DESIGN AND ORCHESTRATION OF
WEB PROCESSING SERVICES AS
SERVICE CHAINS

MEAZANESH ASRES ALEMU
March, 2012

SUPERVISORS:

Dr. J.M. Morales
Dr.Ir. R.L.G. Lemmens

=\

7\

N -
/2 \ \

2
7

4

P a= 7
/P
i.l.’_é

=

DESIGN AND ORCHESTRATION OF
WEB PROCESSING SERVICES AS
SERVICE CHAINS

MEAZANESH ASRES ALEMU
Enschede, The Netherlands, March, 2012

Thesis submitted to the Faculty of Geo-information Science and Earth
Observation of the University of Twente in partial fulfilment of the requirements
for the degree of Master of Science in Geo-information Science and Earth
Observation.

Specialization: GFM

SUPERVISORS:

Dr. J.M. Morales

Dr.Ir. R.L.G. Lemmens

THESIS ASSESSMENT BOARD:

Dr.I. R.A. de By (chair)
Drs. M.E. de Vries (Examiner)

Disclaimer
This document describes work undertaken as part of a programme of study at the Faculty of Geo-information Science and Earth
Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the author, and
do not necessarily represent those of the Faculty.

ABSTRACT

Currently, several OGC WPS processing-functionalities have been implemented and exposed as
service over the web. These WPS processing-functionalities are already providing a useful applica-
tion to generate geospatail information out of geospatail data on-the-fly in a distributed environ-
ment. However, individual processing-functionalities are not sufficient to solve a complex geopro-
cessing task, as the complex nature of geospatail data often requires multiple geoprocessing-steps.
Therefore, chaining of individual WPS processing-functionalities to buildup larger application
that can solve complex geoprocessing task is necessary. The current popular standard, BPEL, to
orchestrate services into service chain, which is dependent on WSDL, is not suitable for geoser-
vices. The WPS processing-functionalities are not described by WSDL mandatorily, instead using
DescribeProcess in detail, and using Getcapabilities briefly. Consequently, it is mandatory to gen-
erate WSDL for each processing-functionalities to be orchestrated in BPEL, taking up much time
and effort. This requirement limits their application to be utilized through chaining. Therefore,
it is necessary to devise a method to chain without extra description requirements per processing-
functionalities.

This research was an attempt to provide a method for chaining of disparate processing- func-
tionalities to be utilized as single application through chaining without the need to generate
WSDL per each processing- functionaries to support expert users in GI application domain. For
this we designed a generic chaining schema using XSD language. The chaining schema is generic
by defining all possible contents required for chaining conceptually, serving as template, to chain
any two or more number of processing-functionalities in any GI application domain. This chain-
ing schema basis on selected parameters of DescribeProcess response content. In addition, architec-
ture for chaining of processing-functionalities using the designed chaining schema is provided. A
proof-of-concept was demonstrated with implementation of the designed chaining schema using
a real-world application scenario.

Keywords

web services, geoservices, web processing service, processing-functionalities, orchestration, chaining en-
gine, service chain, chaining schema

ACKNOWLEDGEMENTS

This is a great opportunity to express my deep and sincere gratefulness to my first supervi-
sor, Dr.J.M (Javier) Morales, for his unlimited time for discussion and his patience in guiding
me throughout this research period. I also would like to thank my second supervisor, Dr.Ir.
R.L.G.(Rob) Lemmens, for sharing his idea and support.
I also gratefully acknowledge the financial support that I received from the Government of the
Netherlands through NUFFIC organization, and ITC for giving me the opportunity to follow
this Master of Science in GFM.

My thanks also goes to my GFM classmates and all other friends for their encouragement and
friendship throughout this study.
Special thanks to my beloved families and other friends(Mulluken, Tadesse, Dagne, and Mamaru)
for thier continues encouragement.

Above all, I would like to thank the almighty God for everything he is doing in my life.

TABLE OF CONTENTS

Abstract

Acknowledgements

1 Introduction

2

1.1
1.2

1.3

1.4

Motivation and problem statement L L L.
Research identification L L
1.2.1 Researchobjectives
122 Researchquestions
1.23 Innovationaimedat
1.24 Relatedwork L
Projectset-up e
1.3.1 Methodadopted Lo
Structure of thethesis L L

Web service based architecture

2.1
2.2
2.3
2.4
25
2.6

2.7

Introduction
Service oriented architecture(SOA) oL
Webservices v oo i
Asynchronous communication
GEOSEIVICES .« . v v v v v i e e e e
Web processing services (WPS) L
2.6.1 WPSoperations.
2,62 WPSinputand outputdatatypes
2,63 WPSforwrapping oot
2.6.4 The need for chaining of WPS processing functionalities
Summary

Service chaining requirement analysis

3.1
3.2
3.3

3.4

3.5

Introduction. L
Service chainconcept
Service chaindesigntypes L L L oo
3.3.1 Transparent services chaintype
3.3.2 opaque (aggregate) service chaintype L oL
3.3.3 Translucent service chaintype
Service chaining procedure L L L oo
3.4.1 Abstarctservice chaining L L L oL
342 Servicediscovery
343 Concreteservicechaining L L L
344 Servicechainexecution.
Summary

A AR W WNNRN R = =

O O 0 N NN N

—_— e e e e
N W W N O O

19
19
19
19
19
20
20
20
21
21
22
23
25

4 Method for chaining of WPS processing-functionalities

4.1
4.2

4.3

4.4 Summary

Introduction

Generic chaining schema
Service chaining requirements analysis
4.2.2 DescribeProcess response parameters analysis

4.2.1

423

Generic chaining schema design .

Architecture of chaining processing-functionalities

43.1
4.3.2
433
4.3.4
435
4.3.6
4.3.7

Expertuser
Chain requirement analysis . . .
DescribeProcess responses
Generic chaining schema

Mapping DescribeProcess responses to chaining schema

Mapping rules implementation .

Chainingengine

Prototype implementation and testing

5.1
5.2
53
5.4

5.5

Introduction
Application scenario definition
Chain requirement analysis
Discovery of DescribeProcess response

54.1

5.4.2 Mapping rules implementation .
5.4.3 Chaining schema implementation
5.4.4 Chaining engine implementation
Summary 0 L.

Mapping DescribeProcess responses to chaining schema

Discussion, Conclusion, and Recommendation

6.1

Discussion on research questions
6.2 Conclusion
6.3 Recommendation

27
27
27
28
28
29
33
34
34
35
35
36
36
36
38

43
43
43
43
44
45
45
46
49
50

51
51
53
54

LIST OF FIGURES

2.1
2.2
2.3

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
53
5.4
55

5.6
5.8
5.7
59

1

(O3]

SOA Publish-Find-Bind paradigm
WPS Interface class diagram
WPS wrapping existing algorithms diagram

Services chainability classification

Approach to generic chaining schema
Generic chainingschema L.
Input types in generic chaining schema
Output types in generic chaining schema
Final output in generic chaining schema
WPS processing-functionalities chaining architecture

Activity diagram for execution of chaining instance by chaining engine
Activity diagram for input parameters extraction process by chaining engine
Activity diagram for output parameters extraction process by chaining engine . .

Chain requirement analysis to search for parcels
Segment of DescribeProcess response describing BufferPy
Segment elements of chaining schema

Segment of mapping DescribeProcess response of BufferPy to chaining schema . .

Segment of XSLT code used for implementing of resulted mapping rules of fig-
ure 5.4 L e

Segment result of the final output after mapping rules executed

Road and Enschede polygon
Enschede parcels
Buffered road intersected with Enschede polygon

Schema mapping to fetch required value from DescribeProcess response of BufferPy
and IntersectionPy to the chaining schema
Java script for two proceessing-fucntionalities

Java script for two proceessing-fucntionalities continued from 2
Java script for two proceessing-fucntionalities continued from 3

10
13

24

44
45
46
46

47
47
49
50
50

65
73
73
73

LIST OF TABLES

2.1
2.2
23
2.4
25
2.6
2.7

WPS GetCapabilities operation request parameters and their description

WPS GetCapabilities operation response parameters and their description
WPS DescribeProcess operation request parameters and their description
WPS DescribeProcess operation response parameters and their description

WPS Execute operation request parameters and their description.
WPS Execute operation response parameters and their description
WPS Execute operation status codes parameters and their description

13
14
14
15
16
17
18

vi

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Chapter 1
Introduction

1.1 MOTIVATION AND PROBLEM STATEMENT

Geospatial information (GI) has been playing an important role in almost all walks of our life. GI
became so important due to its natural capability of holding location referenced information, pro-
viding deep understanding of the geospatial phenomenon that occurs around us. GI has been used
for answering from simple to complex geospatail questions. Historically, GIs have been extracted,
acquired, stored, analyzed, and visualized using tightly-coupled traditional GIS (Geographical In-
formation System) systems [21].

With the recent advancement in SOA (Service Oriented Architecture), the traditional GIS
is moving towards highly distributed web service-based application environment. SOA is "a
paradigm for organizing and utilizing distributed application capabilities that may be under the
control of different ownership domains" [22]. Web services are modular applications that can
be published, located, invoked, and can be combined to form complex application across the
web [28].

SOA’s basic idea is separating functionalities of tightly-coupled application, like traditional
GIS, into loosely-coupled distinct services. So that application owners make services accessible
over the web to allow users to build-up new application by orchestration of individual web ser-
vices. Orchestration is the process of combining and coordinating a set of existing web services to
create new application requirements [27].

Web services play a key role for publishing and discovering GI resources such as geospatial
data and processing tools in distributed environments using distributed servers. Similar to other
application fields, G application fields got many advantages in different aspects from web services.
For example, if organizations face a shortage of information to answer geospatial questions, when
there is shortage of money to acquire new geospatial data, when accessibility is not possible to get
new geospatial data, and to avoid more effort for acquisition of new geospatial data.

Along the same line of SOA, OGC (Open Geospatial Consortium) provides geospatial ser-
vices such as WMS (Web Mapping Service), CSW (Catalog Services for the Web), WES (Web Fea-
ture Service), and recently WPS (Web Processing Service). Geospatial services are web services
which are specialized to smooth sharing, accessing, and processing of GI resources among orga-
nization, private companies, and individuals over the web.The geospatial service is commonly
abbreviated as geoservice and we used this term in the rest of this thesis.

Today, having those roads of sharing environments, an increasing number of organizations,
companies, and individuals are providing their GI resources as geoservices over the web. Yet it is
usually not sufficient to use only an isolated geoservice to solve a real-world geospatial problem.
To utilize those geoservices, users have to locate relevant geospatial data, assemble geospatial data
from several sources, process the geospatial data and then visualize the results.

In most cases, users are supported by CSW to find relevant geospatial data, WMS to visu-
alize the result, and recently WPS allows access to remote GIS proccessing functionalities (e.g.
buffer). Sometimes users can create simple service chains by configuring manually to analyze

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

geospatial data. But, these service chains are not very flexible and only applicable for predefined
tasks. Consequently, a user has to download a huge amount of geospatial data and analyze with
traditional GIS applications [15] [14]. In addition, most GI applications require a long iterative
processing steps, reformatting, and integrating various types of geospatial data to answer complex
questions. This kind of processing is laborious and requires intensive knowledge of processing
steps [18] [17]. In addition, to upgrade functionality of traditional GIS application needs re-
structuring of the entire system as those functionalities are tightly-coupled. As a result, these
functionalities cannot be reused in combination with other applications.

Thus, it is necessary to replace the functionality of traditional GIS application by orchestrat-
ing a set of loosely-coupled geoservices, towards SOA, to achieve reusability of functionalities
and independent upgrade capability. The GI community is aware of this necessity and several
researches carried out using the existing standards and technologies for orchestration of existing
geoservices, for example [29]and [26].

The existing common standards and technologies for orchestration of web services is BPEL (Business
Process Execution Language) [1] which is dependent on WSDL(Web Service Description Lan-
guage) [10]. WSDL is a standard for defining web services interfaces hiding the implementation
details of web services.

Most geoservies are not described by WSDL. To use BPEL for orchestration of geoservices, the
user who design service chain has to define the WSDL for each individual participant geoservices.
The same thing will be done for adding new geoservice functionality in the orchestration. As a
result, it creates a lot of tasks for orchestration of geoservices using BPEL as described in [29] [26].
In addition to this burden, BPEL is not capable of binary data transmission [29] [26].

Problem Statement

The existing mechanisms, WSDL and BPEL, to design and orchestrate geoservices as service
chains are not flexible up to requirements of user who designs service chain.

1.2 RESEARCH IDENTIFICATION

The main issues that are addressed in this proposed research are defined through the following
research objectives and research questions.

1.2.1 Research objectives

The main objective of this research is to develop a method to design web processing services
as service chains and to orchestrate the service chains. In order to meet the main objective the
following four sub objectives should be addressed.

1. To identify the requirements for creating service chain.
2. To choose a method for discovery of services for the service chain.
3. To design an assembly of individual services into a service chain.

4. To provide a mechanism to orchestrate the service chain into an executable workflow.

1.2.2 Research questions
To achieve the objectives, the following research questions need to be answered.
1. What are the requirements to create service chain (for sub objective 1)

2. How to discover services to create service chain? (for sub objective 2)

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

3. How to assemble a set of services as service chain? (for sub objective 3)
4. How to present the service chain as a single service? (for sub objective 3)

5. How to coordinate or control the interaction among a set of participant services for in-
put/output messages exchange (i.e. how the output of one service can be used as input for
the other services)? (For sub object 4)

1.2.3 Innovation aimed at

This research has aims of developing a new method to design web processing services as service
chains and to orchestrate the service chains. This method will be applied in any application do-
main of GI to design web processing service as service chain to accomplish complex tasks that
cannot be achieved by a single service.

1.2.4 Related work

Several research works have been done for chaining of distributed services to facilitate access and
visualization of geospatial data, although the incorporation of processing services in the service
chain is new paradigm. For example, [4] [5] described three types of services chaining types for
geoservices called client-coordinated or transparent services chaining, translucent services chain-
ing , and opaque services chaining. Those approaches are mainly deal in hiding the complexity
of services chain to the users. [18] [17] presented a methodology for chaining of geoservices
that integrates syntactic and semantic services descriptions. Deep service description in terms of
both syntactic (structure) and semantic (meaning) is also proposed for services chaining. In this
approach, services chaining procedure is decomposed into service discovery, abstract chaining,
concrete chaining, and execution of services chains.

Recently, the development of WPS and GPW (GeoProccessing Workflow) [24] motivate the
incorporation of geospatial processing capability in chaining of distributed services. GPW is a
combination of two concepts geoprocessing (processing of geospatial data) and workflow (au-
tomation of process flow). GPW is developed to enhance the flow of processes in chaining of
geoservices to achieve distributed service-oriented processing capability. Currently, GPW is un-
der investigation for supporting different capabilities such as how to bring human interaction in
the workflow and how to assemble workflow automatically.

Using WPS as solution for chaining of distributed services is also investigated. For exam-
ple, [20] has evaluated the feasibility of the WPS specification for creating distributing geospatial
processing services and they concluded as is it is workable. [26] and [29] also investigated the
possibility of using WPS for orchestration of a set of geoservices for disaster management use
case. In this approach all participant services are defined by hard coding (configuration) and new
services can be added with the same approach. This approach is not flexible since the function-
ality of service chain is limited to already predefined tasks and needs knowledge of customizing
the code. [31] also applied similar approach for extraction of water information use case using
distributed services. However, all required data are restricted only to one services provider. Simi-
larly, [12] proposed similar approach for forest risk analysis but different in that all required func-
tionalities (data and processing functionalities) comes from a single service provider. Although,
the approach has advantages of increasing performance, it results remote tightly-coupled process-
ing application which is against service reusability and flexibility of service-oriented application.

Even though, those researches presented applicable approaches for chaining of distributed
services, there is no method that can be applied for any GI application. Most of the researches

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

are designed for specific problem only. Therefore, this research will provide method for designing
and assembly of services that can be applied in any GI application.

1.3 PROJECT SET-UP

In order to achieve our objective, the research questions raised above were answered. The ap-
proach for answering those research questions are described below.

1.3.1 Method adopted

1. Literature review: First of all, literatures were studied to get understanding on basic con-
cept of SOA, web services, geoservices. In addition, the current sates-of-the-art of WPS
specification were studied and discussed in detail.

2. Service chaining requirement analysis: Subsequent to literature review, analysis on service
chaining requirements and service discovery method is done thereof to capture the func-
tional requirements in order to design the chaining method.

3. Chaining method design: Following the requirement analysis of service chaining, the chain-
ing method is designed using XML (Extensible Markup Language) schema (XSD) definition

language.

4. Evaluation: Finally, the functionality of the designed chaining method is implemented and
demonstration is done for a chosen scenario as proof of concept.

1.4 STRUCTURE OF THE THESIS

The research conducted during this thesis period is structured into 6 chapters, as briefly described
below:

Chapter 1 Problem statement and motivation: provides the outline of the research, de-
scribing the research motivation, research problem, research objectives, research questions, related
works, and method adopted are introduced.

Chapter 2 Web service based architecture: some literature were reviewed on the basic con-
cept of SOA, web services, geoservices, and the detailed sates-of-the-art of WPS specification.

Chapter 3 Service chaining requirement analysis: analysis of service chaining requirements
is conduced from general web service and geoservices literatures. The result of this analysis is used
as input to design the chaining method for WPS processing-functionalities, in chapter 4.

Chapter 4 Method for chaining of WPS processing-functionalities: provides the generic
chaining method to chain WPS processing-functionalities and the architecture for chaining of
WPS processing-functionalities using the designed chaining method.

Chapter 5 Prototype implementation and testing: provides the implementation of the
chaining method and as proof-of-concept using application scenario.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Chapter 6 Discussion, Conclusion, and Recommendation: The result of the thesis are dis-
cussed in relation to the the research questions. The conclusion of the thesis and recommendation
for future improvements are also provided.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Chapter 2
Web service based architecture

2.1 INTRODUCTION

Nowadays, there are a number of resources which are designed and provided as web services over
the internet. In order to utilize the capabilities which are provided via web services, there should
be some architectural design which enables to discover them and combine in order to satisfy
more than one needs. SOA (Service oriented Architecture) is one of the architectural design to
meet this requirements. SOA based design can be implemented using web services or geospatail
web services. In this chapter, basic concepts SOA in section 2.2, Web services in section 2.3,
Asynchronous communication in section 2.4, and geoservices in section 2.5 are introduced. The
last section 2.6 is investigates the sates-of-the-arts of web processing services(WPS) specification.

