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Abstract 

 
Tropical deforestation is an issue of global concern and, in recent times, has been noted 
to be a major driver of climate change due to the release of CO2 into the atmosphere 
through the activities of man. There are efforts by the international community to 
mitigate climate change. One such intervention is the REDD+ programme as proposed 
under the Kyoto Protocol of the UNFCCC. 
 
Ghana ratified this convention on 26th November, 2002 in order to reduce emissions 
from deforestation and forest degradation and also qualify for financial incentives by 
way of the so-called “Carbon Credits”. Important criteria for this are the regular 
monitoring, verification and reporting on the changes in the landcover of a participating 
nation. This therefore requires an accurate landcover map of the areas earmarked for the 
REDD+ programme. However, adequate high resolution multi-temporal optical data is 
often not available in the tropics where cloud cover is inevitable. In this situation, SAR 
provides a useful alternative. 
 
This study seeks to develop a suitable method that will improve the classification 
accuracy of different land and forest cover types by testing the MLC and OBIA 
techniques on ASTER and SAR data separately and in combination, to support the 
REDD+ programme in Ghana. A comparative study was conducted in the Afram 
Headwaters Forest Reserve in the Ashanti Region of Ghana. Previous studies in the area 
applied only the MLC algorithm on the above datasets and did not attempt to classify 
the datasets separately and in combination to compare the results either spatially or 
statistically or both. 
 
When compared spatially, the ASTER alone and combined ASTER+SAR maps showed 
over 70% agreement between MLC and OBIA. The SAR alone map showed 64% 
agreement. Statistically, the hypothesis that, there is no significant difference in the 
classification results (Kappa) between MLC and OBIA was confirmed. Furthermore, 
there is no significant difference between the kappa of ASTER alone and combined 
ASTER+SAR maps for both MLC and OBIA. There is, however, a significant 
difference between the MLC and OBIA classified maps of ASTER /SAR alone and 
SAR alone/combined ASTER+SAR. 
 
The overall best landcover map of the Afram Headwaters Forest Reserve (AHFR) was 
produced from the MLC of the combined ASTER+SAR data with an accuracy of 
82.09% and a Kappa of 0.74. Five classes (Natural Forest (NF), Plantation (P), 
Agroforestry (AF), Settlement/Bareground (S) and Fallow/Grassland (FG)) and four 
classes (NFP, AF, S and FG) were identified on the ASTER and SAR data respectively. 
 
There is a potential for image combination to improve the classification accuracy of 
SAR. After the combination, the accuracy of SAR improved by 14% and 21% by 
applying MLC and OBIA respectively. 
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1.0 INTRODUCTION 

1.1 Background 
Forest ecosystems provide a wide variety of services such as the conservation of soil, 
water, biodiversity and carbon sequestration for climate change mitigation (de Groot et 
al., 2002). The role of forests in the global carbon cycle has become a major concern in 
recent times (Cramer et al., 2004). Forests also offer direct and indirect economic 
opportunities for rural communities such as sale of non-timber forest products including 
firewood, snails, mushrooms and chewing stick, particularly in West Africa. They also 
provide timber for local construction and export. 

 
Ghana is well endowed with natural resources, including forests. In the year 1900, 
Ghana had a tropical high forest area of approximately 8.2 million hectares. According 
to the Forestry Commission Ghana (2009c), by the year 2005 this area had reduced to 
1.2 million hectares. In concurrence, the FAO (2010) has reported that the annual rate of 
the country’s deforestation was 135,000 hectares per year in 2010. This is twice the rate 
(65,000 hectares per year) quoted by the Forestry Commission for 2005 (Forestry 
Commisson Ghana, 2009c). The alarming rate of deforestation has been caused mainly 
by unsustainable but legal logging, illegal chainsaw operations, legal and illegal gold 
mining (commonly called “galamsey”), infrastructural development and agricultural 
practices such as slash and burn (shifting cultivation) methods of land preparation 
(Metz, 2009). The consequence is a change in landcover and its associated impacts on 
the proper functioning of ecological, hydrological and atmospheric processes. 
 
On the other hand, forests serve as the main source of livelihood for about 70% of rural 
communities in Ghana (Birikorang et al., 2001). Moreover, about 4% of the country’s 
GDP is contributed by the forestry sector which is the fourth foreign exchange earner, 
providing 11% of the export earnings (Birikorang et al., 2001). Ghana therefore 
depends on its forest resources to support vital socio-economic and national 
development. In addition to the local benefits, Ghana’s forest constitutes an important 
part of the global tropical forest system and the country is a major player in the 
production and trade of tropical timber. 
 
In view of this, Ghana, like many other tropical countries, has ratified the Reduced 
Emissions from Deforestation and Degradation plus (REDD+) programme under the 
Kyoto protocol of the United Nation Framework Convention on Climate Change 
(UNFCCC) to enable it to reduce emission of CO2 resulting from  
deforestation and forest degradation (UNEP, 2011). With respect to REDD+, countries 
that reduce emission of CO2 and stop forest degradation through rigorous plantation 
development and halting deforestation, are given financial incentives by way of so-
called “carbon credits” (Walker et al., 2010). However, to access these funds, there is 
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the need for a proper assessment of the country’s carbon stock for an equitable carbon 
accounting. Another condition under the Kyoto protocol is a regular monitoring 
(Walker et al., 2010) of landcover change in member countries. Producing accurate 
landcover maps and indicating their associated uncertainty and quality by way of 
accuracy assessment through a confusion or error matrix as proposed by the 
Intergovernmental Panel on Climate Change (IPCC) (2003), provides credibility to a 
country’s membership to the Kyoto Protocol. The confusion matrix, in addition to the 
producer’s and user’s accuracies computation possibilities it provides, forms the basis 
for further analyses by way of statistical testing for significance using the Cohen’s 
Kappa statistics (Foody, 2002). This will be discussed further in Chapter 2. 
 
If well done, field (ground-based) methods of landcover mapping and carbon stock 
measurement are the most accurate (Lu, 2006). However, they are time consuming, 
destructive, arduous and expensive due to the large areas involved. Remote sensing 
(RS) based methods provide an efficient way of landcover mapping and carbon stock 
estimation since it covers a large area with relatively less time and cost (Lu, 2006). 
Multispectral satellite remote sensing methods are appropriate for this purpose, but 
require a cloud free condition which is practically impossible in the tropics. This 
therefore reduces the applicability of multispectral data acquired in tropical conditions 
for landcover studies. It is therefore important for the RS community to develop RS and 
Geographical Information Systems (GIS) techniques that can be used in combination 
with field measurements to accurately map landcover and biomass carbon (Gaston et 
al., 1998). 
 
Several studies have applied different methods and types of satellite data ranging from 
low to high resolution optical and radar images for landcover classification and 
mapping (Ainsworth et al., 2009; Benz & Pottier, 2001; Chu et al., 2007; Mallinis et al., 
2008; Sun, 2004; Thiel et al., 2006). The application of an object oriented image 
analysis (OBIA) technique (discussed in Section 2.3) on high spatial resolution optical 
image has given more accurate estimates of carbon stock (Blaschke, 2010; Ouyang et 
al., 2011) than low or medium resolution data. OBIA has also been found to show 
promising enhancements on classification compared to other pixel-based techniques 
(Hay & Castilla, 2008) such as Maximum Likelihood Classification (MLC), a technique 
also discussed in Section 2.2.1. However, high spatial resolution images are very 
expensive, especially for a developing country like Ghana, and may not be available for 
a larger area. Other limitations of the high resolution data include the presence of 
shadows, haze and clouds on the acquired image. Moreover, the OBIA technique cannot 
be carried out on a large area / datasets due to data processing (software) limitations 
(Hay & Castilla, 2008). There is therefore a challenge to accurately map landcover, 
above ground biomass (AGB) and carbon stock over a large area. 
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Synthetic Aperture Radar (SAR) data has an advantage over optical data (high, medium 
and low resolution images) in terms of atmospheric disturbances such as cloud and 
haze. In the tropical ecosystems especially, where cloud cover prevails (Mitchell et al., 
2010) radar is able to penetrate the clouds and acquire data both day and night (IPCC, 
2003) and under all weather conditions (Dostovalov et al., 2010). SAR also has the 
capability of separating forests from other landcover types. Recently, a study (Nguyen, 
2010) based on ALOS PALSAR data instead of high resolution multispectral satellite 
data estimated carbon stock in the Afram Headwaters Forest Reserve (AHFR) in Ghana. 
The study also identified four main landcover classes in the study area. The focus of this 
research was to build on previous research in the area by exploring the possibilities of 
improving the accuracy in classifying and mapping the landcover in the area using the 
OBIA technique (Lefebvre et al., 2008; Riggan Jr. & Weih Jr., 2009; Thiel et al., 2006) 
in addition to the MLC that was used by Dwomoh (2009) and Nguyen (2010) in the 
Afram Headwaters Forest Reserve (AHFR), to support REDD+ in Ghana. 
 
SAR data has a problem with speckle noise (Figure 1). This causes degradation of the 
image quality that makes detection of different ground features and classification very 
challenging (Jarabo-Amores et al., 2009). Speckle noise is a bright and dark (salt and 
pepper) pattern in a SAR image due to the coherent nature of the radar system (Lopez-
Martinez & Fabregas, 2003). It is a result of the wide random variation in radar beam as 
it passes over an extended target. Popular SAR processing techniques, such as filtering 
and multi-look processing, are noted to reduce speckle noise but end up diminishing the 
textural information of the SAR data (Fernandez, 2002). Other algorithms based on 
filtering pixels with homogenous regions have successively been developed (Lee et al., 
2009; Walessa & Datcu, 2000). Their usefulness lie in their precise measurement of 
heterogeneity in a scene, thereby preserving the edge and textural information for 
further processing of SAR data (Jie et al., 2009). 
 

Figure 1: Different SAR datasets showing speckle noise (salt and pepper pattern) 
Source: Google images 

 
Although SAR data provides very high spatial and textural information it has less 
spectral information (Sun, 2004). The IPCC (2003) has recognized SAR data as one of 
the most important RS data for landcover classification and supports the  argument that 
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combining different types of RS data (fusion of optical and SAR) of different spatial 
and spectral resolution can be used to categorize different landcover types accurately. 
An image fusion technique provides the opportunity of producing an image that takes 
advantage of both the spectral and spatial or textural domain of multi-sensor data (e.g. 
ALOS PALSAR data and a multispectral ASTER data). This therefore improves the 
separation of different cover classes in landcover classification (Benz et al., 2001; Pohl 
& Van Genderen, 1998). Image fusion can also be very effective in speckle noise 
reduction (Pohl & Van Genderen, 1998; Youshi et al., 2009). 
 
Pohl & van Genderen (1998) argued that fused or combined images enhance 
interpretation capabilities and produce more reliable results through the combination of 
characteristics from different data sources. Hence, the classification accuracy of RS data 
is improved. For instance, some vegetation stands and species (e.g. cocoa) are difficult 
to separate from forests since their spectral response is similar. However, with the 
combination of SAR data which introduces shape, surface roughness and moisture 
content these stands can be differentiated (Pohl & Van Genderen, 1998). Image fusion 
of optical and SAR data may provide a cost effective approach to continuous landcover 
monitoring, especially in developing countries. 

1.2 Conceptual Framework 
The conceptual diagram (Figure 2) below puts the project in perspective. In summary, 
the REDD+ programme of the UNFCCC requires an accurate forest and landcover map 
through an improved classification method using remotely (satellite) sensed data 
covering the forest under consideration. This baseline information is important to 
relevant agencies and governments of member countries ratifying the Kyoto protocol to 
regularly monitor the changes in the forest/landcover. 
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Figure 2: Conceptual diagram of the research 

1.3 Problem Statement 
The issue of accurate and consistent landcover maps is a challenge to the realization of 
the goals of the REDD+ programme in Ghana. Low accuracies in landcover maps have 
mainly resulted from the type of datasets and methods applied in their analyses. For 
instance, in the tropics, where cloud cover is a major challenge, the applicability of a 
multispectral data is limited. SAR (which can acquire data at anytime under any 
weather condition) provides a better alternative source of data but its usage is also 
limited due to the difficulty associated with its classification and information extraction. 
Also the quality of SAR data is reduced due to its inherent speckle noise which makes 
its usage in remote sensing analyses very challenging, though it contains more useful 
spatial information than other sensor data such as ASTER or Landsat TM alone (Jarabo-
Amores et al., 2009; Tupin, 2010). Several methods that exist for SAR data 
classification and reduction of speckle noise are mainly pixel based image analyses 
techniques that were originally developed for spectral (and not spatial or textural) 
domain analyses. Those methods also use different filters for speckle reduction to 
improve accuracy (Jarabo-Amores et al., 2009). However, the use of these filters 
eventually results in  
the diminishing of vital spatial information in the data (Fernandez, 2002), in most cases 
resulting in higher uncertainties. 
 
A review of recent previous studies in the AHFR show that only a pixel based 
classification approach (MLC) was used for mapping the landcover. Dwomoh (2009) 
classified an ASTER data alone using MLC to produce a landcover map of the AHFR. 
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In the same study area, Nguyen (2010) combined ASTER and SAR data to produce the 
landcover map. However, these studies did not attempt to classify SAR alone or even 
compare the pixel based algorithm with any other approach like an object based image 
analyses technique. It is important then, to apply a different approach (e.g. OBIA) and 
systematically compare the outcome with the MLC. 
 
There is therefore the need for the development of a remote sensing based approach that 
will take advantage of the availability of SAR data by retaining and using its textural 
and spatial information in combination with an optical data that will provide 
information on the spectral properties of the scene to be classified for an enhanced 
image interpretation and improved classification accuracy. Such a method will be useful 
in the extraction of other information such as landcover types over a large extent for 
accurate mapping purposes. This approach will be cost effective and less labour 
intensive (Pohl & Van Genderen, 1998). 

