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1 Preface

This final thesis describes the investigations, analyses and conclusions in the context of my Bachelor
Civil Engineering at the University of Twente, Enschede, the Netherlands. This assignment,
”Trend analysis of extreme precipitation events in the Meuse catchment, obtained with re-forecasts
from ECMWF”, investigates if the trend is significant enough to be provable with statistical trend
tests. The research is conducted at Deltares and aims to contribute to a better understanding on
our future climate and further research.

During the project I was given lots of freedom to develop my own ideas, because the use of ensemble
re-forecasts was very new. I want to thank my external supervisor Frederiek Sperna Weiland, who
gave me helpful advice on how data should be processed. Also a huge thank you goes to Jaap
Kwadijk who supported me during the entire project and critically looked at my work. It pushed
me to go deeper into the resources and provided me relevant feedback, observing my work from a
different perspective.

Finally, I would like to thank my parents who supported me during the whole project, even when
sometimes the motivation and pressure was not 100% on point. Their patience and support helped
me, making this paper understandable for people who have less knowledge in area of this study.

I hope this research is interesting for the readers and will be used for further research.
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2 Abstract

A fast-changing climate results in extreme events, that become more extreme as time proceeds,
in the Meuse catchment. Therefore, extreme weather events from the past are not that relevant
for the present. This reduces the amount extreme events that are suitable for trend analysis. Due
to the shorter observation period that is relevant, the technique of ensemble re-forecasts is used
to ’increase’ the number of extreme events of the most recent years (1996-2015). By applying
a trend analysis, it is possible to see if those extreme events indeed become more extreme over
time. This is beneficial for water management and shows how drastic the change of extreme events
is. This research studies, if there is a positive trend in re-forecasts of the European Centre for
Medium-Range Weather Forecasts (ECMWF) in the Meuse catchment.

The trend analysis is applied to different scenarios, to see whether there is a positive trend in short
or long precipitation events. The type of events are one-day, three-day and five-day events. Addi-
tionally, an analysis of annual and seasonal events (summer and winter) was done, to determine if
there is a difference between summer and winter. A total of four statistical tests have been used
for the trend analysis, including a power of detection analysis and extension of the data.

The results showed a rather low detection power for all statistical tests. However, a positive trend
was present for all types of events annually. Only the one-day event received a p-value below the
critical 5%, making it very significant. Especially the summer events have a large influence on the
annual trend analysis. The winter events show a negative trend, proved by the very low p-values
of the statistical tests and the visual analysis.
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3 Introduction

During the past decades, global warming has become an increasingly important topic worldwide.
Due to the accumulation of greenhouse gas emissions from energy production and fossil fuel use,
long-lasting environmental changes can be seen [16]. This also has an effect on weather events
around the world, such as increased extreme droughts, heat waves, and cyclones [7] [14] [5].

It is widely acknowledged scientifically, that due to climate change, extreme weather events increase
in magnitude and frequency [9] [18] [13] [26], especially an increase in single day events [1]. In water
management practice, professionals are preparing for extreme events which are, like the climate,
gradually changing [25] [22] [23]. The preparation will be much more complicated if frequency and
magnitude of those events would change in a disruptive way rather than gradually. This could mean
that old observations are less relevant for trend analysis and decreasing the effective time span of
the observations that are usable for trend analysis. This makes a rare extreme event even rarer.
Therefore classical approaches, for example observations, are no longer reliable for estimating the
trend in extreme weather events. This will have severe consequences for the engineering designs
and the way they work, as well as the the social and economical consequences [10].

These observations are not new to the scientific world. However, the events in the last decade
may be signals, making scientists and decision-makers aware, that alternative approaches should
be considered rapidly. Using observational records to prove or disapprove that extremes do not
change gradually but disruptively requires decades of data that are not yet available due to the
short observational period [2]. This would mean that for a long period the hazard of extreme
weather events is much larger than the prediction model assumes. An alternative approach for
assessing historic trends on extreme weather events is the use of ensemble weather re-forecasts.
These are forecasts that are generated by present models for past dates. Those re-forecasts are
beneficial because they consist of several ensemble members with each member representing a
realistic forecast of the weather for that specific re-forecasted date. Instead of using a single
observation, it allows several outcomes to be used. It results in a larger set of available data and
can reduce the required time frame. However, this in addition with longer records, the estimates
of the extreme weather events can become more robust.

