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Summary

Travel demand origin-destination matrix estimation is a core, but expensive, aspect of transport

modeling, especially in the context of large scale modeling. They are used to store, and subsequently

generate the trips from an origin to a destination. In this research, the upper level of a bi-level and

iterative matrix calibration method, known as multi source matrix calibration (MSMC), is improved

upon. This upper-level consists of a convex-quadratic numerical optimization problem, which,

by changing OD matrices, aims to minimize the differences between observed and modeled link

flows, congestion patterns and delays. This upper-level is implemented in MATLAB and solved by

its proprietary solver FMINCON, in combination with the interior-point algorithm. But, this solver

shows sporadic, and thus unreliable, tendencies within the upper-level computation times. The

first approach taken to improve upon this implementation is to find another, more dependable

solver.

An initial list of ten solver-algorithm combinations is presented, determined by considering the

characteristics of the problem (convex, quadratic and large-scale), as well their capability to inte-

grate with MATLAB. These ten solvers are then evaluated on two separate networks. The first being

the smaller academic network Sioux Falls, which is used to filter out the worst performing solvers,

by comparing them to the current implementation. With these preliminary tests, this initial list

reduced to only five. The second network of the province of Noord-Brabant, being more realistic, is

used to assess the solvers for scalability and their performance in a real-world scenario. From this

list, none were able to be applied, due to them running out of system memory.

After failing to apply these solvers to the Noord-Brabant network due to running out of system

memory, a method is stipulated to reduce the problem size. This method makes use of the available

gradients, by removing OD-pairs whose absolute gradient values show a low amplitude, as these

pairs have a relatively minimal impact on the results of the calibration. Two separate gradient

selection methods are then presented. The first is a static method, that selects the OD-pairs based

on a set percentage. The second is a dynamic method, which chooses the OD-pairs based on the

mean and standard deviation of the distribution of their gradients. This approach of reducing

the problem size is shown to have similar convergence in tests on Sioux-Falls, with the dynamic

method standing out as the best. Further, when applying this methodology on the network of

Noord-Brabant, though the dynamic method shows comparatively worse convergence, the static

method, when keeping 50% of the total problem size, is able to reduce the total computation

time from 59 to 46 hours, without compromising the final convergence substantially, as the final

objective function value is within 1% of the original implementation.

It is thus concluded that, with the original implementation, none of the alternative solvers are

capable enough to perform in a realistic scenario. Additionally, exploratory results with regards to

the problem size reduction are shown to be capable of solving the current issues reliably. Thus, this

approach is deemed as an improvement upon the current implementation.
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1 Introduction

Transport infrastructure is an important part of modern civilization. Starting from when the Romans

first built their roads to transport their goods throughout Europe to modern times, where they

ensure that a person can go anywhere they wish to. Though, due to the constantly increasing

population, the current infrastructure has failed to meet the demands it is subjected to (Saw et al.,

2015), leading to cases of congestion and thus, travel delays. For this reason, predictive transport

modeling has become a core aspect of infrastructure planning, as it, for example, aims to give

insight into future traffic conditions for policy makers (Brederode et al., 2018), give an overview

of a complex system, or explore impacts of planned interventions (Næss et al., 2014). To this end,

many different traffic assignment models were developed and implemented, primarily divided

between dynamic and static assignment models (Saw et al., 2015), as well as varying travel demand

origin-destination (OD) matrix estimation methods (Hamerslag & Immers, 1988). These estimation

methods are generally at the center of current and predictive traffic modeling, as an OD matrix

is the defining factor when generating the trips that will be performed within a transportation

network (Hamerslag & Immers, 1988).

Recently, Brederode et al. (2020) developed multi source matrix calibration (MSMC), a new OD

matrix estimation method. This new method is comprised of an iterative calibration process, with

two alternating levels, an upper and a lower level (Brederode et al., 2020). The upper level makes

use of parameter values generated by the lower level and calibrates a travel demand OD matrix by

means of a numerical optimization problem. The lower level then aims to translate the (calibrated)

OD matrix into traffic flows via a static capacity constrained traffic assignment (SCCTA) model or a

static capacity restrained traffic assignment (SCRTA) model (Brederode et al., 2020). The subject of

this research is the solving of the upper level optimization problem.

The remainder of the report is structured as follows: The rest of section 1 aims to elaborate upon

the context of the assignment, by introducing the involved parties, as well as the current issues

related to the assignment. Additionally, section 1.2 explicitly states the research objective and

associated questions. Section 2 aims to outline the criteria which demarcate the possible solvers, as

well as their meaning. Furthermore, nonlinear solution algorithms are presented. This is followed

by section 3, where the methodology followed to arrive at answers for the two research questions

is explained. Section 4 then presents the results arrived at for the comparison of the solvers. The

next section, section 5, goes into a different direction and presents the route taken to account

for the results of the solver comparison. Following that is section 6, where the results associated

with the method stipulated in the previous section are presented. Finally, conclusions (section 7),

discussions (section 8) and recommendations 9) close off the report.

1.1 Context

1.1.1 Involved Parties

The primary party involved is Dat.mobility, the party who commissioned the project. Though the

results of this project could have implications for many transport modeling agencies, as efficient

Page 1



Bachelor Thesis 1 INTRODUCTION

modeling is particularly important in modern times. Furthermore, indirectly implicated by this

project are the parent company of Dat.mobility, Goudappel, and the Netherlands as a whole, since

currently, about 75% of the Dutch traffic models are maintained within OmniTRANS, a toolbox

developed by Dat.mobility, which will be utilizing MSMC in future. By utilizing the results of this

research, more robust and reliable traffic prediction models can be developed, enabling the state to

implement a more dependable road network, as well as corresponding policies, thus, ensuring all

travelers a safe and timely journey.

Additionally, it must be noted that the current implementation of MSMC is as a prototype in

MATLAB. Whereas, the final implementation of MSMC is likely to be either in Java or C++ and

Dat.mobility thus also wishes for the solver, which is utilized in the upper level, to abide by other

criteria, which fall outside the scope of this research. These include the type and cost of the license,

as well the ability to seamlessly migrate the solver from the prototype to the final product.

1.1.2 OD Matrix Calibration

Travel demand matrix calibration is an important component of traffic modeling (Hamerslag and

Immers, 1988; Willumsen, 1978), with a wide variety of methods having been developed. Such as

the principle component analysis based method developed by Djukic et al. (2012), or the random

forests based approach developed by Saadi et al. (2017). Although these methods may all differ in

their execution, their ultimate aim is to minimize the differences between observed and modeled

link flows, congestion patterns and delays, by changing an initial OD matrix (Brederode et al., 2020;

Saadi et al., 2017).