2.2 SERVICE ORIENTED ARCHITECTURE(SOA)

As it is defined in OASIS reference model, SOA is "a paradigm for organizing and utilizing dis-
tributed capabilities that may be under the control of different ownership domains" [22]. These
capabilities are created by distributed owners (e.g organizations, private companies, and individ-
uals) as a solution for their business problems. Obviously, these capabilities can also satisfy one
or more other user needs either individually or in combination. Before combining the capabil-
ities or using a single capability to satisfy the needs, matching between needs and capabilities is
required. Before matching and combining, capabilities and needs should come together virtually
by means of a services. A service is a central element of SOA to enable access to one or more
capabilities. A service is accessed via a service interface. A service interface is a specification about
the service such as service type, inputs and outputs parameters, and functionality by hiding the
internal implementation details of the services. These descriptions are required for matching the
capabilities against the user needs. The SOA paradigm has a framework to this requirements. The
framework, called publish-find-bind paradigm, is comprised of three participants and three basic
operations, see figure 2.1. The three participants are service provider, service broker, and service
requester.

e Service provider: service providers publish (register) service interfaces to service broker to
offer services.

e Service requestor: service requesters find (search) appropriate services from service broker
to use for their needs.

e Service broker: service broker is a repository of searchable service descriptions which are
provided by service providers. The service broker is used for advertising and locating ser-
vices bringing the services and service requestors together.

The three SOA participant interact using three basic operations: publish, find, and bind.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Service Broker

* A searchable
repository of service
descriptions

PUBLISH FIND
1 |
Service Provider Service Requestor
* Provides application —BIND— = A client that needs a
as web service service

Figure 2.1: SOA Publish-Find-Bind paradigm

e Publish: is the process of advertising (making services description available) on the service
broker. A service provider publishes the service descriptions on service broker to be dis-
covered by the service requestors.

e Find: is the process of searching suitable services which are appropriate for service requestor
needs. A service requestor provides find criteria such as service type, input and output
parameters to the service broker. The service broker searches by matching the find criteria
against the published service descriptions. Then, if matches found, the list of matched
candidate service will be returned to the service requestor.

e Bind: after the searching process found candidate services and if there are more than one
matches are found, the service requestor can choose the most suitable service based on
their descriptions. The bind operation allows further communication between the service
requestor and the chosen service to use the actual service functionality.

2.3 WEB SERVICES

As SOA is a concept, a mechanism is required to realize it. Web services are one of the most pre-
ferred way for realization of SOA in practice [13]. The fundamental web service standards include
XML (Extensible Markup Language), HT'TP(Hypertext Transfer Protocol), WSDL, SOAP (Simple
Object Access Protocol), and UDDI(Universal Description Discovery Integration).

e XML: a standard that provides a way to encode machine and human understandable data
format. Every web services standards are designed based on XML, XSD (XML Schema
Definition) and XML NameSpaces [13]. XML NameSpaces provides a means to avoid
name conflicts between XML elements, guaranteing uniqueness which are defined in XSD.

XSD (XML Schema Definition), a recommendation of the W3C, specifies how to describe
the elements and attributes in an XML document. A schema is a data structuring mech-
anism which helps to organize and interpret large amount of information easily. The de-
scription is used to verify whether each items which occurs in the XML document content
is valid or not. Generally, schema is an abstract representation of an object’s characteristics
and relationship to other objects. Before, creating any schema, analysis of elements struc-
ture and their relationship is required. XSD has many advantages over earlier XML schema
languages, such as DTD (Document Type Definition). One of the advantages is that XSD
is directly written in XML, in contrast to the earlier languages, which implies that XSD
doesn’t need an intermediate processing step by a parser. In addition, XSD can be queried
through XSLT (Extensible Stylesheet Transformations).

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

e HTTP: is a transport protocol widely used by Internet to send web services. A protocol is
an agreement or standardized method for establishing communication between services to
transmit data or message, as humans need to have a common language before they start to
communicate to each other.

e WSDL [10]: used to describe characteristics of web services. WSDL description includes
interface, what service functionality offer including the name of the functionality and their
input and output parameters, binding information-how a service can communicate to other
service, and services address (URL), where a service resides.

e SOAP [8]: is astandard which defines an XML based messaging exchange protocol to allows
one web services to call another web services functionalities, pass input parameters, and
receive results.

e UDDI [7]: is a directory of services descriptions which are published by service providers.
UDDI enables service consumers to locate candidate services and discover service descrip-
tion by service consumers, so that the user can validate the service fitness for their require-
ments.

2.4 ASYNCHRONOUS COMMUNICATION

Synchronicity refers to the binding of the service requestor to the execution of the service. In
synchronous communication pattern, the service requestor blocked and waits for the service until
the execution completed and get response before continuing to another tasks. In contrast to
synchronous, asynchronous communication pattern allow a service requestor to invoke a service
and then execute other functionalities or any other task. In addition, in asynchronous, the status
of execution can be reported to the services requester. In asynchronous, the execution result can
be retrieved at a later time, while in synchronous, service requestor receive the result directly
when the task is completed.

2.5 GEOSERVICES

Geoservices are web services which are dedicated to deal on geospatail content. Usually, these are
divided into three subcategories [4]:

e Data services: geoservices to geospatail data such as WMS, to access to map layers, vector
or raster data in JPEG (Joint Photographic Experts Group)or PNG (Portable Network
Graphics) format, WCS (Web Coverage Service) which provides access to raster data, and
WES which provides access to vector data, output encoded in Geography Markup Language
(GML). GML is an XML based language used for encoding features.

e Processing Services: geoservices to offer operations for processing such as WPS, transfor-
mation services.

e Registry or catalogue services: are services supporting registry and discovery of geospatail
data and geoservices such as CSW.

The OGC web services are standardized geoservices to facilitate access to geospatail data and
geoprocessing algorithms through Internet. The OGC geoservices uses HT'TP for transport,
XML/GML for message encoding, GetCapabilities operation for service description instead of

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

<<interface==

OGCWebService

+getCapabilities(request: GetCapabilities): ServiceMetadata

e

Web Processing Service

+describeProcess(request: DescribeProcess). ProcessDescriptions
+execute(request: Execute): ExecuteResponse

Figure 2.2: WPS Interface class diagram

WSDL, and catalogue services for web (CSW) for service repository instead of, UDDI. The Get-
Capabilities operation is common to all OGC services used to request and return service-level
metadata.

As geospatial data discovery through CSW, access through WFS and WCS, and visualization
through WMS is covered, access to service-based extraction of geospatail information is being
covered by WPS. WPS is new relative to other geoservices such as WFS and WMS, but has multi-
ple advantages such as support for service chaining where the integration of geospatail data from
multiple sources is required. For these reasons, nowadays, WPS is a hot research issue of GI com-
munity researches as the need for integration of geospatail data and processing service on the fly
increases for many GI applications [11]. This research is also dedicated in designing a methods
for chaining of WPS functionalities. Before, we start the designing method, in the next section of
this chapter the current sates-of-the-arts of WPS specification is discussed in detail.

2.6 WEB PROCESSING SERVICES (WPS)

The WPS [25] specification, current version 1.0.0, defines a standardized interface to expose,
access, and use of processing-functionality as service. In this thesis we used the terminology
"processing-functionality” which an equivalent meaning to terminology "process" in the specifi-
cation. Both terminology refers to an individual service provided using WPS specification. These
processing functionalities can be geoprocessing algorithms or computational models which are
designed to perform a specific geoprocessing tasks. The main concept of WPS is to serve as a
container of one or more processing-functionalities which can be accessed and executed over a
distributed web environment. For example, intersecting two polygons is a single geoprocessing
task which can be handled by an "Intersection" processing-functionality which is provided as ser-
vice. In this manner, multiple processing-functionalities can be provided in a single WPS server
implementation. A WPS server is a computer where the WPS specifications is implemented and
provided as services which has its own unique address (base URL) over the web. This base URL

is used as the entry point to the WPS services, the processing-functionalities.

2.6.1 WPS operations

The WPS has three standardized mandatory operations, namely GetCapabilities, DescribeProcess,
and Execute. These operations enable users to retrieve the capabilities, details, and to request for
execution of one or more processing-functionality. The communication, request and response

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

to these operations can be done via HT'TP GET-with KVP encoding, HTTP POST-with XML
encoding, or SOAP with WSDL, as WPS also provides support to SOAP and WSDL. The diagram
which summarizes the three operation is shown in figure 2.2.

1. GetCapabilities operation: This operation, which is common to all OGC geoservices, al-
lows a user to request and receive back the metadata (information about service) such as
information about service providers name or contact address, and access methods for De-
scribeProcess and Execute operations. The GetCapabilities request parameters ('service’ and
’request’) are mandatory parameter to be provided for the WPS server to get a success-
ful response. For more information, the GetCapabilities mandatory and optional request
parameters with short description of each parameters are provided in table 2.1. The GetCa-
pabilities operation request can be encoded either in KVP (mandatory) via HT'TP Get or in
XML (optional) via HTTP Post.

The response document also includes the list of processing-functionality with brief ab-
stract and keyword description which are available in the requested WPS. Each processing-
functionality in the GerCapabilities response document has a unique identifier, used to iden-
tify a functionality within a single WPS. The GetCapabilitiesresponse document does not
include detail information about individual processing-functionality, such as expected in-
puts and outputs types by the processing-functionality. To get the full description of each
processing-functionality, including their expected inputs and outputs, the DescribeProcess
operation needs to be requested. For mandatory and optional response parameters of Get-
Capabilities, see table 2.2.

2. DescribeProcess operation: This operation allows a user to request and receive back full de-
scription about one or more processing-functionality which are listed in the GetCapabilities
document. The DescribeProcess request is based on the processing-functionality identifier
(identifier within a single WPS) found in the GetCapabilities response. For more informa-
tion, the DescribeProcess mandatory and optional request parameters with brief description
are provided in table 2.3. The DescribeProcess operation request can be encoded either in
KVP (mandatory) via HTTP Get or in XML (optional) via HTTP Post.

The DescribeProcess response document contains the detail information about the requested
processing-functionality including required inputs and returned outputs. Each processing-
functionality can have any number of inputs and output parameters. The response doc-
ument also includes whether output storage is supported or not, whether status report is
supported or not, input and output data types (complex, literal, Bounding box), allowed
maximum complex input size (e.g maximum megabyte of raster image), and others infor-
mation. For more information, the DescribeProcess mandatory and optional response pa-
rameters with brief description is provided in table 2.4.

3. Execute operation: This operation allows a user to deliver applicable input parameters to
the selected processing-functionality of WPS to execute the actual required task and receive
back execution result. In contrast to the Getcapabilities and DescribeProcess operations, the

request for Execute operation can be encoded either in KVP (optional) via HTTP Get or in
XML (mandatory) via HT'TP Post.

The necessary parameters for the Execute request including the name of the processing-
functionality, applicable inputs, and way of input delivery should be based on the informa-
tion in DescribeProcess and Getcapabilities response documents, the mandatory and optional
request parameters for execute are provided in table 2.5 on page 16. The inputs can be deliv-
ered either directly embedded to the Execute request or indirectly by embedding the URLs

11

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

of web accessible resources. According to the WPS specification, the delivery of inputs in
both combination (directly as well as indirectly) with a single execute request is not sup-
ported, i.e it is possible to use only one of the two ways at a time. In addition, as stated by
the specification, "The normal way to provide large inputs to a WPS is through providing
one or more URIs (usually URLs) of input values, unless the inputs are simple scalar values.
This is not intended to be used to facilitate batch processing (e.g. multiple images to be pro-
cessed through a single algorithm). If a process lis to be run multiple times (probably using
different inputs each time), each run shall be submitted as a separate operation request".
This implies, the user cannot provide nested inputs to be executed in iterative way.

The Execute operation output can be returned either directly to the user or indirectly can be
stored at web accessible location where the URL for the location of output is included in the
Execute response document. The former option, the directly output return, can be either
in raw output (without XML wrapper) for single output or encoded in XML (with XML
wrapper). The later option, indirectly return, is possible if the output storage is supported
by the WPS server (i.e.StoreSupported=true in the DescribeProcess response document). For
further information, the mandatory and optional execute response parameters are provided
in table 2.6 on page 17.

Moreover, the execute operation allows to monitor the on going progress of the task exe-
cution via status report element if the status report is supported by WPS server i.e Status-
Supported=true in the DescribeProcess response document. If the status report is supported,
then the WPS server will keep the status element of the stored Execute response docu-
ment up-to-date while the task execution is on running. Therefore, the user can retrieve
by polling the updated Execute processing-functionality response via the URL included for
this purpose in the Execute response document. However, the status report is possible if and
only if the output storage is supported by WPS server. Furthermore, the Execute response
document includes information such as process status, list of used inputs, list of outputs or
URL to outputs. The process status may be either ProcessAccepted which indicates that the
task is received and is in queue to be executed, or ProcessStarted which indicates that the
task is on running, or ProcessPaused which indicates that the task execution is paused, or
ProcessSucceeded which indicates the task execution is completed, or ProcessFailed indicating
that a problem is occurred. For further information see table 2.7 on page 18.

2.6.2 WPS input and output data types

An input is data provided to processing-functionality to generate output. Output is the result re-
turned after the processing-functionality are executed. The are three kind of data types supported
by WPS: Complex data type, literal data type, and bounding box data type.

e Literal data type: Indicates simple textual represented in integer (e.g buffer distance), string,
float, general number, measurements such as buffer distance, unit of measure (e.g.meter)

e Complex data type: This data type includes more complex data than simple textual repre-
sentation, such as coordinated of a polygon encoded in GML, raster image, and URL of
GetFeature request for WES which is delivered as input for execute operation request.

e Bounding box data type: This data type is the upper and lower coordinates of supported
spatial reference system.

'the word "process" is equivalent to "processing functionality” in our case which both refers to a single WPS func-
tionality within a single WPS

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Generic WPS Interface

<Any geospatial processing algorithm can be

encapsulated here>

Figure 2.3: WPS wrapping existing algorithms diagram

Table 2.1: WPS GetCapabilities operation request parameters and their description

Name Multiplicity ? | Description

Service 1 identifies the requested service type and the value must be "WPS"

Request 1 identifies the requested operation type and the value must be "GetCa-
pabilities"

AcceptVersions | 0..1 Identifies the version of WPS specification and the value must be 1.0.0
for the case of WPS version 1.0.0. Used to check the excepted parame-
ters of the requested operation

Language 0..1 Used to specify the response document in human -readable language in
case of the WPS implementation support in multiple human languages

2.6.3 WPS for wrapping

WPS is designed to provide a generic interface. As result any existing geospatail algorithm can be
wrapped by the generic WPS. The WPS processing-functionality serve as standalone services if all
the required input data are provided directly with the execute request. The WPS can be used as
middleware for data (when the required input data to be executed by a processing-functionality is
provided as web accessible resource), and middleware for software (when any existing geospatail
algorithm is wrapped by the WPS interface, see figure 2.3 on page 13).

2.6.4 The need for chaining of WPS processing functionalities

Normally, WPS processing-functionality are atomic service designed to perform specific single
geoprocessing task. Although, the atomic processing-functionalities are suitable in supporting
flexibility and reusability in different application domain, they are insufficient to perform com-
plex geoproccessing tasks. On the other hand, according to the WPS specification, a single WPS
processing-functionality can be designed to perform complex geoproccessing task, which is not
flexible to reuse for other application. For this reason, combining a set of atomic processing-
functionalities to perform complex geoprocessing task is identified as a requirement. This require-
ment is identified as one of the required geoprocessing research agenda in [9]. This requirement
can be achieved through chaining of individual processing-functionality.

13

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Table 2.2: WPS GetCapabilities operation response parameters and their description

Name Multiplicity * | Description

service 1 identifies the requested service type and the value must be "WPS"

version 1 WPS specification version.Should be 1.0.0 for the case of WSP ver-
sion 1.0.0

updateSequence 0..1 the version of the service metadata within a single WPS. The version
values may be different as they are selected by individual service
provider

lang 1 language identifier

Serviceldentification | 1 metadata (capabilities) of the WPS server.Should include title of
WPS with narrative description and supported WPS specification
versions

ServiceProvider 1 describes the provider of the WPS e.g.organization,company’s in-
formation such as name and contact address

OperationsMetadata | 1 Information about the operations implemented the WPS server in-
cluding the access methods(HTTP GET, or POST, or both) URLSs
for each of the three operations

ProcessOfferings 1 contains unordered lists of all available processing-functionality of-
fered by this WPS.Does not include input and output details

Languages 1 list default and supported languages supported by the WPS server

WSDL 0..1 URL of WSDL document describing to the three operations to be
retrieved

Table 2.3: WPS DescribeProcess operation request parameters and their description

Name Multiplicity * | Description

Service 1 Identifies service type and the value must be "WPS"

Request | 1 Identifies requested operation and the value must be "DescribeProcess"

Version 1

Identifies service specification version. The value must be 1.0.0 for case of
WPS version 1.0.0

Language | 0..1

Specifies the human readable language of the response document (e.g."en-
CA") supported by the WPS server. The language must be listed in the
GetCapabilities document

Identifier | 1..%

Unordered list of one or more processing-functionality identifiers, sepa-
rated by commas, for which the description is requested. The processing-
functionality identifiers must be listed the GetCapabilities response under
ProcessOffering section

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Table 2.4: WPS DescribeProcess operation response parameters and their description

Name Multiplicity | Description

ProcessDescription | 1..* Full description of each requested processing-functionality
including list of supported inputs and outputs parameters,
whether output storage and status report are supported or not

service 1 Identifies the service type and the value should contain "WPS"

version 1 Indicates the WPS specification version

lang 1 Includes identifier of supported language

ProcessDescription

Identifier 1 Unambiguous identifier of a functionality, unique for within a
single WPS

Title 1 title of a processing-functionality normally available for human
use

Abstract 0..1 brief narrative description of processing-functionality available
for human use

Metadata 0..% references to more metadata about the functionality

Profile 0..% profile to which the WPS processing-functionality complies

processVersion 1 release version of the processing-functionality within a single
WPS (not the WPS specification).The value may be different
since it is selected by individual service provider

WSDL 0..* the URL for location of WSDL that describes each processing
functionality

Datalnputs 0..1 list of mandatory and optional expected inputs by processing-
functionality. This section includes. Input Identifier, minimum
and maximum occurrence of inputs, and supported input data
types

ProcessOutputs 1 List of mandatory and optional supported outputs from the ex-
ecution of processing-functionality. This section includes out-
puts identifier, output data type, and supported output delivery
mechanisms

StoreSupported 0..1 indicates if one or more complex data output can be stored by
WPS server as web accessible resources. The default value is false
which means the output must be returned directly encoded in
execute response either in raw data if single output or wrapped
by XML

StatusSupported 0..1 indicates if status report is supported or not. It is supported if

and only if the output storage is supported. If the value is true,
then WPS server will keep the status element of the stored exe-
cute response document up-to-date while the request execution
is running. So that the user can monitor the progress by polling
the latest via the URL in the response document. The default
value is false means no progress monitoring

15

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Table 2.5: WPS Execute operation request parameters and their description

Name

Multiplicity

Description

Service

1

Identifies service type and the value must be "WPS"

Request

1

Identifies the requested operation type and the value must be "Exe-
cute"

Version

Indicates WPS specification version and the value must be 1.0.0 for the
case of WPS version 1.0.0

Identifier

The unique identifier of the processing functionality (identifier of pro-
cessing functionality within a single WPS). The identifier must be
listed in the GetCapabilities response document under "Processoffer-
ing" section.e.g Intersection

Datalnputs

0.1

List of inputs provided for this processing-functionality execution (e.g.
Intersection. At least one input is required unless all the required in-
puts are located in predetermined fixed resources. Inputs can be pro-
vided either by embedding directly with execute request, or by refer-
ence as web accessible resources (embedding the URL with the execute
request)

ResponseForm

0.1

Used to determine the return type of output depending on the value
of "StoreSupported” in the DescribeProcess response whether the stor-
age is supported or not. There three options: Direct return in raw
output form if the output is single, direct return wrapped by XML,
by reference (URL) if the value of "StoreSupported" is "true" in the
DescribeProcess response

Language

0.1

Language identifier and the value must be listed in the GetCapabilities

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Table 2.6: WPS Execute operation response parameters and their description

Name Multiplicity | Description

Service 1 Identifies service type and the value shall contain "WPS"

version 1 Indicates WPS specification version and the value shall be 1.0.0 for the
case of WPS version 1.1.0

lang 1 language Identifier

statusLocation 0..1 URL to location where current "ExecuteResponse" document is
stored to either to monitor the status of the execution or to retrieve the
final output. This is included when "storeExecuteResponse"= "true"
in the DescribeProcess response document.

servicelnstance 1 The GetCapabilities URL of this specific WPS which was invoked

Process 1 This description the processing-functionality which did the task in-
cluding it is identifier, processVersion

Status 0..1 Contains the status of the execution of the given task whether is com-
pleted, or on progress, or paused,see table 2.7 on page 18

Datalnputs 0.1 list of inputs which were provided to this processing-functionality ex-
ecution

OutputDefinitions | 0..1 list of definitions of outputs requested from executing this processing-
functionality

ProcessOutputs 0..1 List of values of outputs from functionality execution. The output
return type is based on the value of "ResponseForm" in the execute re-
quest. i.e. output may be either raw output or by reference or wrapped
by XML

2.7 SUMMARY

In this chapter,we have explored the basic concept of web services and geoservices particularly, in
relation with SOA. We have identified usefulness of atomic processing-functionalities to enabling
standardized service-based extraction of geospatail data. The next required step is the chaining of
individual processing-functionalities to perform complex geoprocessing task.