1.4 Research Objectives 
In view of the above, this research was conducted to develop an appropriate method to 
extract information and accurately classify different landcover types in the AHFR to 
support the REDD+ program in Ghana using MLC and OBIA on ASTER, SAR and 
combined ASTER+SAR data. The success of this  research therefore will be the 
solution to the challenge of obtaining high accuracy and covering a larger area in 
mapping forest and landcover which will contribute to Ghana’s preparation and 
implementation of the REDD+ programme (Forestry Commisson Ghana, 2009a). 
 
The following specific objectives were pursued: 
 

1. To investigate which landcover classes in the study area can be identified from 
SAR and ASTER images. 

2. To compare, statistically and spatially, two different procedures for classifying 
landcover in the study area namely: 
(i) MLC on SAR, ASTER and combined ASTER+SAR data. 
(ii) OBIA on SAR, ASTER and combined ASTER+SAR data. 

3. To evaluate the effects of 3 different filters (3x3, 5x5 and 7x7) and different 
texture combinations in improving the classification accuracy of ASTER, SAR 
and combined ASTER+SAR data. 

4. To evaluate the potential of image combination in improving classification 
accuracy. 

5. To produce an accurate landcover map of the study area using the best result 
from the filtered SAR, ASTER and combined ASTER+SAR data 
classification. 
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1.5 Research Questions 
1. What relevant landcover information (classes) can be identified from the 

classification of SAR and ASTER data? 
2. Are there significant differences (Statistical and Spatial) in the quality of 

landcover type classification obtained from MLC and OBIA on ASTER, 
SAR and ASTER+SAR data? 

3. Which kind of texture (in OBIA) combination gives the best results in 
ASTER, SAR and combined ASTER+SAR data classification? 

4. Which filter window (in MLC) gives the best result in ASTER, SAR and 
combined ASTER+SAR data classification? 

5. What is the overall best classification accuracy in terms of Kappa obtained 
from ASTER, SAR and combined ASTER+SAR data classification? 

6. What is the quality of the landcover map produced from the overall best 
classification of ASTER, SAR and combined ASTER+SAR data? 
 

1.6 Research Hypotheses 
1. There is no significant difference in the classification results (kappa) 

between OBIA and MLC. 

[HO: = ] and 

[HA:  ] 

Where: 

HO and HA are the null and alternative hypotheses respectively, and  are 
the estimate of kappa for MLC and OBIA maps to be compared respectively. 
 

2. There is no significant difference in the classification results between SAR 
alone and combined ASTER+SAR data for both MLC and OBIA. 

[HO: = ] and 

[HA:  ] 
 

3. A better MLC classification accuracy of ASTER, SAR and combined 
ASTER+SAR data is obtained by using 5x5 instead of 3x3 and 7x7 window 
filtering. 

 
4. The overall best classification accuracy can be obtained from combined 

ASTER+SAR data. 
 



Introduction 

8 

1.7 Justification 
The experience with radar remote sensing, data analysis and other applications of SAR, 
particularly landcover classification, in West Africa, for example in Ghana, is not well 
developed as applications in low and medium resolution optical data. SAR data can be 
very useful for accurate landcover classification if the appropriate methods can be 
developed and used. The combined use of SAR data which is difficult to classify due to 
the problem of speckle noise and low spectral information; and OBIA will present a 
novel approach to SAR image classification in the study area and Ghana as a whole. 
OBIA on SAR data especially, is a relatively new area of image classification and this 
study will contribute to the already ongoing efforts to improve classification accuracy 
and speckle noise reduction. 
 
The targeted method/approach, when developed, would put Ghana in a better position to 
benefit from the financial incentives (Carbon credits) that would be given to Countries 
ratifying and fulfilling the conditions in the REDD+ programme of the Kyoto Protocol 
under the UNFCCC. Ghana would stand a better chance of benefitting financially 
because the method will provide regular monitoring capabilities in terms of data source 
(e.g. ASTER, SAR or combined ASTER+SAR depending on cloud cover conditions 
prevailing at a given period in the tropics) as well as the use of a robust accuracy 
assessment approach as required by the UNFCCC. 
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2. 0 LITERATURE REVIEW 
This literature review chapter provides an overview of the various components of this 
research as summarised in the conceptual framework (Figure 2). It reviews literature on 
the methods, datasets for this research and the specific management information on the 
study area. 

2.1 Remote Sensing And Forestry 
Ground-based tropical forest monitoring and mapping has often been challenging due to 
the complex nature of the terrain and large areas of forests involved. Remote sensing 
(RS) thus provides a good platform for tropical forest and other land-based monitoring. 
Remotely sensed data have been used widely for landcover mapping and other 
applications in forestry. Historically, landcover classification systems for use with RS 
data was developed by the United States Geological Survey (USGS) in the mid-1970s 
(Lillesand et al., 2008). Lillesand et al. (2008) outlined the 10 main criteria for the 
classification system developed by the USGS. These criteria were developed before the 
proliferation of computer-aided RS image classification. Consequently, computer-aided 
image classification has brought in its wake several complexities. These therefore make 
the practical application of some of the criteria, for example criteria 1 and 2 (minimum 
acceptable classification accuracy of 85% spelt out in the criteria) impossible (Lillesand 
et al., 2008). 
 
Other applications of RS in forestry include tree species identification, timber volume 
estimation, survey and assessment of disease and pest damage to trees. The next 
sections briefly discuss the two main types of remote sensing and their applications in 
Forest management, particularly landuse/landcover mapping. 

2.1.1 Passive Remote Sensing (Optical Sensors) 
The principal remote sensing techniques used in Natural Resources Management 
(NRM), including forest management and landcover mapping, use passive sensors. 
Passive optical sensors record reflected radiation from the visible and near infrared 
portions of the electromagnetic spectrum. Optical remote sensing offers large area 
coverage and frequent revisit capabilities which makes its use in forest mapping at 
various scales viable (Toan et al., 2001). However, passive remote sensing can only 
take place when the sun illuminates the earth. This can be a major disadvantage in areas 
with frequent cloud cover. As a result, there are many regions in the tropics where 
passive remote sensing can rarely be effectively used. Thus, for such regions, active 
remote sensing by means of radar is a useful alternative. 
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Optical sensors are categorised based on their spatial resolution. They may be 
low/course, medium and high resolution depending on the pixel size (spatial resolution) 
of the image under consideration. The sections below are devoted to brief discussion of 
the different spatial resolutions mentioned above. 

2.1.1.1 High Resolution

Tropical forest mapping using high resolution satellite images have been reported by 
several studies (Foody et al., 2003; Rahman et al., 2005). Such images provide a lot of 
spatial information that aid in the classification process. In some cases, data from high 
resolution sensors are used as ground truth data for classification accuracy assessment 
(Foody, 2002). However, as stated earlier, their application is often hampered by the 
frequent cloud cover issues in the tropics. Low temporal resolution makes their usage 
challenging since one has to wait for a relatively longer time to acquire the next 
expected cloud free image (Toan et al., 2001) (which may not be the case). Some 
examples of high resolution satellite images that have been used for landcover 
classification and their properties are summarized in table 1 below: 
 

Table 1: Summary of high resolution satellite images and their properties 
IMAGE DATA PROPERTIES 

Geoeye-1 It has one panchromatic and four multispectral bands with 
spatial resolutions of 0.41m and 1.65m respectively. 

Quickbird Have one panchromatic (0.45 – 0.90μm) and four 
multispectral bands (Blue = 0.45 – 0.52 μm, Green = 0.52 – 
0.60 μm, Red = 0.63 – 0.69 μm and NIR = 0.76 – 0.90 μm). 
Spatial resolutions are 0.61m and 2.44m for the 
panchromatic and multispectral bands respectively. 

IKONOS Have one panchromatic and four multispectral bands 
ranging from 0.45 – 0.90μm. Spatial resolutions are 1m and 
4m for the panchromatic and multispectral bands 
respectively. 

2.1.1.2 Medium Resolution

Medium resolution satellite data have spatial resolution ranging between 4 – 30m 
(Satellite Image Corporation, 2011). They have been used extensively for landcover 
classification because their range of spatial resolution permits classification of 
landcover at local scales which is the focus of many landcover classification and change 
detection research. Examples of medium resolution images include Landsat (30m), 
SPOT (10m - panchromatic) and ASTER (15m - VNIR and 30m - SWIR). Medium 
resolution images also have similar disadvantages as mentioned for high resolution 
images in the previous section. 
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ASTER is one of the five state-of-the art instruments which consist of three main 
subsystems, the visible near-infrared (VNIR), shortwave infrared (SWIR) and thermal 
infrared (TIR). It is on-board the Terra satellite launched in December, 1999 (Satellite 
Image Corporation, 2011). ASTER has 14 bands (1 – 3 = VNIR, 4 – 9 = SWIR and 10 – 
14 = TIR) and is suited for applications including landcover change monitoring, 
vegetation and ecosystem dynamics, geology, hydrology and digital elevation model 
(DEM) generation (Satellite Image Corporation, 2011). 

2.1.1.3 Low Resolution

Low resolution images are mainly suitable for landcover classification on regional to 
global scales (Foody, 2002; Wulder et al., 2004). This type of image lack spatial details 
and is rarely used for local scale mapping due to the coarse resolution, ranging between 
30 – >1000m (Satellite Image Corporation, 2011). MODIS and NOAA AVHRR are 
examples of low resolution images (Foody, 2002). MODIS for example is very useful 
for monitoring global vegetation productivity (Wulder et al., 2004). 

2.1.2 Active Microwave Remote Sensing 
Active remote sensing operates with sensors that produce their own energy to form an 
image.  These sensors transmit energy beam towards a surface feature and analyses the 
energy reflected back (backscatter). One such sensor is the Radio Detection And 
Ranging (RADAR) system. The advantages and disadvantages of radar are briefly 
discussed in section 2.1.2.1 below. 

2.1.2.1 Radar Remote Sensing 

SAR data has been used in many researches in recent years due to the advantages it has 
over optical data. However, using SAR data alone for landcover mapping comes with 
many limitations (Hoan et al., 2011). SAR therefore has been used to complement the 
information extraction in several landcover classification studies (Hoan et al., 2011; 
Pohl & Van Genderen, 1998; Youshi et al., 2009). 
 
Speckle noise inherent in SAR data makes its interpretation complicated compared to 
visible or optical data (Ling et al., 2008). This makes its usage challenging for many 
analysts and researchers. To get the best information out of SAR data, it is important to 
carefully consider the processing techniques to apply prior to  
information extraction (Ling et al., 2008). Among these techniques is filtering, which is 
normally done in the spatial domain. Over the years, the most common filters used in 
this respect include Frost, Lee and Gamma-MAP filters.  In their research, Youshi et al. 
(2009) found that image fusion reduces the effect of speckle noise to a maximum extent. 
 
According to Pohl & van Genderen (1998), SAR provides a valuable data source for 
regular monitoring purposes since data can be obtained at anytime under any weather 
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condition. Another advantage of SAR is its cloud, smoke and haze penetration 
capabilities (Fransson et al.; Hoan et al., 2011; Ling et al., 2008; Toan et al., 2001). 
Furthermore, depending on the signal transmission wavelength, some SAR, for example 
PALSAR (Phased Array L-band Synthetic Aperture Radar), can penetrate tree canopies 
and other above ground biomass (Rosenqvist et al., 2007). 

2.2 Image Classification 
Image classification is basically the process of sorting different pixels in an image to 
extract information on the various features from the spectral classes (Lillesand et al., 
2008). Spectral responses for similar features are similar and unique in a scene. Two 
main methods of classification exist. They are supervised and unsupervised 
classification. 

2.2.1 Supervised Classification 
Supervised classification deals with the training of a computer by specifying the 
numerical descriptors of different landcover types based on a prior knowledge of the 
features (Foody, 2002) or scene under investigation by the analyst. Representative 
sample locations of different known landcover types are selected across the entire scene 
and used to develop training areas upon which the categorization of pixels will be 
based. In this form of classification the image analyst has full control over the 
classification process. According to Lillesand et al. (2008), supervised classification 
consists of three main stages namely, (i) training stage (ii) classification stage and (iii) 
output stage. The first stage has already been discussed briefly above. The second stage 
is the actual categorization or pixel grouping phase to compose a theme that finally 
comes out as an output thematic map (stage iii) which can serve as an input into a GIS 
(Lillesand et al., 2008). The quality of any supervised classification depends on the 
training process of the classification and requires a substantially well distributed 
samples within each cover class (Lillesand et al., 2008; Riggan Jr. & Weih Jr., 2009). A 
good knowledge of the geographical location of the data is critical to the success of the 
classification. 
 
Some of the most commonly used supervised classification algorithms include the 
parallelepiped, minimum-distance-to-means and maximum likelihood classifiers 
(Navulur, 2007). The parallelepiped classifier is a very fast and computationally 
efficient technique but its inability to distinguish and classify similar spectral signatures 
(overlapping classes) is its major disadvantage. Similarly, the minimum-distance-to-
means classifier is also simple and computationally efficient but is insensitive to 
different degrees of variance in the spectral response data (Lillesand et al., 2008). 
 
The Gaussian Maximum Likelihood Classifier (MLC) is a simple and robust classifier 
noted to produce accurate classification results, since pixels are classified and grouped 
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based on their highest probability of belonging to a particular group or class (Foody, 
2002). This classifier classifies unknown pixels by quantitatively evaluating the 
variance and covariance of the spectral response pattern of the class to be separated. Its 
main assumption is normality of the data (Lillesand et al., 2008). This makes it 
reasonable for the computation of the statistical probability of a pixel belonging to a 
given category. In this respect, the computer evaluates the posterior probability of an 
unknown pixel to belong to a particular class and assigns it to that class (Lillesand et al., 
2008). If the probability values fall below a given threshold then the pixel is not 
assigned to any particular class but named “unknown”. The large number of 
computations required to classify individual pixels, is a major drawback of the MLC, 
especially when many spectral bands or spectral classes are to be differentiated. A 
Principal Component Analysis (PCA) transformation (i.e. reducing data dimensionality) 

is one way of optimizing the implementation of an MLC (Pohl & Van Genderen, 1998). 