1.1.3 Optimization Problem

The upper-level of the MSMC approach is composed of a large-scale, linearly-constrained optimiza-

tion problem, which calibrates the travel demand matrix (D*). It is shown in Equation 1 (Brederode

et al., 2020). The aim is to minimize the objective function F, which is composed of the differences

between observed (or prior) and current OD demand (D0 and D), current and observed link flows

(y(D) and ỹ), as well as current and observed route queuing delays (τ (D) and τ̃ ). Furthermore,

each of these differences can be weighted with the corresponding weight wi, where i ∈ {1, 2, 3}.

Finally, it must be noted that this program has been proven to be convex and smooth.

D* = argmin
D

(F) = argmin
D

(
w1

∑
(D−D0)

2 + w2

∑
(y(D)− ỹ)2 + w3

∑
(τ (D)− τ̃ )2

)
Subject to: y(D) = α̂ΨDk−1 +

∂α̂

∂D
ΨDk−1(D−Dk−1)

τ (D) =
T

2

(
1

α̃(Dk−1)
− 1

)
− T

2
(D−Dk−1)

T

(
∂α̃(D)

∂D
· 1

α̃2(Dk−1)

)
0 < D ≤ D̄

χj

∑
i∈Ij

Tij(D)− δjRj

 ≤ 0 ∀ j ∈ JD̄

(1)
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Where α̂ and Ψ are matrices containing acceptance factors for all route-link combinations and

route choice probabilities, respectively, Dk−1 is a prior solution for the travel-demand matrix, α̃ is

a vector containing flow acceptance factors, ∂α̂/∂D and ∂α̃(D)/∂D are the sensitivity of α̂ and

α̃, respectively, T is the study period duration considered, D̄ is an arbitrary boundary defined by

scaling D0, χj ∈ {−1, 1} depicts the constrained state of out-link j, Ij is the set of in-links for j,

Tij represents the response function for turn demands, Rj and δj are the supply of out-link j and

the corresponding minimum deficit/surplus of supply, and JD̄ is the set of out-links considered

(Brederode et al., 2020).

1.1.4 Current Issues

Currently used to solve the optimization problem is the solver FMINCON, provided by MATLAB,

with the default, "interior-point" solving algorithm (Brederode et al., 2020). This algorithm is

a general-purpose nonlinear programming solution algorithm, which can utilize the available

gradients of the objective function and constraints (Waltz et al., 2006).

(a) Without constraints (Time in s)

(b) With constraints (Time in 104s)

Figure 1: Solving time (x-axis) VS Computational requirements [%] (y-axis)
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This algorithm (and MSMC) was previously assessed on the optimization problem under two

conditions. The first test, depicted in Figure 1a, shows that the solving time required in the upper-

level reduces with each iteration the solver is used. On the other hand, when the linear constraints

are introduced, the computation time required for each upper level iteration becomes sporadic, as

shown in Figure 1b. Specifically, during iterations 1 and 6, the solver struggles to find the solution

within an acceptable time. Additionally, the total computation also grows substantially.

1.2 Research Objective

Problem Statement

The current solving method utilized to solve the constrained quadratic optimization problem is

sub-optimal, as the number of steps required to converge is quite large, sometimes it does not even

converge, and the total computation time is exceedingly long (see 1.1.4).

Research Objective

The objective of this research is to improve upon the current implementation of the upper-level

solver, FMINCON, used for MSMC, or find another, more efficient and reliable one. To this end,

various solvers will be statistically and qualitatively compared using performance indicators.

Definition of "Improve Upon"

Due to ambiguity of the words "improve upon", they must be further defined. In the context of this

research, the definition is as follows: "to reliably speed up and stabilize the convergence rate of the

solver whilst maintaining (or improving) its accuracy".

1.2.1 Research Questions

From the research objective, and the underlying context, two specific research question can be

identified.

As depicted within the literature review (2.2), there are many different solvers, and their correspond-

ing algorithms, that are applicable to the optimization problem of Equation 1.

Which of these solvers is the most efficient?

To answer the question posed above, answers to the following sub-questions are required.

• How can the efficacy of a solver be determined?

• How can the concerned optimization problem be translated into a form which is accepted by

the strictly quadratic solvers?

The second question follows from section 1.1.4. As depicted, the computation time of the current

solver changes to be more sporadic when the second constraint of the optimization problem is

included.

Is the cause of these issues the solver utilized or the optimization problem?
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2 Literature review

The aim of this research is, as depicted within the research objective (1.2), to improve upon the

current implementation of the solver utilized to solve the constrained-quadratic optimization

problem of Equation 1. To understand which solvers and their corresponding solution algorithms

are suitable for the task, it is important to first re-frame the characteristics of the problem, as

depicted in 1.1.3.

2.1 Key Characteristics

2.1.1 Constrained & Quadratic

The problem of interest is a linearly constrained and quadratic optimization problem, where the

aim is to minimize the objective function F of Equation 1 (Brederode et al., 2020). This means that

the solution to the optimization problem must satisfy the given conditions, i.e., being part of the

set of feasible solutions Ω, shown in Equation 2 (Nocedal and Wright, 2006: Chapter 12).

Ω =
{
D |0 < D ≤ D̄ ∧ Φ(D)

}
where Φ(D) = χj

∑
i∈Ij

Tij(D)− δjRj

 ≤ 0 ∀ j ∈ JD̄
(2)

2.1.2 Convex & Smooth

The convexity of the objective function F and constraints is one of the more important charac-

teristics of this optimization problem. By it having such a characteristic, any local solution found

within the feasible region is proven to be a global solution (Brederode et al., 2020; Nocedal and

Wright, 2006: Chapter 1). Furthermore, the objective function and constraints are proven to be

smooth (Brederode et al., 2020): Their gradients are explicitly available, which is an exploitable

characteristic, as shown by the interior-point solution algorithm utilized by FMINCON (Brederode

et al., 2020; Waltz et al., 2006).

2.1.3 Large-scale

The final, restraining characteristic of the optimization problem, is that it is large-scale (Brederode

et al., 2018). A large-scale program is an optimization problem with more than thousands of deci-

sion variables (Nocedal and Wright, 2006: Chapter 7). Due to this, computation times can be quite

substantial, and the efficiency of the chosen algorithm and solution process is particularly impor-

tant, as computational resources are finite. In the case of this program, the networks associated

with the travel demand matrix realistically comprise upwards of a thousand centroids, which is

directly translated into the size of D, the decision variable(s) (Brederode et al., 2020).
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2.2 Possible Solution Algorithms

From these key characteristics, an overview of possible solution algorithms, specific to the con-

cerned program, can be detailed. The following is an exhaustive list of applicable solution al-

gorithms, both strictly quadratic and nonlinear, utilized by the solvers available in the YALMIP

interface (Lofberg, 2004), a MATLAB toolbox featuring a multitude of solvers. A list of the solver-

algorithm duos discussed below is shown in Table 1.