17

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Table 2.7: WPS Execute operation status codes parameters and their description

Name Multiplicity | Description

CreationTime 1 The time (UTC) that the task execution finished. If the task execution
is not completed , this attribute shall contain the creation time of this
document.

ProcessAccepted | 0..1 indicates that task has been accepted by WPS server, but is in a queue
and has not yet started to execute

ProcessStarted 0..1 indicates that task has been accepted by WPS server, and execution has
started. This may include the progress task execution percentage such
X% of task is completed

ProcessPaused 0.1 indicates that the server has paused the task execution

ProcessSucceeded | 0..1 indicates that task execution is successfully completed

0..1

ProcessFailed

indicates that task execution has failed and includes error information

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Chapter 3
Service chaining requirement analysis

3.1 INTRODUCTION

The objective of this chapter is to analyze the functional requirements which are needed for chain
of two or more number of services from literatures of general information technology (IT) stream
web services chaining as well as GI application domain geoservices chaining. The analysis of
these requirements is important for this research as we can capture the required information to be
adopted to design our chaining method for WPS processing-functionalities in chapter 4, which is
the target of this research.

This chapter starts with service chain concepts in section 3.2, service chaining design types in
section 3.3, service chaining procedure in section 3.4, and last section 3.5 is summary.

3.2 SERVICE CHAIN CONCEPT

One of the most important potential of SOA is service chain to buildup larger application from
distributed individual services. The OpenGIS Service Architecture standard [3] defines a service
chain as "a sequence of services where, for each adjacent pair of services, occurrence of the first
action is necessary for the occurrence of the next action". Service chain is required in a situation
when the functionality required for a given task can not be satisfied by any existing single service,
but by chaining suitable multiple existing services [23].

3.3 SERVICE CHAIN DESIGN TYPES

According to [2] [4], there are three service chain design types depending on the degree of trans-
parency and coordination of the service chain to the user. These are:

e Transparent service chaining
e Opaque service chaining

e Translucent service chaining

3.3.1 Transparent services chain type

Transparent chaining is decentralized design types which requires high participation of user to
the services in the chain. The user manages the entire workflow of services in the chain such as
searching for participant services, sequence and interaction among services, and defining service
chain. There is no always a specific service chain existing before the user start to discover services
and defines the chain. The user must have also prior knowledge of the services inputs and outputs
requirements. In addition, the availability of valid inputs to services and all intermediate process
results are handled by the user. Generally, the services chaining complexities is fully transparent to

19

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

the user. Because of the difficulties of the services coordination, this design type is not appropriate
for complex chaining [2] [4].

3.3.2 opaque (aggregate) service chain type

In contrast to the transparent service chain, the opaque chain is centralized service chaining pat-
tern. All participant services appear as a single aggregate service to the user. The aggregate service
handles all the coordination of the individual participant services in the chain. The user is not
aware of any information about the services in the service chain. Besides the advantage of sim-
plicity to the user, it has its own drawbacks such as user loses some of the flexibility, control over
parameters of the individual services [2] [4].

3.3.3 Translucent service chain type

The translucent service chain type provides a balance between the totally transparent and totally
opaque services chaining types. Because, this design combines the simplicity of opaque chaining
with the flexibility of control in transparent chaining type. The workflow (mediating) services
act as gateways to other services. The details of service chain are transparent to the user such as
the user is aware of participant services. But the control over the service chain is managed by the
workflow service. The abstractly predefined service chain (a service chain without referring to a
specific service implementation) is already stored on a workflow engine (an application which ex-
ecutes the service chain). The user requests to execute predefined services controlled by single or
multiple workflow service (s). Based on the abstractly predefined services chain, the workflow ser-
vice determines appropriate data sources and processing services, control sequence of execution,
and assemble the final result and present to the user [2] [4].

The three service chain design types can be integrated in different ways. For example, a service
chain designed based on transparent service chain type, which produce a correct result, then this
chain can be exposed as a new service following either the opaque or translucent service chain

type.

3.4 SERVICE CHAINING PROCEDURE

Before having one of the above mentioned service chaining types, a method is required to create
the service chain. As the services are distributed application, procedural steps can be undertaken
to combine those services into service chains.

e Abstract service chaining: process of identifying service chain functionality without refer-
ring to specific services implementation.

e Service discovery: process of searching services from repository of services which involves
matching between the description of services and description of given task.

e Concrete service chaining: process of creating specific services chain for execution by iden-
tifying their required inputs and order of execution for each participant services based on
the abstract service chaining.

e Service chain execution: process of implementation of the executable service chain which
are created in concrete chaining step.

20

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

3.4.1 Abstarct service chaining

The objective of abstract chaining to identify potential services, defining control flow (service
execution order), and data flow (‘how data is exchanged between services) with out refereing to
any specific service implementation. The control flow in service chain defines the order of services
execution within a service chain. There three control flow design options: sequential, parallel, and
alternative.

e Sequential control flow: In sequential control flow is the simplest control flow in service
chain, where services are executed one after another in predefined order.

e Parallel control flow: In parallel control allows two or more service to executed at a time in
a service chain.

e Alternative control flow: In alternative control flow service execution is determined de-
pending on a condition having multiple direction of execution.

The data flow of service chain defines how data is exchanged between services. Services have
input and output parameters. In a service chain, the output of one service can be used as input for
another service.

3.4.2 Service discovery

In order to start chaining of specific services, the services to be chained needs to be known. Know-
ing services starts from getting the description of each services. This description can be retrieved
through service discovery process from services’ repository. A services’ repository refers to a
storage where services’ description are located. For example the OGC CSW is repository which
supports user to discover geoservices” description.

The discovery of candidate service for the given task involves the comparison and evaluation
of services’ description and requirements of the given task. This can be done either using discovery
application or manually by reviewing the content of the services’ description. The content of
services’ description includes service’s functional properties (i.e what a service does) and non-
functional properties (i.e how a service does) [23].

e Functional properties: Includes descriptions about the functionality offered by a service
and the corresponding required input(s) and output(s) to be produced.

e Non-functional properties: Include other description which can be used to evaluate the ser-
vices such as QoS (Quality of Service), cost, and security issue. The non-functional prop-
erties are additional user specific requirements. Due to this, we do not take into account
these non-functional properties as requirements to create service chain (out of scope of this
research). We only focus on the functional properties as they are the fundamental required
properties which allow to use a services’ functionality.

In service discovery process, it quite common case to discover more than one service which have
similar functional fitting the requirements of a given task. On the other hand, the wrong service
may be discovered depending on discover technique used. For example, the WPS processing-
functionalities are described by DescribeProcess response document. The syntax (structure of in-
put and output) of each process is described by DescribeProcess response document. But, seman-
tics (meaning of inputs and outputs) is not included. Consequently, the discovered processing-
functionalities may be wrong for the given requirement. This problem is exemplified in [19] as
the following. For example, Euclidian distance can be used to find the shortest distance mea-
sured in 2-dimentaional plane, or a shortest Euclidian distance in 3-dimensional space. The two

21

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

WPS processing-functionalities provide different functionality with different input requirements,
although both are described by the same (syntactic) description. To overcome those problem
semantic description is proposed as a solution.

In contrast, there may a case that no service found that fulfill requirement of the given task.
In such condition, requirement of the given task needs to be refined into sub requirements until
a set of services are discovered. In case of more than service are discovered with same functional
properties while fitting requirements of given task, in order to determine which candidate service
should be selected to be combined in to service chain, the following selection criteria which can
have a key role to support for decision on selctting the best services:

e The first criteria can be selecting a service which needs minimum adaption for initial inputs
requirement such as first initial input data type, format, the required output. In addition,
the adaption required between one services to another service.

e The second criteria can be, selecting two or more services which are within the same service
provider. This will have an advantage to increase performance since the message exchange
speed rate can be increased.

e The third criteria can be, using the non-functional properties such as cost and response time
can play key role to rank and select the best fittest services. The ranking can be done either
by human user giving his relevance weight or using software application.

In case of no service is found, and then the requirement definition should be refined in to smaller
requirements which should be to be achieved. Having the awareness of the above mentioned
service discovery problems, we continued assuming that a set of fittest service are discovered for
the given task.

3.4.3 Concrete service chaining

Concrete service chaining is the process of creating an instance of abstract chain. In this process,
specific participant service instances, candidate services which are discovered and selected fitting
the requirements of the given task are chained where the required inputs and sequence of execu-
tion is defined. In concrete service chaining, the chainability of these candidate service needs to
be evaluated.

The chainability of two services can be determined by the compatibility of the two service
description (interfaces), as interface is the point of interaction between services. For example, if
there are two services, source service and target service, which are candidate service to be chained
to perform complex task. The chainability of these two service can be determined by the coverage
of expected inputs of target service by the output of source service in terms of number and data
type, and format. Based on these conditions, we identified four chainability classification from
web services chaining literatures in [6] [19].

e Exact (fully chainable): if the output of the sources service covers directly all required inputs
of target service. For example, on (figure 3.1, example No-1), assume buffer, source service,
requires two inputs, first input(inputl) is polygon in GML format and second input (input
2) is distance, and produces one output(Bufferedpolygon) in GML format. GetArea , target
service, requires one input(polygon) in GML format. Here as we can see , the output of
buffer can be directly used as input to the GetArea which is indicated by green arrow line
which means the two services are fully chainable.

22

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

e Partially chainable: if the outputs of the source service can cover directly one or more
(not all) required inputs of target service. For example, on (figure 3.1, example No-2),
assume intersection, source service, requires two inputs, first input(inputl) is polygon in
GML format and second input (input 2) is LineString in GML format, and produces one
output(newgeometry) in GML format. Buffer, target service, requires two inputs, first in-
put(inputl) is polygon in GML format and second input (input 2) is distance, and produces
one output(Bufferedpolygon) in GML format. Here as we can see , the output of intersec-
tion which is indicated by green arrow can be used as input directly for buffer, but buffer
requires additional input, distance which is indicated by the red arrow to mean the input is
not covered by the source service. Therefore, the two services are partially chainable.

e Adaptable fully chainable: if the outputs of source services can cover all required inputs,
but adaption of one or more output of sources service or input of target service or both
are required. For example, on (figure 3.1, example No-3), which is the same as (figure 3.1,
example No-1), but here the source and target service supports different coordinate sys-
tem(SRID) which is indicated by red arrow to mean the output can not be directly used as
input to the target service, instead adaption or manipulation of this output is required so
that the two services can participate still in the chain.

e Adaptable partially chainable: if the outputs of the source service can cover one or more
(not all) required inputs of target service but, adaption of one or more output of sources
service or input of target service or both are required. For example, on (figure 3.1, example
No-4), is the same as (figure 3.1, example No-2), but here for two cases the source does not
cover the requirements of the target service. The first case all input are not covered, which
is indicated by red arrow, secondly, the output of source can not be directly used as input to
the target, instead adaption or manipulation of this output is required.

However, to determine such classification of services chainability, there should be either a metric
unit that can measure the degree of their similarity by parsing their description input and output
description with some specified threshold automatically, or an expert user is required to determine
their chainability by reviewing the services’ description.

3.4.4 Service chain execution

Having an executable services chain, created in concrete chaining step which are ready for their
execution, the next step is service chain execution. Service chain execution is the action of trigger-
ing each participant service to take input(s) and produce output(s), and passing the output of one
service, service executed before, as input to another service, to be executed next, based on their
defined sequence.

For the execution of the service chain, an implementation application that can interpret and
execute each participant services is required. For geoservices, there are three implementation
options: BPEL as orchestration engine, WPS for centralized service chaining, and WPS for cascade
chaining.

BPEL as orchestration engine

[1] is the popular commonly known XML based language which allows the execution of com-
plex service workflows. Aswe highlighted in chapter 1.1, BPEL is being used widely to orchestrate
service chains mainly in Information Technology (IT) stream. BPEL relies on WSDL [10] for in-
terface description of participant services in the service chain, and SOAP for message exchange

23

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Service chainability classification based on their
inputand output coverage

Examples

1 | Full
Buffer GetArea
Inputl: polygon (gml) Input: polygon (gml)
Input2: distance /Output: area (double)
Output: Bufferedpolygon (gml)
2 Partial
Intersection Buffer
Inputl: polygon (gml) Ipputl: geometry (gml)
Input2: LineString(gml) ut2: distance
Output: newgeometry(gml) utput: Bufferedgeometry (gml)
3 Full + adaption/manipulation
Buffer GetArea
Inputl: polygon (gml) Input: polygon (gml)
L Input?: distance Output: area (double)
Qutput: Bufferedpolygon
(gml) / SRID=4326
SRID=22992
4 Partial+ adaption/manipulation

w:

Intersection Buffer

Inputl: polygon (gml) Inputl: polygon (gml)
Input2: LineString(gm]gm/lnputZ: distance
Qutput: newgeometry (grl) Output: Bufferedpolygon

(gml)

SRID=22992 SRID=4326

Figure 3.1: Services chainability classification

24

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

mechanisms. WSDL serves as a link between the BPEL and participant services [26]. BPEL can
be also applied to orchestrate geoservices chains by describing the interaction among participant
services. WPS also supports both SOAP and WSDL. Therefore the incorporation of WPS to
BPEL engine to be orchestrated can offer more sophisticated service chaining capabilities [25].
However, using BPEL requires each participant geoservices to be described in WSDL. Unfortu-
nately, most OGC geoservices are not described using BPEL [30]. Therefore, to use BPEL, a
WSDL needs to be generated for each services.

For the case of WPS, the specification provides an option to link WSDL as apart of De-
scribeProcess response to be providers if they are willing. In such condition, BPEL can be applied
as orchestration engine. However, as WSDL is not always provided by providers as it an addi-
tional task for them. Therefore, consumers should generate WSDL document for each required
processing-functionalities to be orchestrated. This is going to be tedious task to generate such
document individually.

WPS for centralized service chaining

The second possible approach is chaining set of geoservices, including processing-functionalities,
and the chaining is encapsulated with WPS interface, serving as chaining engine to execute a ser-
vice chain [25] by calling one after another based on their sequence. This approach is an impor-
tant approach to create aggregate services out of existing services. The opaque or aggregate service
design type can be achieved with this approach. Our chaining approach will be inline with this
approach.

WPS to cascade chaining

The other third option is using simple cascading service chain via WPS Execute request which
can involve two or more number of processing-functionalities. The chain can be encoded using
KVP (Key-Value-Pair) where a call to another processing-functionalities is encoded as complex
data type and send using web browser. However, this approach is not valid for more than two
or three processing-functionalities in the chain. Because, as the number of participant processing-
functionalities increase, the length of encoding increases and the web browser may not support
due to its limited number of characters to handle.

3.5 SUMMARY

In this chapter we have identified different approaches of chaining patterns , procedural steps. In
addition to the procedures and approaches to create services chaining, the aim of the this chapter
was to identify the requirements for chaining two or more services. In this analysis we identified
that the description of a service is required before using a service for any application. The inter-
action of a service with another service is also determined with this description. As a result, two
or more services are chainable when the output of the first service can cover at least one input
expected by the next service. This requirements is used as input to design chaining method in
chapter 4.

25

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

26

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Chapter 4

Method for chaining of WPS
processing-functionalities

4.1 INTRODUCTION

The objective of this chapter is to design a generic chaining schema which defines all possible
required contents conceptually that can serve as a template for chaining of any two or more num-
ber of processing-functionalities in any GI application domain. In addition, after design of this
generic chaining schema is completed, architecture for chaining of processing-functionalities us-
ing this generic chaining schema is provided. The chapter starts with defining the role of the
generic chaining schema in section 4.2, service chaining requirements analysis in section 4.2.1,
DescribeProcess response parameters analysis in section 4.2.2, generic chaining schema design in
section 4.2.3, and architecture of chaining processing-functionalities in section 4.3

4.2 GENERIC CHAINING SCHEMA

To combine two or more number of processing-functionalities into service chain, first a generic
mechanism is needed to be designed that can be used for any chaining requirement independent
of any GI application. To design such generic mechanism, it is necessary to capture the essen-
tial functional properties and organize in a way to enable two or more processing-functionalities
interact with each other in a chain. The interaction includes, the data flow between processing-
functionalities, i.e., using output of one processing-functionality as input to another processing-
functionality. In addition, control flow of each processing-functionalities within a chain i.e. in
what order that each processing-functionalities should be executed is also another requirement to
be captured. To capture such requirements, a schema is required. As we discussed in section 2.3,
a schema is a mechanism used to capture and organize relevant information, leaving unnecessary
details, out of large amount of information helping to interpret and use easily. Although, there are
different schema such as relational database schema and XML schema definition (XSD) language,
our requirement can be satisfied by XSD, as it is the basis for all web service development.