2.2.2 Unsupervised Classification 
In this type of classification, information extraction is based mainly on the spectral 
domain and the assigning of classes to image features is done automatically, solely by 
the computer (Jong-Sen et al., 1999). Unsupervised classification is an effective way of 
partitioning remotely sensed data to extract landcover information from them by pixel 
clustering (Foody, 2002). Human influence is limited. After the clustering which is 
based on statistical criteria, the clusters are assigned names on the basis of the thematic 
information classes of interest. The analyst therefore needs to understand the spectral 
characteristics of the terrain under investigation in order to correctly label the clusters 
into their respective information class. 

2.3 Object Based Image Analyses (OBIA) 
The OBIA is an image analyses technique similar to the human visual interpretation that 
uses both spectral and spatial domains for image classification (Lillesand et al., 2008; 
Seetha et al., 2010). Simultaneously, OBIA works at multiple scales integrating texture, 
shape, colour, pattern and context to categorize pixels into meaningful objects (Benz et 
al., 2004; Lillesand et al., 2008; Seetha et al., 2010). Several names have been used to 
describe this area of satellite image analyses, including Geospatial Based Image 
Analysis (GEOBIA) and Object Oriented Analysis (OOA) (Blaschke, 2010). There is 
therefore an ongoing debate as to which terminology is appropriate for this rapidly 
developing research field. However, these terminologies are used interchangeably due 
to author preference (Blaschke, 2010). This paradigm of image analyses has been made 
possible in recent times due to the advent of high resolution satellite images and the 
advancement in the production of fast computers coupled with the availability of 
appropriate software.  OBIA is also generally accepted (Benz et al., 2004; Blaschke, 
2010; Blaschke et al., 2000; Castilla et al., 2008) as a concept that builds on old 
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segmentation (generation of objects or regions based on one or several homogeneity 
criteria of a feature space) methods for image classification. 
 
Two main steps are involved in OBIA classification. The first stage is the segmentation 
of the satellite image (e.g. ASTER, SAR or combined ASTER+SAR data) into discrete 
objects or regions. Secondly, a hierarchical analyses approach based on a “trial-and-
error” combination of different spectral, contextual and textural parameters in any 
relevant software such as the Trimble eCognition (formally, Definiens eCognition). 
Lillesand et al. (2008) described the scale of the image object to be classified as one of 
the most important factors that affect the image segmentation process. The scale could 
be fine (e.g. tree crowns), medium (e.g. tree stands of similar species and size) or coarse 
(e.g. aggregation of large forest areas as objects). 
 
OBIA has been noted as a method that overcomes the “salt-and-pepper” effects in 
image analyses (Blaschke et al., 2000; Duveiller et al., 2008; Xie et al., 2008; Yu et al., 
2006). This is made possible due to the grouping of pixels to form an object (Blaschke, 
2010) and there are claims that the method is becoming more popular compared to the 
traditional pixel based ones (Gamanya et al., 2009). An attempt to compare pixel based 
approach (Maximum Likelihood Classifier) and OBIA by some researchers including 
Shackelford and Davis (2003), Platt and Rapoza (2008), Ehlers et al. (2006) and 
Flanders et al. (2003)  has shown that the introduction of texture and contextual 
analyses improved classification accuracy by 8 – 11%. Other advantages of OBIA over 
the pixel based approach include: 
 

 Its ability to utilize the spectral, spatial, temporal, morphological and 
contextual domains in remote sensing. 

 Its ability to integrate GIS functionalities in thematic classification. 
 Extraction of information from a particular image/scene at different scale and 

resolutions (i.e. multi-scale approach). 
 Incorporation of many and well tested algorithms including those implemented 

in supervised classification, fuzzy logic and knowledge based classification 
applications. 

 
The many advantages associated with the OBIA technique are very promising for future 
image analyses projects. 

2.4 Classification Accuracy Assessment 
Classification accuracy assessment generally refers to the comparison of classification 
data to geographic or ground truth data (reference data) that are known or assumed to be 
correct. This assessment thus enables one to see how successful the classification 
process was (Congalton, 1991). Foody (2002) emphasised the need to conduct an 
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accuracy assessment since it gives an indication of map quality and fitness  as well as 
providing insight into classification errors and their implications. He summarised the 
reasons for accuracy assessment into three: (1) to give an indication of a map’s overall 
quality (2) to form the basis for comparing different classification algorithms and (3) to 
help one to understand errors associated with classification. Congalton (1991) observed 
that some studies have used the same data for training classifiers in assessing accuracy 
of the classification result. This was noted to overestimate classification accuracy. To 
avoid bias, it is proper to avoid using the training datasets for validation (Congalton, 
1991). According to Lillesand (2008), the completeness of a classified digital image lies 
in its validation. 
 
Both qualitative and quantitative assessment of classified images (landcover maps) is 
possible on a category - by - category basis (IPCC, 2003; Podest & Saatchi, 1999) 
through the use of the confusion matrix as supported by many projects, for instance the 
Kyoto protocol  under its “good practices guidance for LULCF” document (IPCC, 
2003). The confusion matrix (Figure 3) measures producer’s accuracy and user’s 
accuracy for each landcover category as well as the overall accuracy of the 
classification (Riggan Jr. & Weih Jr., 2009). Though there is no  
standardized accuracy assessment method, the error matrix and its associated  kappa 
statistics have been accepted as the conventional measure of accuracy by the RS 
community (Foody, 2002). 

 
 

Figure 3: A confusion matrix adapted from Congalton and Green (1991) 
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The kappa statistic (Equation 1) simplified in equation 2 below is another useful 
indicator of classification accuracy and has been used very often to statistically 
determine the difference between two or more classified maps or the methods used in 
obtaining them (Congalton, 1991). Cohen’s kappa is a discrete multivariate technique 
that has an advantage over the overall accuracy measure since kappa takes chance 
agreement into consideration and corrects for it (Jensen, 2005). The kappa coefficient 
normally ranges from 0 – 1. However, negative kappa can result, which is an indication 
of extremely poor agreement of the classification with the reference data. Furthermore, 
a negative kappa does not normally have a meaningful interpretation. A kappa of zero 
(0) and one (1) indicate an occurrence or agreement due to chance and perfect 
agreement respectively. Table 2 adapted from Munoz & Bangdiwala (1997), shows a 
detailed description of the range of kappa values and their interpretation: 
 

Table 2: Interpretation of the kappa statistics 
Kappa value Meaning/Interpretation 

Less than 0.00 Poor agreement 

0.00 – 0.20 Slight agreement 

0.21 – 0.40 Fair agreement 

0.41 – 0.60 Moderate agreement 

0.61 – 0.80 Substantial agreement 

0.81 – 1.00 Almost perfect agreement 

 
A pair-wise Z-test at significance level ( ) = 5% (i.e. 95% Confidence Level) can be 
performed to test the significance of the difference between the two kappa values after 
Equation 3 below (Riggan Jr. & Weih Jr., 2009). 
 

                         [Equation 1] 

 
Where, 
Xii is the number of observations in row i and column i (i.e. diagonals), Xi+ is the marginal total of 
the row i, X+i is the marginal total of column i and N is the total number of observations. 
 

 

             [Equation 2] 

 
 

                   [Equation 3] 
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Where, 

is the estimate of kappa, Po is the actual agreement, Pc is the agreement by chance, Z is the 

calculated Z-test statistic,  are the kappa coefficients for the methods or datasets (e.g. 
OBIA and MLC or SAR alone and combined ASTER+SAR respectively) and  is the variance 
of kappa (Congalton, 2009; Skidmore, 2002). 

 
Although the kappa coefficient has been widely used for accuracy assessment, many 
researchers have criticized and argued that it overestimates chance agreement which 
culminates in the underestimation of classification accuracy

2.5 Landcover And Landuse 
The terms landuse and landcover have often been confused or used interchangeably but 
in actual sense they are different (CARA, 2006). A simple definition of landcover deals 
with the description of the natural features on the earth’s surface without human 
interference. For example, a deciduous forest, coniferous forest, water bodies, 
grasslands, agricultural fields etc. Landuse on the other hand, refers to the activities 
currently being undertaken on the land and is driven by man. In other words, it refers to 
the economic use of the landscape by people, be it commercial or industrial (CARA, 
2006).  A landuse example can be a reservoir, tree nursery, backyard garden, recreation 
park etc. These two concepts describe a classification scheme that represents land 
information in space and time. One major difference however is that, landcover can be 
monitored and interpreted from satellite and other remotely sensed data through image 
analyses but landuse cannot, because it is difficult to interpret use from imagery. 
Changes in landcover and landuse are of great importance due to their impact on 
habitat, air and water quality as well as human well being. 

2.6 Plantation Development In Ghana 
All degraded forest reserves in Ghana have been put under plantation development to 
help restore the lost vegetation cover. Several plantation development programmes have 
been embarked upon since the 1970s under different names and projects. These 
programmes include the National Forest Plantation Development Programme (NFPDP), 
Government Plantation Development Programme (GPDP), Community Forest 
Management Project (CFMP) and Commercial Private Plantation (CPP) Development 
by individuals and organisations, both local and international.  The objectives of these 
plantations include employment generation to reduce rural poverty, restoration of the 
degraded forest cover, improvement of environmental quality and enhancement of food 
production to ensure food security. 
 
The NFPDP started in the year 2001. Before its inception several projects geared 
towards the restoration of degraded forests had been in place. For example collaborative 
resource management projects that aim at involving local communities in the 
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management of the forest reserves were in place. The taungya system (discussed in 
section 2.6.1 below) before, was the main strategy for plantation development.  The 
NFPDP was started with a modification of the old taungya system, named Modified 
Taungya System (MTS), to make it more appealing to local communities through the 
benefit sharing agreement (BSA) introduced by the Forestry Commission. 

2.6.1 Taungya System (TS) vis-à-vis Modified Taungya System 
(MTS) 
The taungya system (TS) is an agroforestry system usually practised in areas with land 
scarcity. Under this system, farmers are allocated portions of degraded forest reserves to 
grow their food crops and help replant the deforested areas. The system has been 
practised in Ghana since the early 1920s (FORIG, 2011). The implementation of the 
taungya system was at its peak in the 1970s, which is evident through the nationwide 
plantations established in most degraded forest reserves. However, due to policy and 
legislative failures on benefit sharing, system’s abuse by farmers, insecurities in tenure 
and use rights as well as weak institutional monitoring and supervision by the Forestry 
Department (now Forest Services Division – Forestry Commission), the taungya system 
was suspended in 1984 (FORIG, 2011). 
 
With the paradigm shift in forestry in Ghana towards collaborative forest resources 
management, forest fringe communities saw the taungya system as the most effective 
forest tenure and requested for its revitalization with possible modification by the 
government. In response, the MTS was introduced to involve various stakeholders (the 
Forestry Commission, farmers, traditional authorities and local communities) in the 
establishment and maintenance of the plantations (FORIG, 2011). Hence, the MTS 
unlike the TS confers a stronger ownership and tenure rights on farmers. Benefits from 
the plantations are shared based on the proportion of contribution from each party under 
the benefit sharing agreement (BSA) (Forestry Commisson Ghana, 2009b). Under the 
BSA, FC receives 40% of the proceeds, farmer(s) are entitled to 40%, stool land owners 
together with traditional authorities will receive 15% (8% and 7% respectively) and 
finally, the fringe community receives 5% (Forestry Commisson Ghana, 2009b). 
 
The other plantation programmes including the CFMP, GPDP and CPP had their 
different sources of funding and BSA. The CFMP, GPDP and CPP are funded by the 
African Development Bank (AfDB), the Government of Ghana through the Highly 
Indebted Poor Countries (HIPC) funds and private investors respectively. 
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2.7 Invasive Species In The Afram Headwaters Forest 
Reserve 
Two main invasive plant species (Broussonetia  papyrifera and Chromolaena odorata) 
colonizing the AHFR are discussed in this section due to the influence they have  
on the forest reserve and the challenge they pose to landcover classification using RS 
data.  In the AHFR where this research was conducted, B. papyrifera poses a major 
challenge in visual interpretation as some areas seen to be natural forest on the satellite 
image in reality is covered by York (B. papyrifera). The phenology of the species is 
similar to that of the natural forest trees in terms of the colour, size and shape of leaves; 
and the vertical structure of the vegetation. C. odorata on the other hand invades forest 
gaps and other open areas and poses a challenge with misclassification. 

2.7.1 Paper Mulberry (Broussonetia papyrifera) 
The paper mulberry (Broussonetia papyrifera), commonly known as York in Ghana, is 
a prolific woody perennial from the Moraceae family. Originating from South-East 
Asia, the humid tropics, subtropical and temperate environments are the most suitable 
habitat for the species (Bosu et al., 2009). According to Ali and Malik (2010), hillsides, 
roadsides, ditch banks, agricultural fields, valleys, forested areas and open spaces in 
urban areas with elevations lower than 1500m above m.s.l are the niches of B. 
papyrifera. The plant is grown mainly for its economic and aesthetic importance. It 
provides shade in home gardens, useful in soil stabilization and improvement, controls 
soil erosion, sap from the plant is used for glue production, pulp and paper production 
and the inner bark is also used for tapa cloth (Bosu et al., 2009). 
 
Under conducive environments, paper mulberry, reaches a total height range of 10 – 
20m and a diameter at breast height of 70cm. B. papyrifera bares a simple but alternate 
opposite, mulberry-like and papery leaves with serrate margins ranging from 8 – 25cm 
long (Bosu et al., 2009). It is a dioecious plant, with male and female inflorescence 
occurring on separate individuals. 
 
When introduced to a non-native environment, the paper mulberry with its fast growing 
ability distorts the functioning of the natural habitat and ecosystem as a whole. B. 
papyrifera outcompetes native flora due to its very high water consumption ability 
which makes less water available for the sustenance of the native vegetation. Due to its 
adverse effects on the native vegetation, B. papyrifera has been listed among the six 
worst invasive plant species in the World (Malik & Husain, 2006). 
 
