
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

STATISTICALLY-BASED EVENT 
DETECTION USING WIRELESS 
SENSOR NETWORKS 

TIBLEZ OGBAGABRIEL 
February, 2012 

SUPERVISORS: 
Dr. N.A.S. Hamm 
Dr. N. Meratnia 
Prof.Dr.Ir. A. Stein 



 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thesis submitted to the Faculty of Geo-Information Science and Earth 
Observation of the University of Twente in partial fulfilment of the 
requirements for the degree of Master of Science in Geo-information Science 
and Earth Observation. 
Specialization: Geoinformatics 

SUPERVISORS: 
Dr. N.A.S. Hamm 
Dr. N. Meratnia 
Prof.Dr.Ir. A. Stein 

THESIS ASSESSMENT BOARD: 
Prof.Dr.Ir. A. Stein (Chair) 
Dr. Yang Zhang (External Examiner, University of Twente) 

  

STATISTICALLY-BASED EVENT 
DETECTION USING WIRELESS 
SENSOR NETWORKS 

TIBLEZ OGBAGABRIEL 
Enschede, The Netherlands, February, 2012 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCLAIMER 
This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and 
Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the 
author, and do not necessarily represent those of the Faculty. 
 



i

ABSTRACT 

Widespread spatial and temporal monitoring of the environment is required for drawing accurate scientific 
conclusions and for providing reliable forecasting. Traditional environmental measurement systems use 
expensive sensing stations which makes it difficult to deploy a large number of sensing units. Wireless 
Network Sensors (WSNs) emerged as a solution to such issues. WSNs can be deployed in great numbers 
to observe the environment with high temporal and spatial resolution. On the other hand, WSNs are 
constrained by computational, storage and communication limitations.  
 
Event detection is an important application in the practical deployment of wireless sensor networks 
(WSNs). One of the key challenges in detecting events using WSNs is how to detect it accurately and fast 
(real time) in an online and decentralized way. In order to assure reliable detection of interesting events 
using WSNs, we need to develop an accurate outlier detection technique while paying attention to the 
computational, storage and communication limitations in WSNs. As a result there is a need of developing 
analytical techniques for outlier and event detection which can fit to the resource constraint nature of 
WSNs. This research takes advantage of the spatial and temporal correlations that exist between sensor 
data in order to ensure reliable detection of events using WSNs, while maintaining the resource 
consumption of the WSN to a minimum.  
 
The analysis was done based on data from a real world deployment on a high mountain pass (the Grand 
St. Bernard pass) in Switzerland. The spatial and temporal correlation in sensor data is exploited by using 
statistical approaches. This research provides domain specific definition for outliers based on the 
guidelines of World Meteorological Organization (WMO). Strategies for defining events and 
distinguishing them from errors are provided based on temporal and spatial correlations.  
 
This research proposed detecting obvious outliers using plausible value and minimum variability checks 
and investigated the use of model independent and computationally simple outlier detection techniques 
for detecting unclear outliers. The outlier detection accuracy of the proposed techniques was evaluated 
using detection rate (DR) and false positive rate (FPR) based on the results of three labelling techniques 
(running average-based, Mahalanobis distance-based and density-based) by Zhang  (2010). Event detection 
accuracy was evaluated by relabeling these labelled datasets so that they can be used to evaluate the event 
detection.  
 
This research examined the use of geostatistical analysis for modelling spatial correlation using the 
variogram averaging method of Sterk & Stein (1997) which is based on the assumption that a constant 
correlation exists over time. The prediction accuracy of the spatial correlation model was evaluated using 
leave-one-out cross validation technique and the assumption of constant spatial correlation over time in 
which the variogram averaging method of Sterk & Stein (1997) is based in is verified. 
 
 
Keywords: Outlier detection, Event detection, Wireless sensor networks, Time series analysis, 
Geostatistics, Temporal correlation, Spatial correlation.  
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1. INTRODUCTION

Wireless Sensor Networks (WSNs) are new source of geodata that measure various environmental 
variables such as temperature, rainfall, atmospheric pressure, precipitation, humidity etc. They consist of a 
number of low cost sensor nodes with sensing, processing and communication capabilities. These sensors 
can be deployed in harsh and unattended regions to monitor the natural environmental conditions by 
detecting interesting events that are associated with the natural environment such as fire and storm (Zhang 
et al., in press). Figure 1 shows an example of a Wireless Sensor Network (WSN) setup where data from 
the sensing stations are transmitted through the wireless network to a base station (GPRS master station). 
The base station then forwards the data by means of long range connection (GSM network) to a central 
server and makes it available to the outside world in real time (Barrenetxea et al., 2008a; SensorScope, 
2007b). 

 

Figure 1: An example of wireless sensor network architecture (Source: 
http://www.sensorscope.ch/solution) 
 
Widespread spatial and temporal monitoring of the environment is required for drawing accurate scientific 
conclusions and for providing reliable forecasting. Conventionally, in-situ measurement stations, which 
use data loggers to store the data, are utilized for environmental observations. This method is not only 
time consuming and tedious but also expensive to use as it requires setting up of different instruments 
with the data loggers and then physical accusation of data from the log (SensorScope, 2007b). Moreover, 
high cost of in-situ measurement systems makes it difficult to deploy a large number of sensing stations 
and this result in a limited spatial coverage. WSNs emerged as a solution to such issues. 
 
Real-time communication capability between sensor nodes is another asset of WSNs. Depending on the 
application, there is a need to respond rapidly to what the sensor values represent. For example, disastrous 
events need to be detected fast to create awareness and to generate timely alarms (Bahrepour et al., 2010). 
Furthermore, the fact that WSNs can work under harsh conditions, such as extremely high and low 
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temperature, very high or low humidity, wet environments, high and low pressure, and in an extremely 
noisy environment (Akyildiz et al., 2002) is a valuable property of sensor nodes. Therefore, the real time 
communication capability of WSNs and their ability to work in harsh environments should be exploited 
and used in environmental monitoring. 
 
Wireless sensor nodes are smaller, lighter and cheaper compared to previous generation of sensors. 
However, they may have low data quality and are constrained by limited battery life and the network cost 
of communication. The quality of data measured by low cost and low quality sensor nodes is affected by 
noise or error, missing values, duplicated data or inconsistent data (Zhang, 2010). As a result, WSNs are 
more likely to generate outliers. 
 
Outliers are measurements that significantly deviate from the normal pattern of the phenomenon 
(Chandola et al., 2007; Zhang et al., 2008). These deviations do not always signify some kind of error 
(either environmental noise or faulty sensor); they could also correspond to some interesting events 
(changes in the state of the environment) to which we should be alerted. Hence, having identified an 
outlier, further analysis is required to differentiate it as error or event. 
 
Event detection using WSNs can be of great help for real time decision making and situation awareness 
(Bahrepour, et al., 2010) along with long-term monitoring of natural events in areas of varying size. It also 
contributes to remote environmental monitoring, which is crucial in harsh conditions. Remote surveillance 
prevents the need to have onsite staff at remote locations and can save people’s time, effort and travelling 
cost. Therefore, event detection functionality of WSNs helps in remote environmental monitoring and it 
also supports real time decision making and awareness on environmental situations.  
 

1.1. Problem statement 
Traditional environmental measurement systems use expensive sensing stations which makes it difficult to 
deploy a large number of sensing units. This results in limited spatial coverage and lack of appropriate 
observations (Barrenetxea et al., 2008b). To overcome the limitations in spatial coverage by traditional 
environmental measurement systems, low cost WSNs can be deployed in great numbers to observe the 
environment with high spatial and temporal resolution (Elson & Estrin, 2004). Furthermore, traditional 
outlier detection techniques are computationally expensive, require much memory for data analysis and 
storage, use centralized approach for data analysis, analyse data in an offline manner, and do not 
distinguish between errors and events (Zhang, et al., 2008). These techniques are not suitable for the 
context of WSNs. Therefore, in order to optimize the traditional outlier detection techniques so that they 
can be suitable for WSNs; (near) real-time, decentralized outlier and event detection functionality of 
WSNs should be exploited.  
 
To detect an event in the environment, analysing the WSN data is important. However, WSNs produce 
large quantities of spatio-temporal data, causing challenge for online data analysis (Zhang, et al., in press). 
One of the key challenges in detecting an event in a WSN is how to detect it accurately and fast (real time) 
in an online and decentralized way (Ma et al., 2004) while maintaining the resource consumption to a 
minimum and providing sufficient details about the event (Banerjee et al., 2008; Martinez et al., 2004; 
Zhang et al., 2010). As temporal and areal coverage of an event are important factors in environmental 
monitoring, tracking the temporal and spatial development of an event is also important once it is 
detected. Hence, it is essential to develop analytical techniques of event detection and event interpolation 
which are able to operate under the limited WSN resources.  
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1.2. Research identification 

1.2.1. Research objective 
The general objective of this research is to detect and monitor the temporal evolution and spatial extent of 
events, accurately and fast (real time), using analytical techniques that are suitable for WSNs. 
 

1.2.2. Specific objectives and research questions 
In order to support the accomplishment of the research objective, five specific objectives followed by one 
or more research questions are formulated in this research. The specific objectives with their 
corresponding research questions are presented in Table 1. 
 