The target users of our designed chaining schema are expert users who are going to chain
distributed WPS processing-functionalities, in case of individual processing-functionalities are in-
sufficient to perform a given geospatail task.

Before starting designing chaining schema, the necessary functionalities which should be con-
sidered in designing the chaining schema needs to be identified. In order to identify the func-
tionalities, we used two requirement analysis as input to design the chaining schema as shown on
figure 4.1.

1. Service chaining requirements analysis : which is already done in chapter 3, is analysis from
web services and geoservices domain in order to identify the basic requirements that needs
to be considered in the design of chaining schema.

27

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Service chaining DescribeProcess V.
requirements response parameters

Designing chaining
schema

A

v

Generic chaining schema

Figure 4.1: Approach to generic chaining schema

2. DescribeProcess response parameters analysis: is the DescribeProcess response analysis from
WPS specification as well as from real-world processing-functionalities’ DescribeProcess re-
sponses content. From this analysis we identified the required parameters for a processing-
functionality to be considered in designing the chaining schema.

3. Design chaining schema using step 1 and step 2: using the two analysis as input, we designed
the chaining schema using XML schema definition (XSD) language. The role of this chain-
ing schema is to represent building block of all possible processing-functionalities chaining.
We use the XSD schema to model the required component for processing-functionalities
chaining and their inter-relationships. The relationship in the schema indicates the structure
of the processing-functionalities to be described in chain. We captured all required parame-
ters from the DescribeProcess response parameters and model as schema elements containing
subelements. So that the required information for chaining of processing-functionalities can
be captured and described using these elements.

4.2.1 Service chaining requirements analysis

In analyzing web service and geoservices chaining requirement in chapter 3, we knew that the
description of any service is required before using it for any application. The interaction of a
service with another service is also determined with this description. The description content is
comprised of functional and non-functional properties of services. We chose to consider only the
tunctional properties which includes name of functionality, its input requirement, and output to
be produced as they are the fundamental requirements to use a service. Moreover, two services
can be chained if and only if the output of the first service can cover at least one input expected
by the next service.

4.2.2 DescribeProcess response parameters analysis

For our case, the description requirement is fulfilled by the DescribeProcess response content con-
taining a list of processing-functionalities with full description including input and output param-
eters. Due to this, we chose to analyze this content to capture the relevant parameters that each
participant processing-functionality should bring to be chained using chaining schema.

We started first by analyzing the DescribeProcess response content of the WPS specification
provided on table 2.4. From this analysis, we have identified the mandatory and optional param-
eters, the number of inputs that can be accepted, the number of outputs that can be produced,

28

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

the capability that inputs can be provided either by value or by reference, and the capability of
returning outputs either as reference, raw data, or encapsulated (wrapped with XML document)
of any processing-functionalities, in general.

In addition to the specification, we have inspected a number of real-world DescribeProcess
response document instances from randomly selected WPS processing-functionalities providers.
The samples are intersection and buffer processing-functionalities (see appendix 6.3) from ZOO !
WPS and Deegree 2 WPS using their base URL found on "Open Registry" catalogue >.

As we noticed, the major difference between the response document from different WPS ser-
vice providers differs in providing and not providing parameter values which are optional in the
specification such as WSDL, storage, and status response services. Among the two providers,
the Zoo WPS only provides both storage and status services for the processing-functionalities we
use for our analysis. This indicates that using reference as input transfer mechanism from one
participant processing-functionality to another is not granted. From this analysis, the selected
parameters which are most important to create service chaining are: processing-functionality’s
identifer, storeSupported, statuSupported, Datainputs, input identifier, ProcessOutputs, and out-
put identifer. According to the specification their description and role is stated in table 2.4.

4.2.3 Generic chaining schema design

Based on the selected parameters from the DescribeProcess response content and additional param-
eters which were considered to be included, the generic chaining schema is designed as shown on
figure 4.2. As we can see on the figure, the chaining schema consists of all necessary information
for execution of any processing-functionality. The design considerations and role of each elements
in the chaining schema description is as follows.

e ProcessingFunctionality: stands for a single atomic WPS processing-functionality.

In generic chaining schema, two or more number of processing-functionalities can be in-
volved.

Each participant processing-functionality must have a base URL (Uniform Resource Loca-
tor). This base URL is a pointer to where the participant processing-functionality resides
on the world and can be accessed for execution.

Each processing-functionality must have a name (identifer), the same as the identifer speci-
fied in the DescribeProcess response document.

In addition to the identifer (name), each processing-functionality must have a unique posi-
tion identifier within a chain used to identify one processing-functionality from another.
This identifer is specially important when the same processing-functionality is used multi-
ple times with different input values in the same chaining instance. For example, assume
an intersection from Zoo WPS is used to execute the intersection of two polygons, then
followed by buffer to create a polygon around the result of the intersection with a certain
distance. Again, if we want to intersect the result of buffer with another polygon, then we
may use the same intersection to execute this task, with different position in chain identifer
within the same chaining instance.

'http:/ /zoo-project.org/
*http:/ /flexigeoweb.lat-lon.de/deegree-wps-demo
*http:/ /openregistry.info/registry /Find_client

29

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

JaypuspEngIng

uleyaujuonisod

indingelegmey

pajensdeauy |
asualaey
Januapj

[enr

papaqua

sausisiey

Jsunuep)

Iayusppndinguiey

Jaynusppnding

sindujezeqg

pauoddngsniels

pauoddnsgalols

uleyauuonisod |

Jsnusp|

uleysujuonisod

oY
-b|
ﬂa [=] andinguieyp

il
Iﬁlﬁw_ Ryjeuonaungbuissaaaold T

Figure 4.2: Generic chaining schema

30

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

e Each processing-functionality should have information on the store supported and status
supported as optional parameters. The value may be either true or false. If storage sup-
ported is true, then output return with the chain can be instructed by reference. And if the
status value is true, then the progress of completed task for the case of long-running task
execution can be retrieved.

e Each processing-functionality in the chain can take more than one inputs as WPS specifica-
tion allows a processing-functionality to take any number of inputs. Each input must have
a unique identifer, same identifer which is specified in the DescribeProcess response content.
As the WPS specification offers flexibility to choose on different inputs types, inputs to
each processing-functionality can be either reference input, or processed result, or embed-
ded input, or literal input. These input types are captured by the chaining schema as shown
on figure 4.3.

- Referenced (URL) input: is input value provided as URL which is a link to the ac-
tual data such as WFS GetFeature request, or URL output which is returned by a
processing-functionality and passed as input to another processing-functionality within
the chain.

- Processed result input: is output of previously executed processing-functionality within
achain. This output can be passed as input for another participant processing-functionalities
within the chain. In such case, the output identifer and position in chain identifer of
the previous processing-functionality to be executed must be passed as input to the
next processing-functionality.

- Embedded input: is the input which is provided directly by actual value to be passed
with the execute request parameters. This input type is appropriate for small sized
data coordinate pairs, but not for large data, specially when execute request is sent
using the HTTP GET KVP method, the browser can not handle the entire data, as we
proved. Therefore, for larger data, providing data by reference is more applicable than
by value.

- Literal input: literal inputs are simple textual values such as buffer distance.

= Identifier

Datalnputs [== _
= Positioninchain

= outPutidentifier

Figure 4.3: Input types in generic chaining schema

e Each processing-functionality in the chain can produce more than one outputs, as WPS
specification allows a processing-functionality to produce any number of outputs. In a
similar case with input value types, the WPS specification also offer flexibility to choose on
three output response options: raw data output, referenced (URL) output, or encapsulated

31

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

output (XML wrapped output). These output types are captured by the chaining schema as
shown on figure 4.4.

- Referenced (URL) output: This output response type is dependent on the storage
service supported by the participant processing-functionalities. This information can
be known by checking the boolean value statusSupported parameter in DescribeProcess
response content. If true, then the processing-functionality which support the storage
services can be requested to store the output and return only a reference (URL) to
access the output.

- Encapsulated output: This option is the normal response type after each WPS precessing-
functionalities are executed unless another response type is requested. For example,
such as GML output returned encapsulated by XML execute response document.

- Raw data output: In this output response type, the data is delivered back as raw data
without encoded in a message structure format such as in XML document. For in-
stance, if a Geotiff image is requested, the image is delivered in binary format and not
wrapped by XML document. However, this request is supported for a single output
only which can be delivered at a time since the output is not encoded in any message
structure format.

Identifier

Reference

~{ ProcessOutputs EI—[—"-—]EI—{ OQutput [ﬁ{—ﬂ-— =
1.0

Encapsulated

RawDataOutput

Figure 4.4: Output types in generic chaining schema

e The final elements of the chaining schema is chain output which represents final output of
a chain. In our chaining schema, the output of the chain is equal to the output of the last
processing-functionality to be executed. The chain output element plays role to select the
required output only in case of the last executed processing-functionality has more than one
output. In such case, this element allows to identify that required output identifier from
DescribeProcess response content as well as position in chain identifier of that processing-
functionality and assign to this chaining output element. In addition, the chain output can
have its own additional identifer which can serve as the overall chaining output identifer as
we can see on figure 4.5.

Positioninchain ‘

Outputldentifier |

—{ chainoutput [ﬁ]{%
1.0

ChainOutputidentifier |

Figure 4.5: Final output in generic chaining schema

32

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Now, the development of generic chaining schema is completed. This generic chaining schema
captured all necessary functional requirements for combining a set of any processing-functionalities
into service chain to perform complex geoprocessing task independent of GI application domain.
As we mentioned in section 4.1, in the remaining section of this chapter, we focused to provide
an architecture of chaining one or more number of processing-functionalities using this generic
chaining schema, as it is ready to be used.

4.3 ARCHITECTURE OF CHAINING PROCESSING-FUNCTIONALITIES

Using the designed chaining schema, any two or more number of executable chained processing-
functionalities instances can be derived. The architecture for chaining of processing-functionalities
is provided as shown on figure 4.6 which consists of processing steps (e.g mapping rules imple-
mentation), outputs (e.g mapping rules), inputs (e.g DescribeProcess responses), and methods (e.g
generic chaining schema) which are used to drive such executable chain instance. Brief description
on each elements of the architecture is provided below. Then the main elements are also discussed
in the following sections.

e Expert user: the involvement of an expert user is required in order to evaluate the validity
of the inputs, the chainability of processing-functionalities, final output of the chain, and
to perform the chaining process using the chaining schema with interpretation of their
DescribeProcess responses content.

e Chain requirement analysis: is the process of identifying the required processing- function-
alities to be discovered.

- Chain requirement descriptions: is the output of the chain requirements analysis
which is a list of required processing-functionalities including their order of execu-
tion, initial inputs, and required output for a given task. These information are the
basis to start discovery and chaining process.

o GetCapabilities request: a process required to retrieve a list of existing processing- func-
tionalities within a single WPS server using request parameters provided in table 2.1. This
request is useful to get the identifier (name) of each processing-functionality to send De-
scribeProcess request.

- List of processing-functionalities: one or more number of processing-functionalities
which are returned from GerCapabilities request.

e DescribeProcess request: a process required to retrieve the DescribeProcess response of each
processing-functionalities using request parameters provided in table 2.3.

- DescribeProcess responses : for each processing-functionality, the selected parameters
values needs to be populated from their DescribeProcess response to the corresponding
elements of chaining schema.

e Generic chaining schema : the chaining schema is the place where a set of participant
processing-functionalities are chained. This process is done by populating the elements
of the chaining schema with the selected parameters values from DescribeProcess response
content of each processing-functionality.

e Mapping DescribeProcess responses to chaining schema: is a process required to select and
populate the chaining schema with the DescribeProcess response parameters values.

33

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

- Mapping rules: rules about the relationship between the selected DescribeProcess re-
sponse values and the corresponding elements of chaining schema

e Mapping rules implementation: is a process of interpreting and executing the mapping
rules. So that the actual selected values can be get written to the chaining schema.

- Chain instance: is the output of mapping rules implementation which is a single XML
document created based on chaining schema which contains a set of ordered partici-
pant processing-functionalities with all required information for their execution.

e Chaining engine: is required to interpret and execute content of chain instance.

- Final result: is the complete chain output after the execution of the chain instance by
the chaining engine .

4.3.1 Expert user

The application of the chaining schema needs the involvement of an expert user, the target user, as
we motioned in section 4.1. We assumed the correctness of over all chain output is determined by
this expert user. The correctness can be determined based on three criteria which are listed in [2]
which needs interpreting DescribeProcess response content of each processing-functionalities.

e Appropriateness of initial input data: for each participant processing-functionality, validity
of the required inputs must checked. For example, the accepted geometry type and format,
polygon, or point, and the format in GML, or in shape file must be checked and the required
input must be provided.

e Impact of processing-functionality on the input data: how the output of individual processing-
functionality change the chaining result.

e Sequence of processing-functionality: The order of processing-functionalities to be exe-
cuted must be determined based on the required result and the output of the processing-
functionalities. For example, is intersection of the road occur first and then to buffer
from the result of the intersection, is the output of the intersection a valid input for buffer
processing-functionalities. Is the last processing-functionalities output can return the re-
quired output.

4.3.2 Chain requirement analysis

As we discussed in service chain concept, section 3.2, chaining of processing-functionalities is re-
quired in a situation when the functionality required for a given geoprocessing task can not be
satisfied by any existing single processing-functionality, but by chaining suitable multiple exist-
ing processing-functionalities. In order to chain a set of existing processing-functionalities, the
chain requirement for a given geoprocessing task needs to be analyzed first. Through chaining re-
quirement analysis the required processing-functionalities to be discovered, initial inputs, required
output, and order of processing-functionalities to be executed to get the final required output of
the given geoprocessing task can be identified. So that using these chain requirement list of de-
scription, the existing appropriate processing-functionalities can be discovered which satisfies the
chain description.

34

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

WPS Processing-functionalities chaining architecture

discovery

concrete chaining

chain
reguirement

analysis GetCapabilities

DescribeProcess
requests

v

requests
l 7~ processing-

i ~,
= { i
-
/ . | functionalities DescribeProcess
chain \ list response
requirement \—/
descritpion

Mapping DescribeProcess
response to Chaining
schema

—y

(mapping rules)

f/

mapping rules
implementation

I 2

|/ Chain instance

v

/g
final resu@q._ Chaining engine

Generic
chaining
schema

-

Expert user

Figure 4.6: WPS processing-functionalities chaining architecture

4.3.3 DescribeProcess responses

Using list of chain requirement description, discovering and selecting relevant chainable processing-
functionalities from existing processing-functionalities which can satisfy chaining requirement de-
scription is an important step. To discover a set of existing processing-functionalities, their base
URL or entry point of WPS server is required. In real-world scenario, such base URL can be
retrieved from catalogue service. For our case, we assume that the expert user knows such base

URLs of the existing WPS servers.

As we have discussed in services chaining requirements analysis in section 3.4.3, the chainabil-
ity of two processing-functionalities can be determined with the output coverage of the former
processing-functionality as input to later processing- functionality. In order to take those determi-
nation, the DescribeProcess response document is required. For our case, this comparison and eval-
uation process is the responsibility of the expert user by discovering the DescribeProcess response
document of each processing-functionalities and selecting the relevant chainable processing- func-
tionalities. Relevant chainable processing-functionalities represent processing-functionalities that
minimize the amount of required adaptation among processing-functionalities while best fitting

for requirements of given task.

4.3.4 Generic chaining schema

The designed chaining schema itself is the place where a set of participant processing-functionalities
are chained. This process is done by populating the elements of the chaining schema with the se-
lected parameters values from DescribeProcess response document of each processing -functionality.

35

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

4.3.5 Mapping DescribeProcess responses to chaining schema

Having, all required information such as DescribeProcess responses for each processing- function-
alities, knowing their order within the chain, and valid initial inputs, the selected contents in
DescribeProcess response of each processing-functionality needs to be selected and written to the
corresponding elements in chaining schema based on specified order. In order to facilitate the
selection of required parameter values from DescribeProcess response and populate to chaining
schema, a schema mapping needs to be created between DescribeProcess response (source schema)
and generic chaining schema (target schema). The schema mapping is needed to identify and estab-
lish the relationship between the required parameter values from DescribeProcess response and the
chaining schema to provide the mapping rules. The mapping rules are information about which
value from DescribeProcess response to be assigned to which elements of the chaining schema.

Through this process, a concrete processing-functionalities chain with the real-world processing-
functionalities DescribeProcess responses is being created. The output of one processing-functionalities
to be passed as input to the next processing-functionality is also determined here. As our chaining
schema has no evaluation mechanism to check whether the participant processing-functionalities
are chainable or not, the expert user has to evaluate the chainability of processing-functionalities
by interpreting the DescribeProcess responses of each pair of processing-functionalities.

As we discussed in service chainability classification scenario in section 3.4.3, the expert user
may found four cases of chainability classification. In case of partially chainable, two processing-
functionalities can be chained because the extra required inputs can be provided by the expert user.
In case of adaptable fully chainable and adaptable partially chainable, since additional intermediate
processing-functionality is required, the expert user has to refine the discovery and chain require-
ment analysis steps in order to discover another either the intermediate processing-functionality
or another pair of fully or partial chainable processing-functionalities. By this process, we assume,
that all participant processing-functionalities are fully chainable.

4.3.6 Mapping rules implementation

The mapping rules produced during mapping DescribeProcess responses to chaining schema needs
to be interpreted by a schema mapping languages for their actual implementation, i.e for popu-
lating the selected values to generic chaining schema. Schema mapping languages are languages
used to encode the schema mapping rules. The mapping rules can be expressed in different lan-
guages. XSLT (Extensible Stylesheet Language Transformation), an XML based language, is one
of the potential language to achieve such task [16]. The XSLT has a number of functions such as
filtering elements, selection to read and extract values, condition for restrictions, and loop over
elements and others functions.

4.3.7 Chaining engine

The resulted chaining instance using the previous steps is a single XML document containing
list of processing-functionalities with their required parameters value such as base URL, identifer
(name), inputs identifer, input values, and output identifers. This XML document needs to be
interpreted and executed to get the required result. As our chaining schema is new, there exist
no mechanism that can execute such XML document. For this, we have designed a chaining
engine which is dedicated to execute any chaining instance which is created based on the chaining
schema. The chaining engine is an executable script which should be configured based on the
chaining schema elements in order to handle all possible chaining instances. The chaining engine
should execute chain instance by extracting the required parameters, their corresponding values
to send an execute request per processing-functionalities using the corresponding base URL.

36

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

In order to formulate the request parameters for sending a valid execute request, the following
constant values are required.

e "?Request=Execute&Service=WPS& Version=1.0.0&": This constant values is always re-
quired for execute request of any processing-functionality.

e "=Reference@xlink:href=": this constant values are required when the input values are
provided in referenced URL input such as GetFeature request to WFS.

e "@uom=": This constant value is required if the input value is literal.

e "storeExecuteResponse=true": this constant value is required if the storage support needs
to be requested.

e "=@asReference=true": this constant values is required when the output return is requested
as URL instead of the actual data

e "ResponseDocument=": is required if output return is requested is by URL or "=@asRef-
erence=true" is requested.

e "RawDataOutput=true" : is required when the output return is requested in raw data for-
mat.

