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ABSTRACT

Changes in vegetation are of great interest since they play crucial roles in ecosystem monitoring where 
remotely sensed data has been proven extremely profitable. Digital change detection approach has been 
widely utilised in conventional remote sensing technologies. As a relatively new technology, light detection 
and ranging (lidar) provides a promising way of change detection of vegetation in three dimensions (3D) 
because the laser beam will penetrate through the foliage generating point clouds with highly accurate 3D 
coordinates. 
 
This research proposes a method for vegetation change detection in 3D with high level of automation. 
Three epoch datasets are classified into several predefined classes including high vegetation (trees). A 
connected components algorithm is applied to group the points of a tree together because the point 
clouds are unstructured. The attributes of components are used to discriminate tree components from 
other since a few non-tree points are misclassified. Points from neighbour trees might be clustered 
together, so a local maxima algorithm is implemented to distinguish single tree components with multiple 
tree components. After that, the parameters of trees are derived through two independent ways: point 
based method which refers to 3D alpha shapes and convex hull; model based method which utilises the 
Pollock tree model for single trees. Then the changes can be detected by comparing the parameters of 
corresponding tree components which are found by a tree to tree matching algorithm. 
 
The comparison of these two methods illustrates the consistency and stability of the parameters. The 
detected changes clearly show the growth and pruning of trees. The results are visualized by point cloud 
mapper (PCM) and statistically analysed. 
 
 
Keywords: change detection, high vegetation, 3D modelling, airborne lidar, point cloud 
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1. INTRODUCTION

1.1. Motivation and problem statement
Change detection is a process that observes the differences of an object or phenomenon at different times 
(Singh, 1989). The change detection technique is of significant importance in many environmental and 
ecological studies such as land use change monitoring, deforestation analysis, damage assessment, study of 
changes in vegetation phenology, disaster monitoring and so on. Accurate change detection of the earth 
surface (e.g. urban areas, vegetation areas) provides essential information for better planning and 
management. Planners should be clear about the changes to identify the situation and the state of the 
environment, and then make sustainable decisions. Change detection has become a major application of 
remote sensing techniques which provide viable data of repetitive coverage at short time and consistent 
quality. 
Especially, changes in vegetation covered areas are of great interest because they are crucial for ecosystem 
monitoring where digital change detection method is widely used (Coppin et al., 2004). Change detection 
can be applied to monitor the speed of deforestation and analyse the effects of measures taken by the 
authorities. Besides forests, vegetation in urban areas is a vital part of the living conditions. The 
proportion of vegetation covered areas is an essential factor for urban planning. Urbanization and 
industrialization will severely affect the growth of vegetation. Therefore the changes of vegetation should 
be monitored and estimated. In practice, land cover changes in urban area have drawn many attentions, 
and in some cases vegetation are specially considered (Chen et al., 2005). 
Many technologies have been used to detect and monitor changes; especially the application of remotely 
sensed data has been proved extremely successful. Digital images are most commonly utilised, not only 
remote sensing satellite images (Yasuoka et al., 1990) but also digital aerial photographs. Airborne 
visible/infrared imaging spectrometer (AVIRIS) data was successfully used for detecting changes in 
vegetation in two-dimension (2D) (Elvidge and Portigal, 1990). Besides, Hoffer and Lee (1990) detected 
the change of forest cover using satellite radar data. Taking advantage of remotely sensed data, changes 
can be detected more efficiently and automatically with less labour intensity and time cost. 
As a relatively new remote sensing technology, airborne laser scanners (ALS) provide a promising way of 
change detection of vegetation in three-dimensional (3D) perspective. With traditional remotely sensed 
data, change detection of vegetation is described as coverage rate change of forests or woods, thus is 
usually carried out in 2D. By measuring the shadow in aerial images, changes in the vegetation height can 
be estimated. Nonetheless, this method can be quite inaccurate. Thanks to the light detection and ranging 
(lidar) technology, change detection research is stepping from 2D to 3D and becoming more reliable and 
automatic. The main advantage of ALS compared with traditional techniques is that it generates point 
clouds with accurate 3D coordinates. Using high density point clouds, the changes in both coverage and 
height can be detected (Houldcroft et al., 2005; Yu et al., 2006). Moreover, not only forests but also small 
bushes and even single trees can be detected from dense point clouds, which can be used to estimate the 
carbon storage (Kim et al., 2010) and generate 3D tree models (Pratihast, 2010; Rutzinger et al., 2011; 
Vosselman, 2003).  
In terms of the importance of monitoring changes of vegetation in urban areas and the development of 
high density laser scanners, lidar shows its great potential to detect changes in high vegetation (Murakami 
et al., 1998; Rutzinger et al., 2007). Vegetation changes in forestry at plot level, such as biomass or average 
height, have been studied (Yu et al., 2004). Lidar data processing, e.g. feature extraction, classification, has 
been discussed a lot and some researches have taken vegetation into consideration. However, no research 
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has focused on tree changes in 3D in urban areas. For a certain urban area, multi-temporal data sets can be 
obtained by ALS. Then the majority of the vegetation can be identified after classification. Nevertheless, 
the results of classification have to be improved. In addition, 3D modelling of trees, automatically 
detecting and quantifying the changes are still problems. 

1.2. Research identifications

1.2.1. Research objectives
The general objective of this research is to detect the changes of high vegetation, which refers to trees, in 
two epoch’s lidar point clouds in urban area. To accomplish that, four sub-objectives should be fulfilled 
sequentially. 

1.2.1.1. Classification results verification
Lidar data are points with coordinates in 3D and other attached information (e.g. intensity, pulse count). 
Therefore in order to detect changes of vegetation, points that belong to vegetation should be identified, 
which is quite easy for human visual interpolation but not the case for computers. The datasets used in 
this research have already been classified and more than 96% of the vegetation points were obtained after 
classification. But commission and omission errors remain in the data. So the result of the classified 
vegetation should be verified and improved. 

1.2.1.2. Tree parameters derivation
In urban area, trees are the majority of vegetation and treated as important index for urban planning, not 
like low vegetation, e.g. bushes, grass land, which are more likely considered as land cover. Therefore, only 
trees are considered as the research objects in this research. Single tree is most common such as a line of 
trees along a road. A couple of trees or woods usually appear in parks or outer side of the city. In order to 
detect the changes of trees in 3D, parameters like height, crown area and crown volume of every single 
tree are essential. After identified as a tree, the points should be grouped together so the parameters can 
be derived from the components. 

1.2.1.3. Change detection in two data sets
After all the previous works, the datasets are to be compared. This is the main objective of this research. 
The changes should be categorized and quantified. Trees that are cut or newly planted should also be 
treated as changes. 

1.2.1.4. Quality assessment
The results must be verified. The quality of the change detection results should be assessed so that the 
methods and algorithms in the whole process can be evaluated and revised. 

1.2.2. Research questions
For each of the sub-objective mentioned above, there are several corresponding research questions. 

1) Classification verification 
How to eliminate the misclassified points or segments?  
Which features can be used? 

2) Parameter derivation 
How to cluster the points of a tree together as an object? 
What parameters can be used to do change detection for single trees? 
How to derive parameters from grouped trees? 

3) Change detection 
How to match the corresponding trees in two data sets? 
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What are the change categories?  
4) Quality assessment 

How to verify the change detection results? 
How to assess the performance of the algorithms? 

1.2.3. Innovation
Airborne lidar technique provides high accurate height information and the laser beam can penetrate 
through the vegetation thus points on and inside the canopy and even ground information can be 
obtained. So it has been widely used to estimate the biomass in forest area, including the change detection 
of tree growth. However, barely work of change detection of vegetation in urban area has been done 
before using airborne lidar data. Besides, trees are never exactly the same even in two strips because of 
scanning geometry and wind effect, so stable parameters are essential for change detection. The 
innovation of this research is mainly to detect the changes of high vegetation in urban area using airborne 
lidar data, including: 

Method and procedure for vegetation change detection with a high level of automation. 
Stable parameter derivation of trees for change detection in 3D. 

