & Kripakaran, 2014). As an example, a plot of the Cleddau 
bridge in Wales is shown. The figure shows the daily variation in the bearing displacements. In Figure 
4 the daily time series of displacement can be seen.  

 
Figure 4: Displacement measurements of the Cleddau bridge collected at a bearing over 1 day (Kromanis & Kripakaran, 

2014) 

Figure 4 shows very clearly that the displacement is greatest in the middle of the day. It is also clearly 
visible that the displacement of the bridge decreases again at sunrise and sunset. This effect becomes 
even more apparent when looking at different sections of the bridge. The Cleddau bridge is oriented 
from north to south. This means that the right side of the bridge mainly gets sun in the morning and 
the left side has the sun on it in the afternoon. This can be clearly seen in Figure 5. 

 
Figure 5: Temperature variations Cleddau bridge (Kromanis et al., 2015) 
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In Figure 5 large differences in temperature in the bridge can be seen. It can also be seen that bridge 
sections heat up differently at different times of the day. Due to this difference in temperature at 
different parts of the bridge, there is also a difference in strain over these different parts. An increase 
in temperature causes the material to expand. If one side gets warmer than the other, it can cause, 
for example, stretching of the east side of the bridge and compressing of the west side at a 
simultaneous moment. This can cause very large stresses in the bridge that must be considered in 
connection to SHM. It is therefore clear that temperature effects must be included in the 
measurement interpretation process. For this, a strategy has been developed that supports a bridge 
management paradigm. The paradigm can be seen in Figure 6.  

 
Figure 6: Bridge management paradigm (Kromanis & Kripakaran, 2014) 

The research of Kromanis and Kripakaran (2014) looked at the development of measurement 
interpretation strategies to support this part in the bridge management paradigm. The focus is on 
developing approaches that ensure that the thermal response of the measurements is isolated. A 
data-driven strategy is proposed for building models that can reliably predict the thermal response 
with a given reference set of measurements. How the bridge reacts with a change in temperature 
depends on the temperature distribution across the bridge. However, it is impossible to accurately 
measure the temperature of every exact point of a bridge or structure. However, this can be estimated 
with measurements of distributed sensors. The research of Kromanis and Kripakaran (2014) proposes 
to apply distributed temperature measurements to predict the thermal response of a bridge. This way 
of applying is shown in a flowchart. This can be seen in Figure 7. 
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Figure 7: Flowchart of methodology to predict thermal response of a bridge (Kromanis & Kripakaran, 2014) 

The flowchart shows the two phases with all associated steps that are required for the process. A 
statistical algorithm can be used for the regression analysis. Most algorithms have significant reduced 
capabilities in damage detection for a small number of incorrect measurement values (Posenato et 
al., 2010). It is therefore very important that outliers are removed from the data. There are several 
methodologies for finding outliers and replacing them with appropriate values. Posenato et al. (2010) 
describes 3 different algorithms: Three – σ analysis, auto regressive analysis, and interquartile range 
analysis (IQRA).  These are all described in the report by (Posenato et al., 2010).  Of these three 
algorithms, IQRA has the best features. IQRA is based on a robust analysis, which means that it can 
also be used when there are multiple outliers. IQRA uses a moving window with certain thresholds. If 
it finds an outlier by comparing to the other values within this window, the outlier will be replaced by 
the median of this moving window (Posenato et al., 2010). These create regression models that 
examine the relationship between temperature distribution and structural response of collected data 
from a reference period.  