In the activity diagram, these constant parameter values are also indicated on activity where they
are required. For example, on figure 4.8, when input parameters are extracted, the input value
type needs to be checked such as if the input value is URL (referenced input), then the concatena-
tion of inputs parameters should be input identifer followed by the the reference constant value,
"=Reference@xlink:href=".

To handle any chain instances, the chaining engine is designed to capture and interpret all
possible elements of the chaining schema. To achieve this objective, we proposed the activity
diagram as shown on figure 4.7, the main activity diagram, which shows the procedure to be
followed for the implementation of the chaining engine.

In order to simplify the complexity of the diagram, the diagram do not contain each detail
actions of the implantation, instead the main activities are highlighted. For example, if we take
the activity, which says "read chaining instance content", we did not show each action how to
read the chaining instance which is an XML document. Because it will be different for different
programming script implementation. In addition, the activity diagram is designed for sending
execution request using HTTP GET method encoded in KVP (Key-Value-Pair) for the case of
simplicity, not using HTTP POST method.

The activity diagram on figure 4.7 shows, for any chaining instance , per each processing-
functionality, how the chaining engine extracts the parameters and their corresponding values
(such as server address where the actual processing functionality can be executed, identifier of the
processing functionality) needs to be extracted.

On this activity diagram, which is labeled with letter "A" refers to figure 4.8, and "B" refers
to figure 4.9.

The activity diagram on figure 4.8 shows how the input identifers and input values are inter-
preted and extracted for each processing-functionality. In this activity, input value type should
be checked. Because, the input value can be either reference (URL), or the output of executed
participant processing-functionality, or literal input value to send a valid execute request. In case
of more than one input for a processing-functionality, the inputs parameters should be separated
by semicolon.

37

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

The activity diagram on figure 4.9 shows that how the chaining engine interprets and extracts
the output identifiers in order to specify the processed output return types and how the output
of one processing-functionality can be passed to the next processing-functionality. If no return
output type is specified, output return form will be the default, which is encapsulated output.

After all, the required parameters and corresponding value of each processing-functionality
are extracted and concatenated, the request should be send to the processing-functionality to be
executed. After the processing functionality is executed, the chaining engine should receive the
output either to pass for the next processing functionality to be executed or to return to the user
(in case of last executed processing-functionality).

4.4 SUMMARY

In this chapter, the generic chaining schema to chaining WPS processing-functionalities was de-
signed. Once, having this generic chaining schema, which do not required to be designed again per
chains requirement, any expert user can use it for any processing-functionalities chaining require-
ments. The procedural steps for chaining processing-functionalities using this generic chaining
schema is also provided.

38

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

®

¥

read chain_ instance_
content

v

count processing-
functionalities (PF)

b4

-

"

{ for each PF

baseURL

Identifier

PositionInChain

store Supported

statusSupported

Datalnputs

ProcessQutputs

get input _
parameters

s
get output_ concatenate(input_
parameters parameters, ouput_

parameters)

concatenate(baseURL,
Identifier, input_ parameters,
output_ parameters)

[send request 3

—

recieve response

| oMn0G

is last excution

< get final_ output)
return output

W

Figure 4.7: Activity diagram for execution of chaining instance by chaining engine

39

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Figure 4.8: Activity diagram for input parameters extraction process by chaining engine

40

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

(et output_ parameters
(For each output get

-

Identifier (c)

- W

Ccheck output _type

-

asReference

RawDataOutput default

concatenate (raw
_constant, c)

storageSuppored

get(response_ constant,
c, reference_ constant)

concatenate output_ \/
parameters

Figure 4.9: Activity diagram for output parameters extraction process by chaining engine

41

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

42

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Chapter 5
Prototype implementation and testing

5.1 INTRODUCTION

In this chapter we completed the development of chaining method process by implementing and
testing the design with application scenario as proof-of-concept. The designed chaining schema
can be applied in wide application scenario independent of a specific GI application domain. We
chose a real-world scenario to demonstrate how the concept works. In the prototype some num-
ber of processing-functionalities to perform the required task are involved. Using the designed
chaining schema, the chaining of two processing-functionalities is defined. The chapter started
with application scenario definition in section 5.2, chain requirement analysis in section 5.3, dis-
covery of DescribeProcess response in section 5.4, mapping DescribeProcess responses to chaining
schema in section 5.4.1, mapping rules implementation in section 5.4.2, chaining schema imple-
mentation in section 5.4.3, and chaining engine implementation in section 5.4.4.

5.2 APPLICATION SCENARIO DEFINITION

Searching for a land parcel is one of day-to-day activity in GI application domain. The search for
land parcel may be required for different decision making purpose such as finding neighbourhood
of a parcel for maintenance purpose which needs the integration of two datasets to get the required
answer. For our demonstration, suppose a road in Enschede city is required to be expanded by
25 meter width. Before the expansion takes place, neighbourhood parcels which will be affected
needs to be known. Assume, we are working on behalf of Enschede municipality to get parcels
which will be affected within this road expansion. The given initial input datasets are Enschede
parcels and road spatial data in shape file.

5.3 CHAIN REQUIREMENT ANALYSIS

To start the chaining process using the designed chaining schema, first we identified the required
processing-functionalities to be involved, and their order of execution, how the initial input data
should be provided, and which input for which processing-functionality, and the required output
from each processing-functionality were decided. Through this process, buffer to execute the road
expansion by 25 meter as first processing-functionality, and intersection as second processing-
functionality to execute the intersection of parcels with the output of buffer in order to get those
possible affected parcels to get intersected are identified. The chain requirement description of the
given scenario is shown in figure 5.1 and is also summarized as:

e Initial input data: road and parcels datasets, both input data can be accessed via WFS Get-
Feature request in GML data format, as the the two datasets are published as WFS.

e Processing-functionalities execution order: first, buffer to create a polygon around the road.
The second, intersection which takes buffered polygon as one input, and parcels as the

43

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

second input.

e The final required output is parcels which are intersected with the polygon created around
the road.

/ road spatial y e Enschede spatial /
data data /
7 A 4
/ Buffer /
p) — Buff
/ distance=25m / e

—h/ Buffered road

/ ¢ /

Intersection <

v

Intersected /
area

Figure 5.1: Chain requirement analysis to search for parcels

5.4 DISCOVERY OF DESCRIBEPROCESS RESPONSE

In order to find the existing processing-functionalities, the entry point or base URL of exiting
WPS server is required. Such base URL of exiting WPS implementation can be retrieved from
catalogue services. So that using this base URL, a list of available processing-functionalities can
be accessed via GetCapabilities request using the request parameters provided on table 2.1. For
example Listing 5.1 shows the GetCapabilities request sent to specific WPS server. The response
from this request which includes list of available processing-functionalities is provided in appendix
Listing 1. From this response the identifer (name) of processing-functionalities, BufferPy and Inter-
sectionPy are identified which can satisfy the given chain requirement description. To get their full
description and evaluate further, we sent the DescribeProcess requests using the request parameter
provided on table 2.3. Listing 5.2 and Listing 5.3 shows the DescribeProcess requests for BufferPy
and IntersectionPy, respectively. The DescribeProcess response of BufferPy and IntersectionPy is
provided in appendix, Listing 2 and Listing 3, respectively.

Listing 5.1: GetCapabilities request for Zoo WPS

http://130.89.209.216/cgi-bin/zoo_loader.cgi?REQUEST=GetCapabilities&SERVICE=WPS&
VERSION=1.0.0

Listing 5.2: DescribeProcess request for BufferPy

http://130.89.209.216/cgi-bin/zoo_loader.cgi?REQUEST=DescribeProcess&SERVICE=WPS&
VERSION=1.0.0&IDENTIFIER=BufferPy

Listing 5.3: DescribeProcess request for IntersectionPy

http://130.89.209.216/cgi-bin/zoo_loader.cgi?REQUEST=DescribeProcess&SERVICE=WPS&
VERSION=1.0.0&IDENTIFIER=IntersectionPy

44

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

5.41 Mapping DescribeProcess responses to chaining schema

This step is the process of selecting all required values from DescribeProcess responses content to
the chaining schema. The selection of required values from DescribeProcess responses and identifi-
cation of corresponding matching element in the chaining schema is determined by interpreting
their elements.

The DescribeProcess responses of BufferPy and IntersectionPy must be specified as source schema,
and chaining schema must be specified as target schema. For this we used one of schema mapping
software, Atlova Map force, which has graphical interface to establish the mapping rules, the
lines connecting elements, between the selected values of DescribeProcess response as shown on
appendix, figure 1.

For example, figure 5.3, which is segment part of figure 1 which is shown in appendix, shows
mapping of elements from DescribeProcess response of BufferPy, figure 5.2, to the corresponding
elements of chaining schema, figure 5.3. On figure 5.4, the values of storeSupported, storeSupported,
and identifier from figure 5.2 are copied to chaining schema, storeSupported, storeSupported, and
identifier of the chaining schema, respectively. The remaining elements of the chaining schema,
BaseURL, and PostionInchain are elements which are not available from DescribeProcess response,
rather required to be filled by the user.

<ProcessDescription wps:processVersion="2"
storeSupported="true" statusSupported="true'">
<ows:Identifier>BufferPy</ows:Identifier>
<ows:Title>Create a buffer around a polygon. </ows:Title>
<ows:Abstract>Create a buffer around a single
polygon. Accepts the polygon as GML and provides
GML output for the buffered feature. </ows:Abstract>
<ows:Metadata xlink:title="Demo"/>
<wps:Profile>urn:ogc:wps:1.0.0:buffer</wps:Profile>

Figure 5.2: Segment of DescribeProcess response describing BufferPy

5.4.2 Mapping rules implementation

Once the correspondence elements between DescribeProcess response and chaining schema were
determined, the corresponding mapping rules established, the XSLT code is generated which is
one of the XML based language integrated with the software. The XSLT automatically interprets
and assigns those selected values to the corresponding elements of chaining schema. The full
generated XSLT code which is applicable specifically for this scenario is provided in appendix,
listing 6. Figure 5.5 shows the corresponding XSLT code encoding the established mapping rules
on figure 5.4 and figure 5.6 shows the final output after the required values are copied using the
XSLT code.

The final result of this step is a single XML document that contains the two processing-
functionalities required information which are ready to be executed which is shown in Listing 5.4.

45

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

<xs.element name="ProccessingFunctionality’ minOccurs="2" maxOccurs="unbounded">
<xs.complexType>
<xs:sequence>

<xs:element name="BaseURL" type="xs:anyURI"/>

<xs:element name="|dentifier" type="xs:string'/>

<xs:element name="PositionInchain’ type="xs:string"/>

<xs:element name="storeSupported" type="xs:boolean"/>

<xs.element name="statusSupported" type="xs:boolean"/>

Figure 5.3: Segment elements of chaining schema

EJ wpsDescribeProcess_response wi| BaseURL ﬁ wpschainschema
f * B[] File: BufferPy.xml [[] File: wpschainschema.xml
[}

5 B {}wps:ProcessDescriptions [» & {)wpschain

[L = service »| Positiont ‘B {} ProccessingFunctionality
[L = version [> igdefault|Positiont {)BaseURL

[l, i = xml:lang ') {} |dentifier

J-; B {} ProcessDescription {} Positioninchain

rL = wps:processVersion {} storeSupported

[]_-, E = storeSupported {} statusSupported

[L = statusSupported - {} Datalnputs

[L - B{)ows:Identifier 2 {}Input

Figure 5.4: Segment of mapping DescribeProcess response of BufferPy to chaining schema

5.4.3 Chaining schema implementation

The designed chaining schema is given in section 4.2.3. The implementation of this chaining
schema is demonstrated using the previously analyzed chaining requirement. Listing 5.4 shows
that the two processing-functionalities are chained in a single XML document based on the chain-
ing schema.

In this chaining example, the first processing-functionality is BufferPy where all required pa-
rameters and values for its execution within this chain instance are defined from line 6 to line 31.
The BufferPy can be uniquely identified by the value of PositionInchain, PF1, on line 9. The PF1
represents "first processing-functionality” to indicate as it is the first processing-functionality, in
sequence of this chain.

In addition, as we can see, the BufferPy takes two input values which are defined from line 12
to line 25. The first input is defined from line 14 to line 20, with input identifer Inputpolygon. For
Inputpolygon, the input value is reference (URL of WES GetFeature request for road data) which

46

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

sl for-gach seiect="Svard_ProcessDescriptions/*(local-name(j= ProcessDescription’ and namespace-un(=]>
sl variable name="vard_statusSupported’ select="@statusSupported />
| | <xstvariable name="vard_storeSupported” select="@storeSupported >
| <ProcoessingFunctionality?
<BaseURL>
sk value-of select="$BaselRL>
/BaseURL:
x5l for-gach select="nsl: dentifier™
<|dentifier>

i orslvalue-of select="string(>

I:,-Idenl:ufaer:

st forzachs

Fositioninchain>

<xslvalue-of select="$Position’ ">

/Positioninchain®

<stif test="string{boolean(3vard_storeSupported)) |= ‘false™

<xskvariable name="var_resultof_cast” select="string{$vard_storeSupported)’/>

<sloreSupported>

| oxslvalue-of select="string{{[pormalce-space(§Svars_resultof_cast) = rug') or (normalce-space(Svars_resultof_cast) = ‘1))
UstoreSupported>

&slif>

<xslif test="string{ooolean($vard_statusSupponed)) = false™

<yskvariable name="vard_resultof_cast’ select="string{Svarl_statusSupported)’>

<statusSupported>

<xslvalue-of select="string{([normalze-space(Svard_resultof_cast) = ‘true) or (normalize-space($vard_resultof_cast) = 197>
<statusSupponed>

BREE

Figure 5.5: Segment of XSLT code used for implementing of resulted mapping rules of figure 5.4

<BaseURL>http://130.89.209.216/cgi-bin/z00 loader.cgi</BaseURL>
<Identifier>BufferPy</Identifier>
<PositionInchain>PF1</PositionInchain>
<storeSupported>true</storeSupported>
<statusSupported>true</statusSupported>

Figure 5.6: Segment result of the final output after mapping rules executed

is one of the input type among the four input types defined in the generic chaining schema. The
second input is defined from line 21 to line 24, with input identifer BufferDistance and input value
is literal input which is the value for the road expansion. The BufferPy also produces one output
with identifer Result which is defined from line 26 to 30. This output identifier and Positionln-

47

NO O N ON U AN

W L W W W W W W WWNNNMNNNNNNDNDNRER PSR PR s
NO O NNV A WN P, ON0ONNUT AR WNRPFP, OVONONU RN WNDR~O

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

chain, PF1, are defined as input for the second processing-functionality as we can see from line 41
to 44. So that output of the BufferPy can be identified with this values to be passed as input for the
next processing-functionality.

With the same approach, the second processing-functionality, IntersectionPy, is defined from
line 32 to 60. The IntersectionPy takes two input values which are defined from line 38 to 54. The
first input with identifer, InputEntity1, which is defined from line 39 to 45, takes the output of
BufferPy. For this, as we discussed in previous paragraph, the PositionInchain and output identifier
of BufferPy are presented as input value. The second input value, with identifer InputEntity2, is
reference input which is the URL of WFS GetFeature request for parcels data. The IntersectionPy
also produces one output with identifer Result which is defined from line 55 to 59.

The complete output of the two processing-functionalities is the output of the last executed
processing-functionalities which is the output of IntersectionPy. For this the PositionInchain and
the output identifier of IntersectionPy are assigned as final output of the chain which defined on
line 62 and 63.

Listing 5.4: A sample of chaining buffer and intersection processing-functionalities chained using
the designed chaining schema

<?xml version="1.0" encoding="UTF-8"7>
<wpschain xmlns="http://www.itc.nl/wpschain" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.itc.nl/wpschain M:/
implemetation/FINALI~1/wpschainschema.xsd">
<ProccessingFunctionality>

<BaseURL>http://130.89.209.216/cgi-bin/zoo_loader.cgi</BaseURL>

<Identifier>BufferPy</Identifier>

<PositionInchain>PF1</PositionInchain>

<storeSupported>true</storeSupported>

<statusSupported>true</statusSupported>

<Datalnputs>

<Input>

<Identifier>InputPolygon</Identifier>
<Reference>http://130.89.209.216/cgi-bin/
mapserv?MAP=/home/students/meaza/
enschede/wps .map& service=WFS& ;
version=1.0.0&request=

Getfeature&typename=hengelosestraatWFS</Reference>

</Input>
<Input>
<Identifier>BufferDistance</Identifier>
<Litral>25</Litral>
</Input>
</Datalnputs>
<ProcessQOutputs>
<Output>
<Identifier>Result</Identifier>
</Output>
</ProcessQOutputs>
</ProccessingFunctionality>
<ProccessingFunctionality>

<BaseURL>http://130.89.209.216/cgi-bin/zoo_loader.cgi</BaseURL>

<Identifier>IntersectionPy</Identifier>
<PositionInchain>PF2</PositionInchain>
<storeSupported>true</storeSupported>
<statusSupported>true</statusSupported>
<Datalnputs>

<Input>

48

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

<Identifier>InputEntityl</Identifier>
<ProcessedResult>
<PositionInchain>PF1</PositionInchain>

<OutPutIdentifier>Result</0OutPutIdentifier>

</ProcessedResult>
</Input>
<Input>
<Identifier>InputEntity2</Identifier>
<Reference>http://130.89.209.216/cgi-bin/
mapserv?MAP=/home/students/meaza/enschede/
wps .map& service=WFS&
version=1.0.0&request=Getfeature&
typename=enschedeWFS</Reference>
</Input>
</Datalnputs>
<ProcessQOutputs>
<Output>
<Identifier>Result</Identifier>
</0Output>
</ProcessOutputs>
</ProccessingFunctionality>
<ChainQOutput>
<PositionInchain>PF2</PositionInchain>
<OutputIdentifier>Result</OutputIdentifier>

<ChainOutputIdentifier>BufferredIntersectedOutput</ChainOutputIdentifier:

</ChainOutput>
</wpschain>

5.4.4 Chaining engine implementation

In this step, final step, the result of the previous steps, the single XML document containing
the two processing-functionalities based on their predefined order needs to be executed. For
this purpose, the chaining engine was designed as given 4.3.7. The purpose of the chaining en-
gine is to interpret and execute any chaining instance which contains any number of processing-
functionalities designed based on the chaining schema. However, due to time limitation, for
demonstration purpose the implemented engine is works only for this specific scenario. The
implemented part of chaining engine is provided in appendix, on figure 2, figure 3, and figure 4.
The returned out from executing chaining instance is in GML format and visualized as shown on
figure 5.9. As we discussed, in section 5.2, the objective of the scenario was to search each parcels
of Enschede shown on figure 5.7 which will be affected by the road expansion. In order to search
these parcels, the IntersectionPy processing-functionality accepts a single polygon as input. There-
fore, in order to execute the intersection of each parcels with the buffered road , the IntersectionPy
needs to be executed iteratively. Due to this, we chose to demonstrate by taking Enschede as a
single polygon as shown on figure 5.8 when the buffered road is intersected with this polygon,
the result returns the buffered road itself as shown on figure 5.9.