The introduction of B. papyrifera into Ghana was in 1969 when the need for the 
industrial production of pulp and paper arose (Anonymous, 1970). It has now become 
the major invasive species in the country today and its control has become a very big 
challenge to farmers in the surrounding communities and plantation developers (both 
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private and government) inside forest reserves. The Afram Headwaters Forest Reserve 
in the dry semi-deciduous forest zone and the Pra Anum Forest Reserve in the moist 
semi-deciduous Forest zone were the points of first introduction (Apetorgbor & Bosu, 
2011) and due to its prolific nature have spread throughout the southern part of Ghana 
as shown in Figure 4, adapted from Apetorgbor and Bosu, (2011). 
 
Rapid colonization and spread of B. papyrifera has been facilitated by the alarming rate 
of deforestation and the dispersal of the seeds by bats and other wildlife for which the 
fruit serves as food. B. papyrifera can be found mostly in large forest gaps, fallowed 
croplands and roadsides of the two points of introduction and surroundings (Apetorgbor 
& Bosu, 2011). 
 

 
 
 
 
 
 
 
 
 
 

 

2.7.2 Chromolaena odorata (L. King & Robinson) 
From the Asteracea family, C. odorata, Siam as it is popularly known (also known 
commonly in as Ghana Acheampong weed) is ranked as one of the most invasive plants 

Figure 4: Areas of first introduction and occurrence of B. papyrifera 
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species colonizing Southern Asia and tropical African forests, including the AHFR. It is 
also listed among the world’s top hundred (100) invasive species (Bosu et al., 2009). C. 
odorata is a tropical herbaceous perennial weed originating from Tropical America. In 
tropical, subtropical and temperate ecosystems the plant grows in dense stands and 
attains a maximum height of 2.5m. Moreover, under favourable environments C. 
odorata can attain a height of 6 – 10m by climbing nearby vegetation with its long-
winded branches (Vanderwoude et al., 2005). The plant produces many seeds from very 
small fruits of length and breadth 3 – 5mm and 1mm respectively. This therefore makes 
its dispersal by wind and animals easy, culminating in its aggressive colonisation of 
open areas in forests (Vanderwoude et al., 2005). The dispersal of C. odorata seeds by 
animals is further boosted by a small hook on the fruit that makes its attachment to the 
animal easy. Bosu et al. (2009) indicated that though reproduction by vegetative means 
is impossible, C. odorata has the ability to readily coppice from root crowns or stems 
after an event of fire or death of old stumps (probably through clearing). Though highly 
flammable and fire tolerant, C. odorata thrives very much on fire, as it promotes the 
multiplication of new shoots (McWilliam, 2000). It has been speculated that C. odorata 
facilitated the massive and devastating wildfires experienced in Ghana in 1983 due to its 
significant contribution of fuel or combustible material especially during the dry 
seasons. 
 
The AHFR offers a congenial environmental and climatic condition for the survival of 
C. odorata. The weed thrives mostly in open areas (forest gaps) with a temperature of 
30°C and relative humidity of 60 – 70% as well as an annual rainfall exceeding 
1200mm. Conversely, the plant’s growth as well as seed production is impeded under 
closed canopy conditions (Vanderwoude et al., 2005) explaining why C. odorata is 
found mainly in degraded forest areas, abandoned farmlands, roadsides and forest 
canopy gaps. 
 
C. odorata has significant negative impacts on the regeneration and establishment of 
native species through the exhibition of allelopathic properties. The sustainable 
livelihoods of local farming communities is affected (McWilliam, 2000) since the weed 
outcompetes crops on farmlands. Apart from its adverse impact on the availability of 
livestock feed, through its competition with local pasture and fodder, its eradication is a 
big challenge to farmers. This is because its presence on the land increases the cost of 
land preparation for farming. Moreover, C. odorata is an unpalatable and toxic weed 
which makes it unsuitable for livestock feeding (McWilliam, 2000). 
 
Furthermore, in spite of its negative impacts several benefits have been associated with 
its invasion of tropical African ecosystems. According to a research in West Timor 
(McWilliam, 2000), C. odorata is very effective in the eradication of the blade-like 
grass species (Imperata cylindrica) whose elimination on farmlands is always a big 
challenge to farmers. C. odorata quickly shades the grass and suppresses its growth. C. 
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odorata has been associated with yield increments of some crops such as maize, 
groundnut and cassava in West Africa. This is however a claim by farmers which needs 
research. Another benefit which is also a claim is its contribution to the reduction of 
fallow periods from the previous 10years to 3years currently. Again, the medicinal 
potential of C. odorata cannot be overemphasised. C. odorata has been successfully 
used to treat fresh wounds due to its ability to stop excessive bleeding. It is also used to 
cure eye and stomach conditions (Bosu et al., 2009). 
 
Finally, several strategies (mechanical, chemical and biological) have been applied to 
control the spread of C. odorata. Among the above management strategies, mechanical 
control has been mostly applied in West Africa. However, a single strategy has not been 
as effective as their combination. For instance, local farmers under the modified 
taungya system plantation programme interviewed indicated that they slash the weed 
with cutlasses (mechanical) and burn after a few days (when the debris are dried) and 
then spray with herbicides (chemical). This they said eradicates the weed and favours 
the planting of their crops. However, this does not result in a total eradication of C. 
odorata as the very large seed bank germinates after a short while replacing the 
removed matured stand and the farmers have to weed again (Bosu et al., 2009) 
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3.0 MATERIALS AND METHODS 

3.1 Study Area Description And Purpose of Selection 
The study was carried out in the Afram Headwaters Forest Reserve (AHFR) in the 
Ashanti Region of Ghana. Historically, the reserve, which is the largest of the Afram 
Headwaters group of reserves, comprising Afrensu-Brohuma, Aboma, Gianima, 
Abrimasu and Mankrang was named after the Afram River which runs through the 
eastern part of the area. The AHFR was chosen for this research because of three main 
reasons. First, the Forestry Commission’s plans to use the area as one of the pilot sites 
for the REDD+ programme. Second, the area is located on a relatively flat ground 
which will reduce the effect of topography on the satellite data. Third, there is both 
primary and secondary data (field and satellite data from previous research) available 
for the area as well as the presence of different landcover types such as natural forest, 
plantations, agroforestry and degraded lands which makes this area particularly suitable 
for the research. 

3.1.1 Location details 
The AHFR is approximately 20,100ha (77.657sq ml) in size and geographically located 
between Longitude 1° 32’ W and 1° 48’ W and between Latitude 6° 45’ N - 7° 25’ N in 
the Offinso Forest District of the Ashanti Region, Ghana (Figure 5). It is bordered on 
the west by the Kumasi – Techiman main road which also forms the main boundary 
between the AHFR and the Opro Forest Reserve. 
 
For management purposes, the reserve has been partitioned into two parts – Afram East 
and West. The Kwapanin – Asuboe road shown in Figure 6 forms the main dividing line 
between the Eastern and Western parts of the reserve. Furthermore, the reserve is 
demarcated into smaller management units called compartments, found in both parts 
(Figure 7 below). A standard compartment size in Ghana is 128ha. However, some may 
be larger or smaller than the standard size as a result of blockages by natural features 
like rivers. Compartments numbered zero (0) in Figure 7 represent research plots, 
portions containing the so called “admitted farms” and legal settlements on-reserve. 
Admitted farms are farms that existed prior to the legal State reservation of an area as a 
forest reserve. Farmers owning those farms before reservation are registered by the 
relevant authorities and still maintain their ownership of the farm land. 
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(thick black boundary)  with surrounding towns. 
Figure 5: Study area map showing the Country, Region and the AHFR 
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Figure 6: Map showing the main demarcation line between AHFR East and West 

Figure 7: Compartment map of the Afram Headwaters Forest Reserve 
(Source: RMSC – FC, Kumasi). 
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3.1.2 Vegetation Characteristics 
Under the ecological/vegetation zones classification of Ghana, the AHFR is found in the 
dry semi-deciduous forest zone subtype (DSFZ). Found within the forest – savanna 
transition zone of Ghana (Figure 8), the study area is characterised by sparse woody 
understory with well illuminated forest floor being a result of the extensive forest fires 
in 1983. This has given rise to the colonisation of the area by dense weedy undergrowth 
species from Marantaceae (prayer plant or arrowroot) and Zingiberaceae (ginger) 
families and other non-native invasive species such as Chromolaena odorata (also 
called “Acheampong” or other names as in Appendix A) and Broussonetia papyrifera 
(Paper Mulberry or York). The AHFR is mostly degraded due to its fire prone nature 
and is currently left with patches of remnant natural vegetation, forest plantations  - 
mainly Tectona grandis (Teak) and agroforestry areas established through the Taungya 
system (now Modified Taungya System - MTS). The sections below (3.1.2.1 – 3.1.2.4) 
briefly describe the four main vegetation cover types in the AHFR. 

3.1.2.1 Natural Forest vegetation 

A natural forest is a forest that has spontaneously generated itself with naturally 
occurring tree species in a particular location without any human intervention through 
planting. The natural forest vegetation in the AHFR is the relics of natural mixed tree 
species that were originally found in the area. The natural forest which was the 
dominant landcover with class I – III species (Appendix B) at the time of reservation 
now forms a small proportion in relation to agroforestry and plantation stands. This is a 
result of deforestation. Due to the degradation of the forest, non-native invasive species, 
mainly York (referring to the name of the technical officer at the time of introduction of 
the paper mulberry (B. papyrifera) in the early 1970s) have colonised the entire forest 
reserve. 

3.1.2.2 Plantations 

Deforestation of the AHFR has given rise to the establishment of plantations to restore 
the integrity of the forest. In the reserve, monocultures of exotic trees species that are 
fast growing including Cedrella odorata (Cedrella) and Tectona grandis (Teak) have 
been planted. Figure 9A shows a teak plantation stand photographed during fieldwork 
(more fieldwork photos in Appendix G) in the AHFR. In a few cases, these exotic 
species are mixed with indigenous ones including Terminalia spp. (Ofram and Emire), 
Ceiba pentandra (Onyina or Ceiba), Entandrophragma spp. (Mahogany) to avoid the 
establishment of single species (Figure 9B) thereby enhancing biological diversity of 
the AHFR. 
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Figure 8: Vegetation zones of Ghana showing the location of the AHFR 

in the transition zone between the Forest and Savannah zones. 
 
 

 
Figure 9: (A) Pure teak monoculture and (B) Mixed exotic – indigenous species 

plantation. 

3.1.2.3 Agroforestry 

The agroforestry areas in the AHFR shown in Figures 10A and 10B are young 
plantation stands (1-year old teak and cedrella trees) established through the Modified 
Taungya System (MTS – discussed in Section 2.6.1) in which farmers are allocated 
portions of degraded forest lands to grow their crops alongside the maintenance of 
newly established plantations. Normally, farmers are allowed in these stands for a 
maximum of four (4) years when the canopy closes and food crops productivity drops 
due to competition for light and allelopathy of the trees species planted. The main food 
crops grown in the agroforestry areas are plantain, maize, cassava, yam, pepper, okro 
and cocoyam. 

A B 
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3.1.2.4 Fallow / Grasslands 

Fallow and grassland cover types are normally abandoned farmlands with mainly grass 
vegetation including elephant grass. Farmers leave the land to regain its fertility (fallow) 
after farming for several years. Due to the open nature of the AHFR, the area is 
colonized by Chromolaena odorata whose growth is supported by open forest gaps.  
The presence of this invasive species makes the cover type highly susceptible to 
frequent bushfires. 
 

Figure 10: (A) A 1-year old teak agroforestry stand (B) A 1-year old cedrella 
agroforestry stand 

3.2 Settlements within and around the AHFR 
There are communities and admitted farms that have been demarcated and mapped 
within the AHFR. The Bimi Community found on the eastern part of the reserve is one 
of such communities. Other communities close to the reserve include Abofour, 
Kwapanin, Anyinasu, Asuboe, Nkwankwaa and Asempanaye. The main occupation of 
the people is farming, hunting and palm wine tapping. One of the major maize and yam 
producing districts in the country, Afigya Sekyere Dumasi political district (capital in 
Ejura), borders the AHFR on the north. Produce from these areas are transported to 
Accra, Kumasi and some even exported outside Ghana. Most of these foodstuffs are 
grown in the forest reserves under the MTS plantation development introduced by the 
Forestry Commission. 

3.3 Local drainage and topographic conditions 
The AHFR is drained on the East and West by the Afram and Birimu rivers 
respectively. The reserve serves as a protection for the major water bodies that drain 
through it and provides water for domestic and commercial use for local communities as 
well as surrounding towns such as Abofour and Offinso. The study area has a relatively 
flat topography with a gently undulating terrain (Offinso South Municipal Assembly, 
2006). Apart from a few areas in the eastern part that have steeper slopes between 10 – 
15%, most parts of the reserve are flat with slopes less than 5% (Figure 11). The altitude 
of the reserve varies between 270 – 400m above mean sea level. 

A B 
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Figure 11: Slope map of the Afram Headwaters Forest Reserve. 

3.4 Climate 
The closest meteorological stations to the AHFR are located in Offinso and Bechem 
respectively, approximately 35Km away from the reserve. The forest reserve lies within 
the tropical humid climate zone. The AHFR is characterised by its uniform high 
temperatures and two peak rainfall seasons, major and minor rainy seasons, occurring in 
June and October respectively. The major rainfall season starts from April and ends in 
July and the minor one between September and November. The mean annual rainfall in 
the study area ranges between 1250 – 1500mm. 
 
The dry season spans from December to March. Thus, maximum temperature is usually 
around 30°C and is recorded in March and April with an average monthly temperature 
of 27°C. During the dry season, the North-Eastern trade winds (Harmattan) blow into 
the entire country with dry and fine dust particles. This dry condition facilitates the 
drying of litter and other combustible materials that result in severe forest fires which 
have been one of the major contributing factors to the degradation of the AHFR. 
 
The relative humidity is normally high during the rainy season, between 75 - 90% 
(Offinso South Municipal Assembly, 2006) but drops considerably for a short period, 
especially at the peak of the dry season due to the harmattan. 
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3.5 Rocks and Soils 
The AHFR overlies rocks of the upper and lower Birrimian series on the western end 
and the rest of the reserve overlies rocks of upper Voltain sandstones accounting for 
over 70% of the area. Thus, the latter forms the main geological formation in the study 
area. The north-western part is made up of Granites (Dahomeyan) accounting for 20% 
of the study area. 
 