There are several algorithms that can be used to make statistical models showing the 
relationship between temperature and structural response. Kromanis and Kripakaran (2014) 
elaborated four algorithms in their report that already have been used in the field of SHM. These are 
Multiple linear regression, Robust regression, artificial neural networks, and support vector 
regression. For application to the biobased bridge in Ritsumasyl, the focus is mainly on multiple linear 
regression (MLR). In a simple regression, measurements of a variable (𝑦) and an explanatory variable 
(𝑥) are used to create a function. With such a function it is possible to predict values of (𝑦) using (𝑥). 
However, it is often the case that not one, but more explanatory variables must be used to correctly 
predict the values of (𝑦). MLR can be used for this (Kromanis & Kripakaran, 2014). MLR has several 
advantages and disadvantages. MLR can be used to determine the relative influence of one or more 
predictor variables to the criterion variable. Another advantage is that MLR can identify outliers. A 
disadvantage is that MLR is sensitive to erroneous data (Weedmark, 2019). It is also possible that the 
assumption of linearity between two variables is not applicable. Overfitting and overtraining are also 
problems that can occur. Overfitting is a condition in which a statistical model describes a random 
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error in the data instead of the relationship between variables (Frost, 2021). Overtraining is when a 
model can predict training examples with very high accuracy but cannot properly predict new data. 
This often occurs when using too little data or data that is very homogenous (2021). To determine 
whether the regression model produces the desired result, the error must be examined. To find the 
error of the prediction made by an algorithm, Equation 1 can be used.  

Equation 1: 𝑒 =
1

𝑛
∑ |𝑌𝑝,𝑖 − 𝑌𝑟,𝑖|
𝑛
𝑖=𝑛  

The average prediction error (e) can be determined with the predicted (Yp), the measured response 
(Yr) and the number of measurements (n) (Kromanis & Kripakaran, 2014).  

For the different regression algorithms, it is necessary to vary the parameters and to find the 
highest accuracy in the prediction. The parameters that fit the highest possible accuracy are then used 
in the algorithm to predict the structural response based on temperature distributions. This process 
is called the regression-based thermal response prediction (RBTRP) (Kromanis & Kripakaran, 2014). 
This will ultimately help to predict how the bridge will respond to changes in temperature in the 
future. It can also provide insight into the current state of the bridge. A parameter that can be used 
to optimize the accuracy of the prediction error is the thermal inertia. Thermal inertia indicates how 
long it takes for a material to reach the same temperature as its surroundings (Sala Lizarraga & Picallo-
Perez, 2020). Materials with a high thermal mass and low thermal conductivity may have internal 
temperatures that are significantly behind the ambient temperatures.  

The data sets used for generating regression models are often very large due to the high 
frequency of measurements. For highly complex regression models, this can cause the computation 
time to increase significantly with the size of the data set. To speed up this process, the dimensionality 
of the data set can be reduced. Principle component analysis (PCA) is often applied for this. This is a 
statistical technique that reduces the dimensionality of the data but at the same time preserves the 
accuracy and variation in the data (Ringnér, 2008). This is done by identifying directions, called the 
PC’s, along which the variation is maximal. By using fewer components, each sample can consist of 
fewer numbers instead of thousands of variables. Another way to speed up the process is to reduce 
the frequency of measurement collection. Omitting measurements increases the speed of calculation 
with little loss in prediction accuracy. In this way only the size of the training set is changed. This means 
that the data set still presents full variability in the measurements because only the number of input 
measurements is changed. This RBTRP method will lead to regression models that can accurately 
predict the thermal response of a bridge using distributed temperature measurements (Kromanis & 
Kripakaran, 2014). 

3 Methodology 
To predict the thermal response of the Bio-based bridge, using temperature distributions, the RBTRP 
methodology is applied. The RBTRP method consists of two phases (Figure 8): the model generation 
phase and model application phase (Kromanis & Kripakaran, 2017).  

 
Figure 8: Simplified RBTRP methodology (Kromanis & Kripakaran, 2017)  

The model generation phase generates a regression model that uses temperature distributions of the 
bridge as input to predict the thermal response. It involves several steps that need to be taken. First, 
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a reference set is chosen. This reference set must meet a few requirements. During this reference 
period it must be assumed that the bridge behaves normally. It should also be considered which 
temperature and strain sensors are suitable as input for the regression analysis in the reference 
period. If a sensor collects incorrect measurements, it is not suitable to use as input for the regression 
analysis (Weedmark, 2019). Incorrect values are values that are far from the expected values for no 
visible reason. The collected measurements in this period must be split into a training and test set. 
This is needed to train and evaluate the performance of the model. For this it is important that the 
training set and test set are approximately the same size. They should also contain a varied collected 
measurements data set from different seasons so that the model does not get overtrained (2021).  