$

Figure 5.8: Road and Enschede polygon

49

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Figure 5.9: Buffered road intersected with Enschede polygon

5.5 SUMMARY

In this chapter we implemented and tested the concept of this research with an example as proof-
of-concept. The chaining schema was applied for its intended purpose using the chosen scenario.
The corresponding chaining engine implementation was also attempted and worked for demon-
stration purpose, although for its full functionality, all required cases needs to be implemented.

50

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Chapter 6
Discussion, Conclusion, and Recommendation

In this chapter, we summarized the main objective of this research in terms of the research ques-
tions which were raised in chapter 1. We discussed the research questions and tried to answer each
question in section 6.1. In addition, we offer a brief conclusion in section 6.2. Finally, we give few
recommendations on what we think can be improved in future in section 6.3.

6.1 DISCUSSION ON RESEARCH QUESTIONS

The main objective of this research was to design a generic chaining method which enables to
combine two or more number of disparate WSP processing-functionalities into service chain to
perform complex geoprocessing task. To achieve this objective, five research questions were raised
in section 1.2.2. In this section we discussed the achievements on those research questions.

1. What are the requirements to create service chain ?

To create service chain, the description of each service is required. In service chain, the
interaction of two or more number services is determined with their description. Usually,
the content of services” description is comprised of functional and non-functional prop-
erties about the service. The functional properties describes about the functionality pro-
vided by the service which answers the question "what the service does ?" whereas the
non-functional properties answers the question "how a services does ?". The functional
properties include:service functionality, expected input parameters, and output parameters
to be generated. The non-functional requirements include, QoS (quality of service) such as
availability, response time, security, and cost. In service chain, the functional properties are
the primarily needed requirements, because with out functional properties the service can-
not exist, unlike the non-functional properties. In addition, in creating service chain, the
chainability of participant services needs to evaluated. As we discussed in services chaining
requirements analysis in chapter 3, the chainability evaluation can be determined by match-
ing the output and input of each service. The evaluation can be done either using a metric
unit that can measure the degree of similarity by parsing their input and output description
with some specified threshold automatically, or a expert user can determine by reviewing
their input and output description. Therefore based on the functional properties of ser-
vices to create service chain, in a sequence of services, one service can be before another
services to be executed, if and only if the output of the former service can satisfy the input
requirements of the later service either completely or partially.

2. How to discover services to create service chain ?

To start creating service chain, discovering and selecting chainable processing- functional-
ities is required. In order to discover available processing-functionalities, web address of
WPS server, base URL, needs to be known. This base URL can be retrieved from cata-
logue services. Using this base URL, list of processing-functionalities within a single WPS

51

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

server can be retrieved via GetCapabilities operation request. To select chainable processing-
functionalities which fits a given task, the DescribeProcess responses should be retrieved us-
ing the base URL and name (identifer) discovered in the GerCapabilities response.

In case of more than one processing-functionalities are discovered with similar functional-
ity properties, the ranking can be done either by human user giving his relevance weight
or using software application. Here the non-functional properties can play key role to
rank and select the best fittest processing-functionalities. In other case, if no processing-
functionalities found that fulfill requirement of a given task, then the requirement of a given
task needs to be refined into sub requirements until a set of processing-functionalities are
discovered. However, due to missing semantics (meaning of inputs and outputs) description
in DescribeProcess response document, one should be aware of that the wrong processing-
functionality may be discovered which can be solved with semantic description as stated
in [19].

. How to assemble a set of services as service chain ?

To assemble a set of processing-functionalities from different WPS provider into service
chain, it is necessary to model the essential functional properties which enable two or more
processing-functionalities interact with each other within a chain. We captured these func-
tional properties from the DescribeProcess response content as well as the requirements to
create web service and geoservices chaining application domain. We designed a generic
chaining schema using XSD language in section 4.2.3 which contains all possible contents
required to create service chain conceptually, serving as a template, to chain any two or
more number of WPS processing-functionalities as one application in any GI application
domain. The included functional properties are:

e Two or more number of processing-functionalities can be involved in a chain

e Each participant processing-functionality must have a base URL (Uniform Resource
Locator), and name (identifer).

e Each participant processing-functionality must have a position identifer within a chain.

e Each processing-functionality should have information on the store supported and
status supported as optional parameters.

e Each processing-functionality in the chain can take more than one input and produce
more than outputs.

e Each input and output must have a unique identifer.

e The output of one processing-functionality can be passed as input to the next processing-
functionality.

e For each processing-functionality input and output value can passed by value or refer-
ence (URL).

e The final chain output is the output of the last executed processing-functionality.

4. How to present the service chain as a single service ?

Any two or more number of WPS processing-functionalities chained using the designed
chaining schema can be presented by single XML document, as a single application, which
has a set of processing-functionalities with all required parameters and values such as base
URL, name (identifer), input identifier and the corresponding input values, and output iden-
tifer of one processing-functionality to be passed as input for another processing-functionality

52

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

based on specified order of execution. This XML document can be interpreted and ex-
ecuted by the chaining engine, which controls the execution request of each processing-
functionality as if the user is dealing with a single processing-functionalities only.

5. How to coordinate or control the interaction among a set of participant services for in-
put/output messages exchange (i.e. how the output of one service can be used as input for
the other services) ?

Any processing-functionalities chain instance created based on the generic chaining schema
is interpreted and executed by the chaining engine to produce the result. The chaining en-
gine makes the processing-functionalities working by sending an execute request to each
processing-functionality one after another, by passing the output of one processing- func-
tionality as input of the next processing-functionality to be executed. The returned out-
put from one processing-functionality can be stored in a temporary variable holder which
can be defined in the chaining engine, and this variable can passed as input to the next
processing-functionality to be executed. If the processing-functionality supports output
storage, then this processing-functionality can be requested to return the output by refer-
ence and this reference can be passed as input to the next processing-functionality.

6.2 CONCLUSION

In this research, we proposed a generic chaining schema to chain WPS processing-functionalities
in a distributed web service-based environment. The chaining schema is generic by contain-
ing all necessary information which enable to create any two or more number of processing-
functionalities in any GI application. To design such generic chaining schema, we analyzed the
requirements to create service chain from web services and geoservices domains, and DescribePro-
cess response content. From service chaining requirement analysis, we knew that the description,
which is comprised of functional and non-functional properties about a service is required to
create service chain. We considered the functional properties as they are the fundamental require-
ments to use a service. From the DescribeProcess response content analysis, the mandatory and
optional functional properties (parameters) were selected. Using the two analysis as input, we
were able to design a generic chaining schema using XSD language as shown on figure 4.2. In addi-
tion, after we completed the design of this chaining schema, making ready for use, an architecture
for chaining of WPS processing-functionalities using this chaining schema is provided, as shown
on figure 4.6.

Any two or more number of WPS processing-functionalities chained using this chaining schema
can be presented by single XML document, as one single application, which contains a number of
processing-functionalities with all required information and order execution. In order to interpret
and execute this XML document, we designed a chaining engine in section 4.3.7. The objective
of this chaining engine to read the content of any number of processing-functionalities chained
based on the chaining schema and to trigger the execution of each processing-functionality based
on their defined order and provided information. As a proof-of-concept, a real-world scenario
was chosen and demonstrated using the designed chaining schema. The output of this research
can used as one of the standards in the OGC framework. The output aims at supporting ex-
pert users of GI application domain for utilization of two or more number of disparate WPS
processing-functionalities as a single application.

53

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

6.3 RECOMMENDATION

The following recommendations were formulated to improve on the outcome of this research for
future.

e Automation requirement: The chaining of processing-functionalities using our chaining

schema is expert user driven. Because, the discovery of appropriate processing-functionalities
for the required task, evaluation of the validity of inputs for each processing-functionality,

the output and input compatibility for each processing-functionality, and evaluating the

correctness of the chain result are remained issues on the expert user side. This can be im-

proved through semantics description of processing-functionalities and through ontology

classification of processing-functionalities. So that by reasoning processing-functionalities

can be selected automatically to be chained.

Auxiliary processing-functionalities requirement: The integration of auxiliary processing-
functionalities should be included to the chaining engine in order to handle intermediate
input and output format transformation such as GML to shape file, JPG , PNG, or SVG
to visualize the result on the-fly, and coordinate transformation service to handle the con-
version of from one spatial reference system to another incase of input and output are in
different coordinate system. By auxiliary, to mean service integrated with the chaining en-
gine for intermediate processing task requirements which are not identified in the beginning
of the creating chaining instance to be executed.

Chain instance reusability requirement: Once a chain of processing-functionalities has been
developed for some user requirements, this chain can also exposed as new WPS processing-
functionalities. So that for future need, already built chain can be used for more than
one similar application requirement rather than building the new chain starting from the
scratch. By this, the central concept of SOA, service reusability can be utilized. This can
be achieved by publishing the processing-functionalities chain via WPS interface, so that it
can accessed via GetCapabilities, DescribeProcess, and Execute operations in a similar way of
other atomic WPS processing-functionalities.

54

LIST OF REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Web Services Business Process Execution Language(BPEL), Version 2.0. http://docs.
oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html, 2007. accessed 21-May-
2011.

Geographic information - services, iso tc211 document number n1203. http://www.
isotc211.org, 2008. accessed 10-November-2011.

ISO 19119 and OGC Service Architecture. The opengis abstract specification topic 12:
Opengis service architecture, version 4.3, 2002, 2004.

N. Alameh. Chaining geographic information web services. IEEE Internet Computing, pages
22-29, 2003.

N. Alameh. Service chaining of interoperable geographic information web services. IEEE
Internet Computing, pages 22-29, 2003.

Z. Azmeh, M. Driss, F. Hamoui, M. Huchard, N. Moha, and C. Tibermacine. Selection of
composable web services driven by user requirements. In Web Services (ICWS),IEEE Inter-
national Conference on, pages 395-402. IEEE, 2011.

T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M. Hondo, Y.L. Husband,
K. Januszewski, S. Lee, B. McKee, J. Munter, et al. Universal Description Discovery In-
tegration(UDDI), Version 3.0. Oasis, 2002.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S. Thatte,
and D. Winer. Simple object access protocol (SOAP) 1.1. http://www.w3.org/TR/2000/
NOTE-SOAP-20000508/, 2000. accessed 21-May-2011.

[9] J. Brauner, T. Foerster, B. Schaeffer, and B. Baranski. Towards a research agenda for geopro-

[10]

[11]

[12]

cessing services. In 12th AGILE International Conference on Geographic Information Science,
2009.

E. Christensen, F. Curbera, G. Meredith, and Weerawarana.S. Web Services Description
Language (WSDL) 1.1. http://www.w3.org/TR/2001/NOTE-wsd1-20010315, 2001. ac-
cessed 21-May-2011.

T. Foerster, B. Schiffer, B. Baranski, and J. Brauner. Geospatial web services for distributed
processing-applications and scenarios. 2011.

A. Friis-Christensen, N. Ostlander, M. Lutz, and L. Bernard. Designing service architectures

for distributed geoprocessing: Challenges and future directions. Transactions in GIS, pages
799-818, 2007.

N. Josuttis. SOA in practice:The art of distributed system design. 2007.

C. Kiehle. Business logic for geoprocessing of distributed geodata. Computers Geosciences,
pages 1746-1757, 2006.

55

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

[15]

[16]

[17]

[18]

[19]

[20]

C. Kiehle, K. Greve, and C. Heier. Requirements for next generation spatial data
infrastructures-standardized web based geoprocessing and web service orchestration. Trans-
actions in GIS, pages 819-834, 2007.

L. Lehto and T. Sarjakoski. Schema translations by xslt for gml-encoded geospatial data in
heterogeneous web-service environment. In Proceedings of the XXth ISPRS Congress, July,
pages 12-23, 2004.

R. Lemmens, D. Rolf, W. Andreas, G. Carlos, G. Michael, and V.O. Peter. Integrating
semantic and syntactic descriptions to chain geographic services. IEEE Internet Computing,
pages 42-52, 2006.

R. Lemmens, D. Rolf, W. Andreas, G. Carlos, G. Michael, and V.O. Peter. Enhancing
geo-service chaining through deep service descriptions. Transactions in GIS, pages 849-871,
2007.

M. Lutz. Ontology-based descriptions for semantic discovery and composition of geopro-
cessing services. Geoinformatica, pages 1-36, 2007.

C. Michaelis and D. Ames. Evaluation and implementation of the ogc web processing ser-
vice for use in client-side gis. Geoinformatica, pages 109-120, 2009.

[21] J. Mukherjee and S. Ghosh. Geospatial service chaining in decision support systems. In

[22]

[23]

[24]

[25]

[26]

India Annual Conference, pages 1-4, 2010.

SOA OASIS. Reference model tc, reference model for service oriented architecture 1.0.
Technical report, 2006.

J. Rao and X. Su. A survey of automated web service composition methods. Semantic Web
Services and Web Process Composition, 2005.

B. Schiffer. Ws-6 geoprocessing workflow (gpw) version 0.3.0, architecture engineering re-
port,ogc 09-053r5. http://www.opengeospatial.org/standards/per, 2009. accessed
21-May-2011.

P. Schut. OGC Web Processing Service (WPS), verion 1.0.0, OGC Standard Document.
http://www.opengeospatial.org/standards/wps/, 2007.

B. Stollberg and A. Zipf. Ogc web processing service interface for web service orchestration
aggregating geo-processing services in a bomb threat scenario. Web and Wireless Geographical
Information Systems, pages 239-251, 2007.

D. Than. Web service orchestration. http://www.eurescom.de/message/
messageJun2003/Web_Service_Orchestration.asp, 2010. accessed 21-May-2011.

S.J. Vaughan-Nichols. Web services: Beyond the hype. Computer, pages 18-21, 2002.

A. Weiser and A. Zipf. Web service orchestration of ogc web services for disaster manage-
ment. Geomatics Solutions for Disaster Management, pages 239-254, 2007.

C. Yang and R. Raskin. Introduction to distributed geographic information processing re-
search. International Journal of Geographical Information Science, pages 553-560.

D. Zhang, B. Xie, and L. Di. Open geospatial information services chaining based on ogc
specifications and processing model. In Education Technology and Training.International
Workshop on Geoscience and Remote Sensing.International Workshop on, pages 153-157, 2008.

56

(SN

0 N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Appendix

Listing 1: Example GetCapabilities response from Zoo WPS

<?xml version="1.0" encoding="utf—-8"?>

<wps:Capabilities xmlns:ows="http://www. opengis.net/ows/1.1"

xmlns:wps="http://www.opengis.net/wps/1.0.0"
xmlns:xsi="http: //www.w3.0rg /2001 /XMLSchema—instance"
xmlns:xlink="http: //www.w3.0rg/1999/xlink"
xsi:schemalocation="http: //www.opengis.net/wps/1.0.0_

http://schemas.opengis.net/wps/1.0.0/ wpsGetCapabilities response.xsd"

service="WPS" xml:lang="en-US" version="1.0.0">
<ows:Serviceldentification>
<ows:Title>Zoo WPS Test Server</ows:Title>
<ows:Abstract>Development version of ZooWPS. See
http://www.zoo—project.org</ows:Abstract>
<ows:Keywords>
<ows:Keyword>WPS</ows:Keyword>
<ows:Keyword>GIS</ows:Keyword>
<ows:Keyword>buffer</ows:Keyword>
</ows:Keywords>
<ows:ServiceType>WPS</ows:ServiceType>
<ows:ServiceTypeVersion>1.0.0</ows:ServiceTypeVersion>
<ows:Fees>None</ows:Fees>
<ows:AccessConstraints>none</ows:AccessConstraints>
</ows:Serviceldentification>
<ows:ServiceProvider>
<ows:ProviderName>GIP Department</ows:ProviderName>
<ows:ProviderSite xlink:href="http://130.89.209.216" />
<ows:ServiceContact>

<ows:IndividualName>Javier MORALES</ows:IndividualName>

<ows:PositionName>Teacher</ows:PositionName>
<ows:ContactInfo>
<ows:Phone>
<ows:Voice>False</ows:Voice>
<ows:Facsimile>False</ows:Facsimile>
</ows:Phone>
<ows:Address>

<ows:DeliveryPoint>Hengelosestraat 99</ows:DeliveryPoint>

<ows:City>Enschede</ows:City>

<ows:AdministrativeArea>Netherlands</ows:AdministrativeArea>

<ows:PostalCode>7514AF</ows:PostalCode>
<ows:Country>nl</ows:Country>

<ows:ElectronicMailAddress>email@itc. nl</ows:ElectronicMailAddress>

</ows:Address>
</ows:Contactlnfo>
</ows:ServiceContact>
</ows:ServiceProvider>
<ows:OperationsMetadata>
<ows:Operation name="GetCapabilities">
<ows:DCP>
<ows:HTTP>
<ows:Get xlink:href="http://130.89.209.216//" />
</ows:HTTP>
</ows:DCP>
</ows:Operation>
<ows:Operation name="DescribeProcess">
<ows:DCP>
<ows:HTTP>
<ows:Get xlink:href="http://130.89.209.216//" />
<ows:Post xlink:href="http://130.89.209.216//" />

57

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74
75
76
77
78
79

80
81
82
83
84
85

86
87
88
89
90
91

92
93
94
95
96
97

98
99
100
101
102
103

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

</ows:HTTP>
</ows:DCP>
</ows:Operation>
<ows:Operation name="Execute">
<ows:DCP>
<ows:HTTP>
<ows:Get xlink:href="http://130.89.209.216//" />
<ows:Post xlink:href="http://130.89.209.216//" />
</ows:HTTP>
</ows:DCP>
</ows:Operation>