The Meuse catchment is an area where information about precipitation is of high importance. Ex-
treme events that have happened in the past years have resulted in new records of water discharges
and water levels [17] [21]. To help water management of the Meuse catchment, information about
the trend of rainfall is therefore critical in order to evaluate the measures taken so far.
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3.1 Problem statement

The Meuse basin is an area where extreme precipitation events occur more and more frequently [8].
One of those events was the flooding in July 2021, which was called a unique event [21] and resulted
in record-breaking peak discharges at some locations. This leads to the question of whether those
type of events are still rare events or are part of the present world. A trend analysis can give more
insight, however is hampered by the limited length of the observational records. This, because old
observations are less relevant for the climate where we live in. This could mean that the hazard
of extreme weather in the river basin of the Meuse may be much larger than is assumed currently.
This Bachelor thesis aims to test whether this ca be overcome by using ensemble weather forecast
data.

Research objective The objective of this research is to find out whether a positive trend in
the precipitation data of the ensemble re-forecasts can be identified, focusing on the extreme
precipitation events in the river Meuse catchment area.

3.2 Ensemble re-forecasts

In this research the ensemble re-forecasts produced by the ECMWF (European Centre for Medium-
Range Weather Forecasts) are used. These re-forecasts are forecasts for the whole world of past
dates, that are produced with a present model making them more accurate [24]. Ensemble re-
forecasts of the ECMWF are produced with a numerical weather prediction model which is a
type of model that is capable of dealing with uncertainties. One source of uncertainties are the
initial conditions that are used for the forecasting model and can lead to large forecast errors. A
second source of increasing uncertainty is the model itself: for example the simplification of the
dynamics and physics of the atmosphere in numerical algorithms. Both errors interact with each
other. To account for the uncertainties, ensembles are used, which help predicting, quantatively,
the probability density of the state of the atmosphere in the future [12]. The ensemble comprises
a series of members, each being a single weather forecast, created with a unique set of initial
conditions [24]. Although the outcome is different, each ensemble member is a possible weather
prediction and therefore gives us additional information about the possible behaviour of the weather
at that point in time. It enables the assortment of all different weather re-forecast predictions and
to filter them on specific properties such as a minimum or maximum precipitation or temperature.
Especially for extreme events, this can be helpful because of their low occurrence.

To illustrate such an ensemble, an example of a prediction of the route of Hurricane Sandy in
the United States of America is used. Figure 1 shows the outcome: Different routes, representing
the different ensemble members, were possible at the time of the prediction. The different colours
represent the different time periods, which show the spread of the different routes: the farther the
prediction is out, the larger the spread. Every modelled path is a possible trajectory [4]. The
objective of this thesis is to see if there is a possibility of finding a trend in the full set of ensemble
forecasts combined over a period of several years.

The data used for this project originate from a numerical weather prediction model operated by
ECMWF which produces the re-forecasts. The available time period from March 1996 to March
2016, a total of 20 years of data, is made available by Deltares. The data can be found in the
Meteorological Archival and Retrieval System (MARS). A ensemble is generated every Monday
and Thursday, each with a total of ten ensemble members, each for a period of 15 days into the
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Figure 1: The different possible trajectories are shown at the time of the prediction. The time
periods are shown by changes in colour.[4]
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future with time steps of six hours. This means that between 40 and 50 different predictions are
available for each day during the time period. This can be calculated by dividing the length of the
forecast by the frequency of the forecast.

3.3 Studies conducted in the past

Previous research has used ensemble re-forecasts to either increase the observation period or the
sample size in order to obtain a more reliable result. One re-forecast exists of ten ensemble members
each predicting a possible and realistic weather forecast. To increase the total observation period
those forecasts can be combined to produce an extended time series [6]. Another application is the
increase of the sample size of extreme events and therefore improve the representation of extreme
events [27].

In 2021 master student Daniel Eduardo Villarreal Jaime aimed at deriving extreme return periods
more accurately for the river Vecht [6]. This was done by using hydrological ensemble forecasts
to extend the discharge records of the project area. The project provided a satisfactory result by
reducing the uncertainty from 1.5 to 3.5 times, compared to the estimation from extrapolation of
observed data. These uncertainties depended on the length and independence of observed records,
the number of ensemble members, and the ability of the model to produce the extreme events
and lead time. However, with a special case where Daniel picked out two extreme precipitation
events, the peak discharges obtained were not the maximum peak discharges in the records, which
indicated that the size of the discharge also depends on the initial conditions in the catchment
area, next to the precipitation. The methodology used could help identifying very extreme events
with low probability of occurrence to prepare for flooding and idealize the initial conditions to
reduce the peak discharge.[6]