Table 1: Specific objectives and research questions 
Specific Objectives Research questions

1. To define an outlier 
and an event 

1.1. How can we define an outlier?  
1.2. How can we define an event?  
1.3. How can we distinguish outliers as events or errors? 
1.4. When does an event become usual behaviour of an 

environmental variable?
2. To model the data 

behaviour (i.e. to 
model ambient 
temperature) 

2.1. How can we use time series analysis for modelling 
temporal correlation to identify outliers? 

2.2. How can we use geostatistical analysis for modelling 
spatial correlation to identify outliers? 

2.3. Is it realistic to assume a constant spatial correlation 
over time?

3. To detect an event 3.1. How can we use spatial and temporal correlations 
existing in sensor data and exploit them to detect 
events in WSNs?

4. To characterize an 
event 

4.1. What is the temporal evolution of an event? 
4.2. What is the spatial extent of an event? 

5. To evaluate the 
event detection  

5.1. How accurately can we detect events?  

 

1.3. Structure of the Thesis 
This thesis is structured in to seven chapters, including the introductory chapter. The rest of the thesis is 
organized as follows. Related work in WSNs for outlier and event detection, guideline for defining outliers 
and events as well as fundamentals of time series and geostatistics are presented in chapter 2. In chapter 3, 
description of the study area and the dataset used for the experiment is presented. In chapter 4, the 
methodology used to undertake the analysis is explained. Results are presented in chapter 5 and discussed 
in chapter 6. Finally, I conclude this thesis in chapter 7 by summarizing the key results and discussing 
future directions. 
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2. LITERATURE REVIEW 

2.1. Related work 
Due to resource constraints of WSNs, different algorithms for event detection have been proposed 
considering specific application and scenario characteristics. These algorithms can be divided in to three 
categories: time-driven, query-driven and event-driven (Barrenetxea, et al., 2008b). In WSN applications, 
the time-driven and event –driven approaches are commonly used (Grenon & Smith, 2004). Time-driven 
algorithm initiates sensor nodes to periodically forward gathered data to the base station (e.g., (Lian et al., 
2007; Wark et al., 2007)) while query-driven algorithm initiates the nodes to send gathered data only upon 
request from the base station. In event-driven algorithm, an alert is forwarded to the base station when a 
particular event occurs. Figueiredo et al. (2009) proposed the event driven model for applications which 
are related to infrequent events such as fire. King & Nittel (2010) present a strategy for developing and 
running small models called ‘tiny models’ on individual sensor nodes. These models are developed from 
much larger detailed parent models and they can capture the predictable behaviour of a phenomenon. In 
circumstances where the event-driven algorithm is used, the individual nodes communicate only when a 
particular event is observed (Martinez, et al., 2004). These methods reduce the overall data communication 
and focus in handling outlying values. Shi & Winter (2010) developed a model that incorporates both 
time-driven and event-driven algorithms and proposed that their model can be further developed to 
support query-drive approach.  
 
Most of the studies of outlier and event detection using WSNs have been undertaken outside of a practical 
situation and have a theoretical nature. This is challenging for real world environmental monitoring in 
which the performance of outdoor sensor networks can be influenced by factors like harsh weather 
condition (Barrenetxea, et al., 2008b; Wark, et al., 2007). Martinez et al. (2006) designed a real world WSN 
for extreme environment and investigated that there was a difference between the actual and predicted 
behaviour of the sensor networks. Many fundamental environmental processes have hardly been studied 
due to remoteness or unattainability (Martinez, et al., 2004). Moreover, (Martinez, et al., 2004) pointed out 
that, in addition to the sensing, communication and computing technologies, domain knowledge is an 
important component in the field of environmental sensor networks and this is desirable to realistically 
monitor the natural environment.  
 
Detection accuracy and energy efficiency are two important aspects in event detection using WSNs. 
Zheng & Gang (2011) suggested  a trade-off between these two aspects in order to design an effective 
detection method. They pointed out that high detection accuracy requires more data collection, processing 
and transmission, which results in high energy consumption. The highest energy consumption in WSNs is 
communication or data transmission (Qu et al., 2010; Wang & Sodini, 2004). Liang & Wang (2005) 
proposed that executing more local processing using a single sensor node and less data transmission 
between sensor nodes can save energy and increase the life time of a WSN. An accurate but resource 
hungry outlier detection method is not suitable for WSNs.  
 
Some research have been undertaken to detect outliers in WSNs by using spatial and temporal 
correlations. Shi & Winter (2010) developed a spatio-temporal data model for dynamic areal objects which 
support the analysis of qualitative spatial change in sequences of time. A geostatistical technique to 
identify outliers at single sensor nodes based on spatial and temporal analysis has been developed by 
Zhang (2010). He proposed a distributed and online outlier detection techniques based on quantification 
of spatial and temporal correlations. 
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2.2. Basis for defining outliers and events 
The perception of outliers differs in terms of data type, application domains and detection techniques. 
Even though it seems that no universally accepted definition exists, some general definition that can cope 
with different data types and application domains are provided. For example, a classical definition that 
describes an outlier as “an observation, which deviates so much from other observations as to arouse 
suspicions that it was generated by a different mechanism”, was provided by Hawkins (1980: p.1). 
Chandola et al. (2007) and Zhang et al. (2008),  defined outliers as measurements that do not conform to 
the normal behavioural pattern of the phenomenon. Outliers might represent a change in the state of the 
environment, or errors of measurement or transcription mistakes (Webster & Oliver, 2008). Zhang (2010) 
identified occurrence of various types of outliers in WSNs and classifies them in to four: incidental 
absolute error (very short sequence of extreme high or low values), clustered absolute error (continuous 
sequence of incidental absolute errors), random error (observations not falling within a threshold of 
normal behaviour of data) and long-term error (continuous sequence of random errors). These outliers 
must be investigated in order to decide what to do about them which in turn helps in proper data 
management (Onoz & Oguz, 2003). Obvious errors can be replaced or eliminated and those representing 
a change in the state of the environment should be investigated further. 
 
Domain-specific definitions for outliers are given by Záhumenský (2004) based on the standards given by 
World Meteorological Organization (WMO). These definitions are based on plausible value and plausible 
rate of change of measured values and are explained in sections 2.2.1 and 2.2.2 respectively. 
 
Once an outlier is detected, it needs to be investigated whether it represents a change in the state of the 
environment or some kind of error.  In order to do this, the length of sequence of detected outliers should 
be considered depending on the sampling rates (Yoneki & Bacon, 2005; Zhang, et al., in press). In cases 
where there is no a priori knowledge on incoming event, it is difficult to assign a specific sequence of 
detected outliers to represent an event. This is because some events may last for a short time while others 
may last longer. Therefore the length of outlier sequence should be determined based on the application 
requirements. Zhang (2010) recommended that the length of the outlier sequence be small, so that there is 
no delay in classifying outliers as events or errors. 
 
To make event detection in WSNs more reliable, local collaboration between neighbouring nodes is 
helpful (Chongming et al., 2009). For example, Zhang (2010) defined an event as long-term error plus 
specific minimum number of nodes displaying the same behaviour. Therefore, if a number of consecutive 
outliers from one node, which signify the possibility of an event, correspond with another such 
observations from at least half of the neighbouring nodes this signifies the occurrence of an event 
(Krishnamachari & Iyengar, 2003). But it should be noted that if neighbouring nodes experience similar 
noisy data, which has both temporal and spatial extent, it can be misinterpreted as an event (King & 
Nittel, 2010). Some events can have spatial extent less than the distance between neighbouring nodes, 
meaning that an event can be detected by a single node only. But since single node is liable to failures, 
distributed collaboration among neighbouring nodes is required. Environmental conditions are spatially 
correlated but errors due to sensor faults are likely to be white noise (Krishnamachari & Iyengar, 2003). 
Furthermore, a single node cannot perform the task like event boundary detection (Ding et al., 2005). 
 

2.2.1. Check on plausible value 
The aim of the plausible value check, which is also called the gross error check, is to verify if the 
observations are within the acceptable range limits Záhumenský (2004). On the basis of the nature of the 
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variable under consideration and the geographical area and time of year in which the data is taken, a 
credible range limit can be set.  
 
The nature of the normal state may not necessarily be constant. For example, the nature of the normal 
state of ambient temperature is not constant value, but regular condition. Night time temperatures are 
expected to be lower than day time temperatures. Moreover, we may not know in advance the event type 
that we are looking for. In such conditions, where the level of deviation from the normal pattern is 
unknown and can change when the environment changes or if unwanted interferers go on and off, it is 
quite difficult to set a fixed threshold (Liang & Wang, 2005). Observations that fall within the threshold 
but are inconsistent with the successive observations cannot be detected as outliers.  Therefore, we cannot 
define an outlier based on a fixed predefined threshold when we do not have much priori knowledge on 
incoming event (Chongming, et al., 2009).  
 
Therefore, for applications where outliers cannot be defined based on a specific threshold, the plausible 
value check can only be used to detect specific types of outliers, absolute errors. For example,  Zhang 
(2010) used this technique, which he called fault detection (or absolute error check), to identify errors 
using a pre-defined threshold. 
 