1.3. Thesis structure
This thesis is organized into six chapters.  
First of all, the background is introduced and the problems are stated. And the objectives, questions and 
innovation of this research are identified. 
Chapter two describes the review of relevant literatures. The state of the art of laser scanning is explained 
first. Then the research about change detection of vegetation using remote sensing data sources is 
discussed. 
Chapter three introduces the research methodology. The framework was depicted first and then each step 
is described in detail corresponding to the research objectives. 
Chapter four illustrates the details of data processing including the value of each threshold. The flowchart 
of the programme is displayed and the results of each step are visualized. 
Chapter five statistically analyses each step and also the final change detection results. Discussions based 
on the analysis are followed. 
The last chapter describes the conclusions drawn on the study, and makes some recommendations for 
future research.  
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2. LITERATURE REVIEW

2.1. State of the art of airborne lidar

2.1.1. Principle of lidar
Lidar is a relatively new remote sensing technology using laser for measuring purposes.  A laser scanner 
(see Figure 2-1 ) is the core of the scanning system, thus the term laser scanning is also widely used.  The 
mechanism of airborne laser scanning is time-of-flight meaning the time of pulse flying in the medium is 
recorded. Then the range can be obtained because light travels with a known constant velocity.  
Beside the laser scanner, an airborne laser scanning system also combines global positioning system (GPS) 
and inertial navigation system (INS) and all of them are mounted on an aircraft. A GPS ground base 
station is also necessary for differential GPS (DGPS) to improve the accuracy of the system. The whole 
system looks very similar to photogrammetry. The accuracy of height is only few centimetres. When the 
flying height is low, few centimetres accuracy can also be achieved horizontally. 

 
Figure 2-1: Airborne laser scanning (Pang, 2012) 

Instead of imagery obtained by conventional remote sensing techniques, the data of laser scanning are 
unstructured points in 3D, thus also are called point cloud. The standard lidar data format is .LAS. 
Multiple echoes and full-waveform laser scanner has been developed in recent years. Along with 3D 
coordinates, other information e.g. reflectance strength, pulse count and even true colours can also be 
recorded. These kinds of information play crucial roles in data processing and application. 
Compared with conventional data acquisition techniques, e.g. aerial photogrammetry, lidar has its own 
advantages and disadvantages. As an active system, laser scanning is applicable even at night. The points 
acquired by laser scanner have very high accuracy especially in vertical direction and the point density can 
be higher than 30 points per square meter (pts/m2) nowadays. Most importantly, the beam of laser may 
penetrate through the foliage of vegetation thus not only the points on the surface or inside the vegetation 
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but also the information on the ground can be captured. So the lower stories and the structure of the 
vegetation can be studied and also the elevation model under the vegetation can be generated. This is why 
lidar has been widely utilised in forestry.  
Despite the advantages, there are also some drawbacks of using lidar. Water surface or objects with water 
on top may cause data missing when the scan angle is not very small. Even the point density becomes 
higher and higher with the development of laser scanners, texture of the data is still not as informative as 
imagery. Break lines can be estimated by fitting and tracking intersecting planes (Vosselman and Maas, 
2010). Roof edges can be detected with the help of aerial images which are often obtained simultaneously 
with the laser scanning data. 

2.1.2. Point cloud processing

2.1.2.1. Pre-processing
To identify the vegetation in lidar point clouds, filtering, segmentation and classification are the 
prerequisite steps.  
Several mathematical morphology filtering algorithms can be found,  among which slope based filtering 
(Vosselman, 2000) can filter the ground out in more complex terrain situation. In order to avoid 
reconstruct objects based on massive unstructured points, segmentation is usually applied beforehand. 3D 
Hough transform or random sample consensus (RANSAC) can be performed to detect a local set of co-
planar points as a seed segment, then a bigger segment can be found through surface growing.  
Information extraction from lidar data, e.g. buildings, roads and bridges (Maas and Vosselman, 1999; 
Oude Elberink and Vosselman, 2009; Sithole and Vosselman, 2006), shows a great potential of detecting 
vegetation in urban areas. Feature-based classification and object-based classification methods both have 
been utilised in airborne lidar data where feature-based can divide into point-wise and segment-wise 
classification. A number of attributes of segments are commonly utilised, e.g. the number of points in a 
segment (segment size), the normal distribution, the average height of the points inside, the percentage of 
last echo if available, etc.. Moreover, full-waveform and spectral information have been proven profitable 
for classification of airborne lidar data. 

2.1.2.2. Vegetation extraction and delineation
Vegetation has very irregular and unique point distribution in laser scanning data. Rutzinger, et al. (2007) 
detected high vegetation in urban areas using airborne lidar data. First of all, the original lidar data was 
segmented then the attributes of segments were calculated to discriminate vegetation segments from 
others so that vegetation was classified and labelled. 
Parameters of individual tree can be generated directly from the point clouds. Yu et al. (2011) developed 
an approach for extracting individual tree attributes, i.e. height, diameter at breast height (DBH) and stem 
volume, based on 26 geometrical and statistical features derived from airborne lidar data. A height image 
based individual tree detection method (see Figure 2-2) was demonstrated and random forests technique 
was utilised for estimation. A canopy height model (CHM) was smoothed first, and then the minimum 
curvatures were computed. The image was scaled then the local maxima were found as single tree crown. 
The method was tested using 1476 trees in Finland. Correlation coefficients between the observed and 
predicted values were 0.93, 0.79 and 0.87 for the three attributes mentioned above respectively. 
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     (a)          (b)     (c)          (d)   (e) 

Figure 2-2: Individual tree detection, (a) original CHM, (b) smoothed image, (c) minimum curvature image, (d) 
stretched image, (e) watershed segmentation (Yu, et al., 2011) 

What is more, 3D tree modelling in lidar data becomes a hot topic recently. Models used in traditional 
remote sensing techniques and computers science are commonly utilised in lidar data. A fixed shape 
model or individual tree-wise models were applied in both mobile laser scanning (MLS) (Pratihast, 2010) 
and airborne laser scanning (ALS) data. Rutzinger et al. (2011) utilised four different crown shapes (see 
Figure 2-3)  having different diameters at three height levels using 2D enclosing circles. Then trees were 
modelled by an open source framework OpenAlea. 

 
       (a)   (b)       (c)            (d) 

Figure 2-3: Crown shape types, (a) conical, (b) inverse conical, (c) cylindrical, (d) spherical (Rutzinger, et al., 2011) 

Wang et al. (2008) analysed the vertical canopy structure of forest and also modelled trees in 3D. A voxel 
based method for individual trees delineation was implemented at different height levels. Then tree 
crowns were modelled as Figure 2-4, and several crown parameters, e.g. tree height, crown height, crown 
diameter and volume can be derived. 

 
            (a)              (b) 
Figure 2-4: Virtual Reality Modelling Language (VRML) prismatic model, (a) raw lidar data, (b) VRML models from 

two views (Wang, et al., 2008) 
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Vosselman (2003) detected trees in airborne lidar data by computing the local maxima with a detection 
rate of 97%. The tree crown was modelled using a fixed shape (see Figure 2-5) whose diameter was 
adaptive to the height of the local maximum. 

 
Figure 2-5: Fixed shape tree models (Vosselman, 2003) 

Instead of regression models, Kato et al. (2009) developed a ‘wrapped surface reconstruction’ method. 
Tree parameters, e.g. tree height, crown diameter, crown base and volume were derived by the wrapped 
surfaces (see Figure 2-6). And the results were validated by comparing with total station surveyed field 
measurements. 