Table 1: Possible solvers with their corresponding algorithms and program characteristics

Solver Algorithm Specifications

OSQP ADMM (2.2.1)

- Convex

- Quadratic

- Large-scale

MOSEK IPM (2.2.3)
- Convex

- Quadratic

GUROBI
Simplex (2.2.2) - Quadratic

IPM (2.2.3) - Large-scale

QUADPROG Interior-point-convex (2.2.3)

- Convex

- Quadratic

- Large-scale

BARON Branch-and-reduce (2.2.5) - Nonlinear

SNOPT SQP (2.2.4)
- Nonlinear

- Smooth

KNITRO
IPM by Waltz et al. (2006) (2.2.3) - Nonlinear

IPM by Byrd et al. (1999) (2.2.3) - Large-scale

FMINCON
IPM by Waltz et al. (2006) (2.2.3) - Nonlinear

SQP (2.2.4) - Large-scale

2.2.1 Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADMM) is a recently developed first order, operator

splitting algorithm. It is utilized by the solver OSQP and is shown to be applicable to large-scale

and convex quadratic programs (Boyd et al., 2011; Stellato et al., 2020). The general form utilized

by OSQP is shown in Equation 3. Important to note are the drawbacks of ADMM: it is heavily data

dependent, and sensitive to the initial user-input (Stellato et al., 2020). Though, OSQP aims to

combat these through a preconditioning phase that uses symmetric matrix equilibration (Stellato

et al., 2020).

minimize
x∈Rn

1

2
xTPx+ qTx

subject to l ≤ Ax ≤ u

(3)

Where P ∈ Sn
+ is a positive semi-definite matrix, q ∈ Rn, l, u ∈ Rm and A ∈ Rm×n.

2.2.2 Simplex Method

The simplex method was developed to be applicable to linear programs. But, since the late 1950s,

researchers have been expanding upon the method to apply it to quadratic programs (van de Panne
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and Whinston, 1969; Wolfe, 1959) and it is currently utilized as the non-default algorithm for

quadratic optimization problems in the GUROBI solver (Gurobi Optimization, 2022b). The general

programs the algorithm is applicable to are linearly constrained convex quadratic programs (Wolfe,

1959). Though, it is not the first choice when tackling large-scale problems (Gurobi Optimization,

2022a).

2.2.3 Interior-Point

The interior-point method (IPM) is the default algorithm utilized by the solver FMINCON (Math-

Works, 2022a), as well as GUROBI (Gurobi Optimization, 2022a), KNITRO (Byrd et al., 2006), MOSEK

(MOSEK, 2022), and QUADPROG (MathWorks, 2022b). Furthermore, it is the family to which the

algorithm currently used to solve the considered optimization problem belongs.

In the past, the IPM, also known as barrier method, was solely utilized to solve linear optimization

problems. Though, recent technological advancements have been made to prove that this method

is also efficiently applicable to nonlinear programming (Nocedal and Wright, 2006: Chapter 16) and

specifically large-scale optimization problems (Gurobi Optimization, 2022a; Nocedal and Wright,

2006: Chapter 19). The basic nonlinear IPM is composed of two combined iterative processes. The

outer iteration loop is responsible for setting the barrier parameter (µk), giving the method its

second name, and stops when a test with regards to the nonlinear optimization problem is satisfied.

The parameter µk further constrains the set of feasible solutions, reducing the time required to

find an approximate solution. The interior loop is responsible for finding a feasible, approximate

solution, until an error threshold is satisfied (Nocedal and Wright, 2006: Chapter 19).

From the basic algorithm, three specific implementations will be further explored. the algorithm

utilized within FMINCON and KNITRO, developed by Waltz et al. (2006), the algorithm developed

by Byrd et al. (1999), also utilized by KNITRO, and the algorithm known as "interior-point-convex"

implemented in QUADPROG, the generic quadratic programming solver proprietary to MATLAB

(MathWorks, 2022b). The algorithms utilized by GUROBI and MOSEK are not further explored, as

no exact specifications are given (Gurobi Optimization, 2022a; MOSEK, 2022).

Interior-point-convex

The interior-point-convex (IPC) algorithm was specifically developed for large-scale convex-

quadratic programs, subject to linear constraints (Altman and Gondzio, 1998, MathWorks, 2022b),

with the generic form of shown in Equation 4. The general approach consists of a pre-solve phase,

where the program is simplified as much as possible and redundancies are eliminated, followed by

the predictor-corrector technique described by MathWorks (2022b).

minimize
x∈Rn

1

2
xTHx+ fTx

subject to Ax ≤ b

Aeqx = beq

l ≤ x ≤ u

(4)

Where f, l, u ∈ Rn, b, beq ∈ Rm, A,Aeq ∈ Rm×n and H ∈ Rn×n.
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Interior-point by Waltz et al. (2006)

The IPM developed by Waltz et al. (2006) is a combination of the two main distinctions of the generic

algorithm, the line-search IPM and the trust-region IPM (Nocedal and Wright, 2006: Chapter 19;

Waltz et al., 2006). Equation 5 depicts the general program the algorithm is applied to.

minimize
x∈Rn

f(x)

subject to h(x) = 0

g(x) ≤ 0

(5)

Where f : Rn → R, h : Rn → Rl and g : Rn → Rm.

Interior-point by Byrd et al. (1999)

The IPM developed by Byrd et al. (1999) aims to incorporate SQP into the trust-region IPM, with

the intended application of efficiently solving large-scale, nonlinear programs. The use of the

SQP algorithm is to inexpensively solve the barrier sub-problems generated by the interior-point

algorithm.

2.2.4 Sequential Quadratic Programming

Sequential quadratic programming (SQP) was the nonlinear algorithm that dominated the industry

before the interior-point algorithm became applicable to nonlinear optimization problems (No-

cedal and Wright, 2006: Chapter 18). It is suitable for both small and large-scale programs, and is

utilized by the solvers FMINCON, in its non-default state (MathWorks, 2022a), and SNOPT (Gill

et al., 2021).

2.2.5 Branch-and-Reduce

The branch-and-reduce (BAR) algorithm, to the knowledge of the author, seems to be fairly un-

known, only being employed by the solver BARON for nonlinear optimization problems (Sahinidis,

1996). Its typical application is non-convex problems (Sahinidis, 1996), though it is also proven to

be applicable to nonlinear programs in general (Sahinidis, 2017). The algorithm is iterative, making

use of the branch-and-bound and range reduction methods to find an approximate solution of the

problem. The iterations conclude once a certain error threshold has been satisfied. Furthermore,

on linearly constrained concave problems, exact solutions can be found (Sahinidis, 1996).

The generalization of the optimization problems the branch-and-reduce algorithm can solve is

shown in Equation 6.

minimize
x∈X

f(x)

subject to g(x) ≤ 0
(6)

Where: f : X → R, g : X → Rm and X ⊂ Rn.
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3 Research Methodology

To answer the research questions, and ultimately, fulfill the research objective, a methodology must

be followed. Figure 2 shows the general framework the research will follow. Furthermore, sections

3.1 and 3.2 address the steps that will be followed for each research question in more detail.

Figure 2: Proposed research methodology

The general framework is split between the two questions, demarcated by the orange squares. For

each separate methodology, the final desired answer is depicted by a blue objective, while the steps

needed to arrive there are in white.