2.2.2. Check on a plausible rate of change 
The aim of the check on plausible rate of change, which is also called the time consistency check, is to 
verify the rate of change of instantaneous data Záhumenský (2004). The check is best applicable to data of 
high temporal resolution (a high sampling rate) as the correlation between the adjacent samples increases 
with the sampling rate. It checks if there are sudden jumps in values or ‘dead band’ caused by faulty or 
blocked sensors over a specific period of time. This check is done based on minimum and maximum 
variability of instantaneous values. 
 

2.2.2.1. Minimum variability 
The check on minimum required variability of instantaneous values is called a persistence test. In order to 
undertake the minimum variability check, measurement of a parameter has to be done for a specific period 
(Záhumenský, 2004). If the values do not vary over the specified period by more than a specific limit, all 
observations from the period are considered as outliers. The minimum required variability and the specific 
time limit are dependent on some factors as variable type, geographic location and time. Based on the 
WMO guidelines, Záhumenský (2004) provided possible limits of minimum required variability for some 
environmental variables.  For example, 0.1ºC for ambient temperature, 1% for relative humidity, 10 
degrees for wind direction, 0.5m/s for wind speed and so on. These limits are used to check for minimum 
variability of one-minute values over a period of at least 60 minutes. 
 

2.2.2.2. Maximum variability 
The check on maximum allowed variability of an instantaneous value is also called a step test. It checks if 
a current instantaneous value varies from the prior one by more than a specific limit (Pawlowski et al., 
2009). If the specified limit is exceeded, the observed value is considered an outlier. For example, 
Záhumenský (2004) proposed an algorithm for calculating the maximum variability. The formula which 
compares the current instantaneous observation with the previous and the next ones is shown in equation 
1. If the condition in equation 1 is fulfilled the current observation is considered an outlier. In cases where 
either the previous or the next observations are missing, or when we want to detect an outlier based on 
previous observations only; Záhumenský (2004) proposed omitting the corresponding part of the formula 



STATISTICALLY-BASED EVENT DETECTION USING WIRELESS SENSOR NETWORKS 

8

and changing the comparison term to  . Similarly, (Basu & Meckesheimer, 2007) proposed two-sided 
and one-sided median methods for detecting outlier and replacing them with credible values.  
 

        1 

Where:  is the current observation, 
  is the previous observation, 
  is the next observation, and 
  is the standard deviation calculated at least from the last 10 minute period. 
 

2.3. Fundamentals of time series and geostatistics 

2.3.1. Time series 
A time series is a sequence of data points that follow non-random order. Time series data have a natural 
temporal ordering in which successive observations are dependent. The analysis of time series, unlike the 
analysis of random samples of observations, takes the time order of observations in to account (Chatfield, 
2004). In order to reduce irregularities in time series data, smoothing techniques are used. A moving 
average is the most common type of smoothing technique (Easton & McColl, 1997), which is used to 
analyse a set of data points by creating a series of averages of different subsets of the full data set. The 
moving average can be obtained by taking the average of the first subset. Then, the subset is shifted 
forward creating a new subset which is averaged. This process is repeated over the full data set and the 
plot line which connects all the averages is the moving average. Simple moving average (SMA) approach 
uses equal weights for each data value in the subset and calculates the mean. Equation 2 shows the 
formula for calculating the average of the first subset using SMA. For calculating the successive averages, 
there is no need of computing the full summation each time. An alternative formula for calculating the 
successive averages based on the average of the previous subset is presented in equation 3. This is done by 
including the new value and excluding the last value of the previous subset. A moving average may also 
use unequal weights for each data value in the subset to emphasize particular values. Weighted moving 
average (WMA) and exponential moving average (EMA) are examples of moving average which give 
unequal weights to data values in the subset.  
 

       2 

Where:  is the last data value in a subset, and 
  is the size of the smoothing window. 
 

       3 

 
In estimating the underlying trend using SMA, the mean value of a given set of distribution can greatly be 
affected by the extreme values. Moving median (MM) approach is believed to give a more robust estimate 
of the trend. The formula for using MM over n time points is shown in equation 4. 
 

       4 
 
Where:  is the last data value in a subset, and 
  is the size of the smoothing window. 
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2.3.2. Geostatistics 
Geostatistics deals with spatially autocorrelated data. That is, each data value is associated with a location 
in space and there is an inferred relationship between the location and the data value. A function that 
describes the degree of spatial dependence of a spatial random field is called a variogram. Webster & 
Oliver (2008: p 55) described the variogram as “the cornerstone of practical geostatistics”. As a result, in 
order to model spatial correlation of data using geostatistics, we need to estimate and model the 
variogram. Geostatistical analysis for modelling spatial correlation include calculating a sample variogram 
from the data, fitting a model to the sample variogram and predicting at unsampled locations (Webster & 
Oliver, 2008). 
 
The sample variogram represents the relationship between the semivariances and the corresponding 
separation distances of two observations. It is calculated by averaging half the squared difference of the 
values over all pairs of observations with the specified separation distance. The usual computing formula 
for the sample variogram is shown in equation 5. 
 

         5
             

Where:  is vector of spatial coordinates, 
 is the lag distance representing separation between two spatial locations, 
  is variable under consideration as a function of spatial location, 
  is lagged version of variable under consideration, 
  is the different spatial locations of the data, and 

 is the number of point pairs  separated by . 
 

There are three parameters that characterise the variogram: sill, range and nugget. The sill is the 
semivariance value at which the variogram levels off. The range is the distance up to which the spatial 
dependence extends. In other words, the range is the lag distance at which the variogram reaches the sill 
value. Nugget represents variability at distances smaller than the typical sample spacing, including 
measurement error. The difference between the sill and nugget is referred as partial sill.  
 
The sample variogram summarizes the spatial relations in the data by calculating semivariances at 
particular lags. However, the true variogram that represent the variance of a region is continuous. 
Additionally, in order to estimate or predict values at each location (or to undertake kriging), semivariances 
at lag distances other than those used in the empirical variogram are required. Therefore, in order to 
describe the variance of the region and predict at unsampled locations, we need to fit a continuous 
function to the sample variogram. In that case, we have to choose from a palette of authorized variogram 
models which are monotonically increasing (this may include fluctuation or periodicity) and have a 
constant or asymptotic sill as well as non-negative y-intercept (nugget). Variance may continue to increase 
as the region is expanded. The intrinsic hypothesis (intrinsic stationarity) therefore, assumes stationarity of 
the increment in cases where the variogram increases without bound. In general, authorized variogram 
models are those that ensure non-negative variances and  represent either bounded or unbounded 
variation (Webster & Oliver, 2008). Variogram models which represent bounded variation may reach the 
sill at a specific range (example, bounded linear and spherical models) or approach the sill asymptotically 
(example, exponential and Gaussian models) and are called transitive models. Variogram models which 
represent unbounded variation have no sill and range (example, power model) and are called non-
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transitive models. Webster & Oliver (2008) recommended using weighted least-squares approximation for 
fitting plausible models. Additionally they suggested using statistical criteria for comparing the deviations 
between the observed semivariances and the ones expected from the model.  
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3. STUDY SITE AND DATA DESCRIPTION 

The SensorScope dataset of the Grand St. Bernard pass deployment is investigated in this research. 
SensorScope is an interdisciplinary project developed by environmental and networking researchers 
(Ingelrest et al., 2010). It is based on a wireless sensor network with built-in capacity to produce high 
temporal and spatial density measures. It has already been successfully deployed multiple times in various 
environments (e.g., mountainous, urban) one of which is the Grand St. Bernard pass deployment. The 
Grand St. Bernard pass, which is the most ancient pass through the western Alps, is situated between 
Switzerland and Italy at an elevation of 2469 m with coordinates 45º52’08’’ N, 7º10’14’’ E. 
 
A WSN consisting of 23 sensor nodes was deployed in a 600m by 2200m area at the Grand St-Bernard 
pass. The sensing capability of these sensors usually ranges from -20ºC to 60ºC (SensorScope, 2007a) and 
the precision is ±0.3ºC (Ingelrest, et al., 2010). The nodes communicate in a multi-hop fashion and 
communication range goes up to 1.5 km (SensorScope, 2007a). The nodes were deployed in two clusters: 
a big cluster consisting of 18 nodes and a small cluster consisting of 5 nodes. The two clusters were 
separated by approximately 1200 m.  
 
Figure 2 illustrates distribution of the nodes in the study area and their corresponding coordinates 
according to the Swiss grid. These nodes measured different environmental attributes from September 13, 
2007 to October 26, 2007 with sampling frequency of 2 minutes (SensorScope, 2007a). One of the 
different environmental attributes, the ambient temperature was analysed in this research. Data collected 
on 29th and 30th September 2007 from 06:00 to 14:00 was used for the experiment. According to the 
Federal Office of Meteorology and Climatology Switzerland, the historical data range of temperature in 
the Swiss Alps for the months of September and October of the last 10 years ranges from -5ºC to 25ºC 
(Meteosuisse, 2005 - 2011). 

  
(a)                                                                                  (b) 

 
Figure 2: (a) The distribution of the nodes in the study area(SensorScope, 2007a) (b) the corresponding 
coordinates according to the Swiss Grid 
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4. METHODOLOGY 

4.1. Data preprocessing 
In order to reduce potential corruption of processed data, pre-processing was done to detect and eliminate 
obvious outliers. This was done based on the plausible value check and the minimum variability check. 
The values that fail these tests were not used for further data analysis.  