 
Figure 2-6: An example of wrapped surface comparison (Kato, et al., 2009) 

2.2. Change detection of remote sensing data

2.2.1. Change detection approaches
Change detection techniques have been developing for decades. Several reviews have categorized change 
detection approaches from different perspectives. 
Singh (1989) generalized the basic approaches into two, i.e. classification based comparison and 
comparison directly on raw multi-temporal data. Lu et al. (2004) summarized ten different applications of 
change detection and grouped the change detection approaches into seven categories, i.e. algebra, 
transformation, classification, advanced modelling, geographic information system (GIS) integration, 
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visualization and others. Both the advantages and disadvantages of the approaches were discussed and the 
degree of complexity was ranked. Based on previous categorizations, Gong et al. (Gong et al., 2008) 
classified change detection approaches into two general groups, i.e. bi-temporal change detection and 
temporal trajectory analysis regarding the data sources that used. Furthermore, they also organized the 
algorithms into seven categories, i.e. direct comparison, classification, object-orientated method, 
modelling, time-series analysis, visualization and hybrid method (see Figure 2-7). 

 
Figure 2-7: Change detection categories (Gong, et al., 2008) 

2.2.2. Change detection of lidar data
Change detection using conventional remote sensing techniques is still popular nowadays. Some works 
also focused on changes of vegetation in urban areas utilising Landsat imageries (Chen, et al., 2005). The 
potential of ALS system for change detection in urban area was discussed early on by Murakami (1998), 
who also detected the changes of buildings using ALS data (Murakami et al., 1999).  
Vosselman et al. (2004) applied change detection of lidar data for updating medium scale map. First, the 
laser data was segmented and classified. Then the segments of buildings were matched against the building 
objects of a topographical database. In the change detection experiment, all newly constructed buildings 
were detected reliably.  
Choi et al. (2009) presented a feature based approach to automatically detect changes in urban areas. The 
main processes are first detecting changed areas through the subtraction of two DSMs, then segmenting 
and classifying the changed patches to predefined classes, ground, vegetation and building, and last 
determining the types of changes based on the classes and properties. This method was able to detect the 
changes in a sufficient degree of accuracy semi-automatically. However, there was no quantitative 
evaluation. 
The multi-temporal lidar data analysis and change detection studies in forest area are also studied in many 
researches (Hyyppä et al., 2004). Yu et al. (2004) detected harvested trees and forest growth using airborne 
lidar data. The estimation of height growth was accomplished by individual tree delineation and a tree to 
tree matching algorithm. First, trees were located by detecting the local maxima in the CHM, and then the 
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crown shape was determined by watershed segmentation. Last, the trees were matched by the location 
with a threshold distance at 0.5m. The precision was about 5cm and 15cm at stand level and plot level 
respectively based on field and statistical analysis. Individual tree height growth was detected again by Yu 
et al. (2006), who presented three change detection manners, i.e. differentiation between DSMs and 
CHMs, canopy profile comparison and analysis of height histograms. Hausdorff distance, the maximum 
distance from a point in one set to the closest point in a different set, was applied to improve the tree to 
tree matching result. 

2.3. Summary
Airborne lidar point clouds have obvious advantage for vegetation analysis. Due to the penetration of 
laser beams, the information upon, inside and even below vegetation areas can be captured. 
Several classification approaches have been applied to lidar data. Knowledge based method is quite 
popular since the attributes of objects differ from each other. Especially, vegetation points have their own 
patterns and features. 
Vegetation structures and parameters have been extracted utilising both point based method and model 
based method. Before that, individual tree delineation results still need to be improved. Different models 
of trees have been studied. Nonetheless, a stable model for change detection is still necessary. 
Different change detection approaches have been applied to detect changes in lidar data. The combination 
of several methods is mostly adopted for vegetation analysis.
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3. RESEARCH METHODOLOGY

3.1. Introduction
This research is an experimental research, in which methods and algorithms are developed to process the 
datasets. For each phase, the result is assessed and the methods and algorithms are revised. As for the 
verification of classification results, in order to eliminate points that belong to other classes and noises, 
certain features are selected and several try-outs are carried out. Then proper parameters are chosen to 
represent the trees. The results of parameters, which are verified through two independent methods, rely 
on the procedures above. Algorithms are modified and retested if the verification does not perform well. 
In brief, this research is composed of repeated procedures of problem analysis, algorithm developing, 
experimental test, result assessment. However, perfect results are not necessarily to be achieved in the end. 

3.2. Framework of the methodology
The procedure of the methodology is introduced with respect to the four sub-objectives, including four 
steps, i.e. vegetation verification, tree parameters derivation, tree oriented change detection and quality 
assessment. The overall framework is depicted as Figure 3-1.  p g

 
Figure 3-1: Framework of the methodology 
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3.3. Vegetation verification
The datasets used in this research have been classified into several predefined classes in which vegetation 
is one of them.  But the classification results have to be improved and several kinds of misclassifications 
are to be corrected. Also noises in the scene should be removed.  
Normally, misclassification is categorized as commission and omission errors. By visual inspection, several 
kinds of commission errors can be recognized in the data set. Small segments like walls, roofs of complex 
shape on buildings as well as cars, poles and even some ground points are classified as vegetation. On the 
other hand, some vegetation points are classified as other classes like buildings and ground, which is 
omission error. Points that were not classified should remain in the data set because most of them are 
vegetation points.  
The overall accuracy of classification reached to 98.1%, while the completeness was 96.9% and the 
correctness was 97.8% (Xu et al., 2012). The omission errors are a few misclassified points which are 
minority with respect to the point amount of a tree. So the error will hardly affect the parameter derivation 
result. This part of the research focused on commission error. 

3.3.1. Connected components
To eliminate the misclassified vegetation points and to group the points of a tree together as a component, 
connected components algorithm was implemented. It can not only cluster the points of a tree together, 
which is fundamental for the following work, but more importantly, it provides a way to verify the 
classification results using the attributes of the components. Segment based method was used for the data 
classification beforehand in the way that the attributes of the segments vary from different classes. For 
instance, the normal of wall segment is often parallel to the ground but not for other objects like tree 
segments. Same as segment based classification, the attributes of component can also be used to 
distinguish vegetation components from others.  
After classification, most of the misclassified components were very small fragments. Therefore, the size 
of a component (number of points inside a component) was quite an efficient way to differentiate trees 
from other fragments.  
The second attribute used was the height span of a component (the distance from the lowest point to the 
highest point). As we know, the points of a tree are normally from the ground or from the bottom of the 
crown to the top of the crown if the trunk was not scanned. So the height span of a tree component 
should be no more than the real height of that tree. A certain threshold can be determined by the base 
knowledge of the height of trees, and then components that have greater height span than an upper 
threshold or smaller height span than a lower threshold can be removed from the dataset. 
In order to remove components from high buildings or points hanging in the air, the minimum height of a 
component can be utilised. If the lowest point of a component is higher than a normal tree, then this 
component can be eliminated. Except the above attributes, normal distribution of the components might 
also be helpful because some of the fragments have regular shapes. 
In addition to the geometry attributes, spectral information, e.g. reflectance, intensity and true colour are 
also useful. For example, the reflectance of trees is usually different from other objects like building roofs, 
so the average reflectance of a tree component differs from a roof component. 

3.3.2. Local maxima
Trees are normally planted with a certain distance, but as trees grow, they will become connected with 
each other. After implementing connected components, these kinds of trees will be connected together. 
So the dataset will have both single trees and grouped trees. 
For single trees, the parameters can be derived directly and also can be fitted by a mathematical model. 
But for grouped trees, further process might be necessary. So it is important to find out the number of 
trees in each component, or at least label the component as single tree component or multiple tree 
component, namely the component contains one or more than one tree. 
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To accomplish that, a point based local maxima algorithm was implemented. For each component, the 
highest point within a certain range, which was adaptive to the component height, was found.  So the 
number of highest points of a component was regarded as the number of trees in that component. For 
each point in a component, the distances from other points were calculated, and the height was compared 
with its neighbour points that were within a threshold range. If there was no higher neighbour point 
found, this point was the local maximum. 