</ows:OperationsMetadata>
<wps:ProcessOfferings>

<wps:Process wps:processVersion="2">
<ows:Identifier>CentroidPy</ows:Identifier>
<ows:Title>Get the centroid of a polygon. </ows:Title>
<ows:Abstract>Compute the geometry centroid.</ows:Abstract>
<ows:Metadata xlink:title="Demo" />
</wps:Process>
<wps:Process wps:processVersion="1">
<ows:Identifier>Boundary</ows:Identifier>
<ows:Title>Compute boundary.</ows:Title>
<ows:Abstract>A new geometry object is created and returned containing
the boundary of the geometry on which the method is invoked. </ows:Abstract>
<ows:Metadata xlink:title="Demo" />
</wps:Process>
<wps:Process wps:processVersion="2">
<ows:Identifier>BufferPy</ows:Identifier>
<ows:Title>Create a buffer around a polygon. </ows:Title>
<ows:Abstract>Create a buffer around a single polygon. Accepts the
polygon as GML and provides GML output for the buffered feature.
</ows:Abstract>
<ows:Metadata xlink:title="Demo" />
</wps:Process>
<wps:Process wps:processVersion="2">
<ows:Identifier>SymDifferencePy</ows:Identifier>
<ows:Title>Compute symmetric difference. </ows:Title>
<ows:Abstract>Generates a new geometry which is the symmetric difference
of this geometry and the other geometry.</ows:Abstract>
<ows:Metadata xlink:title="Demo" />
</wps:Process>
<wps:Process wps:processVersion="1">
<ows:Identifier>BoundaryPy</ows:Identifier>
<ows:Title>Compute boundary.</ows:Title>
<ows:Abstract>A new geometry object is created and returned containing
the boundary of the geometry on which the method is invoked. </ows:Abstract>
<ows:Metadata xlink:title="Demo" />
</wps:Process>
<wps:Process wps:processVersion="2">
<ows:Identifier>IntersectionPy</ows:Identifier>
<ows:Title>Compute intersection. </ows:Title>
<ows:Abstract>Generates a new geometry which is the region of
intersection of the two geometries operated on.</ows:Abstract>
<ows:Metadata xlink:title="Demo" />
</wps:Process>
<wps:Process wps:processVersion="2">
<ows:Identifier>UnionPy</ows:Identifier>
<ows:Title>Compute union. </ows:Title>
<ows:Abstract>Generates a new geometry which is the region of union of
the two geometries operated on.</ows:Abstract>

58

104
105
106
107
108
109

110
111
112
113
114
115

116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140
141
142
143
144
145
146
147
148

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

<ows:Metadata xlink:title="Demo" />
</wps:Process>
<wps:Process wps:processVersion="1">
<ows:Identifier>ConvexHullPy</ows:Identifier>
<ows:Title>Compute convex hull.</ows:Title>

<ows:Abstract>A new geometry object is created and returned containing

the convex hull of the geometry on which the method is

invoked.</ows:Abstract>
<ows:Metadata xlink:title="Demo" />

</wps:Process>

<wps:Process wps:processVersion="1">
<ows:Identifier>ConvexHull</ows:Identifier>
<ows:Title>Compute convex hull.</ows:Title>

<ows:Abstract>A new geometry object is created and returned containing

the convex hull of the geometry on which the method is
invoked.</ows:Abstract>
<ows:Metadata xlink:title="Demo" />
</wps:Process>
<wps:Process wps:processVersion="2">
<ows:Identifier>DifferencePy</ows:Identifier>
<ows:Title>Compute difference. . </ows:Title>
<ows:Abstract>Generates a new geometry which is the region of this
geometry with the region of the other geometry removed.</ows:Abstract>
<ows:Metadata xlink:title="Demo" />
</wps:Process>
<wps:Process wps:processVersion="2">
<ows:Identifier>GetArea</ows:Identifier>
<ows:Title>Compute geometry area.</ows:Title>
<ows:Abstract>Computes the area for a geometry</ows:Abstract>
<ows:Metadata xlink:title="Demo" />
</wps:Process>
<wps:Process wps:processVersion="2">
<ows:Identifier>Centroid</ows:Identifier>
<ows:Title>Get the centroid of a polygon. </ows:Title>
<ows:Abstract>Compute the geometry centroid.</ows:Abstract>
<ows:Metadata xlink:title="Demo" />
</wps:Process>
<wps:Process wps:processVersion="2">
<ows:Identifier>Buffer</ows:Identifier>
<ows:Title>Create a buffer around a polygon. </ows:Title>
<ows:Abstract>Create a buffer around a single polygon. Accepts the
polygon as GML and provides GML output for the buffered feature.
</ows:Abstract>
<ows:Metadata xlink:title="Demo" />
</wps:Process>
</wps:ProcessOfferings>
<wps:Languages>
<wps:Supported>
<ows:Language>en—US</ows:Language>
</wps:Supported>
</wps:Languages>
</wps:Capabilities>

Listing 2: Example DescribeProcess response describing BufferPy from Zoo

<?xml version="1.0" encoding="utf—-8"?>

<wps:ProcessDescriptions xmlns:ows="http://www. opengis.net/ows/1.1"
xmlns:wps="http://www. opengis.net/wps/1.0.0"
xmlns:xlink="http: //www.w3.0rg/1999/xlink"
xmlns:xsi="http: //www.w3.0rg/2001/XMLSchema—instance"

59

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

xsi:schemalocation="http://www. opengis.net/wps/1.0.0_
http://schemas.opengis.net/wps/1.0.0/ wpsDescribeProcess_response.xsd"
service="WPS" version="1.0.0" xml:lang="en-US">
<ProcessDescription wps:processVersion="2" storeSupported="true"
statusSupported="true ">
<ows:Identifier>BufferPy</ows:Identifier>
<ows:Title>Create a buffer around a polygon. </ows:Title>
<ows:Abstract>Create a buffer around a single polygon. Accepts the polygon
as GML and provides GML output for the buffered feature. </ows:Abstract>
<ows:Metadata xlink:title="Demo" />
<wps:Profile>urn:ogc:wps:1.0.0:buffer</wps:Profile>
<Datalnputs>
<Input minOccurs="1" maxOccurs="1">

<ows:Identifier>InputPolygon</ows:Identifier>

<ows:Title>Polygon to be buffered</ows:Title>

<ows:Abstract>URI to a set of GML that describes the
polygon.</ows:Abstract>

<ComplexData>

<Default>
<Format>
<MimeType>text /xml</MimeType>
<Encoding>UTF-8</Encoding>

<Schema>http://schemas.opengis.net/gml/3.1.0/ base/feature .xsd</Schema>

</Format>
</Default>
<Supported>
<Format>
<MimeType>application/json</MimeType>
<Encoding>UTF-8</Encoding>
</Format>
</Supported>
</ComplexData>
</Input>
<Input minOccurs="0" maxOccurs="1">
<ows:Identifier>BufferDistance</ows:Identifier>
<ows:Title>Buffer Distance</ows:Title>
<ows:Abstract>Distance to be used to calculate buffer.</ows:Abstract>
<LiteralData>
<ows:DataType
ows:reference="http: //www.w3.o0org/TR/xmlschema—2/#float">float</ows:DataType>
<UOMs>
<Default>
<ows:UOM>meters</ows:UOM>
</Default>
<Supported>
<ows:UOM>fe e t</ows:UOM>
</Supported>
</UOMs>
<ows:AnyValue />
<DefaultValue>i</DefaultValue>
</LiteralData>
</Input>
</Datalnputs>
<ProcessOutputs>
<Output>
<ows:Identifier>Result</ows:Identifier>
<ows:Title>Buffered Polygon</ows:Title>
<ows:Abstract>GML stream describing the buffered polygon
feature .</ows:Abstract>
<ComplexOutput>

60

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

<Default>
<Format>
<MimeType>text /xml</MimeType>
<Encoding>UTF-8</Encoding>

<Schema>http://schemas.opengis.net/gml/3.1.0/ base/feature.xsd</Schema>

</Format>
</Default>
<Supported>
<Format>
<MimeType>application /json</MimeType>
<Encoding>UTF-8</Encoding>
</Format>
</Supported>
</ComplexOutput>
</Output>
</ProcessOutputs>
</ProcessDescription>
</wps:ProcessDescriptions>

Listing 3: Example of DescribeProcess response describing IntersectionPy from Zoo

<?xml version="1.0" encoding="utf—-8"?>
<wps:ProcessDescriptions xmlns:ows="http://www. opengis.net/ows/1.1"
xmlns:wps="http://www. opengis.net/wps/1.0.0"
xmlns:xlink="http: //www.w3.0rg/1999/xlink"
xmlns:xsi="http: //www.w3.0rg /2001 /XMLSchema—instance"
xsi:schemaLlocation="http: //www.opengis.net/wps/1.0.0_
http://schemas.opengis.net/wps/1.0.0/ wpsDescribeProcess response.xsd"
service="WPS" version="1.0.0" xml:lang="en—US">
<ProcessDescription wps:processVersion="2" storeSupported="true"
statusSupported="true">
<ows:Identifier>IntersectionPy</ows:Identifier>
<ows:Title>Compute intersection. </ows:Title>
<ows:Abstract>Generates a new geometry which is the region of intersection
of the two geometries operated on.</ows:Abstract>
<ows:Metadata xlink:title="Demo" />
<wps:Profile>urn:ogc:wps:1.0.0:union</wps:Profile>
<Datalnputs>
<Input minOccurs="1" maxOccurs="1">
<ows:Identifier>InputEntityl</ows:Identifier>
<ows:Title>Mon test </ows:Title>
<ows:Abstract>the first geometry to compare against.</ows:Abstract>
<ComplexData>
<Default>
<Format>
<MimeType>text /xml</MimeType>
<Encoding>UTF-8</Encoding>
<Schema>http://fooa/gml/3.1.0/polygon.xsd</Schema>
</Format>
</Default>
<Supported>
<Format>
<MimeType>text /xml</MimeType>
<Encoding>base64</Encoding>
<Schema>http: //fooa/gml/3.1.0/ polygon.xsd</Schema>
</Format>
</Supported>
</ComplexData>
</Input>
<Input minOccurs="1" maxOccurs="1">

61

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

<ows:Identifier>InputEntity2</ows:Identifier>
<ows:Title>Mon test </ows:Title>

<ows:Abstract>the other geometry to compare against.</ows:Abstract>

<ComplexData>
<Default>
<Format>
<MimeType>text /xml</MimeType>
<Encoding>UTF-8</Encoding>
<Schema>http://fooa/gml/3.1.0/ polygon.xsd</Schema>
</Format>
</Default>
<Supported>
<Format>
<MimeType>text /xml</MimeType>
<Encoding>base64</Encoding>
<Schema>http://fooa/gml/3.1.0/ polygon. xsd</Schema>
</Format>
</Supported>
</ComplexData>
</Input>
</Datalnputs>
<ProcessOutputs>
<Output>
<ows:Identifier>Result</ows:Identifier>
<ows:Title>Mon test </ows:Title>

<ows:Abstract>A new geometry representing the intersection or NULL if

there is no intersection or an error occurs.</ows:Abstract>
<ComplexOutput>
<Default>
<Format>
<MimeType>application/json</MimeType>
<Encoding>UTF-8</Encoding>
</Format>
</Default>
<Supported>
<Format>
<MimeType>text /xml</MimeType>
<Encoding>UTF-8</Encoding>
<Schema>http: //fooa/gml/3.1.0/ polygon.xsd</Schema>
</Format>
</Supported>
</ComplexOutput>
</Output>
</ProcessOutputs>
</ProcessDescription>

</wps:ProcessDescriptions>

Listing 4: Example DescribeProcess response describing Intersection from Deegree

<?xml version="1.0" encoding="UTF-8"?>
<wps:ProcessDescriptions xmlns:wps="http://www. opengis.net/wps/1.0.0"

xmlns:ows="http: //www.opengis.net/ows/1.1"

xmlns:oge="http: //www. opengis.net/ogc"

xmlns:xlink="http: //www.w3.0rg/1999/xlink"

xmlns:xsi="http: //www.w3.0rg /2001 /XMLSchema—instance" service="WP
version="1.0.0" xml:lang="en"

xsi:schemalocation="http: //www. opengis.net/wps/1.0.0_

http://schemas.opengis.net/wps/1.0.0/ wpsDescribeProcess_response.xsd">

<ProcessDescription wps:processVersion="1.0.0" storeSupported="true'
statusSupported="false ">

g

"

62

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

<ows:Identifier>Intersection</ows:Identifier>
<ows:Title>Determining the intersection points between two GML
Geometries.</ows:Title>
<ows:Abstract>The intersection of two Geometries A and B is the set of all
points which lie in both A and B.</ows:Abstract>
<Datalnputs>
<Input minOccurs="1" maxOccurs="1">
<ows:Identifier>GMLInputl</ows:Identifier>
<ows:Title>GMLInputl</ows:Title>
<ComplexData>
<Default>
<Format>
<MimeType>text /xml</MimeType>
<Encoding>UTF-8</Encoding>
<Schema>http: //schemas.opengis.net/gml/3.1.1/ base/gml.xsd</Schema>
</Format>
</Default>
<Supported>
<Format>
<MimeType>text /xml</MimeType>
<Encoding>UTF-8</Encoding>
<Schema>http: //schemas.opengis.net/gml/3.1.1/ base/gml.xsd</Schema>
</Format>
</Supported>
</ComplexData>
</Input>
<Input minOccurs="1" maxOccurs="1">
<ows:Identifier>GMLInput2</ows:Identifier>
<ows:Title>GMLInput2</ows:Title>
<ComplexData>
<Default>
<Format>
<MimeType>text /xml</MimeType>
<Encoding>UTF-8</Encoding>
<Schema>http://schemas.opengis.net/gml/3.1.1/base/gml. xsd</Schema>
</Format>
</Default>
<Supported>
<Format>
<MimeType>text /xml</MimeType>
<Encoding>UTF-8</Encoding>
<Schema>http: //schemas.opengis.net/gml/3.1.1/ base/gml.xsd</Schema>
</Format>
</Supported>
</ComplexData>
</Input>
</Datalnputs>
<ProcessOutputs>
<Output>
<ows:Identifier>Intersection</ows:Identifier>
<ows:Title>Intersection</ows:Title>
<ComplexOutput>
<Default>
<Format>
<MimeType>text /xml</MimeType>
<Encoding>UTF-8</Encoding>
<Schema>http://schemas.opengis.net/gml/3.1.1/ base/gml.xsd</Schema>
</Format>
</Default>
<Supported>

63

62
63
64
65
66
67
68
69
70
71
72

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

<Format>
<MimeType>text /xml</MimeType>
<Encoding>UTF-8</Encoding>
<Schema>http://schemas.opengis.net/gml/3.1.1/ base/gml.xsd</Schema>

</Format>

</Supported>
</ComplexOutput>
</Output>
</ProcessOutputs>
</ProcessDescription>
</wps:ProcessDescriptions>

Listing 5: Example DescribeProcess response describing Buffer from Deegree

<?xml version="1.0" encoding="UTF-8"?>
<wps:ProcessDescriptions xmlns:wps="http://www.opengis.net/wps/1.0.0"
xmlns:ows="http: //www. opengis.net/ows/1.1"
xmlns:oge="http: //www. opengis.net/ogc"
xmlns:xlink="http: //www.w3.0rg/1999/xlink"
xmlns:xsi="http: //www.w3.0rg /2001 /XMLSchema—instance" service="WP
version="1.0.0" xml:lang="en"
xsi:schemalocation="http://www. opengis.net/wps/1.0.0_
http://schemas.opengis.net/wps/1.0.0/ wpsDescribeProcess_response.xsd">
<ProcessDescription wps:processVersion="1.0.0" storeSupported="true"
statusSupported=""false ">
<ows:Identifier>Buffer</ows:Identifier>
<ows:Title>Process for creating a buffer around a GML geometry.</ows:Title>
<ows:Abstract>The purpose of this process is to create a buffer around an
existing geometry with a buffer distance specified by the
user.</ows:Abstract>
<Datalnputs>
<Input minOccurs="1" maxOccurs="1">
<ows:Identifier>GMLInput</ows:Identifier>
<ows:Title>GMLInput</ows: Title>
<ComplexData>
<Default>
<Format>
<MimeType>text /xml</MimeType>
<Encoding>UTF-8</Encoding>

"

<Schema>http://schemas.opengis.net/gml/3.1.1/base/geometryComplexes.xsd</Schema>

</Format>
</Default>
<Supported>
<Format>
<MimeType>text /xml</MimeType>
<Encoding>UTF-8</Encoding>

<Schema>http://schemas.opengis.net/gml/3.1.1/base/geometryComplexes. xsd</Schema>

</Format>
</Supported>
</ComplexData>
</Input>
<Input minOccurs="1" maxOccurs="1">
<ows:Identifier>BufferDistance</ows:Identifier>
<ows:Title>Buffer distance</ows:Title>
<LiteralData>
<ows:DataType
ows:reference="http://www.w3. org/TR/xmlschema—2/#double">double</ows:DataType>
<UOMs>
<Default>
<ows:UOM>unity</ows:UOM>

64

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

| | wpsDeTs.cnbeF‘rucess_respunse w1 BassURL | 8| wpschainschema
_‘“ ?DF”E Bf:ﬂerPy.me o L default| BaseURLE =1 [] File: wpschainschema.xml
B=! {};::.:ir;ecessDescnptmns : \ |3) wpschain | o
[Bl . w2 Position = 3 {}ProccessingFunctionality
D] - = miang e e e
8 U:::;zs:iz:s:;;ﬂﬂ b () Positioninchain
T S - {} storeSupported
(4 = status Supported : E| g ;;at:.': 5:12‘]0“3{‘
[@ {} ows:ldentifier L = {}Inpu:}
(25| B owsTitle b5 s {}Identifier
[H {} ows:Abstract S T {}Reference
[& g:w:i;qreotf?liam | »i BufferDistance B {}ProcessedResult
- (}wgs;wsnL Ldefautl[BufferDistancel tHRoxtibulietn
e (}(g D:tli;utljdentmer
{ = {} Datalnputs b e O L:rale)
f _é;;:;i‘:;soumms b E| {}ProcessOutputs
[> B {}Output : :E----{--}:{C;Tc::::iﬁer
3 & {}ows:ldentifier ~ p—v~————)\ 0l {}Reference
E QowsTile Ny] L L {}Encapsulated
2 _ i {ows:Abstract [z “wgpostonz | 0 || L |) RawDataOutput
LS S iatacats] {}ProccessingFunctionality (2)
R {}BaselURL
| &| wpsDescribeProcess_response S {}1dentifier
[> + B {]File: IntersectionPy.xm| L g {} Positioninchain
[z | “& {}wps:ProcessDescriptions S S {} storeSupported
[+ = zervice S {} statusSupported
[=version e | - {}Datalnputs
| = xmiklang 3 ‘B {}Input
{ = {}ProcessDescription b -{}ldentifier
------- =wps:processVersion 3 -{}Reference
= storeSupported 3 & {}ProcessedResult
{ - = status Supported e {}Positioninchain
[&1 {} ows:Identifier 3 {} OutPutldentifier
5 .. = codeSpace {}Embeded
[= B {dowsTitle o S0 L b e {}Litral
3] & {} ows:Abstract = & {}ProcessOutputs
3| @ {}ows:Metadata 3 EEI {} Output
1} .- {}wps:Profile 3 -{¥Identifier
= B {3 wps:WSDL -{}Reference
-8 {} Datalnputs -{}Encapsulated
L@ {} Input w3 RawDataOutput