 
In order to do the plausible value and minimum variability checks, domain specific definitions were given 
to outliers based on the standards discussed in section 2.2.1 and section 2.2.2.1 respectively. These 
standards in relation to the variable of interest (i.e., ambient temperature) and the study site (i.e. the Grand 
St. Bernard pass) were used to define obvious outliers. 
 

4.1.1. Plausible value check 
In section 2.2.1, a maximum and minimum limit for gross error check in ambient temperature is provided 
based on the WMO guidelines.  This is a broad and general range and was narrowed by considering the 
sensing capability of the sensors that were deployed in the Grand St. Bernard pass. This was further 
narrowed by considering the climatological conditions of the site and the season. As a result, the 
acceptable range limit was set to be a minimum of -5ºC and a maximum of 25ºC. Observations that 
exceed this limit were detected as outliers and were not used for further analysis. 
 

4.1.2. Minimum variability check 
In order to check if there was a ‘dead band’ caused by sensor failure, a check on minimum variability was 
done. As specified in section 2.2.2.1, the threshold value for minimum variability check of ambient 
temperature, adopted from the conformance criteria of WMO, is 0.1ºC over a period of 60 minutes. 
However, the precision of the sensors, which were deployed at the Grand St. Bernard pass, is ±0.3ºC 
(Ingelrest, et al., 2010). As a result, instead of checking for less than 0.1ºC variability, it was checked if 
there was no variability in the sensor data for a period of 60 minutes. Observations that do not vary over 
the specified time were considered as outliers. These kinds of outliers are most likely errors due to sensor 
failure. Sensor nodes that fail the minimum variability test were not used for further analysis.  
 
After eliminating obvious outliers, the temperature measurements on the specified dates (29th and 30th 
September 2007) range from -1ºC to 11ºC.  The next step was detecting outliers that fall within this range 
but are inconsistent with the successive observations. This was done based on the maximum variability 
check and the moving average. Limit of maximum variability for ambient temperature according to WMO 
is 3ºC in 10 minutes (Záhumenský, 2004). Observations that vary by more than this maximum variability 
limit were detected as outliers. This method is discussed in detail in section 4.2.1.1. Similarly, outliers were 
also defined based on a specific confidence level by creating a series of averages of different subsets of the 
full data set. When an observation in the subset lay outside the specified confidence level, then it was 
detected as an outlier. This method is discussed in detail in section 4.2.1.2. 
 

4.2. Temporal and spatial correlations in WSNs 
In this section, we describe how temporal and spatial correlations existing in WSN data were used for 
defining the normal behaviour of temperature data. Then the measurements that significantly deviate from 
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the normal pattern were identifying as outliers. Temporal correlations were based on time series analysis 
and spatial correlations were based on geostatistics. 
 

4.2.1. Time series analysis to identify temporal outliers 
Uninterrupted series is required for time series analysis (Zhang, et al., in press). As a result, some missing 
values were generated using median smoothing (Basu & Meckesheimer, 2007). Temporal outliers were 
detected using two different techniques: maximum variability check and moving average. 
 
The analysis was done based on the data from the nodes in the small cluster (i.e. nodes 25, 28, 29, 31 and 
32). Figure 3 illustrates distribution of these nodes and their corresponding coordinates according to the 
Swiss grid. Data from these five nodes on September 30, 2007 from 6:00 to 14:00 was used. With a 
sampling frequency of 2 minutes, 240 observations from each node were used for the analysis.  

 
Figure 3: Distribution of the nodes in the small cluster 
 
R (R Development Core Team, 2011) version 2.14.0, with some packages, was used for the analysis. R is 
an open-source language and environment for statistical computing and graphics. It is an integrated suite 
of software facilities for data manipulation, calculation and visualization. Packages are collections of R 
functions, data, and compiled code in a well-defined format. Besides the ‘stats’, which is a standard 
package which comes with R, other packages as ‘zoo’ (Zeileis & Grothendieck, 2005), ‘xts’ (Ryan & 
Ulrich, 2011) and ‘TTR’ (Ulrich, 2011) were loaded in to R and used for the analysis. 
 

4.2.1.1. Temporal outlier detection using maximum variability check 
Temporal outliers were detected by checking for unrealistic jumps in values over a specific period. The 
rate of change of instantaneous data was examined based on the specified maximum variability limit (i.e., 
3ºC in 10 minutes). In our dataset, where the sampling frequency is 2 minutes, 6 consecutive observations 
represent 10 minutes data. A current reading was checked against the previous 5 observations. When the 
difference to the previously recorded readings is significant (i.e. if it varies by more than 3ºC), then it is 
labelled as an outlier.  
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4.2.1.2. Temporal outlier detection using moving average 
Time series data have a natural temporal ordering. This makes time series analysis distinct from other 
common data analysis problems, in which there is no natural ordering of the observations. A time series 
model will generally reflect the fact that observations close together in time will be more closely related 
than observations further apart. In cases where a time series model is calibrated based on data, the model 
will no longer apply if the weather conditions change and this result in an inaccurate future value 
prediction. Hence, if there is consistent change in the weather conditions, the time series model needs to 
be re-calibrated and updating the model consumes high resources in terms of memory and processor 
(Zhang, 2010). To solve these problems, an automated approach for outlier detection, which is 
computationally inexpensive for real time analysis is required (Basu & Meckesheimer, 2007). A moving 
average is commonly used with time series data to smooth out short term fluctuations and estimate trends. 
Using moving average approach for outlier detection is computationally simple, can detect temporal 
outliers upon arrival of a new observation and no need to train a model. Furthermore, depending on the 
time frame (or window width), the system can automatically detect when an event becomes the usual 
behaviour of the environment (Basu & Meckesheimer, 2007) and no need of model updating as in case of 
model dependent approaches. Model updating is memory and processor intensive (Zhang, et al., in press) 
and do not comply with the limited WSN resources. 
 
To model the temporal correlation of the data, the moving average approach was used. Figure 4 shows an 
example of a moving average with a smoothing window size, n=5. The averaging was done using simple 
moving average (SMA) technique, which gives equal weights for each data value in the subset. The SMA 
approach sets a dynamic threshold with maximum and minimum bound of a given confidence level of a 
specific subset. An observation that lay outside the maximum and minimum bound of a given confidence 
level of a specific subset was detected as an outlier. 
 
Temporal outliers were detected using SMA of different sizes of smoothing window, n (5, 15, 30, 45, 60 
and 90) for different confidence levels, CI (90%, 95% and 99%). The effect of the size of smoothing 
window and the value of confidence level was examined. 
 
 
 
 
t 1 t 2  t3 t4 t5 t6 t7 t8 t9 t10 
    Avg(t1:t5) Avg(t2:t6) Avg(t3:t7) Avg(t4:t8) Avg(t5:t9) Avg(t6:t10)
 

Figure 4: An example of a moving window, for n = 5 (right aligned index of results) 
 
As shown in Figure 4, the index of the result was set to be right aligned in relation to the moving window 
of observations, meaning that the averaging was done by using only past data. By doing so, there is no 
need to wait for some more observations to classify an observation as an outlier or normal. In this case an 
observation is classified as an outlier or normal based on the mean of the previous n observations and the 
confidence level. As a result, the classification starts from the nth observation and the first n-1 
observations are not classified as outliers or normal. For example, if the size of smoothing window for the 
moving average is set to 5 as in Figure 4, the first 4 observations are not classified as outliers or normal 
and the classification starts from the 5th observation. Since the number of unclassified data differs with 
different n, this makes it difficult to assess the effect of the size of the moving window. In order to solve 

Smoothing window, n = 5 
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this problem, n-1 observations from the previous hour/s were taken and all the 240 observations (from 
06:00 to 14:00) from each node were classified as outliers or normal. 
 
In estimating the underlying trend using SMA, the mean value of a given set of distribution will greatly be 
affected by the extreme values. As a result, moving median (MM) approach, which is believed to give a 
more robust estimate of the trend, was also used. 
 

4.2.2. Accuracy of temporal outlier detection 
In order to assess the accuracy of the outlier detection techniques discussed in section 4.2.1; there is no 
available reference dataset. Therefore, a labelled dataset from Zhang (2010), where every observation had 
been labelled as outlier or normal, was used as a reference dataset. This labelled dataset is obtained by a 
posteriori labelling using 3 techniques: running average-based, Mahalanobis distance-based and density 
based. Zhang (2010) provides a detailed description of the labelling techniques.  
 
The outlier detection techniques were assessed using detection rate ( ) and false positive rate 
( ) based on the three labelled datasets.  represent the percentage of outliers that are 
correctly detected.  represent the percentage of normal data that are incorrectly detected as 
outliers. The formulas for  and  are presented in Equation 6 and Equation 7 
respectively. 
 

         6 
 

        7 

Where:   is the number of correctly detected outliers, 
 is the total number of true outliers, 
 is the number of normal data incorrectly detected as outliers, and 
 is the total number of normal data. 

 

4.2.3. Geostatistical analysis for modelling spatial correlation to identify outliers 
Geostatistical analysis for modelling spatial correlations was used to identify spatial outliers. This includes 
calculating a sample variogram from the data, fitting a model to the sample variogram and predicting at 
unsampled locations (Webster & Oliver, 2008).  