3.4. Tree parameter derivation
After the first step, the dataset was composed of a group of components which contained single trees or 
grouped trees. In order to simplify the procedure of parameter derivation, the trunks were filtered first and 
only the crowns were left. For multiple tree components, the areas and volumes of the crowns can be 
calculated by 3D alpha shapes algorithm. For single tree components, the areas and volumes can also be 

ey can be 
fitted by Pollock model. Then the parameters will be generated by the fitting. 

3.4.1. Trunk removing
Because of the occlusion by the leaves and the scanning geometry, some of the trees have sufficient points 
on the trunks but others do not. This inconsistency will affect the process of parameter derivation and the 
result of change detection when in one epoch dataset a tree has trunk but in the second epoch dataset the 
same tree has no trunk. So it is better to remove the points on the trunk before parameter derivation. 
For single tree components, an interval of height was moved upwards from the bottom of the component, 
so the component was cut into slices. For each slice, together with the previous slice below, a 2D 
bounding box was computed (see Figure 3-2). If the hypotenuse of the bounding box is smaller than a 
predefined threshold, the points within the slice were considered as trunk points. The bounding box will 
keep moving upwards until the hypotenuse is greater than the threshold. In the end, a reference height will 
be obtained. The points above the height belong to the crown and the points below belong to the trunk. 

 
Figure 3-2: Sketch of trunk removing

1m    
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The general idea for removing trunks of multiple tree components was quite the same as above, the only 
difference was that the multiple trunks within the slice were separated using connected components 
algorithm again. Then the bounding box was generated for each trunk component. If the trunk 
component was smaller than the threshold, the slice would keep moving upwards until each bounding box 
reached the crown. 

3.4.2. 3D alpha shapes
Alpha shapes algorithm is famous of shape reconstruction from a dense unorganized set of points. 
Indeed, an alpha shape is a linear approximation of the original shape (Da et al., 2011). The definition of 
alpha shapes is based on an underlying triangulation (usually a Delaunay triangulation). Then for 2D alpha 
shapes, circles with a certain radius (alpha) will try to pass through the data points until they touch points 
on the edges of the triangles. As shown in Figure 3-3, the edges touched with circles describe an 
approximate shape of the original points. For 3D alpha shapes, a triangulation is calculated first, and then 
spheres, instead of circles in 2D, with a certain radius (alpha) will be generated based on the outer side 
triangles that are on the boundary.  So the triangles that are touching spheres will represent the original 
shape of the data points.  

 
Figure 3-3: 2D alpha shapes (Da, et al., 2011) 

The points belonging to the vertices of the triangles will be sufficient to describe the shape of a tree, so 
the points inside the alpha shape can be eliminated. The area and volume of points can be calculated 
through the alpha shape; moreover the data amount will be reduced significantly. 
For multiple tree components, to reduce the effect of the connection of trees, the alpha values were 
optimized according to the shape of each component. The optimized alpha value is defined as a smallest 
alpha value such that the alpha complex satisfies the following properties: the number of solid component 
of the alpha complex is equal to or smaller than a limited given number which should be one in this 
research. Then the areas and volumes of grouped treed components can be extracted from the alpha 
shapes. 
For single tree components, a bigger alpha value is necessary because most of these components are small 
trees and optimized alpha shapes of small trees still have points inside the crown. In this case, the volume 
of the alpha shapes is actually much smaller than the real crown volume. Also if the alpha values are quite 
different from each other of the same tree from two epoch datasets, the change detection result will also 
be affected. To avoid the problems stated above, a consistent and big enough alpha value should be set 
for single tree components. If the alpha value is positive infinity (
convex hull. So the areas and volumes of single tree components are derived by convex hull. 
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3.4.3. 3D tree modelling
3D alpha shapes and convex hull are both point based parameter derivation method which has both 
advantages and disadvantages. Point based method is straight forward, simple to process but sensitive to 
noises and outliers. On the contrary, model based method is more stable. These two methods can be 
compared so as to assess the quality of the results. In this research, single tree components were modelled 
and the results were compared with point based method.  

3.4.3.1. Adjusted Pollock model
A 3D model template should be able to represent the shape of trees which may be diverse from individual 
to individual. There are many models and approaches can choose from. A fixed shape model, e.g. elliptic 
paraboloid, ellipsoid or sphere, can be used to simulate the shape of crown in a simple way (Vosselman, 
2003). But to be more precise, a parametric model developed by Pollock (1994) was used to model trees of 
different shapes. The shape of the crown can be adjusted by a parameter from an ellipsoid to a cone:  

 + ( + ) = 1 (3-1) 

The origin is the centre of the circle of the crown, and z-axis points vertically upwards. In the equation  
is the radius of the intersection of surface with the z-axis,  is the radius of the circle of the crown and  is 
a positive real number that determines the shape of the crown surface. When =2 the surface is an 
ellipsoid, and as  decreases to 1 the surface becomes a cone (see Figure 3-4). As  decreases from 1 to 0, 
the surface becomes increasingly concave. 

 
Figure 3-4: Crown shapes with different parameters (Pollock, 1994) 

To make the model more realistic, the base was changed to a ellipse instead of a circle, and then a rotation 
in x-y plane and the shift of coordinates were added. 

 + ( +  ) = 1 (3-2) 

 = ( ) cos ( ) sin  (3-3) 

 = ( ) sin + ( ) cos  (3-4) 

In which, ,  are the two semi axes of the crown base ellipse,  is the semi axis in  direction,  is still 
the real number that determine the crown shape, 0, 0, 0 are coordinates of the origin in the global 
coordinate system and   is the rotation angle. 
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3.4.3.2. 3D model fitting
Point density and distribution will affect the modelling results on the same tree, so, as mentioned above, in 
order to eliminate the effects of different alpha values, alpha value was set to 10m (fixed)(Rutzinger, et al., 
2011) instead of optimized value for each component. After that, the point density became consistent and 
most of the points lied on the boundary of the tree crown but not inside.  
The adjusted Pollock model was implemented using nonlinear least square fitting in three steps: 2D crown 
base fitting, upper crown fitting and lower crown fitting. The crown was divided into upper crown and 
lower crown because they have different shapes. For bigger trees that have sufficient points on the 
surfaces of the crowns, the results of directly 3D crown nonlinear least square fitting was not bad, but for 
the small tree that have only a few points on the crown, the shape of the model was quite far from the 
reality. For this reason, the crown base ( , , ) was estimated first in 2D, then  and  were used as 
constraints for the 3D Pollock model fitting.  
To be more specific, principle component was used to transfer the points from the global coordinate 
system to a local coordinate system. Next a convex hull was implemented to derive the outer points which 
were then fitted by an ellipse. The initial values of the two axes were the half length of the point range in 
x-y plane. So after the fitting, , ,  The height used to distinguish the upper crown and 
lower crown was determined by the average height of the points on the convex hull, so 0 was known 
now. For the upper crown, initial  was the distance from the highest point to the crown base ( 0). Initial 

0, 0 were the interquartile values of all the points on the upper crown. And initial  was set to 1.5 
because it represented a shape in the middle of ellipsoid and cone. For the lower crown, the position of 
the origin was determined by the upper crown fitting so 0, 0 were constant. Initial  was the distance 
from the lowest point to the crown base and the initial  was also 1.5. 
After the 3D model fitting, the height of the tree was the height of the crown origin plus the vertical axis 
( 0 + ). The area of the crown was the area of the fitted ellipse ( ) and the volume of the crown was 
the sum of the volumes of the upper crown and lower crown. 