Most of the AHFR is covered by sandy loam soils varying from reddish to reddish 
brown in colour. A few patches of clay also exist. Except for areas with rocky outcrops, 
soil depth generally is over 30cm. Gravelly soils in the reserve have very low water 
holding capacity and experiences drought conditions during the latter parts of the long 
dry season. 

3.6 Description of the Forest and its management 
Prior to its demarcation as a forest reserve, the area around the AHFR had a very small 
population; hence farming in the area was on a very small scale and subsistence. Also, 
knowledge of the history of the area was very little. The reserve was demarcated and its 
boundaries surveyed in 1927. Farms in existence before the selection of the reserve area 
(admitted farms) were demarcated from 1928 – 1930 and a re-survey and re-
demarcation was carried out in 1951. The area at the time was well stocked with class I 
– III species (see description and list in Appendix B). There was less demand by local 
communities for non-timber forest products (NTFPs) though a few timber trees were 
exploited. This was because timber and firewood was relatively abundant outside the 
forest reserve. Furthermore, the reserve originally was under a protective and restrictive 
management with few prescribed administrative plans including: 
 

i. Restricted felling subject to the exercise of communal rights 

ii. Fire protection through early burning 

iii. Boundary maintenance (both internal and external) and 

iv. Provision of land for taungya. 

 
Due to over-exploitation and frequent bushfires in the AHFR, most parts of the reserve 
are degraded and hence listed among the degraded forest reserves in Ghana. The 
location of the reserve in the DSFZ (fire zone subtype) (Figure 8) exposes it to frequent 
annual fires that cause considerable damage to the forest. The degraded condition has 
favoured the invasion and colonisation of the area by non-native weeds, whose 
eradication has become a big management and research issue (Bosu et al., 2009). In 
order to restore the AHFR to its near original state, various plantation establishment 
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programmes have been undertaken by the government and other private individuals and 
organisations. Species planted in these plantations include indigenous and exotic ones. 
However, the exotic species are planted more due to their fast growth and disease and 
pest resistance abilities. 
 
The external boundaries of the forest reserve as well as farm boundaries within reserves 
are regularly maintained by forest guards to avoid encroachments and illegal farming 
inside the reserve. These boundaries have been line-planted with Teak, Gmelina, Cassia 
and Mango which make their identification easy. Numbered concrete boundary pillars 
have been placed at intervals of approximately 800m and at all changes of direction 
along the external boundary. 

3.7 Field Data Collection 
The field data collection campaign was carried out between 13th September and 12th 
October, 2011 in the study area. The aim of the campaign was to obtain ground truth 
information about the different major landcover classes in the study area and their 
spatial extent to aid in the classification and validation of classified maps. 

3.7.1 Fieldwork Map 
An unsupervised classification was run on the ASTER data and compared with the 
outcome (landcover map) of a previous study (Nguyen, 2010). The result of the 
unsupervised classification revealed a close visual relationship with the map from the 
previous study; hence the latter was adopted as a basis for identifying the different 
landcover classes in the field. A total of 82 random points were generated in ArcGIS. 
These points were distributed over the different landcover classes in varying proportions 
depending on the area covered by each class (i.e. sampling by probability proportional 
to size). 

3.7.2 Sampling Design 
In order to minimize variability in each cover class (stratum) and improve precision of 
the population estimate (Husch et al., 2003), a stratified random sampling approach was 
used. The study area was stratified based on landcover class and sample plots were 
selected randomly within each stratum. Out of the four landcover classes (identified in 
the previous study) in the AHFR; agroforestry, plantation and natural forest classes 
contributed the largest areas in terms of hectares. For that reason, greater number of the 
random sample points (plots) was allocated to those classes as summarised in Table 3 
below: 
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Table 3: Number of sample points per each landcover class before fieldwork. 
No. Landcover Class Number of Points 
1 Natural Forest 25 
2 Agroforestry 30 
3 Plantation 22 
4 Fallow/Grassland 5 

Total 82 

3.7.3 Fieldwork Expectations 
Since the datasets (both optical and SAR) used for this research were acquired three (3) 
years before the field data collection it was expected that there would be a slight change 
in landcover especially the graduation from agroforestry class to plantations, based on 
the classification scheme (Appendix C). This was anticipated because the agroforestry 
areas were mainly young plantations planted with exotic tree species that have the 
tendency to grow very fast at the early stages of development and their canopy closes 
usually after three years. Another expectation was the conversion of degraded areas into 
plantations. Furthermore, it was anticipated that there could also be a very slight change 
in the Natural forest cover class. This was expected due to the alarming rate of 
deforestation and forest degradation in Ghana. However, it was observed that most of 
the areas classified as Natural Forest from the previous study are now colonised by 
York (Broussonetia papyrifera), as popularly known by the local people. Consequently, 
parts of these stands have been cleared for plantation development by both government 
and commercial private plantation (CPP) developers. 
 
The largest CPP developer in the study area is an international company registered in 
the UK called Mere Plantations Limited (MPL), with a land allocation of 4,000ha. The 
company is committed to an initial investment of fifty million pounds sterling (£50M) 
and a total of three hundred million (£300M) over the 25 years lifespan of reforestation 
project in the AHFR. MPL commenced the project in the first quarter of 2011 and now 
employs over 700 Ghanaians, majority of them from the surrounding communities. The 
benefit sharing agreement (BSA) for the CPP development is different from the MTS. 
Under the BSA of the CPP development, the investor takes 90% of the proceeds from 
the plantation and the remaining 10% is shared amongst the stool land owners (6%), the 
Forestry Commission (2%) and the local community (2%). Stool land owners here, refer 
to the traditional authorities legally owning the forest reserve land, which is managed in 
trust by the Forestry Commission on their behalf. 

3.7.4 Field Equipments and Materials 
Before the field trip, the field equipments and materials in Table 4 were ordered from 
ITC and tested. They were found to be in good condition for the intended use. 
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Table 4: Fieldwork instruments / materials and their purpose in the field 
No. Material/Instrument Purpose Units 
1 GPS and iPAQ Navigation/plot location DD*, DMS 
2 Prismatic Compass Determine Bearing DMS** 
3 Diameter tape DBH measurement cm 
4 Haga Hypsometer Height measurement m 
5 Measuring tape (50m) Length measurement m 
6 Densiometer (Spherical) Crown cover measurement % 
7 Clip board Data entry - 
8 Data entry sheet Data entry - 
9 Pencils/erasers etc Data entry - 

* Decimal degrees **Degrees/Minutes/Seconds 

3.7.5 Field data collection 
A reconnaissance survey was conducted on the first day in the field with the assistance 
of a forest guard to get familiar with the terrain and, since the time available was 
limited, to devise a strategy for an effective data collection process. For the subsequent 
days, actual data collection (recording of GPS points and measurement of stand 
parameters) was done. An iPAQ was used to navigate to the plot centre and the 
coordinates recorded in WGS 84, decimal degrees (DD) with the Garmin GPS as well 
as in Degrees Minutes and Seconds (DMS) from the iPAQ. The coordinates of the plot 
centres were measured again in the field due to possible positional inaccuracies and 
inaccessibility to some of the random points generated before data collection. Spatial 
attributes of the plots such as slope, aspect and elevation were recorded. All trees with 
DBH 10cm in stands occupied by trees (mainly agroforestry, plantation and natural 
forest) were identified and measured within circular plots of radius 12.62m and 
recorded on a field data collection sheet (Appendix D). Apart from being the standard 
radius (12.62m) used in most biomass and carbon stock estimations the circular plot is 
preferred because of the ease of usage and also the perimeter for the entire plot can be 
defined by only the radius (Husch et al., 2003).  That radius also satisfies the minimum 
sample unit requirement of the Kyoto protocol (IPCC, 2003). However, on slopes 
greater than 5%, a slope correction table (Appendix E) was used to determine the 
appropriate radius. 
 
The heights of two tall and two short selected trees in the plots were measured with the 
aid of a Haga hypsometer. In dense forests, such as those in AHFR, tree height is one of 
the most challenging tree parameters to measure in the field. Measurement errors may 
arise from the wrong identification of the actual tip of the crown and lack of experience 
in the use of the instrument. Crown diameters and canopy cover within the plots were 
also measured with the aid of a measuring tape and spherical densiometer respectively 
and recorded. In estimating the crown diameter, two people on the ground measure the 
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longest (A) and shortest (B) diagonals of the crown from leaf tip to leaf tip through the 
canopy mass and averaged as shown in Figure 12 below: 
 

 
 

(Source: Google images) 
 
Within each plot canopy cover percentage was estimated. To reduce bias, readings were 
taken in five different locations (centre, east, west, north and south directions) within 
the plots with the spherical densiometer and the readings averaged for each plot. 
 
Although the tree height, DBH and crown cover data collected in the field was not used 
directly in the classification process, they were used in the analyses and interpretation of 
the classification results. For example, because the available SAR data (ALOS 
PALSAR) for the research was obtained from a longer wavelength (L-band) that 
interacts strongly with the canopy, branches, tree trunk (stem diameter) and the ground, 
the data gave the basis for the definition of the relationship between radar backscatter 
and the tree parameters measured in the field (Figure 13). Unlike the X and C bands that 
are of shorter wavelength and thus only interact with the top of the canopy and the tree 
crown respectively, the L - band is able to penetrate the canopy. 

Figure 13: Penetration of different SAR signals (L-band, C-band and X-band) 
through vegetation adapted from Carver et al., (1988). 

 

Figure 12: Measurement of tree crown diameter in the field 
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In all, 79 sample plots were assessed and information on tree parameters and general 
plot condition was recorded. Three (3) of the original 82 plots were not measured 
because they were inaccessible due to the flooding of a river on the way to the plots. 
Table 5 shows the number of points actually recorded per each cover class. The three 
(3) points recorded in fallow/grassland cover type were found to be homogenous yet 
were small (mostly less than 1 hectare) in size except for the Bimi community 
(Settlement) which is located in the forest reserve. 
 

Table 5: Number of sample plots assessed in each landcover classes in the field 
No. Landcover Class Number of Points 
1 Natural Forest 16 
2 Agroforestry 29 
3 Plantation 27 
4 Fallow/Grassland 3 
5 Settlement/Bareground 4 

Total 79 

3.8 Satellite Data 
Available is a 12.5m spatial resolution Advance Land Observing Satellite (ALOS) 
carrying a phased array L band SAR (PALSAR) data covering the extent of the study 
area. This image was acquired in January, 2009 and has a fine beam dual polarization of 
Horizontal-Horizontal and Horizontal Vertical (HH and HV). In HH polarization, the 
radar pulse is transmitted horizontally and the backscatter received horizontally. On the 
other hand, the radar pulse is transmitted horizontally and received vertically which is 
referred to as HV polarization. The data supplied by ITC was already geometrically 
corrected. Also available for use in this study is a level 1-B ASTER scene acquired in 
February, 2008 with a spatial resolution of 15m (VNIR) and 30m (SWIR). These 
datasets were chosen on the basis of suitability and availability. They were used for the 
MLC and OBIA landcover classification separately and in combination. 

3.8.1 ASTER Data Processing 
No atmospheric correction was done on the 1% cloud covered ASTER data. This was 
because the data supplied by ITC had already been atmospherically corrected and 
geometrically corrected to the UTM zone 30 coordinate system of Ghana. Due to 
positional inaccuracies the spatial reference of the image was updated by relating tie 
points on the image to 15 ground control points (GCPs) identified in topographic maps 
(road and river crossings) of the area and re-projected to the Ghana meter grid  (GMG) 
projection system. The Ghana meter grid projection was used because it is the current 
projection system used for Ghana. Furthermore, efforts are being made to pool all data 
related to climate change / Carbon stock changes research in support of REDD+. One of 
the requirements of this programme which has already started is data consistency 
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(including projection information in a common system - GMG). The use of the GMG 
projection is therefore in line with current efforts in making REDD+ a reality in Ghana. 
 
A second order polynomial transformation was implemented in ArcGIS on the ASTER 
data and yielded a root mean square error (RMSE) of 0.387 ( 6m) the pixel size. This 
positional error is acceptable since it is less than half (<0.5) the pixel size (Jensen, 
1996). However, other researchers have identified an RMSE range between 0.1 – 0.2  
pixel size as being acceptable depending on the application (Townshend et al., 1992). 
 
A subset of the ASTER data (RGB false colour composite (FCC)) covering the extent 
of AHFR (Figure 14A) was created in ERDAS IMAGINE 2011 to improve 
computational efficiency during classification. The RGB FCC was made on the ASTER 
data because the main cover types in the area were vegetation and the display of 
vegetation in red makes identification and interpretation by the analyst relatively easy. 
Vegetation appeared red because of its sensitivity to the near infrared channel 
(chlorophyll absorption channel) of the ASTER data that was assigned the colour red in 
the colour composite. 
 

  
Figure 14: Available and suitable ASTER (A) and ALOS PALSAR (B) datasets 

for the research. 

3.8.2 ALOS PALSAR Data Processing 
The ALOS PALSAR data obtained from ITC was already geometrically corrected. It 
was re-projected to Ghana meter grid projection system to be consistent with the 
ASTER data. This was done to enable the combination of the two different datasets 
from different sensors. 
 
An important step in the processing of SAR data for further analyses is de-speckling. 
Due to the inherent nature of speckle noise in SAR data, a 7 x 7 gamma- MAP filter was 
applied to the ALOS PALSAR data to reduce the speckle noise. This filter was applied 
since it produces a smoothened image with less degradation of textural information. The 
gamma-MAP filter (an adaptive filter) and frost filter have been supported by literature 
as the most promising and suitable filters for landcover classification projects 

A B
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(Nyoungui et al., 2002). As shown in Figure 15, a significant amount of speckle was 
removed whilst some still remained after using a 7x7 window. 

A subset of the SAR dataset was also created and converted from 16bit to 8bit as shown 
in Figure 14B above, to enhance processing speed. 
 

Figure 15: Speckle noise on SAR after 7x7 Gamma-MAP filtering. 