In an other report, called ”Using ensemble reforecasts to generate flood thresholds for improved
global flood forecasting”, the authors aimed to explore the potential benefits of using ensemble river
flow reforecasts to generate flood thresholds that can deliver improved reliability and experience,
increasing confidence in forecasts [27]. A flood threshold describes the maximum discharge needed
for floods to occur on land. These are often determined by an extreme value distribution on a set
of annual maxima. By using ensemble reforecasts the sample size was aimed to be increased due
to the increase of the data in a certain time period. It allows to find extreme events that may no
occur in the typical 30-50-year-long sample of traditional observation.With the use of ensemble-
reforecast-based-thresholds, the global average forecast reliability and quality improved over the
reanalysis-based threshold for up to the evaluated day 30 lead time. This is possible because
of a better representation of the extreme events in the forecast climatology by using ensemble
reforecasts to increase the sample size.
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3.4 Research questions

Based upon the research objective, a number of main research questions are defined. These research
questions concern [1] the determination of the extreme precipitation events and [2] the analysis of
a possible trend therein.

• How can extreme precipitation events be defined, using the ensemble re-forecast
methodology?

As mentioned in section 3.2, Ensemble re-forecasts, the low amount of precipitation data is a
problem for finding trends, and therefore ensemble re-forecasts are used to extend the data. The
words ”joint together” in the first sub question refers to the extension of the dataset.

– How can the data of the ensembles be joint together to increase the data?

– How can extreme precipitation events be filtered out of the daily precipitation?

Extreme precipitation events are needed before any trend analysis can be performed. This requires
the formulation of a methodology to obtain a usable dataset.

• Is a trend detectable in the obtained extreme precipitation events?

For this main research question no sub-questions are needed. The focus of this research is towards
a positive trend and therefore one-tailed statistical tests are applied on the data set.

3.5 Methodology

In order to answer the research questions, a methodology was formulated that shows the steps
taken in this thesis. Figure 2 shows the steps that are carried out. The bold-printed steps are
targeted to answer the two main research questions.

It begins by defining the type of events that will analysed in this thesis, which is described in section
4. In that section, the raw data used is explained and how the data is process in a MATLAB model.
It is used for extracting the daily precipitation and calculating the extreme events. This will result
in a list that contains all extreme events. To receive a table with the ten most extreme events
for each year a filter is applied that assures the independence of the events, where the determined
time gap is part of.

In section 5 the statistical tests are described, which includes the setup of a null-hypothesis.
Additional to that, the applied sensitivity tests are explained that will give more insight on the
behaviour of the applied statistical tests.

The results of the statistical tests and the data selection is presented in section 6 for the different
extreme precipitation events. The outcome of the sensitivity tests is also explained. The discussion
about the results can be seen in section 7, which also includes a recommendation for future research
projects.
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Figure 2: The steps used in this thesis are described above. The bold printed sentences are steps
with results to answer the research questions.
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4 Approach

The following section explains the time series and the raw data used for this research. Additionally,
the boundary conditions are summarised, as well as the different scenarios in which the statistical
tests are applied. The raw data functions as input for a MATLAB model that extracts the extreme
precipitation events, explained afterwards.

4.1 Time series

The data used in this research are re-forecasts from March 1996 until March 2016 which are made
available by Deltares (see Section 3.2 for more information). The data set consists of re-forecasts
which are made twice a week with either three or four days between the release of the re-forecast.
Each re-forecast consists of ten perturbed forecasts and one unperturbed forecast. In this research
the focus lies on the ten perturbed forecasts which are individual ensemble members that predict
the weather for 15 days with a time step every six hours resulting in 60 time steps. In figure 3, a
scheme of the data is shown which is an extraction of the year 1996. Due to the frequency of twice
a week and the forecast horizon of 15 days, for each day 4-5 forecasts are available (see bottom row
in figure 3). This results in a total of 40 or 50 individual re-forecasts, each predicting a different
but realistic weather scenario.

Figure 3: This image shows the overlap of the individual re-forecasts and how many data is
available for one day.

The data files received from Deltares consist of a 5-D matrix. The five parameters are listed in the
table below. By filling in the first four parameters the fifth, which is the precipitation, is obtained.