3.5. Tree oriented change detection

3.5.1. Tree to tree matching
After deriving the parameters of the trees in each data set, the parameters can be compared. But before 
the comparison, the corresponding trees should be identified based on the locations of trees in both 
epochs. The datasets are in the same local coordinate system, so the corresponding trees should be at the 
same location. Yu et al. (2004) applied tree to tree matching method with the threshold distance at 0.5m. 
In this research, the tree to tree matching was done by finding the corresponding points of the same tree 
in each epoch dataset. 
This point based matching was accomplished by calculating the overlapping of bounding boxes and point 
to point distances. First of all, for each of the components in dataset 1, a bounding box was derived. Then 
the overlapping bounding box in dataset 2 was searched. To further check whether these two bounding 
boxes were the corresponding components, the distances from points in dataset 1 to points in dataset 2 
were calculated. If the number of distances that were smaller than 1m was greater than a certain 
percentage of the smaller size of the two components in each dataset, it meant some of the points of the 
two components were quite near from each other thus these two components were matched.  
Because it happened that some of the components were grouped trees components but in the other epoch 
dataset the trees were not connected, this led to the situation that several components in dataset 1 
corresponded to one component in dataset 2. And that was why the number of nearby points should be 
compared with the smaller one between the two components. 
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After processing all the components in the two dataset, the corresponding components were given the 
same label in both dataset. If there were no corresponding components found in the other dataset, these 
kinds of components were not labelled. 

3.5.2. Change detection
Since the corresponding trees were found, the changes can be detected just by subtract the parameters of 
dataset 1 from dataset 2. Four categories were introduced to analyse the changes: cut, newly plant, area 
change and volume change. The latter two are further divided into increase and decrease. Considering the 
errors of pre-processing and modelling, every tree pair will be slightly different even if no changes were 
happened. So a very small proportion of change should be taken care of. The categories are shown as 
Table 3-1. 

Table 3-1: Change detection categories 

Categories Cut Planted Area change Volume change 

Change Only in data1 Only in data2 Area     
As explained in the above section, the corresponding relation between the components in two datasets 
might be many-to-one. In this case, the parameters (area, volume) of components in dataset one will be 
added up and then compared with the component in the other dataset. Since grouped trees components 
have more than one tree inside, it is meaningless to compare the change of height as a whole component. 
So the tree height was not compared. 

3.6. Quality assessment
The classification verification results can be verified by visual inspection because human eyes can 
discriminate trees from others in point clouds. Because of lack of ground truth data, completeness and 
correctness can be assessed based on the original datasets. 
The results of local maxima algorithm might not be very accurate because of the irregular combination of 
trees. But what has to be assessed is that whether the component is a single tree component or a grouped 
tree component because this will affect the following computation and comparison, especially when a two 
trees component has only one local maximum. One way to check the quality is also visual inspection.  
Two independent methods, point based and model based, were utilised for parameters derivation, thus the 
results were assessed by comparing these two methods. For multiple tree components, the comparison 
with single tree components which have the same size as both of the grouped trees will somehow suggest 
the consistency and accuracy. 
Generic knowledge helps to assess the quality of previous methods and the change detection results. For 
example, trees of the same size nearby will grow quite the same as each other. If the changes of same size 
trees were quite different, the accuracy of the parameters might be doubtful. Also younger trees grow 
faster than older trees, so the percentages of the change should show this tendency. 

3.7. Summary
In this chapter, a framework of the methodology corresponding to the objectives was presented. The four 
steps of the methodology were then discussed in detail sequentially. Several algorithms were introduced in 
each of the first three steps and, quantitative and qualitative methods were both given for quality 
assessment.  
The datasets were already classified, so the original data for this research were unstructured points 
classified as vegetation which actually contained many other non-tree points. Connected components 
algorithm was applied first to group the points so the points of an object will be clustered together. Also 
the attributes of the components were utilised to eliminate the non-tree components. Then the local 
maxima of each component were found in order to distinguish the single tree and multiple tree 
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components. To derive the parameters of trees, the trunks were removed because they might affect the 
results. Then two independent methods, point based and model based, were implemented. Point based 
method used 3D alpha shapes and convex hull algorithms and the model based method fitted an adjusted 
Pollock model by nonlinear least square fitting. The parameters were assigned to each component for 
comparison. After that, corresponding trees were matched by the bounding boxes of components and 
point to point distances. So the changes can be detected directly by comparing the parameters of the 
components. In the end visual inspection, comparison of methods and generic knowledge were proposed 
to assess the quality of the results.
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4. POINT CLOUDS PROCESSING AND VISUALIZATION

4.1. Introduction
Point clouds were processed according to the methodology using DEV C++, MATLAB and a mapping 
library. A programme dealing with all the algorithms was developed. The flowchart of the programme is 
depicted as Figure 4-1. g

 
Figure 4-1: Flowchart of the data process programme 

4.2. Three epoch datasets
Three datasets were obtained on behalf of municipality of Rotterdam, two of them were obtained in 2008 
(March and November) and the third one in April 2010. They are both under the Dutch coordinate 
system. Point density of the data in March of 2008 is around 10-15 pts/m2, while the other two are about 
30-50 pts/m2. 
A part of the small island (Noordereiland) along the river in Rotterdam (see Figure 4-2) was selected as 
study area because it had plenty of trees which vary a lot. 

  
(a)        (b) 

Figure 4-2: Study area in Rotterdam, (a) Lidar points, (b) Google Map image 
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4.3. Vegetation verification

4.3.1. Connected components 

4.3.1.1. Points clustering
First, all the vegetation points were extracted from the original datasets. And then the connected 
components algorithm was implemented. A Kd-tree was generated on the points and edges between 
points and their neighbours greater than 1m were removed, so the points still connected were treated as 
components. Then each of the components was labelled by a component number. Figure 4-3 (a) shows 
the points classified as vegetation which were unstructured, (b) shows the result of connected components 
algorithm. Each component had its own component number which was illustrated by colour.  

    
   (a)      (b) 

Figure 4-3: Connected components results, (a) before connected, (b) after connected 

4.3.1.2. Non-vegetation components removing
As shown in Figure 4-3, many non-tree components were remaining in the dataset. To remove them, 
some of the geometric and spectral attributes were utilised such as component size, height span, minimum 
height, colour, reflectance, normal distribution, plane residuals and so on. Some of the thresholds were 
assigned based on generic knowledge and others were determined by experimental tests. 

1) Component size 
Component size was the number of points within a component. Small segments can be removed 
by this attribute. The threshold was proportional to the point density. Components with less than 
100 points were assumed as fragments and removed from the dataset when the point density was 
30-50 pts/m2.  

2) Height span 
Height span was calculated as the distance from the highest point to the lowest point in a 
component. Components that have height span less than 3m or more than 25m were treated as 
non-vegetation components. Since this research was focus on high vegetation, bushes that lower 
than 3m were removed. Big segments parallel to the ground were also filtered out. 

3) Minimum height 
 Components with lowest point higher than 15m are not trees. Because some of the components 
 were fragments from high buildings, so this attribute helped to remove big segments hanging in 
 the point cloud. 
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4) Colour 
 True colour of the components can be used to discriminate trees from others, especially the green 
 channel. If the average colour value of a component was greater than a threshold, it will be treated 
 as vegetation component. 

5) Reflectance 
Vegetation has smaller reflectance than other urban objects like buildings or roads in the datasets. 
So the components with extremely big average reflectance values were removed. Based on several 
experimental tests, the threshold was set to 200. 

6) Normal 
Some of the non-tree components were fragments from man-made constructions like building 
walls having certain normal directions, so a plane was fitted to each component. If the normal 
was horizontal or vertical, the component was most likely a non-vegetation component. However, 
a vegetation component  might also have a horizontal or vertical normal depending on the point 
distribution, so the results were further checked. 