 

3.9 Classification 
A supervised classification using a Maximum Likelihood algorithm was implemented in 
ERDAS IMAGINE 2011. Training samples (Table 6) collected from the field were used 
to create the training areas (spectral signature) for the different landcover classes in the 
area. Post classification filtering was applied to the final images in each process to 
remove speckles resulting from the inherent spectral variability encountered by 
classifiers (Lillesand et al., 2008). 
 
The OBIA technique was also implemented in Trimble eCognition v8.64. The results 
from the two methods and the different datasets (ASTER alone, SAR alone and 
combined ASTER+ SAR) were compared statistically to test any significant differences 
(Skidmore, 2002). Figure 16 shows the detailed flowchart of the methods. 
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Table 6: Training and validation dataset distribution 
Class 
Code 

Class Name 
(Abbreviation) 

No. Of 
samples 

Trainin
g 
samples 

Validation 
samples 

1 Natural Forest (NF) 16 3 13 
2 Plantation (P) 27 4 23 
3 Agroforestry (AF) 29 3 26 
4 Settlement/Bareground (S) 4 1 3 
5 Fallow/Grassland (FG) 3 1 2 

TOTAL 79 12 67 

3.9.1 Maximum Likelihood Classification (MLC) Implementation 
MLC on ASTER 
The ASTER image alone in an RGB false colour composite (comprising bands 1, 2 and 
3N) was classified using the MLC after digitizing polygons covering homogenous areas 
of the different cover classes (developing training areas) around 12 field collected 
points (Van Niel et al., 2005). The distribution of the points for the identified landcover 
classes is shown in Table 6 above. A post classification majority filtering using 3x3, 
5x5 and 7x7 windows (Figure 17(left)) was done on the resulting image to remove noise 
and also investigate the effect of these filter windows on the classification results. 
Accuracy assessment was done on the classified image before and after filtering. 
 

 
Figure 17: Post classification filtering and texture combination flowcharts 

for MLC (left) and OBIA (right) 
 
 
MLC on ALOS PALSAR 
The same procedure used for the ASTER data was repeated for the ALOS PALSAR 
data. Specifically, the classification was implemented on the HV, HH and HH/HV 
polarizations forming three bands that could show reasonable distinction between 
different landcover types. The Natural Forest and Plantation classes were merged before 
validation since the two could not be clearly differentiated from the ALOS PALSAR 
data. 
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MLC on combined ASTER and ALOS PALSAR 
After the separate dataset classification, a combination (layer stacking in ERDAS 2011) 
was done using all the three ASTER bands and the three ALOS PALSAR bands for 
another classification to investigate the effect of image combination on the 
classification. Finally, filtering and accuracy assessment was done on the output 
(classified image). 

3.9.2 Object Based Image Analyses (OBIA) Implementation 
OBIA on ASTER 
A multi-resolution segmentation algorithm was implemented in Trimble eCognition 
v6.84 on the 3 band ASTER data to form meaningful objects representing different 
landcover in the study area. After several trials, a scale parameter of 25, shape factor of 
0.1 and compactness of 0.5 were found to be appropriate for this dataset. Screenshots of 
the process is shown in Appendix F. Training samples were selected and the area was 
classified (standard nearest neighbour) into the five main landcover classes identified in 
the previous method (MLC). Accuracy assessment was done on all the trial results and 
the one with the best accuracy in terms of overall accuracy and kappa coefficient was 
selected to be compared with the results from the same dataset using the MLC method 
(Figure 17(Right)). 
 
OBIA on ALOS PALSAR 
For the ALOS PALSAR data a multi-resolution segmentation was used to create image 
object primitives upon which the classification would be based. A scale parameter of 
25, shape of 0.2 and compactness of 0.5 were found to be the best result. The standard 
deviation (a texture measure) from the grey level co-occurrence matrix (GLCM) in 
eCognition v6.84 was used on the three bands (HH, HV and HH/HV) for classification. 
The standard nearest neighbour classification algorithm was chosen. Finally, accuracy 
assessment was done on the different texture combination and the best was selected for 
comparison purposes. 
 
OBIA on combined ASTER and ALOS PALSAR 
The standard nearest neighbour classification algorithm was implemented after 
segmentation (multi-resolution in eCognition) of the combined ASTER+SAR data.  The 
best parameters for the combined data were similarly to those of the ALOS PALSAR 
data alone. After several texture combination trials for the classification, accuracy 
assessment was conducted on the outputs and the best was selected for comparison. 
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4.0 RESULTS 
This chapter provides the answers to the questions posed by this study. It is therefore 
structured in a way to follow the questions as outlined in section 1.5 of the Introduction 
chapter. Issues like the relevant landcover types that can be identified in the study area, 
the effects of different filter windows on classification accuracy, overall best 
classification result and the statistical as well as spatial difference between the MLC and 
OBIA methods are well addressed in this chapter. 

 
1. What relevant landcover can be identified on SAR and ASTER data? 

Four (4) main classes namely Natural Forest/Plantation, Agroforestry, Fallow/Grassland 
and Settlement/Bareground (made up of rocky areas, exposed soil surface and 
settlements within the AHFR) were identified on SAR. The Natural Forest and 
Plantation classes were combined because they could not be well separated. Five (5) 
classes were identified on ASTER alone (and the combined ASTER+SAR datasets) 
namely Natural Forest, Plantation, Agroforestry, Fallow/Grassland and 
Settlement/Bareground. The relevant landcover classes identified on SAR and ASTER 
are shown in Figures 19 and 20 respectively. 
 

Figure 19: SAR MLC map of AHFR showing the four identified landcover classes. 
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Figure 20: ASTER MLC map of AHFR showing the five identified landcover classes. 

 
 

2. Are there significant differences in the quality of landcover type 
classification obtained from MLC and OBIA on ASTER, SAR and 
combined ASTER+SAR data? 

The statistical test conducted showed that the difference between OBIA and MLC 
classification accuracy results (kappa) for the same datasets was not statistically 

significant. Comparison between methods, MLC ( ) and OBIA ( ) yielded Ztest 
values of 0.64, 1.82 and 1.18 for ASTER alone, SAR alone and combined 
ASTER+SAR respectively. 
 
However, comparing maps from different datasets using the same method showed there 
was a significant difference between SAR and ASTER; as well as SAR and combined 
ASTER+SAR maps for both MLC and OBIA. There was no significant difference 
between the kappa coefficients for ASTER alone and combined ASTER+SAR maps 
produced from OBIA and MLC. Table 7 shows the Ztest values for the comparison 
within methods. 
 
These results will be interpreted and discussed in Chapter 5. 
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Table 7: Calculated Z (Ztest) values for comparing MLC and OBIA maps 

 
* Significant 

3. Which kind of texture combination (in OBIA) gives the best results in 
ASTER, SAR and combined ASTER+SAR data classification? 

The standard deviation (measure of texture) based on the Haralick et al (1973) Grey 
Level Co-occurrence Matrix (GLCM) on combined ASTER+SAR data produced the 
second best result after ASTER alone (difference however not significant) in the OBIA 
classification. Figure 21 – 23 show the resulting maps for the three different datasets. 
OBIA classification accuracies for the selected best texture combination per each 
dataset is summarised in Table 8 below: 
 

Figure 21: Best OBIA texture combination result on SAR data alone 
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Table 8: Summary of OBIA classification accuracy results for SAR, ASTER and 
combined ASTER+SAR 

 
 
 

Figure 22: Best OBIA combination result on ASTER data alone 

 
An interesting intermediate results in the OBIA classification that is worth mentioning 
is the complete elimination of speckle noise (Appendix F) from the SAR and combined 
ASTER+SAR data during the segmentation stage (even before the actual classification) 
of the analyses. 
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Figure 23: Best OBIA texture combination result on combined ASTER+SAR data 

4. Which filter window (in MLC) gives the best result in ASTER, SAR and 
combined ASTER+SAR data classification? 

Apart from the ASTER alone MLC classification in which the accuracy was improved 
from 77% to 79% after 3x3 filtering (Figure 24), none of the results from the other 
datasets (SAR and combined ASTER+SAR) was improved. Table 9 gives a summary of 
the best results from the three datasets after filtering. The 3x3 majority filter was found 
to be the most suitable. 

Table 9: Summary of MLC classification accuracy for SAR, ASTER and Combined 
ASTER+SAR after 3x3 majority filtering 
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classification accuracy.  Figure 24 shows MLC classified map of the study area with no 
filtering, 3x3, 5x5 and 7x7 majority filtering, as small inserts below the main map. 
Summary of the classification accuracy of the three datasets with different filtering 
windows can be found in Appendix H. The effect of the three different majority filtering 
windows on the entire study area mapped can be found in Appendix I. 

Figure 24: MLC classified ASTER Landcover map of AHFR showing the effect of 
different majority filtering windows (Inserts) 

 
Figure 25 shows the effect of filtering on the SAR MLC classified image. A small 
portion of the study area was zoomed into to show the removal of post classification 
noise using the different filtering windows (3x3, 5x5 and 7x7). 
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Figure 25: MLC classified SAR Landcover map of AHFR showing the effect of different 
majority filtering windows (Insert). 

 
Another portion was selected on the combined ASTER+SAR MLC classified landcover 
map of the AHFR to show how different filtering widows affect the classification result. 
As indicated already in the case of the ASTER alone map, there was no quantitative 
improvement in the accuracy of the combined ASTER+SAR map. Figure 26 below 
shows the visual (qualitative) effect the 3x3, 5x5 and 7x7 filters have on the classified 
map.
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Figure 26: MLC classified combined ASTER+SAR Landcover map of AHFR showing 
the effect of different majority filtering windows (Insert). 

 
5. What is the overall best classification accuracy (in terms of kappa) 

obtained from ASTER, SAR and combined ASTER+SAR data 
classification? 

The MLC classified combined ASTER+SAR data gave the overall best result in terms 
of kappa (and overall accuracy). The overall best kappa coefficient was 0.7435. This 
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OBIA on combined ASTER+SAR (0.6269), MLC on SAR alone (0.4159) and finally 
OBIA on SAR alone (0.1337). Appendix J shows the respective error matrices for the 
above. 
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6. What is the quality of the landcover map produced from the overall best 
classification of ASTER, SAR and combined ASTER+SAR data? 

The overall best landcover map of the AHFR produced from this study is 82.09% 
accurate (Figure 27). It was obtained from the MLC classification (after 3x3 post 
classification majority filtering) of the combined ASTER+SAR data. Out of the total 
area of 20,108ha, the Agroforestry cover type was the largest, contributing 47% 
followed by Natural forest (30%), Plantation (16%), Fallow/grassland (4%) and finally 
Settlement/Bareground (3%). Figure 28 shows the distribution of the landcover types in 
the study area in hectares. Furthermore, Table 10 shows the category-by-category user’s 
and producer’s accuracies as well as their respective conditional kappa coefficients. 
Except for the Fallow/Grassland class, all the classes have user’s and producer’s 
accuracies above 70%, with the Settlement class being the highest (100%). 

Figure 27: Overall best classified landcover map of the AHFR 
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Table 10: Accuracy totals and respective conditional kappa coefficients for the five (5) 
landcover classes of the overall best landcover map of the AHFR. 

 
 
 

 
Figure 28: Distribution of the identified landcover types in the AHFR 
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Spatial comparisons between the OBIA and MLC Classification are shown in Figures 
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Agroforestry classes. The level of agreement between MLC and OBIA for ASTER 
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SAR alone (64%). 
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Figure 29: Spatial comparison between OBIA and MLC classification on ASTER alone 
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5.0 DISCUSSION 
This chapter discusses the results of this study and provides possible reasons for the 
observations made. As described in chapter 4, two (2) different classification 
approaches were tested on two (2) different images separately and on the combination 
of these images. This resulted in a total of six (6) products to compare in the context of 
the research objectives. 

5.1 Identified Landcover Classes In The Afram Headwater 
Forest Reserve 
The study identified five (5) main landcover types in the AHFR on the ASTER 
multispectral data alone and the combined ASTER+SAR data. In the case of these 
datasets, each of the different landcover types showed a unique reflectance. Therefore 
the Natural Forest (NF) and Plantation (P) classes could be distinguished. 
 
For the ALOS PALSAR, on the other hand, the NF and P classes could not be properly 
separated because of the similarity (nature of the vegetation structure) in the cover types 
in terms of their vertical structure (texture) and backscatter. Podest and Saatchi (2002) 
in a similar study using JERS-1 data were able to separate forests from non-forests (and 
not separation within similar vegetation classes like NF and P) with a high accuracy (i.e. 
over 90%). This was because of the sensitivity of the radar backscatter to biomass levels 
in the landcover types. An exploratory data analyses conducted on the tree parameters 
measured in the field showed a marginal difference in the mean tree height and crown 
diameter of the NF and P classes.  Most of the NF plots inventoried in the field were 
remnants of natural forest vegetation with very few tall trees. Majority of the trees are 
regenerated ones with an average height similar to those in plantations. Moreover, the 
colonisation of the reserve by York (Broussonetia papyrifera) has made the species an 
inseparable component of the NF class. This could be a result of deforestation (through 
unsustainable legal and illegal logging) which creates forest gaps that favour the 
colonisation of York. Consequently, York showed a reflectance akin to the NF cover 
type. For instance, in the study of Nguyen (2010), areas that were classified as NF and 
formed the basis for the landcover stratification  for this study were found to be York 
stands. Most of these stands adjoin remnant NFs and some were cleared by the time of 
the fieldwork in 2011. 
 
The problem of spectral mixing occurred in the classification of both the SAR and 
multispectral data resulting in low accuracies. This may be due to the fact that the major 
cover types in the area (NF, P and AF) forming over 90% of the AHFR are vegetation 
and have some structural and spectral similarities.  This problem has been usually 
reduced in studies that used reasonably large and distinct landcover/landuse types (e.g. 
urban/built-up, vegetation, water etc.) thereby resulting in higher accuracies. 
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5.2 Significance test for OBIA and MLC maps of AHFR 
The tabulated Z (critical value) at 5% significance level was compared with the 
calculated Z (Ztest) to test the null hypotheses put forward for this study as stated in 
section 1.6 of chapter 1. The null hypothesis that the kappa coefficients of two maps 
being compared is the same is rejected if the calculated or Ztest is greater than the 
tabulated Z (i.e. Ztest > Z (1.96)). 
 