1. Longitude

2. Latitude

3. Ensemble member

4. Time

5. Precipitation

The Meuse basin is the study area to which this research method is applied. In figure 4, on page
11, the Meuse basin is indicated by the white and blue area, where the thinner lines display the
tributaries and the thick blue line the main river Meuse. The red square is the area, which is used
as a simpler replication of the Meuse catchment area.An extreme rain event can last for different
periods, from several hours up to a week or even longer. The choice in this research was put
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on one-day, three-day and five-day events. This because they have different effects on the Meuse
catchment, where one-day extreme events put a high strain on tributaries and five-day extreme
events on the main river Meuse. To allow a better comparison between two points, a point in
between is chosen which is a three-day extreme event in this case.

Figure 4: The blue area shows the Meuse catchment and the red square displays the simplified
area of the Meuse catchment used in this research

Some reports show that the intensity and amount changes differently between summer and winter
[3], which is the reason for analysing the data on trends annually (calendar year) and seasonally
(summer and winter). Short one-day extreme events are typical for the summer and events for
several days for the winter. The exact dates for the winter and summer are displayed below in
table 1.

As mentioned before one re-forecasts consists of ten ensemble members. From each ensemble one
event is selected, resulting in a total of 1040 events annually. This is because instead of 365 days of
data a total of 15600 days are available. A short explanation of how that number is accomplished
is shown below.

52 weeks ∗ 2 re-forecasts ∗ 10 ensemble members ∗ 15 days = 15600 days

For further analysis only the highest ten events per period (year or season) are selected to be used.
This means that in total 200 events are used which is a reasonable amount for applying statistics
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and much more than when performing statistics on observations.

Table 1: The time period of the summer and the winter used in the model

summer 1 April - 31 September
winter 1 October - 31 March

When choosing the ten most extreme events for each period some rules are applied to prevent that
events from the same day are used or belong to the same precipitation event.

1. The extreme precipitation events do not have the same date

2. Between the extreme precipitation events are at least two days

3. The day of issue determines to which period (annually, summer or winter) the events belongs

The reason the dry period is two days is because the ensemble members can shift the precipitation,
i.e. there is a forecast uncertainty in the timing of the events. A re-forecasts on Monday 10-3-1996
has one ensemble member predicting the one-day extreme on 13-3-1996 and another ensemble
member predicts the one-day extreme on 14-3-1996. Only the most extreme of the two is chosen,
even if both belong to the ten most extreme events in 1996.

4.2 MATLAB model

To process the raw data from ECMWF a MATLAB model was developed to calculate the extreme
precipitation events and sort out the ten most extreme events for each period. Below in figure 5 a
flow diagram is shown of how the extreme events are selected from the data. How the precipitation
retained in a grid of the whole area in time steps of six hours, became an average precipitation over
the whole area per day. A total of 2000 re-forecasts make up the total raw data. The process below
is used for each year separately resulting in 100 re-forecasts, which are a total of 1000 ensemble
members, per loop (one run through the process).

The model picks out the first re-forecast and then chooses the first ensemble member and calculates
the average precipitation over the whole area per time step (every 6 hours). This means that the
precipitation of all grid cells is summed and divided by the total number of cells. Having done
that, the time steps of 6 hours are summed to obtain the daily precipitation. Depending on the
event length(one, three or five days), a moving sum is applied to the data. The date with the
highest value is selected and saved in a table.In that table, the following attributes are gathered
from the event:

• year of the re-forecast

• month of the re-forecast

• day of the re-forecast

• days since 0-0-0000 of the event

• ensemble member

• day in the ensemble number (between 1-15)

• precipitation in m
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Figure 5: Process description of how the model calculates the extreme events from the raw data

13



With the date of the re-forecast and the day in the ensemble member, the exact day is calculated
on which the extreme event occurs, which is expressed in days since 0-0-0000. This allows for the
comparison of dates, even if there is a change in months or years, because it is a continuous value.
A detailed description of the selection of the events can be found in the appendix in section 9.1.
Having finalised a table with all extreme events in a year, a sorting and filtering process is used to
pick out the ten most extreme events in a specific period (annually or seasonally), avoiding events
that overlap. That process is visualised in figure 6 below.

Figure 6: The flow diagram above shows the process of obtaining one list with the ten most
extreme events obeying the rules of the date of incident and the time gap between events.