 
The analysis was done based on the data from 06:00 to 14:00 on September 29, 2007. All the nodes from 
both the small and big cluster were considered. However, 6 nodes from the big cluster were detected to be 
faulty in the pre-processing and are excluded from the analysis. Therefore, measurements from the 
remaining 17 nodes were considered for the analysis. 
 
In order to compute sample variogram, generally from 100 to 200 data point is required and those 
calculated with less than 50 are liable to sudden unpredictable change (Webster & Oliver, 2008). 
Consequently, the spatial data from these 17 locations were too few to represent spatial variation of sensor 
data. As a result, the usual method for calculating sample variogram, which is presented in equation 5, 
could not be used. To mitigate this constraint regarding required sample size, observations at different 
time periods from the 17 locations were used (Sterk & Stein, 1997). Accordingly the formula for 
variogram in equation 5 was modified to equation 8. 
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       8 

Where:  is the number of different time periods, and 
 is the number of point pairs  separated by  at time period .  

 
The variogram averaging method of Sterk & Stein (1997), which is presented in equation 8, is based on the 
assumption that a constant spatial correlation exists over time. To check if this assumption is realistic, 
spatial variations for different hours and for the whole morning were modelled.  
 
R (R Development Core Team, 2011) version 2.14.0, with ‘gstat’ (Pebesma, 2004) and ‘sp’ (Bivand et al., 
2008a; Pebesma & Bivand, 2005) packages, was used for the analysis. 
 

4.2.4. Accuracy of spatial correlation model 
To evaluate the prediction accuracy of the spatial correlation model, leave-one-out cross validation 
technique (Webster & Oliver, 2008) was used. Temperature values at 6:30, 7:30… 13:30 were left out from 
the data and the hourly variograms and the average variogram were estimated. The left out values were 
then predicted using the respective hourly variogram models and the average variogram model. For 
example, the left out values at 06:30 were predicted using the hourly variogram model for 6:00 ~ 7:00 and 
the average variogram model for 06:00 ~ 14:00. Subsequently, in order to compare prediction accuracy 
between the hourly and the average variogram models, the RMSE was determined. In order to determine 
the RMSE, the residuals (i.e., the differences between the left out values and the corresponding predicted 
values) were calculated as in Equation 9. Then ME and RMSE are calculated as in Equation 10 and 
Equation 11 respectively.  
 

           9 
 

           10

          11 

Where:  denote a specific observation, 
 denote residual,  
 denote a left out value,  
 denote a predicted value, and 

N denote the number of residuals. 
 

4.3. Event detection 
Once an outlier is detected by identifying deviation from the normal behaviour, it was further investigated 
to distinguish between events and errors. This was done based on the length of the outlier sequence. 
Choosing a specific length of sequence of outliers for distinguishing between events and errors is not easy 
when we do not have a priori information about the event. Zhang (2010) recommended that the length of 
the outlier sequence be small so that outliers be classified as events or errors without delay. In this 
research, the length of sequence of outliers for defining an event was set to be four consecutive outliers 
(i.e., 8 minutes).  
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The occurrence of four consecutive outliers at a single node could also be a long term error. Therefore, 
when four consecutive outliers from one node, which signify the possibility of an event, correspond with 
another such observations from at least two of the neighbouring nodes this signify the occurrence of an 
event and such consecutive outliers were labelled as an event otherwise they were considered as a long 
term error.  
 
An event pertains to a place of limited geographic extent and a limited time frame of the observation 
period. If such an extreme reading pertains for a time frame more than a specific limit and its geographic 
extent covers almost the entire region under consideration, it is no more an event (i.e. it becomes the usual 
behaviour of the environment). However, in cases where event detection is used for environmental 
monitoring, the focus is not in detecting a specific kind of event. As a result, it is difficult to specify a limit 
on time frame and geographic extent for considering an event as the normal environmental variable. For 
convenience the minimum limits for the time frame and geographic extent for classifying an event as 
normal environmental variable were set to be one fourth of the total observation period and two third of 
the total number of nodes respectively. It is obvious that a disastrous event, such as fire, can never be 
considered as normal behaviour of the environment. The specified limits in the time frame and geographic 
extent assume that, if such a disastrous event happens, immediate action will be taken before the specified 
time limit and if it continue more than the specified limit, it is less likely that the sensor nodes will survive. 
 
The analysis was done based on the data from the five nodes in the small cluster using the outliers 
detected by the temporal outlier detection (TOD) method of Zhang, et al. (in press). The time sequence of 
the temporal outliers was first checked and when it signify the possibility of an event, it was checked if at 
least two of the neighbouring nodes also detect similar sequence of temporal outliers.  
 

4.3.1. Accuracy of event detection 
In order to assess accuracy of the event detection method, there was no reference dataset available. As a 
result, the observations which were labelled as outliers using the three labelling techniques by Zhang 
(2010) were relabelled in to events and errors based on the definition provided in section 4.3. Then these 
labelled events were used as a reference to assess the accuracy of the event detection technique. 
 
The event detection technique was assessed using detection rate ( ) and false positive rate 
( ).  represent the percentage of events that are correctly detected.  represent 
the percentage of outliers that are incorrectly detected as events. The formulas for  and  
are presented in Equation 12 and Equation 13 respectively. 
 

         12 
 

         13 
 
Where:   is the number of outliers that are correctly classified as events, 

 is the total number of outliers that represent a true event, 
 is the number of outliers that are incorrectly classified as events, and 
 is the total number of outliers. 
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5. RESULTS 

5.1. Temporal correlation-based outliers 
The results of temporal outliers detected using the techniques discussed in sections 4.2.1.1 and 4.2.1.2 are 
presented in sections 5.1.1 and 5.1.2 respectively. 
 

5.1.1. Outliers detected using maximum variability check 
An observation that varies by more than 3ºC from five preceding observations was labelled as an outlier. 
Figure 5 shows the results of the detected outliers at each node of the small cluster where the outliers are 
marked as (red) solid circle. In the figure the time series of the data in each node is shown by black line. 
Likewise, the number of outliers and the points at which they occurred are presented in Table 2.  
 
Table 2: Number of outliers that exceed the maximum variability limit 
Nodes Number of outliers Occurred points 

Node 25 8 220, 221, 222, 223, 224, 225, 226, 228 
Node 28 9 196, 204, 205, 207, 208, 222, 223, 224, 227
Node 29 5 187, 223, 224, 228, 229 
Node 31 5 203, 204, 208, 209, 226 
Node 32 2 223, 224 
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Figure 5: Outliers that exceed the maximum variability limit 
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5.1.2. Outliers detected using moving average 
This section presents the results of outliers detected using the simple moving average (SMA) and moving 
median (MM) techniques described in section 4.2.1.2. In the experiments the size of the smoothing 
window, n was assigned different values (5, 15, 30, 45, 60 and 90) for different confidence level, CI (90%, 
95% and 99%). In order to examine the effect of n and CI in the outlier detection method, all the assigned 
values of n for the different CI were tried. For n=5, there were no outliers detected at CI 95% and 99% 
using the SMA approach and at CI 99% using the MM approach. Figure 6 and Figure 7 are presented as 
examples to show the effect of using different n and CI.  The temporal outliers detected at node 25 for 
n=45 at different CI by using SMA are presented in Figure 6. Likewise, the temporal outliers detected at 
node 28 for CI=95% at different n by using MM are presented in Figure 7. In the figures, the original time 
series of the data in each node is shown by black line. The dotted lines show the upper bound and lower 
bound of standard deviation of the corresponding smoothed time series. The data points which lie outside 
these bounds are labelled as outliers and are marked as (red) solid circle. 
 

 
Figure 6: Temporal outliers detected at node 25 using SMA for n=45 at different CI 

Node 25

 n=45, CI=90%
Time (2min)

Te
m

pe
ra

tu
re

 (C
)

0 50 100 150 200

0
2

4
6

8
10

Node 25

n=45, CI=95%
Time (2min)

Te
m

pe
ra

tu
re

 (C
)

0 50 100 150 200

0
2

4
6

8
10

Node 25

n=45, CI=99%
Time (2min)

Te
m

pe
ra

tu
re

 (C
)

0 50 100 150 200

0
2

4
6

8
10



STATISTICALLY-BASED EVENT DETECTION USING WIRELESS SENSOR NETWORKS 

22 

 

 
Figure 7: Temporal outliers detected at node 28 using MM for CI=95% at different n 
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5.1.3. Outlier detection accuracy 
The outlier detection accuracy was calculated based on DR and FPR using Equation 6 and Equation 7 
respectively. This was based on the results of three labelling techniques (running average-based, 
Mahalanobis distance-based and density-based techniques). For comparison purpose the accuracy of 
temporal outlier detection approach used by Zhang, et al. (in press)  is presented at the last rows of Table 
3, Table 4, and Table 5. 
 

5.1.3.1. Outlier detection accuracy of the maximum variability check 
The outlier detection accuracy of the maximum variability check is presented in Table 3.  
 
Table 3: Outlier detection accuracy of the maximum variability check 

n Running average-based Mahalanobis distance-based Density-based
DR% FPR% DR% FPR% DR% FPR%

6 19 1 44 2 73 2
TOD 72 11 100 15 100 15

 

5.1.3.2. Outlier detection accuracy of the moving average 
The outlier detection accuracy of the SMA and the MM are presented in Table 4 and Table 5 respectively. 
This was done for different sizes of smoothing window and different confidence levels.  
 