Comparison between methods, MLC ( ) and OBIA ( ) yielded Ztest values of 0.64, 
1.82 and 1.18 for ASTER alone, SAR alone and combined ASTER+SAR respectively. 
The null hypothesis that there is no significant difference between the kappa of MLC 

and OBIA (HO :  ) was therefore not rejected because all the Ztest statistics for 
the three datasets were less than the critical value (meaning they fell outside the 
rejection region) (Figure 18). The results of this statistical test revealed that there was 
no significant difference between the accuracy results (kappa) obtained from the two 
different methods for the same datasets. 
 
However, comparison within methods (i.e. comparing maps from different datasets 
using the same method) showed there was a significant difference between SAR and 
ASTER; as well as SAR and combined ASTER+SAR maps for both MLC and OBIA 
(Table 7). This was because their Ztest statistics fell within the rejection region (Figure 
18). The null hypothesis in this case was therefore rejected and concluded that there is a 
significant difference (Congalton, 2009; Skidmore, 2002). There was no significant 
difference between the kappa coefficients for ASTER and combined ASTER+SAR 
maps produced from the two methods (Table 7). Consequently, the null hypothesis was 
not rejected and the conclusion is that there is no significant difference between the two 
maps. This is an important result because it contradicts to some extent the IPCC’s 
expectation, for image combination to improve classification accuracy. The result, 
however, agrees with the IPCC’s expectation when looking at SAR classification, in 
which the combination of ASTER and SAR gave a significant improvement. 

5.3 Effect of filtering and texture combination on 
classification. 
Trial of the three (3) majority filters (3x3, 5x5 and 7x7 windows) revealed the 
superiority of the 3x3 majority filter window over the 5x5 and 7x7 in this study. The 
3x3 window was chosen as the best in the MLC because classification accuracy 
improvement stopped after applying the 3x3 filter. Any further filtering (e.g. 5x5, 7x7 
etc) removed details from the map, making it smooth and visually appealing, without 
necessarily adding anything in terms of accuracy improvement. 
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Although the standard deviation measure in this study produced the best results in the 
OBIA classification it was evident in the Trimble eCognition software however, that 
many options and combinations are still available that could be tried in order to bring 
out a better result. This requires some amount of time to explore through “trial-and-
error”. 
 
Speckle noise was reduced in the combination of ASTER and SAR data and was 
completely eliminated during segmentation in the OBIA as shown in Appendix F. This 
is the result of grouping pixels into objects by automatically assigning every pixel to a 
group to form an object. The main idea behind OBIA stems from this and the technique 
is promising for SAR classification and speckle noise removal. It would be very 
important for studies in the tropics to focus on SAR and the OBIA technique in view of 
the advantages the data offers as well as the promise shown by the technique. 

5.4 The overall best classification accuracy in terms of 
kappa. 
The combination of ASTER and SAR data brought about improvement in the 
classification accuracies over what could be obtained by each dataset when classified 
separately. Although in the case of the ASTER alone the improvement is very slight. 
This observation was supported by (Hoan et al., 2011) in a similar study. In their study, 
the overall classification accuracy was improved from 77% (kappa coefficient of 0.73) 
to 88% (kappa coefficient of 0.86) after the combination of ALOS PALSAR 
(microwave) and ALOS/AVNIR-2 (multi-spectral) data. The main forest classes in that 
study were mapped with accuracies higher than 90%. 
 
The overall best classification accuracy in terms of kappa of 0.7435 for this study 
indicates that the final map selected from the six chosen, agrees with reality by 74%. 
This means that the accuracy was 0.74 out of 1, not by chance. The kappa is a good 
statistic recommended by most researchers including Skidmore (2002) since it takes 
into consideration all the cells in the error matrix. As interpreted by Munoz & 
Bangdiwala (1997) and Navulur (2007) (Table 2), there is a substantial agreement 
between the classified map and the reference data. Conditional kappa coefficients for 
individual classes from the classification accuracy assessment revealed that except for 
the FG class, all the major landcover classes had a substantial agreement with the least 

being the NF class ( =0.66). Table 10 shows the various conditional kappa coefficients 
for the 5 identified landcover classes in the AHFR. There was an extremely poor 
agreement between the classified and reference data for the FG class which eventually 
affected the magnitude of the overall kappa. This could be because the few areas 
identified in the field were small (barely a hectare in size) and areas selected as FG 
before fieldwork had been converted into Agroforestry as part of the on-going NFPDP 
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by the Government. It was therefore a challenge to get large homogenous areas to 
represent the FG landcover. 

5.5 Quality of the landcover map produced 
The quality of the overall best landcover map of the area (obtained from the  combined 
ASTER+SAR data) was marginally less (82.09%) but not significantly different from 
the expected accuracy (of 85%) indicated by the USGS landcover classification 
systems criteria (Lillesand et al., 2008). The accuracy of the map is therefore acceptable 
and can be used for forest management purposes to support the REDD+ programme in 
Ghana. From the accuracy totals summaries by categories it can be interpreted that if a 
user takes the map to the field the likelihood of correctly identifying a Natural Forest 
landcover is 72%. For a Plantation, Agroforestry and Settlement it is 85%, 88% and 
100% respectively, which is actually very good and reliable. The reliability of the 
Fallow/grassland landcover type could not be guaranteed by this research though it 
forms a vital part of the existing landcover in the area. This is because both producer’s 
and user’s accuracies for the Fallow/Grassland class were all 0%. 
 
From the error matrix of the overall best map, some confusion between the NF, AF and 
P classes was observed. The confusion between the P and AF was expected and could 
be because the P class is basically a graduation from the AF class and there might be 
some similarities in their reflectance. For instance young plantation stands do not have a 
completely closed canopy just as in old AF stands and therefore grass and C. odorata 
undergrowth are common to both classes. These may therefore show up in the image. 
 
Another point worth noting from the results of this study is that the dominant landcover 
type is AF forming almost 3 times that of Plantation and approximately one and half 
times Natural Forest (Figure 28) in the area. This is an indication that the major activity 
in the reserve now is plantation development aimed at restoring the degraded forest 
cover. As mentioned earlier in this document, the main strategy for the establishment of 
these plantations is through the modified taungya system (MTS) which is an 
Agroforestry concept (section 2.6.1). 

5.6 Comparison with previous research 
The results of this study agree very well with previous research in the same study area 
using the same datasets. Nguyen (2010) estimated aboveground biomass and produced a 
carbon map of the study area. In that study, an 81.25% accurate landcover map of the 
area was produced by applying the MLC on a fused (or combined) ASTER and ALOS 
PALSAR data. In another study, Dwomoh (2009) developed a fire model to estimate the 
area of burnt tropical forest after an instance of fire. A landcover map of the study area 
created using ASTER data alone for the classification was found to be 78.10 % 
accurate. The method used for that study too was the MLC. 
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However, the two studies mentioned above did not classify ALOS PALSAR data alone 
because that was not the focus of the research. This study thus filled this gap by 
classifying the three datasets separately and comparing the quality of the resulting maps. 
Also, a different technique (OBIA) apart from the MLC was tested to provide a basis 
for the comparison of methods. For MLC, the classification accuracy of SAR improved 
by 14% (from 68 – 82%) through the combination of SAR and ASTER. Moreover, 
applying OBIA resulted in the classification accuracy increasing by 21% (from 52 – 
73%), after combining ASTER and SAR. This was because the two separate datasets 
complemented each other with their unique advantages (spectral and textural 
information) when combined to bring about the improvement. 
 
Furthermore, this study agrees with that of Walker et al (2010) who explored the 
potential of SAR to complement optical remote sensing in designing a robust forest 
monitoring systems to support REDD+. Their study also showed that as the number of 
class aggregation levels increased (e.g. from 15 to 2 classes) classification accuracy 
improves. In their case SAR was improved from 58% to 92% (i.e. by 34%) which was 
higher than that obtained in this study (21%). This was expected because only two 
classes, merely forest and non-forest, which are easy to discriminate due to reduced 
inter-class confusion, were assessed. 

5.7 Possible sources of errors 
There was approximately an 18% (i.e. 82% accurate) error associated with the overall 
best classified map of the Afram Headwaters Forest Reserve. This error could be due to 
one or more of the following factors since a map is simply a model (Foody, 2002). 
Foody (2002) hinted that because maps generalise reality they will always have errors 
and uncertainties associated with them. It is therefore always important to give an 
indication of the error and uncertainties associated with models. 
 

• Errors in input data 

The presence of speckle noise in the ALOS PALSAR data is an obvious source of input 
data error for this study. For instance, in Figure 15, the data used for the classification 
after 7x7 Gamma-MAP filtering is shown.  Although a significant amount of the 
speckle noise was removed, some still remained which may cause spectral confusion 
during classification. This error could be propagated especially when combining the 
ALOS PALSAR data with the ASTER data. Furthermore, the difference in spatial 
resolution and acquisition times of ASTER (February, 2008) and ALOS PALSAR 
(January, 2009) may reduce classification accuracy. 
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• Errors from the image processing techniques 

Some amount of data quality was degraded especially when converting the 16bits 
ALOS PALSAR data into 8bits for easy processing. Another processing technique error 
could arise from the frequent switching between ArcGIS, ERDAS imagine and 
eCognition software. During the data processing stage it was observed that though the 
images were already corrected to the UTM Zone 30N system, there was a spatial 
mismatch with the shapefiles in the same coordinate system. The resultant RMSE 
(0.387, 39%) after georeferencing clearly shows that there could be potential 
positional inaccuracies (Delafontaine et al., 2009) which could eventually influence the 
results of this study. 
 

• Expertise of the analyst 

Although care was taken in entering the data it is worth mentioning that it is one area in 
any RS/GIS project that can introduce errors (Congalton, 2009). Furthermore, 
classification in the field (e.g. in this study area with the main cover types being 
vegetation) is not 100% clear as one would do for classes like “land” and “water”. In the 
field, fuzzy classes are usually encountered and the expertise or discretion of the analyst 
is used. This is normally very subjective and has its associated errors. 

5.8 Spatial comparison between OBIA and MLC maps 
Spatial comparison done on the MLC and OBIA maps shows some disagreements. 
Interestingly, the areas of agreement especially for the ASTER alone and combined 
ASTER+SAR far outweighed the disagreement areas. Such a result was expected 
because the study dealt with two different methods and datasets which may have their 
own errors associated with them. For instance, using ASTER alone may have fewer 
errors compared to combining it with SAR. This is because there would be a 
propagation of errors from one dataset to the other. This can be further explained by the 
reduction in MLC/OBIA map agreement areas for ASTER alone and combined 
ASTER+SAR map from 80% to 72% respectively shown in Figures 29 and 30. 
Moreover, the difference in the time of acquisition of this satellite images could 
contribute to these disagreements between the maps. These disagreement areas are 
portrayed as sliver polygons which are said to be the result of classification errors 
(Delafontaine et al., 2009). According to Delafontaine (2009), slivers cannot be avoided 
because of the errors (including positional inaccuracies) and uncertainties associated 
with geographical data. 
 
From the spatial comparison results, it can be observed especially in the case of ASTER 
alone and the combined ASTER+SAR maps that the disagreement areas were mostly 
along class boundaries, Settlement/Bareground class and also between the NF and AF 
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classes. However, on the SAR data alone there was no regular pattern to the 
disagreement of the two maps produced from MLC and OBIA. It was more of a random 
distribution over the entire study area. Most of the disagreement areas in SAR were 
found in the north western and south eastern portions of the AHFR with main cover 
types being AF, NFP and Settlement. This may be due to the effect of speckle noise on 
the SAR data or the inability of the classifiers to accurately separate different classes. 
This result on SAR re-emphasizes the difficulty in its usage to produce landcover maps 
through image classification, though it is a useful alternative to landcover mapping in 
the tropics with the cloud cover problem. 

5.9 Number of training samples for classification 
This study dealt with a reasonably large and homogenous landcover types (especially 
the main cover types) that are distinct in reflectance and therefore did not require too 
many samples in training the classifiers (Van Niel et al., 2005). Moreover, for the 
minority cover types (Settlement/Bareground and Fallow/grassland (FG)) especially the 
FG, only three (3) points were collected in the field. This was because those areas had 
been converted into agroforestry stands and was no longer FG. 
 
One of the major problems in image classification projects is the cost of acquiring 
training data. Random sampling has been observed as the most robust method for 
obtaining samples for training classifiers (Richards & Xiuping, 2008). However, due to 
the cost involved in data acquisition training is usually done by identifying pixels that 
are assumed to be homogenous independent fields or contiguous blocks. 
 
Richards and Xiuping (2008) introduced a technique that works on the principle that the 
near neighbours of a user-defined training pixels are likely to belong to the same class. 
In this regard therefore, emphases on training a classifier is not based on number of 
location points collected in the field but on the number of pixels used for training the 
classifier. The method thus, deals with selection of larger regions (region growing) 
around available labelled training samples. Their study concluded that the optimal 
number of training pixels for training a classifier is about 1000, beyond which the 
resulting accuracy stabilizes. 
 
Van Niel et al. (2005) also argued that the generally accepted rule in remote sensing 
application which defines the number of training samples (n) to be 10 – 30 times the 
number of bands (p) has been enforced universally without questioning its relevance to 
the particular project in hand (complexity of the discrimination problem). In their study, 
it was observed that 95% of the accuracy obtained using the number of samples equals 
30 times the number of bands (i.e. n= 30p) could be achieved by using  approximately n 
= 2p to 4p. This therefore implies that the number of samples required for training a 
classifier depends on the complexicity of the problem. A simple discrimination problem 
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requires few training samples and a complex one requires more training samples. This 
may therefore provide a justification for the use of only 12 points in training (Table 6) 
the classifiers in this research. 
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6.0 CONCLUSION 
The aim of this study was to develop a suitable method to improve the classification of 
different land and forest cover types for use in tropical environments where cloud cover 
is a major impediment to the use of multispectral data. Two main classification 
algorithms (MLC and OBIA) were applied on two different datasets – ALOS PALSAR 
and ASTER, and their combination. The results were compared and statistically tested. 
The Afram Headwaters Forest Reserve was chosen for this study for the reasons 
mentioned in Section 3.1. This chapter presents conclusions based on the research 
questions (set out in Section 1.5) and hypothesis (Section 1.6) tested in this study. 
 