3.1 Which of these solvers is the most efficient?

The research methodology proposed here makes use of the YALMIP interface (Lofberg, 2004) to

integrate the available solvers into the current implementation of the model. This interface allows

one to easily change which solver is being used, without having to change any other script details.

Furthermore, the interface allows strictly quadratic solvers to not be restricted by the optimization

problem parameters they must receive. This is especially important in this case, as the problem is

not configured in accordance with Equations 3 and 4, which have an explicit matrix H or A. This

is achieved by YALMIP processing the optimization problem before redirecting it to the selected

solver (Lofberg, 2004). In addition to the YALMIP interface, nonlinear solvers that have a native

interface, such as KNITRO or BARON, will be interfaced directly.

The first step consists of setting up the testing environment. The main point included under this

bracket is familiarization with the current upper-level implementation, i.e., changing the networks

and parameters to the desired ones. Furthermore, the production of the desired data and graphics

Page 9



Bachelor Thesis 3 RESEARCH METHODOLOGY

must be ensured. The form and type desired will be further discussed for the "gathering data" step.

Additionally, this step also includes setting up YALMIP and the desired solvers.

3.1.1 Production of Data

The third step is running tests, which is split into two phases. The first phase consists of running

the solvers on a smaller network, and the second phase, which is after the first results comparison,

tests the preliminary "best" solvers on the larger network of the Noord-Brabant province, Nether-

lands. The network that will be utilized for preliminary testing is an adapted Sioux Falls network

(Brederode et al., 2020), with Figure 3 depicting the general outline of the network. The adapted

network consists of 24 centroids (origins/destinations), acting as nodes, and 35 links (Brederode

et al., 2020). Each run on the Sioux Falls network will be set to continue until the MSMC criteria are

met, with a maximum final limit of 50 iterations. For comparison, the reference solver-algorithm

duo converges in four iterations, as shown in Figure 4.

Figure 3: Sioux Falls network

During the second phase, the solvers will be tested on the Noord-Brabant transportation network,

which consists of 1425 centroids, 145’269 links and 103’045 nodes. The aim is to perform tests on

the scalability of the "best" solver, i.e., to see if it is a viable option in a realistic scenario. For each

run, the maximum number of iterations performed will be 10, so long as the convergence criteria

are not met beforehand.

The data generated through the tests will take two primary forms: solving/convergence time per

iteration, with the associated RAM usage (as shown in section 1.1.4), and convergence graphs,

such as the ones shown in Figure 4. Figure 4 is composed of 5 separate graphs. The four on the

left (purple, red, green and blue) depict the objective function value (F ) and the values of each

component (associated with the weights w1, w2 and w3). In addition to the value (depicted by the

left axis of the graphs), a percentage is shown. For the Objective function value graph (purple) it
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depicts the percentage of the final objective function value with respect to the initial objection

function value. For the three other graphs, it depicts the average percentage error (sum squared

error) between the modeled and observed values of that component. The final graph (yellow)

depicts the violation of constraints. On the left axis is the total number of vehicles violating the

constraints, and on the right axis is the number of links j for which the constraints were violated.

It is important to note is that, for Sioux Falls, solely the convergence graphs will be utilized to

gain insight, as the RAM usage and computation time are indistinguishable between solvers. For

the Noord-Brabant network, on the other hand, the most suitable solvers will be distinguished by

utilizing both data types, according to the details of the research objective.

Figure 4: Example convergence graphs - Reference

3.2 Is the cause of these issues the solver utilized or the optimization problem?

The methodology proposed for the second question is straightforward. The first step taken to arrive

at the desired goal will be to reproduce the results shown in section 1.1.4 with the current setup.

Following that, the results gathered for the first research question will be utilized to gain insight

into the possible reasons for the issues. Currently, two general possibilities are stipulated: firstly, if

the behavior for all solvers is shown to be similar, then the issues most likely lie with the constraints

themselves. Secondly, if this behavior is not shared, then the solver-algorithm duo was not suitable

for the problem.
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4 Results - Solver Comparison

An overview of the results for each solver is depicted in Table 2, for which descriptions and refer-

ences can be found in Table 1. Each of the criteria mentioned follow from the research objective

(1.2). Additionally, all mentioned results were retrieved on the Sioux Falls network, except for “Scal-

able”. The first criterion mentioned is the number of iterations. This criterion refers to the number

of times the lower level was called during the full MSMC run, with the number of calls to the solver

being one less. For this criterion, a low value is generally desirable, as that directly translates into a

lower total run-time. The second criterion is the final convergence accuracy the real optimization

problem achieves i.e., the quality of convergence. Here, the lower each component is, the more

accurate the solution found is. It is split into three separate components and corresponds to the per-

centage associated with the objective function value graph (denoted by F ), the average percentage

error (sum squared error) of to the link flow deviations (denoted by w2) and the average percentage

error of the route delay deviations (denoted by w3). Important to note is that the average percentage

error of the prior demand deviations (associated with w1) is not mentioned, as, though it is a criteria

of convergence, the whole intent of MSMC is to change the original travel-demand matrix. The next

criterion is the violation of constraints. This criterion is split into two components, the number of

link constraints being violated and the total number of vehicles violating the constraints. In both

cases, a lower value is desirable, though the latter is deemed more impactful. The penultimate

criterion shows if the convergence of the objective function value is monotonously decreasing, i.e.,

not sporadic, depicted by "No". This is the desired behavior, as the expected behavioral pattern

is thus more reliable, and it is guaranteed a solution will be found. The second possible value is

"Yes", which means the solver showed sporadic convergence. The final criterion displayed here is

the scalability of the solver, determined by utilizing the Noord-Brabant network. For this criterion,

there are two possible values: "No", which means that the solver either gave conclusive insight into

its applicability or was not tested for scalability due to the tests on Sioux Falls. The second value is

"Yes", which means that the solver was applicable and produced adequate results.

Table 2: Results overview - solver comparison

Solver Interface Algorithm #i Quality of convergence [%] Constraint violations Sporadic Scalable
F w2 w3 # links # vehicles

FMINCON
Native

IPM1 4 0.54 0.97 2.96 3 112 No Yes

SQP 4 0.31 0.63 2.79 0 0 No No
YALMIP SQP 3 0.68 0.98 2.78 0 0 No No

KNITRO Native
Byrd IPM 4 0.47 0.80 4.19 1 137 No No
Waltz IPM 4 0.43 0.73 4.25 1 33 No No

SNOPT Native SQP 4 0.50 0.82 4.36 2 153 No No

BARON Native BAR 4 0.36 0.69 4.22 3 553 No No

QUADPROG YALMIP IPC 22 0.25 0.62 1.52 0 0 Yes No

GUROBI YALMIP IPM 3 0.36 0.91 3.01 0 0 Yes No

OSQP YALMIP ADMM > 50 n/a n/a n/a n/a n/a Yes No

MOSEK YALMIP IPM n/a n/a n/a n/a n/a n/a n/a No

1 Reference solver-algorithm duo
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4.1 Sioux Falls

For Sioux Falls, only the strictly quadratic solvers and FMINCON-SQP were tested via the YALMIP

interface. The reason for which being memory problems with YALMIP, which is further elaborated

upon in section 4.2. Furthermore, for this same reason, only the IPM of GUROBI is tested, and

not the simplex method. Finally, for further viewing, a compilation of all relevant Sioux Falls

convergence graphs, for the solver comparison, can be found in Appendix A.