Table 4: Outlier detection accuracy of the SMA 
n CI Running average-based Mahalanobis distance-based Density-based 

DR% FPR% DR% FPR% DR% FPR% 
5 90% 6 4 5 4 20 4

15 
90% 32 15 59 16 73 16
95% 24 9 55 10 73 10
99% 7 2 11 3 27 3

30 
90% 39 22 69 22 93 23
95% 35 15 65 15 93 16
99% 24 5 53 5 73 6

45 
90% 47 29 82 29 100 30
95% 39 17 69 17 93 18
99% 32 6 62 6 93 7

60 
90% 57 34 88 35 100 36
95% 46 20 79 20 100 21
99% 34 7 62 8 93 9

90 
90% 74 46 98 46 100 47
95% 55 26 86 26 100 27
99% 35 9 62 9 93 10

TOD 72 11 100 15 100 15
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Table 5: Outlier detection accuracy of the MM 
n CI Running average-based Mahalanobis distance-based Density-based 

DR% FPR% DR% FPR% DR% FPR% 

5 90% 23 16 44 16 50 17
95% 8 6 20 6 33 6

15 
90% 35 19 63 19 73 20
95% 31 12 60 12 73 13
99% 15 3 45 3 53 4

30 
90% 42 27 72 27 93 28
95% 37 18 65 18 93 19
99% 29 8 60 8 93 9

45 
90% 55 33 86 33 100 34
95% 44 20 72 20 93 21
99% 35 7 65 8 93 9

60 
90% 68 40 97 41 100 42
95% 52 25 86 25 100 26
99% 37 10 65 10 93 11

90 
90% 83 53 100 54 100 55
95% 66 33 97 34 100 35
99% 39 11 67 12 93 13

TOD 72 11 100 15 100 15
 

5.2. Geostatistical analysis for modelling spatial correlation to identify outliers 

5.2.1. Empirical variogram 
The sample variogram for every one hour and for the whole morning was calculated according to equation 
8. In calculating the sample variogram, the ‘gstat’ makes a number of decisions, some of which are the cut-
off and width, by default. Cut-off refers to the maximum distance up to which point pairs are considered 
and width refers to the distance interval over which point pairs are averaged. The default value ‘gstat’ uses 
for cut-off is one third of the maximum possible lag (or the largest diagonal of the bounding box of the 
data) and cut-off value divided by 15 is used as default width by ‘gstat’ (Bivand et al., 2008b). The default 
cut-off and width for our data, which were provided by ‘gstat’, were 745 and 49 respectively.  
Figure 8 illustrates average empirical variograms for the whole morning (06:00 ~ 14:00) at (a) the default 
cut-off and width, as well as at different cut-offs and widths (b) cut-off = 1000, width = 100 and (c) cut-
off = 1100 and width = 150.  
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(a)

(b)

(C)
Figure 8: Average empirical variograms at different cut-offs and widths (time 6:00 ~ 14:00) 
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5.2.2. Fitting variogram model 
After investigating the nature of the empirical variograms of every hour and the average variogram of the 
whole morning, appropriate variogram models were fitted. To improve the fitting to the sample 
variogram, ‘gstat’ default weighting method was used and use was made of the bounded linear and the 
power models which are defined in Equation 14 and Equation 15 respectively.  
 
Bounded linear model, which is the simplest function for describing bounded variation (Webster & 
Oliver, 2008), was fitted to the empirical variograms of every hour and to the average variogram of the 
whole morning at cut-off 1000 and width 100. This is shown in Figure 9 and the estimated variogram 
parameter values and the SSErr are presented in Table 6. 
 

Bounded linear model:        14

    

Where  is lag distance, 
 is the sill, and 
 is the range. 

 
Power model, which is the simplest function for describing  unbounded variation (Webster & Oliver, 
2008), was fitted to the empirical variograms of every hour and to the average variogram of the whole 
morning at cut-off 1100 and width 150. This is shown in Figure 10 and the estimated variogram parameter 
values and the SSErr are presented in Table 7. 
 
Power model:        15
    

The power model has no sill and range; instead, it quantifies the variation by using a positive slope 
parameter ( ) which has dimensions of the variance and a dimensionless quantity ( ) which indicate how 
fast the variance increases. Note that the value  yields a straight line. If , the variogram is 
convex upward and if , the variogram is concave upward. 
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Figure 9: Bounded linear model fitted to the hourly and average sample variograms at cut off=1000 & 
width=10
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Figure 10: Power model fitted to the hourly and average sample variograms at cut-off=1100 & width=150
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Table 6: Estimated variogram parameter values and SSErr for the linear model 

Linear model,        Cut-off=1000 and Width =100
Hour Partial sill Range Nugget SSErr

6 (6:00-7:00)  0.881 860 0.370 3.07×10-3

7 (7:00-8:00)  0.693 860 0.333 2.07×10-3

8 (8:00-9:00)  0.604 988 0.201 1.23×10-4

9 (9:00-10:00)  0.192 185 0.308 1.72×10-4

10 (10:00-11:00)  1.015 232 0.080 3.06×10-4

11 (11:00-12:00)  0.949 501 1.157 2.73×10-3

12 (12:00-13:00)  0.433 621 1.322 1.12×10-2

13 (13:00-14:00)  0.617 860 1.048 3.64×10-3

Average(6:00-14:00) 0.764 727 0.588 5.95×10-3

 

Table 7: Estimated variogram parameter values and SSErr for the power model 
Power model,        Cut-off= 1100 and Width=150

Hour Partial sill Range Nugget SSErr
rtot.6a (6:00-7:00) 7.77×10-3 0.70 0  1.21×10-4

rtot.7a (7:00-8:00) 1.30×10-5 1.74 0.166  2.84×10-5

rtot.8a (8:00-9:00) 7.77×10-3 0.70 0  1.21×10-4

rtot.9a (9:00-10:00) 6.43×10-2 0.36 0  7.21×10-4

rtot.10a (10:00-11:00) 2.56×10-2 0.64 0  1.88×10-3

rtot.11a (11:00-12:00) 7.74×10-2 0.55 0  2.27×10-3

rtot.12a (12:00-13:00) 1.63×10-1 0.41 0  7.50×10-4

rtot.13a (13:00-14:00) 9.11×10-4 1.10 0.709  2.34×10-4

Average(6:00-14:00) 4.72×10-2 0.53 0  1.71×10-3

 

5.2.3. Prediction accuracy 
In order to predict at the left-out observations, the fitted power model with the estimated parameters was 
applied to the data. The left-out observations were predicted using the respective hourly variogram models 
and the average variogram model. Table 8 shows comparison of prediction accuracy between the hourly 
and average models using ME and RMSE. 
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Table 8: Comparison of the prediction accuracy between the hourly and average models 
Prediction point Variogram  model ME RMSE 

6:30 
6:00-7:00(rtot.6a) 0.0128 0.4365
6:00-14:00(Average) 0.0092 0.4552

7:30 
7:00-8:00(rtot.7a) -0.0065 0.6389
6:00-14:00(Average) -0.0040 0.6424

8:30 
8:00-9:00(rtot.8a) 0.0181 0.6181
6:00-14:00(Average) 0.0142 0.6377

9:30 
9:00-10:00(rtot.9a) 0.0077 0.6396
6:00-14:00(Average) 0.0131 0.6078

10:30 
10:00-11:00(rtot.10a) 0.0227 0.7488
6:00-14:00(Average) 0.0186 0.7488

11:30 
11:00-12:00(rtot.11a) 0.0409 1.4271
6:00-14:00(Average) 0.0395 1.4216

12:30 
12:00-13:00(rtot.12a) 0.0238 0.8621
6:00-14:00(Average) 0.0354 0.8630

13:30 
13:00-14:00 (rtot.13a) -0.0030 0.8196
6:00-14:00(Average) 0.0150 0.8884

 

5.3. Event detection 
The event detection process was done based on the outliers detected using the temporal outlier detection 
(TOD) method of Zhang, et al. (in press). Based on the definition provided in section 4.3, sub section of 
the observed points, where occurrence of an event was identified, is presented in Table 9. First the 
occurrence of four or more consecutive outliers was labelled as a possible event. Then the possible events 
were further classified as events or long-term errors by checking if at least two out of the four 
neighbouring nodes also detect the same deviations.  
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Table 9: Detected events based on TOD method of (Zhang, et al., in press) 
Occurred 

points 
Node 25 Node 28 Node 29 Node 31 Node 32 

213 Normal Normal Normal Normal Error

214 Normal Event Normal Normal Error

215 Normal Event Normal Normal Error

216 Event Event Normal Normal Normal 

217 Event Event Normal Normal Event

218 Event Normal Normal Event Event

219 Event Error Normal Event Event

220 Event Error Normal Event Event

221 Event Normal Event Event Normal 

222 Normal Event Event Event Event

223 Event Event Event Normal Event

224 Event Event Event Normal Event

225 Event Event Event Event Event

226 Event Normal Normal Event Event

227 Normal Event Event Event Event

228 Error Event Event Event Event

229 Normal Event Event Event Normal 

230 Normal Event Event Event Normal 
231 Normal Normal Normal Normal Error 
232 Long-term error Error Error Normal Normal 
233 Long-term error Error Normal Long-term error Normal 
234 Long-term error Error Normal Long-term error Normal 
235 Long-term error Normal Error Long-term error Error 
236 Long-term error Normal Normal Long-term error Normal 
237 Normal Error Normal Normal Error

238 Normal Error Normal Error Error

239 Error Normal Normal Error Error

240 Normal Error Normal Normal Normal
 

5.3.1. Event detection accuracy 
The accuracy of the event detection technique was calculated based on DR (Equation 12) and FPR 
(Equation 13) using results of the classified outliers of the three labelling techniques. The classified outliers 
of the Mahalanobis distance-based and density-based techniques detect no event. Therefore, the accuracy 
assessment was based on the classified outliers of the running average-based technique. The results for 
DR and FPR are 49% and 16% respectively.  
  