1. What relevant landcover information (classes) can be identified from the 
classification of SAR and ASTER data? 
 
Four (4) landcover types can be identified from SAR data classification. The classes 
Natural Forest/Plantation, Agroforestry and Settlement can be reliably identified (Figure 
19, Tables 8 and 9). However, Fallow/Grassland, which is also a relevant cover type in 
the area, could not be reliably identified (Tables 8 and 9). The Natural Forest and 
Plantation cover types could not be separated on the SAR data alone. 
 
It is possible to separate Natural Forest and Plantation on the ASTER data alone. As a 
result, five (5) different landcover types can be identified on ASTER imagery which is a 
slight improvement compared to the SAR data alone. 
 
2. Are there significant differences in the quality of landcover type classification 
obtained from MLC and OBIA on ASTER, SAR and ASTER+SAR data? 
 
There was no significant difference in the classification results obtained for each dataset 
using MLC and OBIA. That is to say, using MLC and OBIA on the same data gave 
statistically the same results and therefore it is prudent to use the simpler method among 
the two. Statistically significant differences were, however, observed when maps from 
different datasets (e.g. SAR alone and ASTER alone) obtained by applying the same 
method (e.g. MLC) were compared / tested. When classifying ASTER, adding SAR 
gives very little (<4%) improvement. On the other hand, when classifying SAR, adding 
ASTER gives a significant improvement. It is therefore concluded that combining 
ASTER and SAR improves the classification of SAR in both MLC and OBIA by 14% 
and 21% respectively. 
 
Classifying ASTER alone gives similar result as combining SAR and ASTER. 
Therefore in situations where cloud free ASTER is available it would make more sense 
to simply use ASTER alone rather than combining the two, which is time consuming 
and expensive. In areas where cloud cover is a problem, SAR gives good results, and if  
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the cloud cover is total, or almost total, the use of SAR alone is the most feasible 
approach even though the accuracy is lower than ASTER. However, if the area is only 
partly covered by clouds, the addition of SAR to the cloud-free portions of ASTER will 
result in an improvement. The threshold for acceptable cloud cover (i.e. the % of cloud) 
on ASTER to merit a combination with SAR is a subject for further research. 
 
3. Which kind of texture (in OBIA) combination gives the best results in ASTER, 
SAR and combined ASTER+SAR data classification? 
 
The Standard deviation texture measure (Texture after Haralick) using the GLCM 
stddev in eCognition gave the best result in OBIA. However, it is anticipated that with 
the many texture combinations available in eCognition (for which, due to time 
constraints, not all could be explored in this research) better results could be obtained in 
future and the result of this study is a promising beginning. 
 

4. Which filter window (in MLC) gives the best result in ASTER, SAR 
and combined ASTER+SAR data classification? 

A better MLC classification accuracy of ASTER, SAR and combined ASTER+SAR 
data was obtained by using a 3x3 window and not 5x5 as hypothesised. Increasing the 
window size beyond 3x3 does not further improve classification accuracy but rather 
removes useful details from the classified image. 
 

5. What is the quality of the landcover map produced from the overall 
best classification of ASTER, SAR and combined ASTER+SAR data? 

The overall best classification result (82.09% and = 0.7435) was obtained from the 
MLC classification of combined ASTER+SAR data. This is better in terms of 
magnitude than the result obtained from the OBIA for the same dataset but it is not 
significantly different statistically. If the aim of the project is to get rid of speckle noise 
then one can consider using OBIA. With the current gradual paradigm shift from “pixel 
based” towards “object based” image analysis, the study provides a useful contribution 
to this area of research. 
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7.0 RECOMMENDATIONS 
Due to the want of time and limited resources, this study could not address all the 
aspects of improving the classification of different land and forest cover types using 
MLC and OBIA in the AHFR. And as is normal with scientific research, one can 
only do a little at a time to contribute to the realization and understanding of the 
complex world around us. The following recommendations are therefore made to 
provoke further research: 
 
1. Further analyses on different textural combination available in Trimble 

eCognition or any other object based software (e.g. Imagine Objective) could 
be done to further study the improvement of SAR classification using OBIA. 
 

2. The confusion matrix and kappa coefficient which have been a conventional 
accuracy assessment measure with varying criticisms from different 
researchers were used in this study. More emphases could be laid on accuracy 
assessment by comparing different accuracy assessment methods since there is 
no standard methodology so far in the remote sensing community. 
 

3. To study the change in the landcover of the study area, a change detection 
research could be conducted using old and recently acquired time series SAR 
data of the AHFR. 
 

4. Combination of ASTER and SAR resulted in the improvement of SAR by 14% 
- 21% as concluded by this study. It was also observed that the classification 
accuracy for ASTER alone without cloud cover was similar to that of the 
combined data, so it would make economic sense to work with ASTER alone 
when it is available. A possible further research need from the above 
conclusion is to find out at what threshold (percentage) of cloud cover on 
ASTER data is it not worth combining with SAR data for classification. 
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9.0 APPENDICES 
 

 
Appendix A – Local names of C. odorata in different parts of Ghana 
(Source: Timbilla and Braimah, 1994) 
 

Name Region Meaning/Significance of Name 

   

Acheampong Central, Eastern, Greater 
Accra, Western, Ashanti, 
Brong Ahafo, Northern and 
Volta. 
 

Name of Head of State 

Topaye Central/Western Spreader 
 

Krawuni Western/Brong Ahafo Send for your mother 
 

Abaafo Western New entrant 
 

Bompowder Western/Central Powder me up (reference to 
seed) 
 

Sukusuku Western Unknown 
 

Woafa me fuo Brong Ahafo You have taken my farm 
 

Adiawuo Brong Ahafo Killer 
 

Wo amma me 
gye 

Brong Ahafo I am taking over if you are not 
coming 
 

Alisi Western Name of a church 
 

Busia Western/Central Name of Head of State 
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Appendix B – List of class I, II & III natural forest tree species in 
Ghana 
 
 

CLASS NAME / 
MEANING 

SCIENTIFIC NAME COMMON NAME 

 
 
 
 
 
CLASS I SPECIES 
(These are species 
of major economic 
importance) 

Milicia excelsa Odum, Iroko 
Entandrophragma 
angolense 

Edinam 

Entandrophragma 
cylindricum 

Penkwa, Sapele 

Entandrophragma utile Ashanti cedar, Utile 
Khaya anthotheca White Mahogany 
Khaya grandifoliola Mahogany 
Khaya ivorensis Mahogany Dubini 
Tieghemella heckelli Makore, Abacu, Baku 
Nauclea diderrichii Kusia, Opepe 
Pericopsis elata Afromosia, African Teak 
Lovoa trichilioides African walnut, Dubini-biri 
Terminalia ivorensis Emire 
Triplochiton 
scleroxylon 

Wawa 

Tarrietia densiflora Nyankom 

 
 
 
 
CLASS II SPECIES 
(These are species 
of lesser economic 
importance) 

Entandrophragma 
candollei 

Penkwa-akowaa, Kosipo 

Guarea cedrata Guarea, Light bosse, Kwabohoro 
Guarea thompsonii Black guarea, Dark bosse 
Lophira alata Kaku, Ekki 
Piptadeniastrum 
africanum 

Dahoma 

Antiaris toxicaria Kyenkyen 
Mansonia altissima Mansonia 
Mitragyna ciliata Subaha 
Mitragyna stipulosa Subaha, Sofo 
Nesogordonia 
papaverifera 

Danta 

Turraeanthus 
africanus 

Avodire, Apapaya 
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CLASS III 
SPECIES 
(These are species 
of possible future 
economic 
importance) 

Albizia adianthifolia West African albizia 
Albizia ferruginea Wiemfuosamina 
Albizia zygia Okoro 
Afzelia africana Papao 
Anopyxis klaineana Kokoti 
Canariun 
schweinfurthii 

Bediwunua, Eyere 

Celtis adolfi-friderici Celtis / Esakosua 
Celtis zenkeri Celtis / Esakokoo 
Combretodendron 
africanum 

Essia 

Cylicodiscus 
gabunensis 

Denya 

Cynometra ananta Ananta 
Diospyros sanza-
minika 

Esono-afe, Ankyeyi, Esunseka 

Distemonanthus 
benthamianus 

Bonsamdua, Ayan, Distemonanthus 

Erythrophleum 
guineense 

Kassa, Sasswood, Ordeal tree 

Holoptelea grandis Onakwa 
Mammea africana Bompegya 
Pycnanthus angolensis Otie 
Scottellia chevalierii Koroko, Kruku 
Sterculia rhinopetala Wawabima 
Strombosia 
glaucescens 

Afina 

Terminalia superba Ofram 
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Appendix C – Landcover Classification Scheme for AHFR 
 
 

LANDCOVER CLASS 
(SET OF LABELS) 

DESCRIPTION (SET OF RULES) 

 
 
1. NATURAL FOREST 

 Dense natural vegetation 
 Less dense natural vegetation 
 Riparian vegetation 
 Admitted Cocoa farms 

 
 
 
2. PLANTATION 

 Young pure teak plantations >4yrs (Private and 
Government) 

 Young teak, cedrella & indigenous mixed 
stands >4yrs (both private and government 
owned) 

 Mature pure teak plantation 
 Mature mixed species plantation 

 
3. AGROFORESTRY 

 Taungya plantations below 2/3 years 
 Croplands within admitted farms 

 
4. FALLOW / 
GRASSLAND 

 Open vegetated areas (with basal area less than 
5m2/ha ) 

 Grasslands and bushes 
 Shrub vegetations 

 
5. SETTLEMENT / 
BAREGROUND 

 Unvegetated areas 
 Settlements within the forest reserve 
 Bareground or exposed soil surfaces 
 Rocky areas 
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Appendix E – Slope correction table 
 

 
 
 
 
 

Plot size 500m2

Slope% Radius(m) Slope% Radius(m) Slope% Radius(m)
0 12.62
1 12.62 36 13.01 71 13.97
2 12.62 37 13.03 72 14
3 12.62 38 13.05 73 14.04
4 12.62 39 13.07 74 14.07
5 12.62 40 13.09 75 14.1
6 12.63 41 13.12 76 14.14
7 12.63 42 13.14 77 14.17
8 12.64 43 13.16 78 14.21
9 12.64 44 13.19 79 14.24

10 12.65 45 13.21 80 14.28
11 12.65 46 13.24 81 14.31
12 12.66 47 13.26 82 14.35
13 12.67 48 13.29 83 14.38
14 12.68 49 13.31 84 14.42
15 12.69 50 13.34 85 14.45
16 12.7 51 13.37 86 14.49
17 12.71 52 13.39 87 14.52
18 12.72 53 13.42 88 14.56
19 12.73 54 13.45 89 14.6
20 12.74 55 13.48 90 14.63
21 12.75 56 13.51 91 14.67
22 12.77 57 13.53 92 14.71
23 12.78 58 13.56 93 14.74
24 12.79 59 13.59 94 14.78
25 12.81 60 13.62 95 14.82
26 12.82 61 13.65 96 14.85
27 12.84 62 13.68 97 14.89
28 12.86 63 13.72 98 14.93
29 12.87 64 13.75 99 14.97
30 12.89 65 13.78 100 15
31 12.91 66 13.81 101 15.04
32 12.93 67 13.84 102 15.08
33 12.95 68 13.87 103 15.12
34 12.97 69 13.91 104 15.15
35 12.99 70 13.94 105 15.19

A. de Gier - 2000

SLOPE CORRECTION TABLE
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Appendix F – Screenshots of the OBIA segmentation process 
 

(a) Segmented SAR data alone showing objects before classification 

 
 
 

(b) Speckle noise elimination from SAR data alone after segmentation 
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Appendix G – Phot

(a) M

(b) Rainy d

tos from fieldwork 
 

Measurements of tree DBH and height in a teak plantati
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Appendix I – Effect of post classification filtering on whole maps 
 
Effect of post classification filtering on MLC classified ASTER image 

 

 
ASTER MLC classified Landcover map of AHFR without majority filtering. 

 
 

 
The effect of 3x3 majority filtering window on ASTER MLC map of AHFR. 
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The effect of 5x5 majority filtering window on ASTER MLC map of AHFR. 

 
 

 
The effect of 7x7 majority filtering window on ASTER MLC map of AHFR. 

 



Appendices 

84 

Effect of post classification filtering on MLC classified SAR image 
 

 
SAR MLC classified Landcover map of AHFR without majority filtering. 

 
 

 
The effect of 3x3 majority filtering window on SAR MLC map of AHFR. 
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The effect of 5x5 majority filtering window on SAR MLC map of AHFR. 

 

 

 
The effect of 7x7 majority filtering window on SAR MLC map of AHFR. 
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Effect of post classification filtering on MLC classified combined ASTER+SAR 
image 
 

 
Combined ASTER+SAR MLC classified Landcover map of AHFR without majority 

filtering. 
 
 

 
The effect of 3x3 majority filtering window on combined ASTER+SAR MLC map of 

AHFR. 
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The effect of 5x5 majority filtering window on combined ASTER+SAR MLC map of 

AHFR. 

 
 

 
The effect of 7x7 majority filtering window on combined ASTER+SAR MLC map of 

AHFR. 
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Appendix J: Error matrices for the six (6) different classified maps 
 
A1 and A2: Error matrices of MLC classified SAR data alone and OBIA classified SAR 
data alone

A1     A2 

A3 and A4: Error matrices of MLC classified ASTER data alone and OBIA classified 
ASTER data alone 
 

A3      A4

A5 and A6: Error matrices of MLC classified combined ASTER+SAR data and OBIA 
classified combined ASTER+SAR data 
 

A5     A6 

 
 