4.1.1 FMINCON

Two different FMINCON-SQP variants were tested: variant 1 utilized the native interface and

variant two was interfaced through YALMIP, with both showing promising results. Reasons for their

diverging behavior could be the problem conversion through YALMIP or possibly differing settings.

For the latter, as is shown in Table 2, a convergence of similar quality to the reference is achieved in

one less iteration. Furthermore, the number of link constraints being violated is 0, meaning that the

final solution reached was feasible. This behavior is also reflected in the prior iterations, as shown

in Figure 5: the SQP algorithm implemented strictly abides by the constraints for each iteration.

Figure 5: Sioux Falls - FMINCON-SQP + YALMIP convergence graphs

The results of the natively interfaced variant are also very promising, with it achieving a higher

quality of convergence for the mentioned objective function components, as well as the objective

function itself. Furthermore, this is achieved in the same number of iterations whilst strictly abiding

by the set constraints, in the same manner the YALMIP interfaced variant does.

Considering these factors, FMINCON-SQP, in both interface variants, was chosen to be further

tested for scalability.
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4.1.2 KNITRO and SNOPT

Both KNITRO variants, as well as SNOPT show very similar results. As shown in Table 2, all three

duos achieve a lower objective function value (0.47, 0.41 and 0.5% VS 0.54%), as well as a lower

average percentage error for the link flow deviations than the reference (0.8, 0.74 and 0.82% VS

0.97%). Furthermore, they achieve these results in the same number of iterations, whilst also

violating less constraints. Though, as can be seen, the actual number of vehicles violating the

constraints is still higher than the reference, for SNOPT and KNITRO-Byrd. Additionally, the gains

made in F and w2 came at a trade off for the average error of the route delay deviations (4.19, 4.11

and 4.36% VS 2.79%). Though, overall, their results are quite satisfactory, and all three were deemed

suitable enough to be tested further for scalability.

4.1.3 GUROBI

As depicted within Table 2, the results for GUROBI are shown to be excellent across the board. For

convergence speed, GUROBI requires a full iteration less to arrive at a lower objective function

value (0.36% VS 0.54%) and a lower average percentage error for the link flow deviations (0.91% VS

0.97%). Additionally, this convergence is achieved with a very similar average percentage error for

the route delay deviation (3.01% VS 2.96%). Finally, the solution found does not violate any of the

link constraints.

On the other hand, GUROBI utilizes a solver parameter known as random "Seed", which acts as

a perturbation (Gurobi Optimization, 2022c) and can very negatively impact the results of the

calibration, as shown in Figure 6. The effects of changing the "Seed" is that, although GUROBI finds

a solution during the first iteration, it violates the bound constraints, often leading to the problem

becoming non-convex. For this reason, the GUROBI solver was deemed unsuitable, as the criterion

of reliability was not met to a satisfying degree.

(a) "RandomSeed" 1 (b) "RandomSeed" 2

Figure 6: Sioux Falls - GUROBI Comparison between different "RandomSeed"s
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4.1.4 BARON

BARON, although producing satisfactory results, was ultimately not applicable to the problem. Due

to the nature of the implementation, it seems an issue of incompatibility arose with the way in

which the link constraints (Φ(D)) are defined in the MATLAB script, and subsequently supplied

to BARON, though there is no concrete evidence. For this reason, BARON was never capable of

running with these constraints enabled. The run shown in Figure 7 is thus without the constraints

supplied, leading to the non-convergence of the congestion pattern deviations. In addition to this,

BARON was never utilized to its full capability, instead, solving the optimization problem during

it’s pre-processing phase, where it makes use of a dynamic local search algorithm (Sahinidis, 2017).

Figure 7: Sioux Falls - BARON convergence graphs

4.1.5 QUADPROG

As stated within Table 2, QUADPROG arrives at the best objective function value, overall. The same

applies to the objective function components, as well as the constraints. On the other hand, 22

iterations are required for the run to converge. Furthermore, as shown in Figure 8, the objective

function value is not monotonously decreasing. Highly suspicious is also the peak found at iteration

11, where the solution found does not at all seem to be reflective of the true optimization problem.

These two named factors are the reason why QUADPROG was deemed unsuitable and will thus not

be further tested for scalability.

Figure 8: Sioux Falls - QUADPROG convergence graphs
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4.1.6 OSQP and MOSEK

Though for different reasons, OSQP and MOSEK were deemed unsuitable for the problem. The

ADMM algorithm of OSQP is quite imprecise in its approximations, and thus, it often violated the

lower bound constraint (0 < D) by introducing values smaller than zero. Unfortunately, a negative

demand is nonsensical and the lower-level is unable to run if such a value is present. Thus, to ensure

a successful run either way, the negative values of the solution found by OSQP were exchanged for

machine-precision (10−16) in a post-processing phase, leading to unreliable behavior. Zero was not

chosen, as additional decision variables would be lost during a pre-processing phase of the MSMC

(Brederode et al., 2020).

For MOSEK, the solver was simply unable to run due to returning an error signifying that the

problem is non-convex, even though it has been proven to be (see section 2.1.2) and the "interior-

point-convex" algorithm of QUADPROG runs without any problems. For these reasons, both OSQP

and MOSEK were not further pursued as alternatives to the reference duo.

4.2 Noord-Brabant

From the original list of ten solver-algorithm duos (including FMINCON-SQP+YALMIP), five were

deemed suitable and tested for scalability. These five are:

• FMINCON-SQP

• FMINCON-SQP+YALMIP

• KNITRO-Byrd

• KNITRO-Waltz

• SNOPT

Of these five duos, none of them were able to run on the Noord-Brabant transportation network. All

of them, when called during the first iteration, crashed due to running out of system memory, which

totaled 128GB of RAM. Important to note, is that for FMINCON-SQP interfaced through YALMIP,

the solver was not called yet, and MATLAB ran out of memory when converting the problem to

the format that YALMIP utilizes, which makes use of a large "object". For this reason, YALMIP was

dropped from being utilized during the research.

In regards to the other four duos, all were called utilizing their native MATLAB interface, thus the

issues must lie elsewhere. Though this is discussed more in-depth in section 8.1, the following

depict initial, possible, reasons. A first reason would be the conversion from the MATLAB problem

to the native language of the solver. As the FMINCON solver was implemented with only MATLAB

in mind, the conversion from MATLAB to the a form which the solver can utilize may almost

come at no cost. Whereas, this is not the case with the other solvers. Alternatively, the FMINCON

implementation may also be more memory efficient, with the interface not being a problem at all.