7) Plane residual 
 Residuals of vegetation components were normally quite big, so the average residual of each 
 component was calculated. Components were removed if their average residuals were smaller 
 than 0.3. 
Geometric attributes showed the efficiency for removing fragments that dislike the shape of trees. Spectral 
information facilitated the filtering of vegetation-liked components. Figure 4-4 shows the result of non-
vegetation components removing. 

 
Figure 4-4: Components removing result 

4.3.2. Local maxima
As shown in Figure 4-4, some components contain more than one tree inside. In order to find the number 
of trees in each component so that single tree components and multiple tree components can be treated 
differently in the following process, the local maxima of each component were found. The highest point 
of each component within a certain range was considered as a local maximum. The threshold of the range 
was set to a quarter of the absolute height of each component according to experimental tests. To reduce 
the cost of computation, the 3D alpha shapes algorithm was applied first to thin the data. Then a subset of 
the data was selected because even after components filtering some non-vegetation or bush components, 
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which will affect the change detection results, still remained in the data. Thus the tree components along 
the roads were selected manually. 

In the result shown as Figure 4-6, two trees on the right were in the same orange colour meaning they 
belonged to a same multi-tree component. A local maximum (blue) was detected on each tree and labelled 
differently with the rest points (green). The number of the maxima was assigned back to each component.  

  
   (a)      (b) 

Figure 4-5: Local maxima results, (a) single tree and multi-tree components, (b) local maxima (blue) 

Figure 4-6 shows the number of local maxima in each component. Different colours represent different 
number of local maxima. Reddish yellow colour means one local maximum in the components and the 
other colours means multiple local maxima within the components. 

  
Figure 4-6: Local maxima label results (reddish yellow-1; dark red-2; blue-3; purple-5 components) 

4.4. Tree parameters derivation

4.4.1. Trunk removing
To remove the trunks, components were cut into slices from bottom upwards. The height span of the 
slice was defined as 0.2m for single tree components. For each interval, points in it and in the previous 
interval below (0.4m in total) were considered. Based on experimental tests, the threshold of the bounding 
box was set to 2m which was quite big because small branches at the bottom of the crown should be 
removed otherwise they will significantly affect the volume. Figure 4-7(a) and (b) show the result of trunk 
removing for single tree components. 
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    (a)             (b) 

  
           (c)             (d) 
Figure 4-7: Trunk removing, (a) single tree components before trunk removing, (b) after trunk removing, (c) multiple 

tree component before trunk removing, (d) after trunk removing 

As for multiple tree components, connected components algorithm was used again however the 
maximum edges in the algorithm was set to 3m because the data were sparse after data thinning. The 
threshold of the bounding box was also 2m. Figure 4-7 (c) and (d) show the result of trunk removing for a 
multiple tree component. 

4.4.2. 3D alpha shapes
3D alpha shapes algorithm was applied just after connected components to thin the datasets. So the cost 
of computation for the following steps was much lower because the data amount was significantly reduced 
(see Figure 4-8). 
After removing the trunks, the parameters of trees were to be derived. But before that, 3D alpha shapes 
algorithm was implemented again for both single and multiple tree components. 
Single tree components were to be modelled, but the point density and distribution will affect the 
modelling results on the same tree. So in order to eliminate the effects of different alpha values, alpha 
value was set to 10m (fixed) instead of optimized value for each component. After that, the point density 
became consistent and most of the points lied on the boundary of the tree crown but not inside. The 
remaining points were used directly for 3D tree modelling.  
As for multiple tree components, the alpha values were optimized for each component. The optimized 
alpha value is the smallest one such that the remaining points belong to one solid component. This 
method minimized the gaps between connected trees when calculating the area and volume of the crown. 
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           (a)                     (b) 

  
           (c)             (d) 

Figure 4-8: Single tree thinning, (a) before thinning from top view, (b) after thinning from top view, (c) before 
thinning from horizontal view, (d) after thinning from horizontal view 

4.4.3. 3D tree modelling
The areas and volumes of single trees had been calculated by convex hull, which was a point based 
method. Another way to derive the parameters is fitting models to the points. The Pollock model was 
adjusted to be more suitable for trees. The whole procedure was as following: 

1) the rotation angle   was found first using principle component and the points were translated to 
the local coordinate system; 

2) a convex hull was generated for each component and the crown base ellipse ( , ) was fitted with 
the points on the convex hull in 2D; 

3) the position of the crown 0, 0 were initialized by the median of all points and 0 was fixed as 
the average height of the points on the convex hull; 

4) points above 0 (upper crown) were modelled by nonlinear least square fitting, so 0 and 0 were 
fitted; 

5) points below 0 (lower crown) were modelled the same way, where 0, 0, 0, , , ,  were 
treated as constant so only shape parameter ( ) was fitted; 

6) the area and volume, which was the sum of the upper and lower crowns, were calculated by the 
model. 
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Figure 4-9 illustrates the process of 2D crown fitting. The points were transferred to a local coordinate 
system first. The dash line is the convex hull and the real line is the ellipse fitted by the vertices. 

 
Figure 4-9: 2D crown base fitting 

    
   (a)      (b) 

Figure 4-10: 3D crown fitting, (a) upper crown fitting, (b) lower crown fitting 

Figure 4-10 shows the process of 3D crown fitting. The height of the base was determined by the average 
height of the vertices and points above the base were fitted. After that, the crown position was fixed. If 
the upper crown and the lower crown were modelled individually, the crown positions were most likely 
different with each other. Because the upper crown normally has more points and bigger than the lower 
crown, the crown position was fixed using the upper crown so that the whole model has a continuous 
smooth surface which can be directly used for 3D virtual city visualization. Figure 4-11 shows the 
modelling results of different shapes and sizes. 
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Figure 4-11: 3D modelling results 

4.5. Tree oriented change detection

4.5.1. Tree to tree matching
The parameters extracted were then assigned back to each component as its features (area, volume) so that 
the components can be compared and visualized. Before the comparison, corresponding components 
were matched by checking the overlay of bounding boxes and the number of matched points. If the 
number of matched points was greater than a quarter of the size of the smaller component, the 
components were labelled a same number. If a component in the earlier epoch dataset had no counterpart 
in the other dataset, it meant the component has been cut and was labelled number 0. On the contrast, if a 
component in the later epoch dataset had no counterpart, it was newly planted and was not labelled. 

 
Figure 4-12: Corresponding components matching result (cut trees in dark blue; planted trees in black) 

Figure 4-12 shows the result of matching. Two epoch datasets were merged together, and corresponding 
components had the same label while different matches had various labels shown by colours. Components 
that have been cut were in dark blue colour whereas newly planted components are in black. 

4.5.2. Change detection
Since corresponding components have the same label, the changes can be found by comparing the 
parameters of each component. The area and volume were compared by subtracting them of the earlier 
dataset from the later one, for instance volumes of 2010 minus volumes of 2008, and then the results were 
assigned back to both corresponding components in order to be visualized. 
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Figure 4-13 shows a tree in March 2008 and in April 2010, green points are from 2008 and red ones are 
from 2010. It is clear that the tree has changed in 3D. 

  
       (a)             (b) 

Figure 4-13: Two epoch datasets (green for 2008; red for 2010), (a) top view, (b) horizontal view 

  
(a)           (b) 

  
   (c)       (d) 
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Figure 4-14: Change detection results (2008.03-2010.04), (a) area change, (b) area change percentage, (c) volume 
change, (d) volume change percentage 

Figure 4-14 (a) and (c) show the changes of areas and volumes between March 2008 and April 2010, in 
which a sequence of colours illustrates different changes.  Figure 4-14 (b) and (d) show the change 
percentages for area and volume. So not only the changes were detected and also the changes of different 
size trees can be found. Most of the components increased in area and volume. Similar size components 
had more or less the same changes. Smaller components had equal or even bigger change percentages. 
The colour legend is shown as Table 4-1. Area, volume and change percentage have the same legend, so 
the unit of values are m2, m3 and % respectively.  