The collected measurements in the reference period that will be used also needs to be 
prepared. This step is called data pre-processing. Any outliers of the collected measurements must be 
removed and replaced using IQRA. The data also needs to be smoothened using a moving average 
filter to ensures less noise in the data. With a large dataset, the training of the model can be 
computationally demanding. In this case, the measurements can be down sampled to a suitable 
frequency so that the computation time decreases. Finally, the dimensionality of the temperature 
measurements of the data set can be reduced. Principal component analysis (PCA) can be used for 
this. This will also help reduce the computational time. A regression model needs a strain value and 
temperature value at the same point in time as input to be able to make a regression analysis. A period 
in which collected temperature measurements are available but no collected strain measurements 
are available, and vice-versa, is unusable for a regression analysis. The last step of data pre-processing 
is to filter these periods from the data sets.  

When the collected measured values are correctly per-processed, the generation and 
validation of a regression model is the next step. The regression model is trained using the training 
data set. The performance of the model is then tested on the test data set. Training and testing can 
be done with different regression models such as support vector regression and multiple linear 
regression. To get the lowest possible prediction error, the models are generated iteratively by varying 
parameters. Parameters that can be used for this are the thermal inertia, number of input 
measurements and number of principle components. The combination of parameter values for the 
lowest prediction error are saved and used for the next phase. This is the model application phase. 
Here, the regression models are used with the highest possible accuracy to predict real-time thermal 
response using measured temperature distributions. For this, the temperature and strain 
measurements must also be pre-processed to be used as input for the regression model. By looking 
at the measured values, it can be checked whether the model can correctly predict the thermal 
response. A prediction with an error below 5% is considered an acceptable prediction (Swanson, 
2015). 

4 Results 

4.1 Sensor identification 
The first step in the RBTRP methodology is to select sensors that have suitable collected 
measurements. Suitable sensors are sensors that collect little incorrect data and are representative 
for the behaviour of the bridge. The bridge consists of a moving and a fixed part. For consistency it is 
decided to choose one of these parts for the analysis. The moving part has more temperature sensors 
thus seems more suitable. The moving bridge part can be seen in Figure 9 and Figure 10. 

 
Figure 9: Sensor locations top, moving part 
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Figure 10: Sensor locations bottom, moving part 

The moving bridge part consists of a short (1A2, C2A) and a long part (1A1, C2B). Small blue and red 
numbers and letters can also be seen in Figure 9 and Figure 10. These are all strain sensors placed on 
the bridge. The colour indicates whether the sensors are on the short or long part of the moving bridge 
part. The temperature sensors are indicated with small black letters and numbers and with an arrow 
pointing to the location of the sensor on the bridge. The long part has eight temperature sensors and 
is therefore preferred over the short part where two temperature sensors are placed. Sensor T3 is 
malfunctioning so this one will not be used. Eight strain sensors have been chosen on this same long 
section of the moving bridge section. These are strategically chosen near the temperature sensors and 
right in the middle between the 8 temperature sensors. The selected temperature and strain sensors 
are indicated with red (temperature) and blue (strain) squares in Figure 9 and Figure 10. The strain 
sensors and temperature sensors used are numbered and are shown in Table 1.  
Table 1: Strain gauges (SGs) and temperature sensors (T) 

Nr  Strain gauge (SG) Temperature (T) 

1 1A1-1S6 T4 
2 1A1-1S9 T5 
3 1A1-1S16 T6 
4 1A1-1S19 T9 
5 C2B-1S6 T10 
6 C2B-1S9 T11 
7 C2B-1S16 T12 
8 C2B-1S19  

 