‘3 {} ProcessOutputs & E {}ChainOutput
2 {} Output ” = - {}Positioninchain

& {} ows:Identifier -{} Outputidentifier

3

[

L

e b i

. Fhmwrachile [E&»—/ﬁ' -{}ChainOutputidentifier
2 {}ows:Abstract e fdefautt|FinalOutputhy

k2 [2

{¥ows:Metadata

Figure 1: Schema mapping to fetch required value from DescribeProcess response of BufferPy and Intersec-
tionPy to the chaining schema

65

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

</Default>
<Supported>
<ows:UOM>unity</owss:UOM>
</Supported>
</UOMs>
<ows:AnyValue />
</LiteralData>
</Input>
</Datalnputs>
<ProcessOutputs>
<Output>
<ows:Identifier>BufferedGeometry</ows:Identifier>
<ows:Title>BufferedGeometry</ows:Title>
<ComplexOutput>
<Default>
<Format>
<MimeType>text /xml</MimeType>
<Encoding>UTF-8</Encoding>

<Schema>http://schemas.opengis.net/gml/3.1.1/ base/geometryComplexes.xsd</Schema>

</Format>
</Default>
<Supported>
<Format>
<MimeType>text /xml</MimeType>
<Encoding>UTF-8</Encoding>

<Schema>http://schemas.opengis.net/gml/3.1.1/ base/geometryComplexes.xsd</Schema>

</Format>
</Supported>
</ComplexOutput>
</Output>
</ProcessOutputs>
</ProcessDescription>
</wps:ProcessDescriptions>

66

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

<Ydoea—JIOJi[sX />
Auoiﬁnuw;\v
</, () 8urris:uj =10973s
oouonbos: sx>
<Id1jl3uapr>
<,J191JI1UAP[:QSU ,=109[3S [IBI—JIOJ:[SX>
<Tynoseq/>
</, (TYNoseg$) Surris:sx =109]9s
uucu:@um;mxv
<T¥NPsEg>
A.\Aioniuzsmm:imoouohmv
</.po11oddngarois@ ,=199]as
.¢ ()opou ,=se | por1roddngorols” pIes —oWEU I[QEIIBAI[SX>
</.po1ioddngsnieis@ ,=1099]as
. ¢ ()opou,=se poiroddngsnieis ¢ies ,—oweUu I[qEIIBAI[SX>
<,[.. ba ()rin—ooedsoweu:uj]uoridiroso(ssad01:/suor1drioso(ssad0rg gIea$,=109][9S [OIBI—IOJ:[SX>
</..psx ewoyosureyosdm /1 TTYNLI/uorrerowajduwr /:jy ureydsdm /qu- o011 -mmm//:d11y, ,=10970s
L, @UBISUT—eWIYISTINX / 1007/ 310 "¢m mmm//:d11y ,=ooedsoweu ,UOTIEO0TEWIYIS:ISX ,—OWEU 2dINqIIIILI[SX>
<,ureyosdm /Tu- 011 "mmm//:dr1y =sujwx ureyosdm>
</.,suoridriosogssadsorJ:1su,=129[3s ¢ ()opou, =se ,suor1dridso(ssad01J gIeA ,=dWEU I[qBIILAI[SX>
</.suonidriosa(gssesorg:ysu/
(¢osuodsar ssadorgaqriosagsdm ¢)oop:uj,=3199[as ¢ ()opou,=se , suoridrioso([ss9001J [JIEA , —OWEU I[qEIIBAI[SX>
<,/.=yorew ajejdwaj:sx>
</.sof ,=parinbor Juriis:sx =se indinQeurj,—oweu wered:[sx>
</.sof ,=parinbar gnAueisx =se gIpopoydsus ,=oweu wered:[sx>
</.sof ,=parinboar Juriis:sx =se guonsod =oweu wered:[sx>
</,sof ,=poarinboar o[qnop:sx ,=se doueisiiojjng ,—dweu wesed:[sx>
</.sof ,=parinboar gnAueisx =se gJmieerissso[oduoy,—doweu wered:[sx>
</,sof ,=parinbor 3uriis:sx =se juorirsoJ ,=oweu wesed:[sx>
</,sof ,=poarinbor ynAue:isx =se Tynoseqg,=oweu wesed:[sx>
</, .Jux" £Juor109s191U], ,=109[3s , ¢dosuodsar ss2001J0qridsy(sdm —dweu wesed:[sx>

i

</.sof ,=1uapur ,g—JIN,=3urpoous [wx =poylow 3Indino:[sx>
<,UJ sX Jsu Qsu,=soxI1Jard—1[nsor—opnjoxs
LSuoriouny—tiedx /goog/ 870 " ¢m mmm//:d11y ,=ujisujwx | BUWOYISTINX
/100z/ 310 ¢m-mmm//:dray ;=sx:sujwx ,0'0'1/sdm/10u - s13uado mmm//:day,
=rsu:sujwx ,[°[/smo/10u-si3uado mmm//:d11y ,=gsu:sujwx
,wiojsuel] /TSX /6661 /310 ¢m-mmm//:d11y =[sx:sujWwX , (Q°7,=UOISIIA 3I0YSI[AISI[SX>
<¢,.8—J1N,=3urpoous ,(0'] ,=UOISIdA [UWIX¢>

eUIYa0s Sutureyd oY1 01 (4affng pue Lguorrdasiouy jo uoneruawaduwr sani Surddewr 107 9pod 17SX :9 Sunisry

N T 1N ONONO AN TN ONONO AN 10O N0
oA A A A A A T AN AN AN AN AN AN AN ANANANO OO0 NN 000

— NN N O NN O
—

67

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

A,__”: bo CCsluuwmmoEmc_::mp:&psommuuoum“*__Huuo_um Yoed —JOJI SX>
<Yyoea—JIoJ:[sX />
<sindurereq />
<Yyoea—JoJ:[sX />
<anduy/>
<peanr/>
</.(9oueisiqioyjng¢) SurIis:sx =159[3s
ooﬁosvuw;mxv
<[eIITT>
<d0udIdjay />
</.(SIMreer1sasojo8uay¢) SurIls:sx =100]3s
souonbas: sx>
<ooudIdJIY>
<yoea—JI0J:[sX />
<Ioynauapy/>
</, (") 8uriis:uy =100[9s
oouonbos:ysx>

<JIoljliuspr>
<, I9TJTIUIPI:QSU ,=100[2S [IEI—JOJ:[SX>
<indur>
<,[.. ba ()rin—ooedsoweu:uj]induy:*,=10079s yYoed—I0J:[SX>

<sinduyeleq>
<,[.. bo ()rin—osoedsoweu:uy]sinduereq:*,=19979s YdIBI—JIOJ:[SX>
<yripsx />
Aﬁoﬁoamﬂﬂmw:pfm\v
</.(((po11oddngsnieis ¢iea¢)SuTIis:uJ)ues[00q:sX)3UIIISISX ;=109[2s
oouonbas: sx>
AvouuomQSmm:uSmV
<,(porroddngsniels ¢IeA¢)SISIXo:UJ ,=1501 JI:[SX>
<yrisx />
Aﬁoﬁo&mzmououm\v
</.(((por10ddngo101s™ IeA) SUTIIS:UT) ULD[0OQ:SX) FUTIISISX ;=109[2s
souanbas: sx>
AvuﬁomQSmouoamV
<,(po110oddngor01s™ IBA) SISIXD:UJ,=1591 JI:[SX>
<ureyoujuoIIIsOJ />
</,Juo0111s0J§,=109]3s
uoqaﬂwum#mxv
<UTEYOUJUOTIISO >

L
9
St
bL
€2
wu
I
0L
69
89
9
99
g9
79
€9
9
19
09
65
86
L8
95
e
¥S
€
zs
IS
0
6t
8
Vg
9%
st
vt
£
44
Iy
of
6€

68

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

<,(po110ddnga101s 9IeA) SISIXa:UJ =151 JI:[SX>
<ureyduJuOIIIsoJ />
</,zuorisodg¢ ,=159]as
uucusvmw;mxv
<UTeYOUJUOTIISO >
<Yd2ed—JOJi[sX />
<T21yTIVIPT />
</.()Surris:uy =159]as
uu:uswow;wxv
<Ioljliuspr>
<, T91JT1UAPI:QSU ,=109]35$
yoeo—JoJi[sx>
<Tdnoseq/>
</ . (TINPsegs$) SuTIIs:sx ,=159]3s
uucuswum;mxv
<TdN2sed>
<£317euor1oun J3Urss90001 >
</,porioddngorois@ ,=109]as
.¢ ()opou ,=se |, porroddngorois 9gIrea —OWEU I[QEIIBAI[SX>
</.,porroddngsniers@ ,=109[3s
. ¢ ()opou =se poiroddngsnieis gieA =owrEU I[qEIIBAI[SX>
<,[.. bo ()rin—osoedsoweu:uj]uoridiroso(sso001J:x/suor1drioso(Issoo0rJ [Iea$,=109[9S [IEI—JOJ:[SX>
<Yoed—JOJ:[SX />
A\C\:mmoCucsmmcwmmouuoum\V
<yoes—I0J:[sx />
<sindinQssooorg />
<Yyoea—JoJ:[sX />
<ndinQ />
<Yoea—JOJ:[SX />
<T21j1IUIPT />
</, () 8urris:uy, =159]3s
souanbos:iysx>
<Ioljriusapr>
<, T91J11UQPI:QSU ,=109]35$
yoea—J0J:i[SX>
<indinp>
<,[.. boa ()rin—ooedsoweu:uy]indinQ:x,=159]3s
yoea—J0Ji[sX>
<sindinQssodsor >

91
St
4!
¢l
cl
11
01
60
80
£0
90
S0
¥0
€0
[49)
10
00
66
86
L6
96
S6
¥6
€6
6
16
06
68
88
/8
98
S8
¥8
€8
8
18
08
6/
8/

69

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

<iannuepringinQ>
<,IdTjr1uopr:Qsu ,=199[3s
Yoea—JO0J:I[SX>
Acdmaocﬂcoﬁiom\v
</,1Uo0I111s0 J¢,=1093]2s
oouanbos:sx>
<UTEYOUJUOIIISO >
<1[NSIYPIssad0I >
<.[.. ba ()rin—osoedsoweu:uj]indinQ
sx /[, bo ()rain—ooedsoweu:uj]sindinQssosoig
sx/[.. boa ()rain—ooedsoweu:uy]uoridirosa(Issasoig

t#/suo11d11059(]$59001J IBA$,=109[9S [YOEI—JOJ:I[SX>

<d0udI1djay />
</, (SIM3payosuag) 3urIls:sx =109]3s

souanboas: sx>

<ooudIdJIY>

<yoea—JI0jJ:[sX />
<T2TJTIVIPT />

</.()S8urris:uy =109]3s
oouonbos:ysx>

<JIo1jriuspr>
<, I9TJTIUIPI:QSU ,=109[2S [YILI—JOJ:[SX>
<indur>
<,[.. ba ()rin—ooedsoweu:uj]induy:*,=10079s yYoea—I0J:[sX>

<sinduyeleq>
<,[.. ba ()rin—ooedsoweu:uj]sinduere(q:*,=109[9S YdELI—JOJ:[SX>
<yripsx />
Aﬁoﬁoamﬂﬂmwsafm\v
</.(((po11oddngsnieis gieag)
SUuTI1S:UJ) ULI[00Q:SX) SUTIISISX
ou:uswom__mxv
Awuiomazmmsuﬁmv
<,(porroddngsniels gIeA ¢)sSISIXo:UJ =1S91 JI:[SX>
<yriysx />
<p9iroddngorois />
</.(((pa2r10oddngorois 9rea¢)SutIiis:uy)
ue9[00q:sX) 3UTIISISX
uomuswumémxv
<p911oddngorois>

=3109]9Ss

”HUD—Om

g6
¥S
€5
zs
IS
0s
6t
8t
Vi
9%
st
by
€
44
It
of
6¢
8¢
3
9¢
g€
re
€€
43
13
o€
6z
8z
Yrd
9
4
vz
€
44
1z
0z
61
81
hal

70

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

<, T91J11UQPI:QSU ,=109]3s
[oBd—JIOJ:[SX>
AQQJQGHEOCGOQ\V
</.zuornisodg ,=10079s
oouanbos:sx>

<UTBYIUJUOTITSO >
<ndingurey)>

<.[.. bo ()rin—ooedsoweu:uy]indinQ

s« /[, ba ()1rin—ooedsoweu:uj]sindingssasoirg

sx/[.. ba ()1rain—ooedsoweu:uy]uoradirosa(]ssaoorg

tx/suo11d11059($59001J [IBA$,=109[9S [YOEI—JOJ:I[SX>
<Yyoea—JOJ:[sX />
A%H:wmoCoz:mmcmmmuuookﬂm\V
<Yd2ea—JIOJ:[SX />
Ampzau:Ommuoofﬁ\V
<yoea—JI0J:[sX />
<nding />
<Yyoea—JoJ:[sX />
<T21j1IUAPT />
</.()S8urrys:uy =159]3s
ouc®svom;wxv
<Ialjriuapr>
<, T91J11UAPI:QSU ,=109]3$
yoea—J0J:[sxX>
<indino>
<,[.. bo ()rin—ooedsoweu:uy]indinQ:x,=159]3s
yoeo—JoJi[sx>
<sindinQssod01 >
<,[.. ba ()rin—osoedsoweu:uj]sindin(Qssso0rJ:%,=109[39s YdLI—JOJ:[SX>
<ysea—Joj:[sx />
<sindureieq />
<Yyoea—JOJi[sX />
<induy />
Aa_umul._ofﬁmx\v
<1[nsaoypossadorg />
<Yyoea—JoJ:[sx />
<IarjniuapringinQ />
</.()Surris:uy =1059]3s
uu:uswom“_mxv

¥6
€6
6
16
06
68
88
/8
98
68
¥8
€8
[4:4
18
08
6/
8
LL
9/
S
124
€L
44
|74
0L
69
89
29
929
S9
¥9
€9
(&)
19
09
65
8¢
LS
96

7

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

Auuuamu_\:mlmx\v
<93eydwoay:ysx />
AqmwaommB\V
<Yoed—JOJ:[SX />
<andinQureyd />

<rorjniuaprandinQurey) />
</, mdinQreury¢,=109[9s oouanbas:ysx>

<roynwoprindinQureyn>

<yoes—I0J:[sx />
<1srprauaprinding />

</.()S8urris:uj =109]3s
uomusvumémxv

<roryniuoprindinQ>

72

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

2 <html>

<head>

<hl> chaining elemets extarction</hl>
4 [H<s=cript type="text/javascript">
5 var Regquest: 3 5

var Versiornr
var Service:
var referenc
var UCM='
[if (window.XMLHttpReguest) {

xmlhttp—new XMLHttpRequest () ;

xmlhttp=new hctiveXCbject ('
TERE C

17 xmlhttp.open ("CE
zmlhttp.send() ;
xmlDoc=xmlhttp.responseXML;

x—xmlDoc. getElementsByTagName ("wpscha
Llfunction FirstFunctionality(){

var parameters_l=new Array():

e ;

51
[

o)
"

var Inputparametersl;

24 parameters_1[0]=x[0] .childNodes[0] .getElementsByTagName (’ ") [0] .childHodes [0] .nodeValue;
25 parameters 1[1]=x[0].childNodes[C0].getElementsByTagName (" ™) [2] .childNodes [0] .nodeValue;
26 parameters_1[2]=x[0].childNodes[0].getElementsByTagName ("F) [0] .childNodes [0] .nodeValue;

parameters 1[3]=x[0].childNodes[C].getElementsByTagName ("sto
parameters 1[4]=x[0].childNodes[0].getElementsByTagName ("statuss
Inputparametersi=parameters_1[0]+"

}[C].childNodes[0] .nodeValue;
tad") [0] .childNodea[0] .nodeValue;

return (Inputparametersl):
G e 1

Figure 2: Java script for two proceessing-fucntionalities

J]fun:ticm SecondFunctionality()
k| i

var parameters2=new Array()
var Inputparameters2;
parameters2[0]=x[0] .childNodes[1] .getElementsByTagName ("5as
parametersz (1] .childNodes[1].getElementsByTagName ("Ide:
parameters2([2] .childNodes[1].getElementsByTagName ("Posi
parameters2 [3]=x[0] .childNodes[1] .getElementsByTagName ("=
parameters2 [4]=x[0] .childNodes[1] . getElementsByTagName (s

) [0] .childNodes[0] .nodeValue;

") [0] .childNodes [0] .nodeValue;

) [0] .childNodes[0] .nodeValue;
2d") [0] .childNodes[0] .nodeValue ;
ted") [0] .childNodes[0] .nodeValue

Inputparametersi=parameters?[0]+" 3 "+"REQ "+Request+’c +Service+” H="+Version+"al +paramsters2[1]+"";
53 return Inputparameters2;:

54 ¥

55 function getDataInputsForSecondFunctionionality()

56 H

57

=="4x[0].childNodes[1].getElementsByTagame (" }[0] .childNodes[0] . childNodes [0] .

nodeValuet+” ncet deURIC (=x[0].childNodes[0].getEl yTagName ("Input™) [0].childNodes[0] .nextSibling.childNodes[C] .nodeValue)+";: "}
61 //DataInputs2=x[0] .childNodes[1].getElementsByTagName ("Input") [1].childNodes [0].childNodes([0] .nodeValue+"="+reference+FirsctFunctionality()+getDatalnpursForF
62 DataInputs2=x[0].childNodes[1].getElementsByTagName ("1 .childNeodes [0] .childNodes[0] .nodeValue+"="+reference;
63 DataInput3=Datalnputsi+Datalnputs2;
64
65 //DataInput3=Datalnputsl;
66 return Datalnput3:
&7
68 1

Figure 3: Java script for two proceessing-fucntionalities continued from 2

LJqu.nctJ.cm ChainOutput ()
H {

var chainOutput v=new Array():
var Finaloutput;:
chainOutput_v[0]=x[0] .childNodes [3] . getElementsByTagName ("Ou
chainOutput_v[1]=x[0] .childNodes[3] .getElementsByTagNams ("

tIdencifier") [0].childNodes[0] .nodeValue;
'} [0] .childNodes[0] .nodeValue ;

chainOutput_v[2]=x[0] .childNodes[3] .getElementsByTagiame ("C £ier”) [0] .childNodes [0] .nodeValue;
78 Finaloutput=chainCutput_v[0]+chainOutput_v[i]+chainCutput_v[2]:
2 return Finaloutpur;
I3
function WPSchain()
=1
window.open (SecondFunctionality () +getDatalnputsFo: Functionionality()+ URIComponent (FirstFunctionality()) +getDatalnputsForFirstFunctionionality ()
//document .urite (SecondFuncrionality() +gecDataInputsForSecondFuncrionionality () + deURIComp, t (FirstFunctionalicy())+gecDatalnputsForFirstFunctionional
3
</seript>
</head>
Fl<body onload="WPSchain():">
[F</budy>
</html>

Figure 4: Java script for two proceessing-fucntionalities continued from 3

73