STATISTICALLY-BASED EVENT DETECTION USING WIRELESS SENSOR NETWORKS 

32 

 



STATISTICALLY-BASED EVENT DETECTION USING WIRELESS SENSOR NETWORKS 

33

6. DISCUSSION 

6.1. Temporal correlation based outliers 
The maximum variability check was first computed by calculating the difference between the maximum 
and minimum observations in a subset of six consecutive observations. But this caused multiple 
observations to be labelled as outliers even when there is only one outlier in the subset. In order to 
mitigate this constraint, the last observation was checked against the maximum and minimum of the 
previous five observations. This reduces the effect of a single outlying value in labelling other normal 
observations as outliers. However, this cannot be fully eliminated. Extra investigation in this approach is 
required. 
  
As it can be seen from Table 3 the maximum variability check resulted in a very low FPR. The DR was 
relatively higher when the Density-based labelling technique was uses to assess the accuracy of the 
maximum variability check. However, when running average-based and Mahalanobis distance-based 
labelling techniques were used, the DR was low. According to WMO guidelines, the maximum allowed 
variability for air temperature over 10 minutes period is 3ºC (Záhumenský, 2004). In the maximum 
variability check approach, this limit was used to detect unrealistic jumps in values. However this limit is a 
general one and could be too big for detecting outliers in areas where the temperature variability is very 
low. And it is possible that this could be the reason for getting low DR. Using a lower limit could improve 
the DR while still keeping the FPR to a minimum.                                                                                                            
    
The effect of using medians (MM) instead of means (SMA) was examined. When MM approach was used 
instead of SMA approach, the confidence intervals were based on a symmetric distribution and were the 
same as in the case of moving mean. However, the standard deviations for the MM were from the median 
not from the mean and a different result from that of the moving mean was obtained. As it can be seen 
from Table 4 and Table 5, taking the same size of smoothing window (n), the percentage of outliers that 
were correctly detected was higher when medians were used instead of means. This is because in case of 
SMA approaches, the mean value of a given set of distribution was greatly affected by the extreme values. 
As it can be seen from Table 4 and Table 5, this resulted to a better DR in MM than in SMA. However, 
the FPR in the MM was also higher than in the SMA. When emphasis is given to DR, it can be concluded 
that using the MM can give more accurate results than the SMA. 
 
The accuracy of the outlier detection techniques in relation to the effect of the different labelling 
techniques is examined. As it can be seen from Table 4 and Table 5, the FPR for a specific outlier 
detection approach (with a specific size of smoothing window, n at specific confidence level, CI) were 
similar for all the three labelling techniques. The DR was higher when density-based labelling technique 
was used to assess the accuracy of the outlier detection approaches. However, a bit higher false positive 
rate was found when using the density-based labelling technique compared to using the running average 
based and Mahalanobis distance based. According to the running average based labelling, the moving 
average approaches had low DR for the different sizes of smoothing window, n and different confidence 
level, CI. The running average based labelling did not use the full range of values in the dataset. It rather 
used the surrounding values on the time axis (Zhang, 2010). This is a possible reason for the low accuracy 
of outlier detection when the running average-based labelled data was used for assessing the accuracy. 
 



STATISTICALLY-BASED EVENT DETECTION USING WIRELESS SENSOR NETWORKS 

34 

The effect of the value of confidence level in detecting temporal outliers was examined. As it can be seen 
from Figure 6, relatively lower CI resulted in the detection of large number of outliers. Because of the low 
confidence interval, some normal observations were considered as outliers. This resulted in high DR and 
high FPR as it can be seen from Table 4 and Table 5. On the other hand, higher CI resulted in the 
detection of small number of outliers. Because of the high confidence interval, some outliers were 
considered as normal. This resulted in lower DR and lower FPR.                                                                                               
 
The effect of the size of smoothing window in detecting temporal outliers was examined. As it can be seen 
from Figure 7, relatively small size of smoothing window can keep the original data structure and this 
results to the detection of relatively small number of outliers. Even no outlier was detected in all the nodes 
when small size of smoothing window was used with higher confidence level. As it can be seen from 
Table 4 and Table 5, small size of smoothing window results in low detection rate based on all the three 
labelled datasets. From this we can conclude that using small size of smoothing window, which keeps the 
original data structure, has a negative impact in detecting outliers. In the contrary, large size of smoothing 
window changes the original data structure resulting to the detection of large number of outliers. This in 
turn resulted in higher DR based on all the three labelled datasets. But the FPR was also higher for large 
size of smoothing window. 
 
There is a trade-off in choosing the size of smoothing window and the value of confidence level. If our 
main emphasis is in acquiring high DR, we can use large size of smoothing window (n) while keeping the 
CI level low. On the other hand if we give emphasis to acquiring low FPR, we can use small size of 
smoothing window (n) at higher CI.  
 
The analysed dataset has an upward trend and the used moving average approaches do not take trend in to 
consideration. Furthermore, the index of the results was set to be right aligned in comparison to the 
moving window of observations. An example of a moving window with right aligned index of results is 
provided in Figure 4. When the index of results is right aligned, there is no need to wait for more 
observations in order to classify an observation as an outlier or normal. On the other hand, as it can be 
seen from Figure 6 and Figure 7, this approach has a drawback that it can only detect outliers above the 
upper bound in a dataset with an upward trend. By taking small size of sliding window at a lower CI, we 
can detect outliers below the lower bound of confidence level. However, as discussed earlier small size of 
smoothing window has a negative impact in detecting outliers. Setting the alignment of the index of the 
results to centre in comparison to the moving window of observations could alleviate the problem with 
the right aligned index of the results, but of course there is some time delay (depending on the size of the 
smoothing window) in classifying an observation as an outlier or normal. The accuracy of the moving 
average approaches when the index of the results was aligned to centre is not investigated in this research. 
 
The accuracy of the moving average approaches was compared to Zhang’s (2010) temporal outlier 
detection (TOD) technique. The DR of the moving average approaches gave comparable results to 
Zhang’s (2010) TOD technique when Mahalanobis distance-based and density-based labeling techniques 
were used.  However, when running average based labeling technique was used, the detection rate of the 
moving average approaches was much lower. FPR of both the SMA and MM approaches using all labeling 
techniques were much higher compared to Zhang’s (2010) TOD technique. Hence, for the further analysis 
on event detection, the outliers detected using Zhang’s (2010) TOD technique were used.   
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6.2. Geostatistical analysis for modelling spatial correlation to identify outliers 
The sample variograms calculated by using the default cut-off and width were quite noisy. As a result it 
was difficult to fit any model to them. Bivand, et al. (2008b) suggests that the default cut-off and width 
values, when not appropriate, can be overridden and replaced with different values. To find a sample 
variogram with a clear trend and less noise, different computations were tried by changing the cut-off and 
width values. First, it was tried by increasing the default cut-off and width values to 1000 and 100 
respectively. This result to a less noisy variograms compared to those calculated at the default cut-off and 
width values and as shown in Figure 9 a bounded linear model was fitted to them. Bounded linear model, 
which consists of two straight lines as described in equation 14, is the simplest function for describing 
bounded variation (Webster & Oliver, 2008). The bounded linear model was chosen because it is simple 
and can fit to the computational limitations of WSNs. In order to improve the fitting to the sample 
variogram, gstat default weighting method, which uses weights,  with  the number of point pairs 
and  the distance, was used. The fitted variogram model had a logical and numeric attributes. The logical 
attribute indicates whether the model converged or ended in a singularity and the numeric attribute 
indicates the sum of squared error (SSErr) of the fitted model (Pebesma, 2004).The variogram parameters 
(partial sill, range, and nugget), which are discussed in section 2.3.2 were estimated using the fitted 
bounded linear model and these parameters together with the SSErr are presented in Table 6. The SSErr 
indicates the squared deviations between the observed semivariances and the ones expected from the 
model (Webster & Oliver, 2008). Fitting exponential model was also tried. However, the model did not 
converge and ended in a singularity when fitted to some of the hourly variograms. 
 
The cut-off and width values were further increased to 1100 and 150 respectively. As illustrated in  
Figure 8, this result to variograms with much less noises compared to the previous ones, but were 
unbounded. As a result, we need to fit non-transitive model and the power model was fitted as shown in 
Figure 10, and the estimated parameters and SSErr are presented in  
Table 7. 
.  
Succeeding step was to evaluate the prediction accuracy between the hourly and the average variogram 
models. The power model was used for prediction and the prediction accuracy of the hourly and average 
models were compared using ME and RMSE based on the leave-one –out cross-validation strategy. A 
model with lower RMSE is more accurate and ideally ME should be zero indicating that prediction is 
unbiased.   
 