4.2 Data pre-processing 
The next step in the RBTRP methodology is to pre-process the data so that it can be used for the 
regression analysis. First, it must be considered which measurements will be used for the reference 
period and monitoring period for training and testing the regression model. Strain and temperature 
data is available from the bridge from two years of measurements. The data is collected with a 
measurement interval of approximately 10 seconds. Because this is only two years of data, it is decided 
to use the first year as a reference period and the second year for monitoring. In this case, the 
reference period is used to train and test the model to find the smallest possible prediction error. The 
beginning of the measurements started at the end of November 2019. This is therefore used as the 
start of the reference period. Because in the year 2020 very large amounts of incorrect data were 
collected from mid-August, it is decided not to use the entire year, but only the data collected up to 
and including August 1. The reference period therefore runs from November 27, 2019, to August 1, 
2020. For the monitoring period it was decided to choose approximately the same period a year later. 
The monitoring period therefore runs from 1 January 2021 to 31 August 2021. To represent these 
periods schematically, Figure 11 and Figure 12 indicate all collected strain and temperature 
measurements used for the reference period and measurements used for monitoring.  
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Figure 11: Strain measurements used for reference period and monitoring 

 
Figure 12: Temperature measurments used for reference period and monitoring 

In Figure 11 and Figure 12 a drop can be seen in the measured values between the reference period 
and monitoring phase. This is caused by no data being used from August 2, 2020, to January 1, 2021. 
The data selected for the reference period and monitoring was further pre-processed before it is 
suitable for the regression analysis. This process is shown in Figure 13.  
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Figure 13: Flowchart for data pre-processing 

After applying all steps from Figure 13 the data is suitable for regression analysis. In Figure 14 the 
result of pre-processing can be seen. 

  
Figure 14: Strain (SG1) and temperature (T1) measurements before and after pre-processing 

In Figure 14 a situation for the strain and temperature data is taken showing the effect of pre-
processing. For the strain it is clear that the peaks caused by the bridge openings have been removed. 
With the temperature data there were already few errors with the raw data. The effect of smoothing 
is only slightly visible. The processed data can now be used for the regression analysis. According to 
Kromanis and Kripakaran (2014) the use of an MLR is sufficient for a correct prediction. To determine 
the error of this regression, the mean is taken of the absolute difference between predicted and 
measured values, divided by the total range of the measured values. In this way the error in 
percentage can be obtained.  



17 
 

 

4.3 Minimizing the prediction error  
To optimize the regression model, an iterative process was used to find the smallest prediction error. 
The parameters used for this are the number of input measurements and the thermal inertia. The 
model was trained on the reference period, from the end of 2019 to August 2020. The model is also 
tested on this period. The model has been optimized by looking with different parameter values to 
see what causes the lowest error between predicted and measured values. This has been applied to 
all eight strain sensors using all temperature sensors. In Figure 15 the prediction error is set against 
the thermal inertia (Thermal I) and number of input measurements (No. of inpM). The number of input 
measurements refers to that around a certain number of measurements a point is taken that is used 
as input for the regression. With a number of input measurements of 100, therefore, every 100th 
point of the total data set is used for the regression as input. The higher the number, the less data is 
used for the regression. In Figure 15 the prediction error can be seen from all strain gauges.  
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Figure 15: Prediction error versus thermal inertia and number of input measurements from SG1, SG3, SG5, SG7 (Top left to 

bottom left) and SG2, SG4, SG6, SG8 (Top right to bottom right) 
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The number of input measurements has a range from 1 to 1000 in Figure 15. The thermal inertia has 
a range of 0 to 30 minutes. These ranges were chosen because the prediction error within this range 
in the case of number of input measurements flattens out after about 500 and the thermal inertia 
outside this range increases the prediction error substantially. So, it has been decided not to increase 
the range as no improved prediction errors are expected and this would cost a lot of extra computing 
time. The optimal value for both parameters is therefore taken within these ranges. What stands out 
for the number of input measurements is that for some SGs with a low No. of inpM value (1 for 
example) the prediction error gets higher. This while it is expected that the prediction error would 
become smaller when using a low value. In Figure 15 all SGs have a specific value for the number of 
input measurements combined with the thermal inertia that ensures that the prediction error is 
minimal. These specific values are saved and used as input to train the regression model. The values 
that provide the highest accuracy for the prediction error are shown in Table 2. 
Table 2: Optimal values for number of input measurements and thermal inertia for best accuracy prediction error 

SG No. of inpM Thermal I (minutes) 