Finally, when considering FMINCON-SQP, without YALMIP, the algorithm is simply not suitable for

the scale, as it requires more than 18TB of system memory. Thus, the only duo that successfully

completed a run is the reference one, FMINCON-IPM. The results for its run are shown in Figure 9.
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(a) Convergence graphs

(b) RAM usage and computation time (upper-level iterations are framed in red)

Figure 9: Noord-Brabant reference run - FMINCON-IPM
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5 Problem Size Reduction

The results garnered on the Noord-Brabant network were the initiator for a new idea with regards

to the approach taken to solve the current issues. This new approach consists of reducing the

problem size, i.e., the number of OD-pairs that will be calibrated by the solver, by utilizing the

available gradients. To the knowledge of the author, though this approach has been stipulated

before (Leibovici, 2013), no extensive research on this approach has been carried out. An additional

note, though, is that problem size reduction is a reoccurring idea, particularly for dynamic traffic

assignment models, where they make use of principle component analysis (Prakash et al., 2017;

Qurashi et al., 2020). But, this approach is not suitable to this application, as it exploits the periodic

OD-vectors of dynamic traffic assignment models, which are combined into a single matrix.

Figure 10: Histogram of the absolute gradient values per OD-pair - Sioux Falls

As is shown in Figure 10, the absolute value of the gradients per OD-pair, on Sioux Falls, as well

as the Noord-Brabant network (Appendix B), form a right skewed histogram, with a very long tail.

Due to this behavior, it is expected that most of these OD-pairs have a negligible contribution

towards the final convergence, and can thus be removed from the problem. An example of what

is meant by reducing the problem size is shown in Figure 11. As is depicted, the OD-pairs with

low gradient values (x2 and x4) are removed from the problem ("Reduce" step) before the solver

is applied ("Solve" step). After the solver is done and finds a solution, (s1 and s3), the removed

OD-pair values are reintroduced into the vector ("Resize" step).
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Figure 11: Example problem size reduction

5.1 Reducing the Problem Size

As stated, the method utilized to reduce the problem size will utilize the absolute gradient values.

More specifically, the gradient values of the objective function F (δF/δD ). Furthermore, the gradi-

ents that will be used are produced with the current solution, i.e., the original travel demand during

the first iteration, or the solution of a previous iteration, from iteration two onward.

After generating the gradients, the non-relevant OD-pairs must be removed from the problem.

Two different methods were explored with this goal in mind, a static method, which sets a certain

percentage and a dynamic method, which utilizes the attributes of the distribution of the absolute

gradients. Important to note is that for each iteration, the relevant OD-pairs will be re-selected. The

reason behind this is that the gradients of the OD-pairs will be changed with each iteration, and

that previously suitable OD-pairs may now no longer be relevant enough to be re-chosen. In this

manner, the most optimal solution possible, when reducing the problem size, can be arrived at.

Method 1: Static

The first method explored is the static method. In this case, a parameter is set that defines the

percentage of OD-pairs that will be kept during the iteration. For example, 75%, where, for a vector

with 500 OD-pairs, only the 375 with the highest gradients will be kept and altered by the solver.

Method 2: Dynamic

The aim of the second method is to make the problem size reduction more problem-agnostic, as

the risk of utilizing a set percentage is that it is chosen wrongly for the network. Though, the same

is applicable to the predefined scaling factor s used by the second method, so this problem isn’t

wholly circumvented. This method utilizes the mean (µ) and standard deviation (σ) of all OD-pair

gradients to dynamically choose which OD-pairs to select. Using the mean and standard deviation,

a threshold (t) is set, that defines the lowest relevant gradient value. Each chosen OD-pair d, with

gradient gd, must thus abide by the relation shown in Equation 7.

|gd| ≥ t = µ− s ∗ σ (7)

Where 0 ≤ s ≤ 0.75 ∗ µ/σ is a predefined scaling factor.
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Finally, it must be noted that the upper bound of the scaling factor s is determined during each

iteration, to ensure that a problem size reduction takes place. This can lead to the factor s to be

higher than the upper bound during that iteration. If that is the case, it is lowered to being equal to

that upper bound.

5.1.1 Complete First Iteration

In addition to the reduction methods, another stipulation was proposed with regards to the utiliza-

tion of the complete problem size during the first iteration. In other words, the problem size would

only be reduced from iteration 2 onward. The aim of starting with a complete first iteration would

be to reduce inconsistencies in data, as well as errors due to the linear approximation (Brederode

et al., 2020). Thus, increasing stability, in this case, the duration of each upper level iteration, and

the accuracy of convergence during the later iterations.

5.1.2 Testing

For testing the usability of the different problem size reduction methods, the same approach as

the one taken for the solver comparison will be utilized, which is described in section 3.1.1. The

variants will first be tested on the Sioux Falls network, utilizing different settings, before being

tested on the Noord-Brabant network with the best performing parameters. Important to note is

that, due to time constraints, solely the reference duo, FMINCON-IPM, will be utilized for these

tests.
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6 Results - Problem Size Reduction

6.1 Sioux Falls

The results for the problem size reduction on Sioux Falls presented here are spread out over three

sections. The first two (6.1.1 and 6.1.2) aim to give insight into the results of the two stipulated

methods, whilst the third section (6.1.3) presents the results when the first iteration is set to utilize

to complete problem size. Furthermore, it must be noted that the congestion pattern deviations

will not be presented, since they deviate too little from the reference to be a defining factor.

6.1.1 Static Method

Figure 12 shows the accuracy results of the first method, which are sorted by their total objective

function value, with the reference being kept in the first position. As shown, for method 1, two

parameters, 50% and 70%, showed promising results, by improving the accuracy across all three

convergence criteria. From the remaining runs, though all are shown to be improving the objective

function value and link flow deviation accuracy, it comes at the cost of diminishing the accuracy of

the route delay deviations. Interesting to note is the sharp peak at 60% for the route delay deviations.

A possible reason for this behavior is that, at 60%, when compared to 55%, some OD-pairs are

introduced that have diverging gradients for the link flow and the route delay components (one

is positive, the other is negative). And, when the percentage grows again, to 65%, OD-pairs are

introduced, who have matching component gradients, combating this conflict.

Figure 12: Accuracy results - Sioux Falls - Method 1
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A particularity of the 50% run, depicted in Figure 13a, is the first iteration. As is shown, the route

delay deviations after the first upper level iteration are substantially higher than in the reference

(see Figure 13b). On the other hand, the objective function value and the link flow deviations do

not diverge too substantially. A possible reason for this behavior is that, during the first iteration,

more OD-pairs are left out that have a substantial impact on the route delay deviations. And then,

in subsequent iterations these left out OD-pairs are instead considered.