Table 4-1: Colour legend 

Value -1000 -100 -50 -10 0 10 50 100 1000

Colour          

R G 100 0 150 0 200 0 255 0 255 150 150 255 0 255 0 200 0 150 0 100 
Dataset of November 2008 was also compared with the other two. Figure 4-15 shows the change 
detection results between March and November 2008. And the comparison results between November 
2008 and April 2010 are shown as Figure 4-16. 

  
   (a)      (b) 

  
   (c)      (d) 

Figure 4-15: Change detection results (2008.03-2008.11), (a) area change, (b) area change percentage, (c) volume 
change, (d) volume change percentage 
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   (a)       (b) 

  
(c)         (d) 

Figure 4-16: Change detection results (2008.11-2010.04), (a) area change, (b) area change percentage, (c) volume 
change, (d) volume change percentage 

Almost all the components have grown from March to November in 2008. Only one component 
decreased in area and several in volume. 
The majority of the components from November 2008 have decreased in both area and volume compared 
with April 2010. However, no component has decreased more than 100%; most of them are from 10% to 
50%. 
Components that have no counterparts in the other dataset are not displayed because no mathematical 
changes could be detected. Through the results of components matching, trees that have been newly 
planted and been cut can be found. Because of errors brought from the former steps, trees that changed 
smaller than 10% have great possibility of no change. Statistical analysis is presented in next chapter.  

4.6. Summary
In the beginning of this chapter, a flowchart of programme processing the datasets was introduced. 
Connected components algorithm was applied first and datasets were thinned by 3D alpha shapes. Then 
local maxima were found to discriminate single tree components and multiple tree components. For single 
tree components, 3D alpha shapes algorithm was implemented again to make the point density consistent. 
Then the parameters were derived using adjusted Pollock model and convex hull. For multiple tree 
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components, parameters (area and volume) were computed through 3D alpha shapes directly. Then the 
corresponding components were matched and the changes were detected.  
After the introduction, the datasets were presented and processed. Then the procedures were described in 
detail and the results were visualized. 



DETECTING CHANGES IN TREES USING MULTI-TEMPORAL AIRBORNE LIDAR POINT CLOUDS

31

5. STATISTICAL ASSESSMENT AND DISCUSSION

5.1. Analysis of vegetation verification

5.1.1. Connected components analysis
Non-vegetation components and small bush components were to be removed because only high 
vegetation (trees) components were the objects of this research. However some small trees were removed 
in the meantime and some non-tree components were not. So completeness and correctness (Heipke et 
al., 1997) were used to assess the quality of this step. True positive (TP) is the real tree component after 
removing; false positive (FP) is the remaining incorrectly classified tree component and false negative 
(FN) is the real tree component that have been removed. The completeness and correctness of the result 
were assessed by visual inspection. 

 = +  (5-1) 

 = +  (5-2) 

 = + +  (5-3) 

The completeness, correctness and overall quality were calculated as the above formulas. The number of 
component before and after removing and the accuracy results are shown as Table 5-1. 

Table 5-1: Number of component and the accuracy analysis results 

Dataset 2008.03 2008.11 2010.04 
Before removing 1451 1169 2118 
After removing 306 229 275 
Completeness 93% 97% 98% 
Correctness 86% 97% 93% 

Overall Quality 81% 94% 91% 
The reference number of missing tree components was observed visually, thus some mistakes might have 
occurred, especially when a component had a very small size or the shape was not clearly a tree-like shape. 
Similarly, the number of remaining tree components was also determined by visual inspection. 
The first dataset had the lowest overall quality; especially the correctness was quite low. That was mainly 
affected by classification because visually it was obvious that the classification result of the first dataset 
was worse than the other two. 
Seven component attributes were discussed in the section 4.3.1.2, but due to the diversity of tree 
component’s attribute values and the risk of removing tree components, the thresholds were set not strict 
at all. Some of the attributes could only remove one or two non-tree components or even fail to remove 
any one. It also happened that some non-tree components were removed but in the meantime several tree 
components were also removed. In this case the threshold was adjusted to avoid missing any trees. 
The overall accuracy was high in terms of classification and feature extraction, however, as for change 
detection the error will be directly considered in the following steps. So to avoid the effects of non-tree 
components, a subset in which the trees were mostly along roads was selected.  
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5.1.2. Local maxima analysis
Before Local maxima, 3D alpha shapes algorithm was applied to thin the sub datasets. Table 5-2 shows 
the number of component in each subset and the number of points before and after thinning. 

Table 5-2: Results of data thinning 

Dataset 2008.03 2008.11 2010.04 
No. of component 170 153 168 

Before thinning 100174 418459 416040 
After thinning 54731 121918 138282 
Thinning ratio 45% 71% 67% 

Even though the range threshold was adaptive to the component height, some local maxima were 
incorrectly computed. If a single tree was labelled as a multiple tree component, the parameters would be 
derived through 3D alpha shapes algorithm, which was a point based method, similar to convex hull. The 
parameters would also be quite the same. So this scenario would not severely affect the change results. 
However, if a multiple tree component was mistaken as a single tree, the parameters might be far from the 
real. So the threshold was set in favour of minimizing the error of single tree components. 
The confusion matrix (error matrix) of dataset April 2010 was illustrated as Table 5-3. 

Table 5-3: Confusion matrix of Local maxima 

Local maxima Single Multi  User 
Single 132 6 138 0.96 
Multi 2 28 30 0.93 

 134 34 168  
Producer 0.99 0.82  0.95 

Two components out of 168 were mislabelled. Figure 5-1 shows an example component which contained 
two trees but only one local maximum was detected.  

 
Figure 5-1: Mislabel of Local maxima 

As shown in Figure 5-1, the left small tree was attached to the bigger one. It was failed to detect the local 
maximum for the small tree. Detecting the trunks might be helpful in this case, but not all components 
have sufficient points on the trunks. Models and parameters were derived considering them as a single tree, 
so the result of changes would be not accurate. 
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5.2. Tree parameters assessment

5.2.1. Parameters comparison
Adjusted Pollock model and convex hull were both utilised to derive tree parameters, so the results of 
these two can be compared which will show the consistency of these two independent methods. Under 
the circumstance that no true data were available, the comparison results could to some extent indicate the 
stability of parameters. 
The dataset of March 2008 was selected in which 87 single tree components existed. The results of 
Pollock model and convex hull were compared as Figure 5-2. 

  
(a) 

 
(b) 

Figure 5-2: Linear correlation between Pollock model and convex hull, (a) area fitting, (b) volume fitting 

These two methods showed very strong linear correlation even one was based on model but the other was 
based on points. Especially the slope of volume was 1.006 which meant they had almost the same volume 
results. The area of convex hull was little bit smaller than Pollock model since the slope was 0.913.  
The ratio of the difference between the two results with respect to the Pollock model result was calculated 
as following: 

  =     (5-4) 
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The standard deviation of the difference of area was 0.0721, and standard deviation of the difference of 
volume was 0.0764 which were both under 10%. The standard deviation of the difference ratio also 
indicated that the differences between these two methods were very small. 

5.2.2. Change percentage comparison
To find out the consistency of the changes through the two methods, the differences of change with 
respect to the Pollock model results were calculated. 