1 256 18 
2 8 9 
3 256 13 
4 256 16 
5 256 16 
6 2 2 
7 256 11 
8 256 16 

 

4.4 Prediction error 
With the optimal parameters as input, the regression model can predict the thermal response of the 
bridge using the temperature distribution. This has been applied for all SGs. The model has been 
applied on the reference and monitoring period. In Figure 16 the measured and predicted values of 
both periods can be seen. The reference period includes all data up to the approximately the 300000th 
measurement and the monitoring period includes everything after approximately the 300000th 
measurement. The results of SG1 are used as an example. Figure 17 shows a zoomed in view on the 
prediction of SG1 in the monitoring period. 

 
Figure 16: Measured and predicted strain values reference and monitoring period (SG1) 
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Figure 17: Measured and predicted strain values zoomed in monitoring period (SG1) 

In Figure 16 and Figure 17 it can clearly be seen that the measured and predicted values do not always 
correspond well. The prediction error can be used to see how accurate the predicted values are. The 
prediction error can be determined by looking at the difference between the measured and predicted 
values. The prediction error has been determined for the reference and monitoring period. IQRA has 
also been applied to the prediction error to replace most of the outliers. In Figure 18 the prediction 
error can be seen before and after applying IQRA. In the figures, the prediction error is indicated in 
micro strain.  

 
Figure 18: Prediction error before and after aplying IQRA (SG1) 

In Figure 18 the prediction error is determined by subtracting the predicted values from the measured 
values. The more the prediction error deviates from 0, the more inaccurate the prediction is. This has 
been applied for all SGs. For this, the prediction errors have been converted into percentages in 
relation to the total range. A prediction with an error below 5% is considered an acceptable prediction 
(Swanson, 2015). In Table 3 all errors are shown for all SGs for the reference and monitoring period. 
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Table 3: Prediction errors in percentages for all SG's 

 SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG8 

Prediction error reference period (%) 1.86 1.98 1.51 1.91 1.95 1.36 1.43 1.47 
Prediction error monitoring period (%) 2.65 7.16 2.12 8.49 3.48 9.70 5.87 3.90 

 
Table 3 shows that a few SGs have a significantly higher error in the monitoring period than in the 
reference period. When looking at the strain data from the beginning of the reference period (2019) 
and the beginning of the monitoring period (2021), something should be noted. When the 
measurements started, the strain data from all strain gauges were still close to each other. This can 
be seen in Figure 19.  

  
Figure 19: Strain data start of reference period (2019) 

However, the strain data is more diverging at the beginning of the monitoring period, visible in Figure 
20, compared to the reference period in Figure 19. The temperature in both periods was similar.  

 
Figure 20: Strain data start of monitoring period (2021) 

This is one possible reason why the prediction error for monitoring is much larger than for the 
reference period. It is clear that something has happened to the SG's data. It is possible that at the 
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beginning of the reference period the bridge still had to be placed. It could be that because the bridge 
has only just been placed, the bridge still had to sag a bit. That would mean that the strain values at 
the beginning of the reference period may not have been representative yet. However, this cannot be 
said with certainty. For a correct model it is therefore important that the data is corrected in an 
appropriate way. Assuming that the predicted values for monitoring are correct, the measured data 
can be corrected with this. This assumption is based on the prediction error in the reference period 
that gives consistently low values. The shift is done by comparing the first measured value of 2021 
with the first predicted value of 2021. The difference between these two values is then subtracted 
from all data points of the measured data in 2021. In Figure 21 it can be seen how this is applied. The 
size of the shifts is shown in Table 4. 
Table 4: Shifts applied to measured data monitoring period 

 SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG8 

Shift in μstrain -10.06 -122.76 42.86 -21.41 -35.67 -82.92 -27.37 -9.13 
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Figure 21: Shifted measurements monitoring period from SG1, SG3, SG5, SG7 (Top left to bottom left) and SG2, SG4, SG6, 
SG8 (Top right to bottom right) 
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In Figure 21 it can be seen that the shifted measurement fits better with the predicted values than the 
original measurement for each SG. The new prediction errors can be seen in Table 5. 
Table 5: Prediction errors in percentages for all SG's including error shifted measurements 2021 

 SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG8 

Prediction error reference period (%) 1.86 1.98 1.51 1.91 1.95 1.36 1.43 1.47 
Prediction error monitoring period (%) 2.65 7.16 2.12 8.49 3.48 9.70 5.87 3.90 
Prediction error monitoring period shift (%) 2.15 2.91 2.18 4.54 2.39 2.68 2.93 2.55 

 
Table 5 shows that the shifted measurement values have ensured that the prediction error for the 
monitoring period has significantly improved. All prediction values are now within the 5% range which 
means that the predictions are appropriate.  

5 Discussion 

5.1 Data pre-processing 
To make a successful and accurate regression model, pre-processing is very important. The first step 
is to choose a reference and monitoring period so that the model can be trained and tested. The 
training period includes winter and summer, to include varying temperatures for the training of the 
regression model. In the winter of the monitoring period the temperature was at some point lower 
than the temperature has been in the winter of the reference period. The model was trained with 
collected measurements from the reference period. Because the model is not trained at these lower 
temperatures from the monitoring period, the prediction for the monitoring period may be less 
accurate at colder temperatures. For an improved regression model, data for the reference period 
could have been taken up to and including 2021. The first data set ends at the end of August 2020. By 
also including data from after August 2020, it might have been better to see why the strain data at the 
beginning of 2021 is so much further apart than a year earlier. This is namely not yet the case in the 
first half of 2020. After choosing a suitable reference set, it is important to remove outliers from the 
data and make the data smoother. Incorrect data has a major effect on the outcome of MLR. This is 
also apparent from the prediction error of the monitoring period that can be seen in Table 3. Data is 
pre-processed by using IQRA and removing the data when the bridge is open to remove as much 
incorrect data as possible. However, there are a few incorrect values that have not been removed by 
IQRA. This is not a common occurrence but may have influenced the regression analysis. The incorrect 
collected measurement data of the monitoring period can have various causes. The sensors may have 
had an error. For example, due to a reset of the sensors that has taken place. It is also possible that 
the characteristics of the bridge have changed. However, the chance of this seems small because the 
bridge has only been there for 2.5 years.  Another reason could be that the data may not have been 
representative for the bridge yet. It is possible that the bridge needed some time to sink after 
installation. A shift had to take place of the measured data in the monitoring period because it 
deviated from the reference period. The fact that the bridge had yet to sink could be a reason for this, 
but this should be further investigated. 
 

5.2 Optimal thermal inertia and No. of input measurements 
For an appropriate regression model, it is important that the optimal thermal inertia and number of 
input measurements are used. The bridge has only seven working temperature sensors that are used 
for the regression analysis. The application of principle component analysis is therefore not of great 
importance in this situation and has therefore been omitted. With larger datasets it is useful to apply 
this because it both improves accuracy and calculation speed. It is important that the optimal values 
per parameter are found because it can have a lot of influence on the prediction error. For each SG an 
optimal value has been found for the number of input measurements in the range of taking every 
measurement and taking every 1000st measurement. This range has been chosen because it can be 
clearly seen that after a value of 500 for number of input measurements, the prediction error flattens 
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out and does not change much anymore. It can also be seen that for some SGs (see Figure 21) the 
prediction error increases again with a low value for number of input measurements, while the 
expectation is that with a low value the prediction error would be the most accurate. There is no direct 
reason for this and could therefore be further investigated. Thermal inertia is important to give the 
predicted values and measured data the same phase. This will decrease the prediction error. An 
optimal value has also been found within the range for the thermal inertia for the lowest possible 
prediction error. A range of 0 to 30 minutes has been chosen because within this range is already 
visible that the prediction error becomes a lot higher at certain values. It was therefore decided not 
to increase the range because no better prediction errors are expected. The results of the iterative 
process and thus the optimal No. of input measurements and thermal inertia can be seen in Table 2. 
It can be clearly seen that most SGs have a No. of input measurements of every 256th point and a 
thermal inertia of approximately 15 minutes. However, there are 2 exceptions that require a lower 
No. of input measurements and thermal inertia. These are SG2 and SG6. The similarity between these 
2 sensors is that they are located in the middle of the bridge on the east side (see Figure 9 and Figure 
10). There can be several reasons why these sensors have a different thermal inertia compared to the 
other sensors. One reason could be that these sensors are affected more quickly by the sun than the 
other sensors. However, this cannot be stated with certainty and further research is needed.  
 