There are a number of factors (such as latitude, altitude, season, etc.) that influence the temperature at any 
particular place. Some other factors like wind direction, time of day and present weather condition can 
control variations in temperature over short periods. It could be the effect of these factors that caused the 
difference in the empirical variogram of every hour and the average empirical variogram. However, from 
Table 8, we can see that there is no big difference in the RMSE for the prediction using the average 
variogram and using the hourly variogram. This indicates that comparable prediction can be done using 
the average variogram. Predictions at 9:30 and 11:30 were even more accurate when we use the average 
variogram model of the whole morning than the hourly variogram models. From these results, we can see 
that the observations collected at different time periods can be characterized by the same spatial 
correlation structure. Hence it can be concluded that the assumption in which the variogram averaging 
method of Sterk & Stein (1997) is based on is realistic. 
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6.3. Event detection 
Once outliers are detected, it is useful to distinguish between events and errors. Events were detected by 
exploiting spatial and temporal correlations existing in the sensor data. Outliers that represent a change in 
the state of the environment are more likely to be spatially and temporally correlated. However, outliers 
that occur due to measurement error or environmental noise are less likely to be spatially or temporally 
correlated.  
 
From Table 9 we can see how the event at the 5 nodes developed temporally. For all the nodes, the event 
disappeared and appeared again at least once. The event did not start at the same time in all the nodes. It 
started at node 28; then node 25, node 32, node 31 and finally node 29. The event did not develop at the 
same time in all the nodes. It took it about 14 minutes to reach node 29 once it started at node 28. The 
event lasted for about 34 minutes. The event finally stopped at the same time for nodes 28, 29 and 31. At 
nodes 32 and 25, it stopped 4 minutes and 8 minutes earlier respectively. 
 
In order to assess the accuracy of the event detection process, there was no reference dataset. As a result, 
the observations which were labelled as outliers using the three labelling techniques by Zhang (2010) were 
relabelled as events or errors based on the definition of errors provided in section 4.3. This relabelled 
dataset was then used to assess the accuracy of the event detection technique. However, the number of 
outliers labelled using Mahalanobis distance-based and density-based techniques are too small. 
Consequently no outlier was labelled as an event when data from the Mahalanobis distance-based and 
density-based techniques was used. Hence, the accuracy assessment was based on the classified outliers of 
the running average-based technique only. It can be seen from Table 4 or Table 5, Zhang’s (2010)TOD 
technique achieved the lowest DR when the running average based labelling technique was used to assess 
the accuracy. Therefore, it is difficult to conclude on the accuracy of the event detection process based on 
the running average bases relabelled dataset. 
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7. CONCLUSION

The objective of this research was to develop analytical techniques which are suitable for event detection 
using wireless sensor networks (WSNs). To achieve this objective, five specific objectives, followed by one 
or more research questions for each objective, were formulated (Table 1). From the reviewed literature, 
obtained results and discussion the specific objectives are achieved to conclude the following findings. 
 
Defining an outlier and an event  
No universally accepted definition for outliers exists. The perception of outliers differs in terms of data 
type, application domains and detection techniques. But generally, measurements that significantly deviate 
from the normal pattern of a phenomenon are called outliers. Domain specific definitions were given to 
outliers based on the WMO guidelines in relation to the variable of interest (i.e., ambient temperature) and 
the study site (i.e. the Grand St. Bernard pass). These definitions are based on plausible value and plausible 
rate of change of measured values. Similarly, outliers were also defined based on a specific confidence 
level by creating a series of averages of different subsets of the full data set. 
 
Outliers are classified in to errors and events. Errors signify either environmental noise or faulty sensor. 
Events are changes in the state of the environment. The distinction between events and errors was done 
based on the length of outlier sequence depending on the sampling rates. In cases where there is no a 
priori knowledge on incoming event, it is difficult to assign a specific sequence of detected outliers to 
represent an event.  In such cases the length of outlier sequence should be determined based on the 
application requirements. Nevertheless, since single node is liable to failures, we cannot make reliable 
distinction between events and errors based on the length of outlier sequence only. Therefore, distributed 
collaboration among neighbouring nodes is required. Zhang (2010) recommended that the length of the 
outlier sequence be small, so that there is no delay in classifying outliers as events or errors. Moreover, in 
order outliers to be distinguished as events, Krishnamachari & Iyengar (2003) recommended that a 
number of consecutive outliers from one node should correspond with another such observations from at 
least half of the neighbouring nodes. Based on these recommendations, an event is defined as four 
consecutive outliers that correspond with another such observations from at least half of the neighbouring 
nodes. 
 
An event pertains to a place of limited geographic extent and a limited time frame of the observation 
period. If such an extreme reading pertains for a time frame more than a specific limit and its geographic 
extent covers majority of the entire region under consideration, it is no more an event (i.e. it becomes the 
usual behaviour of the environment). It is difficult to specify a limit on time frame and geographic extent 
for considering an event as the normal environmental variable. For convenience the minimum limits for 
the time frame and geographic extent for classifying an event as normal environmental variable were set to 
be one fourth of the total observation period and two third of the total number of nodes respectively.  
 
Modelling the data behaviour 
Temporal and spatial correlations existing in WSN data, based on time series analysis and geostatistics 
respectively, were used for defining the normal behaviour of temperature data. Then the measurements 
that significantly deviate from the normal pattern were identifying as outliers.  
 
A time series model will generally reflect the fact that observations close together in time will be more 
closely related than observations further apart. Time series analysis using two different techniques 
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(maximum variability check and moving average) was used to detect temporal outliers. Maximum 
variability check detected outliers by checking for unrealistic jumps in values over a specific period. In the 
moving average approach averaging was done using simple moving average (SMA) and moving median 
(MM) techniques. These techniques set a dynamic threshold with maximum and minimum bound of a 
given confidence level of a specific subset. An observation that lay outside the maximum and minimum 
bound of a given confidence level of a specific subset was detected as an outlier.  
 
Geostatistics deals with spatially autocorrelated data. Geostatistical analysis for modelling spatial 
correlations was used to identify spatial outliers. This include calculating a sample variogram from the 
data, fitting a model to the sample variogram and predicting at unsampled locations (Webster & Oliver, 
2008). 
 
When using geostatistical analysis for modelling spatial correlation to identify outliers variogram averaging 
method of Sterk & Stein (1997) was used . This method assumes that a constant spatial correlation exists 
over time. To check if this assumption is realistic, spatial variations for different hours and for the whole 
morning were modelled and tested using the leave-one-out cross validation technique (Webster & Oliver, 
2008) . The results proved that the average models can do comparable predictions to the hourly models. 
Hence, the assumption in which the variogram averaging method of Sterk & Stein (1997) is based on is 
realistic. 
 
Detecting an event 
In order to assure reliable detection of interesting events using WSNs, we need to develop or use an 
accurate outlier detection technique while paying attention to the computational, storage and 
communication limitations in WSNs. The maximum variability check, the SMA and the MM approaches 
of detecting outliers are model independent and computationally simple. Using these methods for 
detecting outliers in a single node can save the communication overhead. However, the results indicate 
that the accuracy of these approaches is not as good as the model based TOD technique by Zhang, et al 
(in press). As a result, the TOD technique was used for event detection. Event detection process was done 
by exploiting temporal and spatial correlations existing in sensor data. Based on the previously provided 
definition, four consecutive outliers that correspond with another such observations from at least half of 
the neighbouring nodes were detected as events. 
 
Characterizing an event 
Once an event is detected, its temporal evolution and spatial extent can be described. From Table 9, we 
can see that the event did not start at the same time in all the nodes. It started at node 28; then goes to 
node 25, node 32, node 31 and finally to node 29. Besides, the event did not develop at the same time in 
all the nodes. It took it about 14 minutes to reach node 29 once it started at node 28. The event lasted for 
about 34 minutes. The event finally stopped at the same time for nodes 28, 29 and 31. At nodes 32 and 
25, it stopped 4 minutes and 8 minutes earlier respectively. 
 
Evaluation of event detection 
Commonly, no pre-labelled data is available for sensor data (Zhang, 2010). This made the evaluation of 
outlier detection technique challenging. This in turn made the event detection technique even more 
challenging. Due to the lack of availability of reference dataset, evaluation of the event detection technique 
was made by relabeling a labelled dataset. Zhang (2010) labelled the observations of the Grand St. Bernard 
pass data as outliers or normal data using three labelling techniques. The observations which were labelled 
as an outlier by Zhang (2010) were relabelled as events or errors, based on the previously given definition 



STATISTICALLY-BASED EVENT DETECTION USING WIRELESS SENSOR NETWORKS 

39

of events, and were used for evaluating the event detection technique. The event detection approach can 
detect events with DR of 49% and FPR of 16%. Due to the limitation in selecting the length of sequence 
of outliers the event detection approach may not be reliable. 
 
 
Recommendations 

The accuracy of the maximum variability check could be improved by carefully setting the maximum 
variability limit in relation to the behaviour of the variable of interest in the study area. Similarly, the 
accuracy of the moving average technique could be improved by giving emphasis to the most recent 
values using moving average techniques that use unequal weights for each data value in the subset (for 
example, weighted least square). These cannot be analysed in this research due to the time constraint and 
are proposed for future work. 
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