 = 2 1 (5-5) 

 =     (5-6) 

  = 1 (5-7) 

The normalized differences of changes between March 2008 and April 2010 were depicted as Figure 5-3, 
in which 78 corresponding single tree components were found. The standard deviation of the differences 
in area was 0.0607 and 1.5 times the half of the interquartile was 0.0518. Moreover, the standard deviation 
of the differences in volume was 0.0985 and 1.5 times the half of the interquartile was 0.0789. Both of the 
values were under 10% which further improved the consistency of these two methods. 
 

 
(a) 

 

(b) 
Figure 5-3: Differences of changes between two methods, (a) difference of changes in area, (b) difference of changes 

in volume 

Since the values of the two methods were quite near each other, the differences of changes were also very 
small. Without ground truth, the results of the adjusted Pollock model cannot be validated and no further 
conclusion can be drawn. But the comparison of these two methods showed the stability of the model. 

5.3. Change results analysis
There were 170, 153 and 168 components in the three datasets as shown in Table 5-2. After the matching 
algorithm, corresponding components which contained one or more components from each dataset were 
combined together. Table 5-4 shows the detected changes among three datasets. 
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Table 5-4: Change detection results 

Categories Cut Planted Area change Volume change 

Change Only in data1 Only in data2    
08.03-10.04 4 22 132 9 128 13 
08.03-08.11 3 20 131 1 129 3 
08.11-10.04 3 4 44 102 40 106 

For the first comparison, 12 components’ change ratios out the 141 were smaller than 10 per cent 
(positive and negative), which actually cannot be assured by the parameter derivation methods. 13 
components’ volumes had decreased while only 9 components’ areas had decreased which might be real 
but also might be caused by the errors of parameters since most of the parameters of these components 
were near to zero. 
According to the change detection results, many tree components were detected as planted in the latter 
two datasets compared with the first dataset. It might be true that some of the trees were indeed planted, 
but more likely, that was caused by omission error. Some real tree components in the first dataset were 
incorrectly removed because the component size and point density were small even though the threshold 
of component size was proportional to the density.  
Completeness and correctness errors will end up with changes as cut or planted, thus these two categories 
were verified through the original vegetation points. The change result between March 2008 and April 
2010 was visually inspected. 3 out of 4 cut trees and only 2 out of 22 planted trees were confirmed. The 
results of cut or planted were severely affected by commission and omission errors at tree level and also 
the accuracy of classification. Therefor the qualities of these two categories were low.  
Seasonal difference can affect the change results. Figure 5-4 illustrates the difference in data distribution 
between leaf-on and leaf-off season. Branches and trunks can somehow be captured in leaf-off season 
whereas barely of them can be seen from leaf-on season. With dense foliage, the chance of missing the 
leaves for the laser beam is smaller than sparse leaf trees. Also, the penetration distance of dense foliage 
trees is often smaller than sparse ones. This might be the reason that most trees were decrease in area and 
volume from Nov. 2008 to April 2010. Other reason could be that the municipality pruned the trees. 
Seasonal affects were neglected between March 2008 and April 2010 because trees normally would not 
change obviously just after the winter. 

  
(a)                                                               (b) 

Figure 5-4: Seasonal difference, (a) leaf-on season (Nov.2008) (b) leaf-off season (April 2010) 

Multiple tree components had greater change per tree than single tree components, even though 3D alpha 
shapes minimized the gaps between connected trees. The gap will become bigger along with the growth of 
trees. In some cases, the matching relations were many to one, such as two single tree components in first 
dataset to one big component in second dataset. Then the change results will be bigger than real because 
first two components were computed individually however the second one took the gap into 
consideration. 
As we all known, small trees have smaller changes in area and volume compared with bigger trees and 
trees of similar sizes have the same behaviour of changes, which had been reflected by the change results 
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shown in 4.5.2. Moreover, the change percentages of small trees are the same and even greater than bigger 
trees because in principle smaller trees grow faster. Thus even without ground truth, these generic 
knowledge somehow assess the results and suggest the feasibility of the methodology.
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1. Conclusions
To detect the changes between different epoch lidar point clouds, a conceptual framework was proposed 
and a series of algorithms were applied. Following conclusions were drawn according to the processes and 
results. 

Connected components algorithm can cluster the points of a same object together. Components 
features were feasible for non-tree components removing especially when considering both 
geometrical and spectral features. Component size and reflectance strength were proven to be the 
most efficient two attributes. 
Point based Local maxima was a very simple and fast method to distinguish single tree 
component from multiple tree components. The accuracy of the result was 95%. 
Trunk removing was necessary before parameter derivation since some tree trunks were scanned 
but others might be not. And they had no meaning for crown parameter derivation like 3D 
modelling. The proposed method performed well enough for the following processes. 
3D alpha shapes first of all thinned the datasets allowing us to process much larger area or bigger 
datasets which is vital for the development of high point density laser scanners. Duplicated points 
were also removed and the computation cost of following steps was reduced. Most importantly, 
the shape of each component was maintained so it will not affect the parameter derivation. The 
points on the vertex were reserved thus they could be directly used for 3D tree modelling and 
other parameter derivation method. Moreover, the area and volume can also be calculated 
through the alpha shape. Point density of different epoch datasets were unified using a same alpha 
value which assured that the change results would not be affected by the differences in point 
density. 
The Adjusted Pollock model showed an obvious advantage for 3D tree modelling by providing 
the crown shape parameter . So every single tree have its own crown shape, which is more 
realistic. The separation of upper crown fitting and lower crown fitting was proven feasible and 
the results had very high linear correlation with convex hull which was based on the points. Thus 
it was independent and comparable to Pollock model. The standard deviation of the difference 
ratio was about 8%. Also the differences of changes between these two methods were also under 
10%. This suggested that adjusted Pollock model had great potential of modelling trees accurately 
and vividly for a 3D virtual city.  
Corresponding components were supposed to have the same location in the same coordinate 
system. The tree to tree matching using component bounding boxes and point to point distances 
were quite efficient. No mismatching had been observed through visual inspection. 
Multiple tree components were compared together as big objects instead of separating them apart 
into single tree components so that the error of separating could be avoided. Compared with 
convex hull, 3D alpha shapes minimized the gaps between trees. Nevertheless, the minimum 
alpha value, which would be affected by the distribution of the points, was essential for the 
parameter derivation. 
The proposed conceptual framework provided a guideline for change detection of trees in multi-
temporal airborne lidar point clouds. The growth and pruning of trees were successfully detected. 
Also the programme processed the datasets semi-automatically. 
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6.2. Recommendations
The proposed methodology had been proven feasible to accomplish the research objectives. Nonetheless, 
due to the limitation of time and knowledge, following up studies could be done based on the current 
work. Thus some recommendations were made as following: 

Reference data could be helpful to further verify the parameters and change results. So airborne 
lidar data with ground truth are highly welcomed. The imagery obtained simultaneously with the 
point clouds can also help to identify the commission and omission errors at the level of trees. 
The study area was only a part of the overall dataset, so if needed, the proposed methodology can 
be applied to the entire dataset and even the whole city. Thus the result would be more 
meaningful for urban planning and decision making. 
Classification results will affect the change detection results to a great extent, thus better 
vegetation classification result is preferable. Component features were quite useful for 
distinguishing tree components from others, so datasets with more features are highly 
recommended. 
Because of existing of non-tree components, such as building fragments or bushes, a subset of the 
study area was selected. Alternative way is to remove non-tree components manually.  
To detect the height changes of every single tree, further efforts may be made to separate multiple 
tree components. Then the error brought by the separation needs to be taken into account. 
Normally connected trees can be separated by a straight line (in 2D, plane in 3D) in between, but 
actually trees intersect with each other which may affect the model and parameter results. The 
final choice should be made based on both methods. 
Mobile mapping system (MMS) is capable of capturing the details of the trunk and lower crown 
of trees. So the combination of mobile and airborne laser scanning data will facilitate the 
modelling of trees with accurate trunk information. 
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