5.3 Multiple linear regression model 
Multiple linear regression (MLR) was used to predict the thermal response of the bridge. This is one 
of several algorithms that can be used. In a follow-up study, it could be examined whether the 
prediction can be made better by using another algorithm. MLR has a few disadvantages. MLR is 
sensitive to incorrect data and MLR assumes linearity when this may not be the case. However, 
research by Kromanis and Kripakaran (2014) showed that MLR was sufficient. With the MLR it is 
possible to predict the thermal response using the distribution of the bridge. However, there has been 
an adjustment to the monitoring data to improve the prediction. The reason for this is that the strain 
data at the beginning of 2021 were much further apart than in 2019. This is noticeable in colder 
periods. It is possible that this deviation can already be seen in autumn and winter months in 2020, 
but these periods are not used for the regression analysis. Therefore, it only becomes noticeable at 
the start of the monitoring period in the beginning of 2021. It is clear, that something has happened 
to the sensors or data. This can have various causes. For example, the sensors may have been reset 
once because an error occurred. In September 2020 there was a lot of incorrect data that could not 
be used. In Figure 22 the raw data from SG1 is given as an example that from approximately the 
2100000th measurement incorrect data is collected. This happens approximately from mid-August. 
This happens with all SGs.  

 
Figure 22: Raw strain data SG1 
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Another reason could be that the material has started to react differently to external effects over time. 
It could also be that because the bridge still had to be placed at the beginning of the reference period, 
the bridge needed some time to sink. As a result, it is possible that the strain data in the reference 
period was not yet truly representative. Subsequent research should then examine whether training 
the model with a different reference period yields more accurate results. However, a real reason 
cannot be concluded with the information from this study. Further research could be done for this. 
After the shift in the measured data, the prediction error for all SGs in the monitoring period is within 
5% (see Table 5). However, SG4 does have a prediction error that is close to 5% with 4.5%. If the 
prediction of SG4 is compared with, for example, SG1, which has the most accurate prediction, a few 
things can be seen. In Figure 23 and Figure 24 the prediction of the strain can be seen where the 
temperature is between 3 and 11 degrees. At these temperatures, the strain is predicted differently 
by the regression model for SG1 and SG4. The shifted measured values are used in the figures.  

 
Figure 23: Prediction SG1 March 11-March16 

In Figure 23 the predicted values are constantly estimated to be lower than the measured values. In 
Figure 24 this is also the case, but it is clear to see that the troughs are estimated even lower than in 
SG1 compared to the measured values. Despite this difference, the two predictions are quite similar 
in behaviour.  
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Figure 24: Prediction SG4 March 11-March 16 

At higher temperatures, a different pattern can be seen. In Figure 25 can be seen that at higher 
temperatures, between 13 and 30 degrees, the peaks are predicted to be higher than they actually 
are for SG1. The troughs in the prediction of SG1 are reasonably at the same values as the measured 
values.  
 

 
Figure 25: Prediction SG1 June 7-June 12 

In Figure 26 can be seen that the predicted strain for SG4 at higher temperatures estimates the peaks 
reasonably well but predicts the troughs a slightly lower.  
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Figure 26: Prediction SG4 June 7-June 12 

It can be deduced from the figures that the prediction error at higher temperatures is caused by other 
reasons than at lower temperatures. However, much is still unclear. The prediction shown at SG1 
corresponds to the other SGs. Why SG4 is an exception to this is not clear. This may be due to the 
placement of the sensor or, for example, an error in the sensor. All temperature sensors were used 
for all predictions. It may also be the case that this is not representative for SG4. It is possible that only 
a specific combination of temperature sensors is representative for the prediction of SG4. In Table 6 
all regression coefficients are shown per strain sensor and temperature sensor. The higher the value 
in absolute terms, the more dependent the strain is on the temperature measured at the specific 
temperature sensor.  
Table 6: Regression coefficients of all strain and temperature sensors 

 SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG8      

T1 9.81 22.77 4.70 0.63 5.85 6.08 4.87 2.48      

T2 -36.59 -63.69 -40.85 -20.57 -33.18 -32.87 -28.98 -28.11      

T3 33.58 56.32 46.07 17.77 26.25 23.63 23.07 25.47      

T4 -28.40 -46.49 -47.53 -19.40 -31.39 -19.11 -28.85 -27.65      

T5 -21.23 -4.23 -37.30 -1.26 -17.99 12.78 -5.94 -15.33      

T6 20.82 16.37 47.94 -0.48 16.68 -1.71 14.28 11.51      

T7 38.43 49.03 45.78 35.39 48.98 31.09 39.47 46.50      

 
In Table 6 can be seen that SG4 has a stronger relationship with certain temperature sensors than with 
others. However, based on the location of the temperature sensors, nothing can be concluded. This 
also applies to other SGs. It is not the case that if a temperature sensor is further away from a strain 
sensor, the relationship is always less significant. It is also not clear why the prediction is 
underestimated at lower temperatures and the prediction is too high at higher temperatures. Only 
temperature is included in the prediction in this study. But there are many more factors such as 
humidity, wind and loads on the bridge that influence the strain of the bridge. So, more research is 
needed to determine the cause of multiple factors.  
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6 Conclusion and further research 
This research uses the RBTRP method to predict thermal response in the biobased bridge in Ritsumasyl 
using temperature distributions. A multiple linear regression model has been applied. The research 
has led to several findings. The thermal response of the biobased bridge can be accurately predicted 
using temperature distribution using MLR. The largest prediction error found is 4.5%, which falls within 
the 5% range. However, this required a shift in the measured data since the measured strain data in 
the monitoring deviates from the measured strain data in the reference period at the same 
temperature. The first measured strain values in the monitoring period are set equal to the first 
predicted strain values in the monitoring period. The difference between these has been applied to 
all strain data per SG. This raises doubts about the accuracy of the model. The reason why the strain 
deviates cannot be concluded from this study.  

Strain and temperature data can be used as input for the regression model when a reference 
period is chosen where the bridge behaves ‘normally’, and pre-processing is applied correctly.  

The steps needed for appropriate pre-processing are choosing a reference period, remove 
data when the bridge is open, apply IQRA to detect and replace outliers, smooth the data, and remove 
incomplete data from the data set.  

The optimal number of input measurements is different for each SG. It varies between taking 
every 2 measurement and every 256 measurements. The optimal number of input measurements 
within the range of taking each measurement and taking every 1000th measurement was examined. 
It can be concluded that with a number of input measurements greater than 500 for all SGs, the 
prediction error does not change much. The thermal inertia can also be used to improve the prediction 
error by means of an iterative process. The thermal inertia varies per SG and has an optimal value 
between 2 and 18 minutes.  

Applying multiple linear regression results in appropriate prediction error results of the 
thermal response. Hence, MLR is a suitable algorithm to predict thermal response. However, it is 
important that no incorrect values are used with MLR. Data pre-processing must therefore be 
performed correctly. MLR can only be used when there is linearity. It should be considered carefully if 
this is the case.  

Many questions remain after this research so there is plenty of room for further research.  The 
model could be applied in the future once more data has been collected. Then it can be checked 
whether the prediction is still correct and whether changes have taken place in the behaviour of the 
bridge. The model can also be trained on another year to see if this reduces the prediction error. It is 
recommended to investigate the cause of the difference in measured strain data in the reference 
period and the monitoring period. It is also recommended to investigate why the regression model 
over or underestimates predicted strain values for some SGs. It is also possible to investigate by which 
factors SG4 is influenced, so that the prediction error found for the sensor is higher than other strain 
sensors. Research into the influence of factors such as temperature location, wind, humidity, and loads 
can be done to make the prediction error even more accurate and to better understand it.   
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