(a) Reduced problem size - Convergence graphs

(b) Reference - Convergence graphs

Figure 13: Comparison - Method 1 50% VS Reference (Sioux Falls)

Finally, it must also be mentioned that, contrary to what one would expect, the accuracy of con-

vergence is fully improved for the 50% and 70% variants. This is counter intuitive, as one would

generally expect all components to suffer, since less data is being utilized. But this is not the case.

The most likely cause for this is the same as stated prior: data inconsistencies are possibly present

within the utilized data set, which are left out when less OD-pairs are considered.

6.1.2 Dynamic Method

Important to note, for the second method, is that during the first iteration, s can be set to produce

the same result as method 1. But, from the second iteration onward, as the distribution of the

gradients change, the number of gradients selected will change as well. Whereas, for the static

method, the number of OD-pairs chosen stays the same.

Overall, the second method performed very well, as shown in Figure 14, consistently improving the

accuracy of all three components, with only s = 0.6 and s = 0.65 reducing the accuracy of the route
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delay deviations. Furthermore, setting s = 0.5 leads to the route delay deviations to be at the lowest

value yet (for the reduced problem size). Thus, it would seem that, further than just making the

reduction problem-agnostic, this dynamic selection also makes a better selection of the relevant

OD-pairs, leading to better convergence overall compared to the static method.

Figure 14: Accuracy results - Sioux Falls - Method 2

6.1.3 Complete First Iteration

When utilizing the complete problem size during the first iteration, the accuracy of the route delay

deviations is consistently worsened, as shown in Figure 15. From this it can be seen that choosing

to keep the complete problem size during the first iteration is not beneficial. A possibility for this

behavior is that after the complete first iteration, the OD-pairs that have a high absolute gradient

value do not have a significant impact on the route delay deviations.

Figure 15: Route delay accuracy - Sioux Falls - Complete first iteration
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6.2 Noord-Brabant

Two runs were successfully executed on the Noord-Brabant network, with the problem size reduc-

tion parameters shown in Table 3. The parameter choice was based on the results on Sioux Falls,

with the best performing parameters of each method being selected. Of these runs, both runs were

passably accurate in their convergence at the tenth iteration, as well as stable. Furthermore, all runs

were able to reduce the total computation time substantially (up to 25%), as well as the violation of

the link constraints.

Table 3: Results Overview - Problem size reduction - Noord-Brabant

Method CFI1 Total [%] w2 [%] w3 [%] # links # vehicles Total time [hr]

Reference n/a 4.53 6.39 12.67 4 50 59

1 [50%] No 5.47 8.47 9.26 2 5 46

2 [s = 0.5] No 5.87 8.36 15.26 2 25 44

1 Stands for "Complete first iteration"

As is depicted in Table 3, the first method reduced the total computation time by approximately

22%. Furthermore, the average percentage error for the route delay deviations was decreased. On

the other hand, this comes at the cost of the total objective function value and link flow deviations

being greater than the reference (by 1% and 2% respectively). A possible reason for this divergence

is that the gradient selection chooses OD-pairs which do not have a significant impact on the link

flow deviation. Additionally, it must be noted that, for this parameter and method combination, the

length of each upper level iteration is still unstable, as shown in Figure 16b. In particular, iterations

two (outer loop 2 -> 3), three (outer loop 3 -> 4) and five (outer loop 5 -> 6) stand out. When

analyzing the convergence graph at these iterations, (Figure 16a), it can be seen that a significant

change in the values of all objective function components occurs. Thus, a possible reason for this

behavior it that the solver is searching for a longer time, as the objective function value can be

substantially lowered.

Overall, the second, dynamic method performed worse than the static method, only improving

upon the total computation time by two hours and the average percentage error of the link flow

deviations. But, as is shown in Table 3, this improvement comes at the cost of the other convergence

criteria suffering. This means that the method is not problem-agnostic. Additionally, as is shown

Figure 17a, though the objective function value is shown to be monotonously decreasing, from

outer loop iteration 6 to 7, the route delay deviations are shown to increase instead. This is very

likely the cause of the corresponding upper level iteration 6 taking as long as is shown in Figure 17b.

Though, it must also be noted that this upper level iteration, similarly to the first method, marks

a somewhat significant change in the objective function value and the link deviations. Another

possible reason for this worsened performance is the upper bound s is subjected to. During each

iteration, it is possible that s was higher than 0.75 ∗ µ/σ , thus being reduced to this upper bound,

leading to a selection of too few OD-pairs.

Page 24



Bachelor Thesis 6 RESULTS - PROBLEM SIZE REDUCTION

(a) Convergence graphs

(b) RAM usage and computation time (upper-level iterations are framed in red)

Figure 16: BBMB - Method 1 (50%)
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(a) Convergence graphs

(b) RAM usage and computation time (upper-level iterations are framed in red)

Figure 17: BBMB - Method 2 (s = 0.5)

Page 26



Bachelor Thesis 7 CONCLUSIONS

7 Conclusions

As two distinct approaches evolved during the execution of this research, with regards to the first

research question, two distinct conclusions followed. The first concludes the research with regards

to the comparison of the solver-algorithm duos, with the second concluding the research into

reducing the problem size. Furthermore, a short sentence is left with regards to the second research

question.

7.1 Solver Comparison

During this research, ten solver-algorithm duos, including FMINCON-SQP interfaced through

YALMIP, were evaluated on the Sioux Falls transportation network. Of these ten, five were deemed

potentially viable and further tested for scalability on the Noord-Brabant transportation network.

Overall, the chosen five showed very satisfactory results on Sioux Falls, violating less constraints

than the reference implementation, and, in the case of FMINCON-SQP, taking the lead for all

criteria. But, the final test for scalability showed a clear distinction between the potential solver-

algorithm duos and the current implementation of FMINCON-IPM. FMINCON-IPM was the only

duo that was able to successfully complete a run on the Noord-Brabant network, without failing

due to running out of memory. For this reason, with regards to the first research question, it can be

concluded that the current solver-algorithm-duo is the best for this application.

7.2 Problem Size Reduction

During the second part of this research, problem size reduction was stipulated as a solution to the

"out of memory errors" occurring when utilizing solvers other than FMINCON-IPM. This initial

idea was also backed by the fact that the absolute gradients per OD-pair showed to be strongly

right skewed, with a long tail, meaning that many of the OD-pairs were not influential. From this

initial stipulation, two methods were devised to determine which OD-pairs should be kept, a

static and a dynamic method. Both methods were then tested on the Nood-Brabant network, in

two configurations. Of the two methods, the static method showed better performance overall,

by showing a similar quality of convergence compared to the reference, and reducing the total

computation time by 22%. To conclude, though no evidence could be gathered with the goal of

testing other solvers in mind, the problem size reduction proved to be effective, and thus a viable

implementation going forward.

7.3 Is the cause of these issues the solver utilized or the optimization problem?

With regards to the second research question, no direct insight has been gained, as the original

solver was the only one that successfully ran under the original configuration.
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8 Discussions

8.1 Solver Comparison

Although the results conclude that the current implementation (FMINCON-IPM) is the most suit-

able for the application, this conclusion may strictly be tied to the way the problem is implemented

and interfaced from within MATLAB. FMINCON is a solver native to the MATLAB toolbox, and

thus is most likely highly optimized in its direct integration through the MATLAB interface, and

memory management. And, though the other languages support being interfaced through MATLAB

natively, that may not the way they are generally called. Due to this, it is unclear if the bottleneck lies

within the conversion of the program from MATLAB to a form usable by the solvers, or within the

solver itself. Though, for some of the solvers, KNITRO, for example, there seems to be precedents of

memory issues, as Artelys (2021a) would suggest. A singular case where the unsuitability is clear,

though, is FMINCON-SQP, as it is subject to the same optimization as the reference implementation.

Thus, in this case, there is no discussion worth pursuing.

Another point of importance within this research is the usage of YALMIP and the possibility of it

being a core bottleneck for the applicability of the tested solvers. Beyond just the high requirement

of system memory, it could be the case that YALMIP falsely converts the problem before supplying

it to the solver. This could be a possible reason for the behavior shown by GUROBI, for example.

Though, for GUROBI, this issue of non-dependability is only present when the random "Seed"

parameter is altered. On the other hand, this could be the cause for the mediocre performance of

the other solvers interfaced through YALMIP, such as QUADPROG and OSQP.

A final point is the fact that, though the solvers were unable to be applied to the Noord-Brabant

network, and were thus deemed unsuitable, some of them, notably GUROBI and FMINCON-

SQP showed very promising results on Sioux Falls. Thus, it could be stated that the algorithms

themselves actually perform better and are more suitable to the problem than the reference. If the

testing machine were a more performing one, with larger amounts of system memory, the results

could lead to these algorithms being deemed more suitable. But it must be mentioned that the

Noord-Brabant network is only medium-sized, whereas large-sized networks have up to 9 times as

many origins and a corresponding travel demand matrix that is up to 81 times as large.

8.2 Problem Size Reduction

For the dynamic method, it is shown that it performs much worse on the Noord-Brabant network

than the static method, with a possible reason being the upper bound of s. Due to time constraints,

this upper bound was scaled with an arbitrary value (0.75), which produced satisfactory results

on Sioux Falls. But this upper bound adds a new layer of uncertainty. As this arbitrary scalar can

also be changed and is possibly not applicable to all networks. One could consider leaving it out

fully and simply keeping s as the only parameter that can be altered. But, as the desire is to always

reduce the problem size, this is no longer a viable option. Furthermore, the aim of this method was

to make the problem size reduction problem-agnostic, meaning that, if good results are gathered
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on Sioux Falls with this configuration, good results should be gathered on any other network with

the same parameter configuration.

Another point of discussion is the fact that this is solely possible because the full multi source

matrix calibration is an iterative approach, the OD-pairs chosen change with each iteration, and

the gradients are strongly right skewed. Fortunately, in the testing, both networks had gradients

that shared the same properties. Thus, proving the approach taken here functions as intended.

But, there is the possibility that some the properties are missing, which could render the approach

less reliable. If, for example the gradients were more uniformly distributed, this approach may

converge, as the chosen OD-pairs would change with every iteration, but the number of iterations

may increase substantially. Though, considering the characteristics of a network, where there is

a high density of origins/destinations, and a comparatively low number of count locations, not

many OD-pairs should have a substantial influence. Thus, still leading to a strongly right-skewed

distribution of absolute gradients.

Finally, though it is shown in section 6.2 that the total computation time can be reliably reduced,

it can also be seen that, for method 1 at 50%, the duration of the upper level iterations does not

stabilize (see Figure 16b). A possible reason stipulated for this is the large decrease in the objective

function value and its components. But, as stated within section 1.1.4, this problem only occurs

when the constraints are introduced. Thus, the initial problem has not been fully addressed.
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9 Recommendations

In the following, recommendations for future research are described, in order of relevance by view

of the author.

Firstly, as stated prior, a bottleneck for the utilization of other solvers may be MATLAB, and not

the solvers themselves. For this reason, the optimization problem itself could be implemented in

another programming language, such as AMPL, which was specifically designed for the solving

of optimization problems (AMPL, 2021). Additionally, a language such as AMPL provides other

alternative solvers, that were not tested in this research. Though, this advice does not only suit

AMPL, many of the solver tested, such as GUROBI, KNITRO and SNOPT are callable through C++

as well (Artelys, 2021b; Gill et al., 2021; Gurobi Optimization, 2022a).

Secondly, with the current MATLAB implementation, one could try the solvers with the reduced

problem size and observe if they are capable of running successfully on the Noord-Brabant network

without running out of memory.

Thirdly, it is mentioned that there may be data points, for which the components of the objective

function are conflicting (section 6.1.1). In other words, where, due to observation discrepancies, a

positive link flow deviation gradient is paired with a negative route delay deviation gradient. To

remedy these conflicts, an analysis based on the gradients of the components may give insight into

the conflicting points, after which the user may resolve the conflict by removing the observation

which is least trusted.

Fourthly, would be to do further research into the sensitivity of the parameters utilized. There are

some discrepancies between the results on Sioux Falls and Noord-Brabant, particularly with the

dynamic method. Thus, the chosen parameter does have an impact on the rate of convergence,

as well as the quality of convergence. For this reason, if this method is to be further utilized, the

sensitivity of the parameter should be further explored, by also applying the problem sized reduced

MSMC on different networks, and seeing if a "universally" optimal value can be found. Or if not,

how wide the feasible range of the parameter is.

Finally, specifically for Noord-Brabant. It is shown in Figures 16a and 17a that, after the fifth iteration

for the first method and iteration six for the second method, there are no more changes in the

link flow deviations, i.e., this component has converged to its optimum. On the other hand, the

MSMC keeps going, as the route delay deviations are still decreasing. Instead of the continuing

with the current method, the OD-pair selection could be constrained to only ones where absolute

gradient of the route delay deviations is greater than 0. Alternatively, solely for the selection, one

could increase the weight on this component.
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A Solver Comparison - Sioux Falls - Additional Results

Figure 18: Sioux Falls - FMINCON-IPM convergence graphs

Figure 19: Sioux Falls - FMINCON-SQP convergence graphs
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Figure 20: Sioux Falls - FMINCON-SQP + Yalmip convergence graphs

Figure 21: Sioux Falls - KNITRO-Byrd convergence graphs
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Figure 22: Sioux Falls - KNITRO-Waltz convergence graphs

Figure 23: Sioux Falls - SNOPT convergence graphs
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Figure 24: Sioux Falls - BARON convergence graphs

Figure 25: Sioux Falls - GUROBI convergence graphs
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Figure 26: Sioux Falls - QUADPROG convergence graphs
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Figure 27: Sioux Falls - OSQP convergence graphs
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Figure 28: Histogram of the absolute gradient values per OD-pair - Noord-Brabant
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