To begin with, the table of extreme precipitation events is sorted by precipitation from highest to
lowest (descending order). The highest value is picked and forms the beginning of the list with
the ten extreme events. From then on, the next highest value is picked and is compared with the
date of the incident from the events already in the list. If there is no similar day the event is kept,
otherwise the event is removed. The second comparison is the time gap between the events. That
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time gap is always two days between the end of one event and the start of the next event. This is
again compared to all events in the list of the ten extreme events. If there is no coincidence, the
extreme event is added to the final list of the ten extreme events of that specific year. When the
list consists of ten events, the process is stopped, and the next year is processed. The same is done
with the data for the seasons winter and summer; however, the beginning dates of the extreme
events determine if the event belongs towards the winter or the summer. A detailed description of
the filtering process is described in the appendix in section 9.2.
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5 Data Analysis

The data obtained using the MATLAB model described in the previous section is at first inspected
visually, see figure 7. This gives a first impression, if a trend exists in the data. Additionally, the
data is tested by statistical trend tests to show the significance of the possible trend. The values
obtained of the statistical tests show the relation between the values of the extreme precipitation
events and their position on the time line. This either supports or disproves the visual findings,
if present. For applying the statistical trend tests, a statistical hypothesis test is done for which
a null hypothesis and a alternative hypothesis are postulated. The objective is to reject the null
hypothesis and therefore accept the alternative hypothesis as true.

Figure 7: Caption

To begin with, a null and alternative hypothesis need to be formulated. The test conducted will
be a one-tailed test because the research only aims to find positive trends. In the following, the
null hypothesis (H0) and the alternative hypothesis (H1) are shown.

H0 : The correlation between extreme rain events is zero (the process is stationary).

H1 :
The correlation coefficient between extreme rain events is greater than zero,
a positive correlation could exist.

With the use of the statistical trend test the procedure is to reject the null hypothesis with sufficient
evidence in the form of statistical tests. In case of rejection, the alternative hypothesis is favoured
instead, would indicate a trend in the extreme rain events over the Meuse catchment, hence there
would be no stationary process. A p-value is used to find out if the null hypothesis should be
rejected or not. The value can be between zero and one, where a lower value means stronger
evidence for rejecting the null hypothesis. A p-value of 5 percent is statistically significant and
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therefore used in this experiment. A value below 5% shows that the null hypothesis is false with
more than 95% probability. In the case of a p-value above the significance level, the question is at
what point the results become significant. For this, the data will be manipulated in two different
ways, in order to verify if it is due to insufficient observations or if there is no trend at all.

5.1 Statistical tests

Four different statistical trend tests are applied to the observed data. Hereafter follows a short
description of the test.

5.1.1 Pearson t-test

The Pearson t-test is the only parametric test used in this research. It measures the strength
of a linear correlation between the measured extreme rain events and their date of happening.
The Pearson correlation coefficient does not represent the slope of the line of best fit but how the
variation of the data towards the line of best fit is. For a valid result the data should comply with
several assumptions as following a normal distribution.[20]

5.1.2 Spearman rank test

This test is a non-parametric test where the correlation coefficient measures the strength and
direction between extreme weather events and their date of happening by ranking. By using
ranked values no assumption of the distribution function is needed. Instead a monotonic relation
is preferred which means that when one variable increases, so does the value of the other variable.
The correlation value is calculated by the difference in ranking of the x value and y value of all
data points.[19]

5.1.3 Wilcoxon-Mann-Whitney test

The third test applied in this research is called the Wilcoxon-Mann-Whitney test which compares
the difference between two independent groups. It allows to split up the data set into two inde-
pendent groups and compare the years at the beginning with the years available at the end of
the observation time period. The two independent groups are combined and ranked, and the sum
of the ranking of the two separate groups are compared to each other. In this research, the first
five years will be compared with the last five years. In research 5 years is a rather short period,
however this is compensated by the use of the ensemble members.[11]

5.1.4 Anderson-Darling

The last test used for this research is the Anderson-Darling two-sample test, which investigates
the distribution of two different data sets and whether they are the same or different. Instead of
only using the ranks of the data as the Wilcoxon-Mann-Whitney, Anderson-Darling also takes the
difference between the data points into account. Same as the Wilcoxon-Mann-Whitney test, it
uses the first five years and the last five years from the data set.[15]
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5.2 Sensitivity analysis

The result from the statistical tests can lead to two different outcomes: either there is a trend or
not. A sensitivity analysis will give insight in the strength of the tests and at what point in time
there may be a chance of finding a trend. These help to understand the results in case no trend is
found. If there is indeed a trend, these additional tests can improve the strengths of the outcome.
In the following, two methods are explained that are used in this research:

• Analysis of the detection power of the statistical tests with the use of a generated series
derived from observed data

• Extending the data set by repeating the most recent years

The method applied to the data is described in the section below.

5.2.1 Detection power of the statistical tests

For the detection power of the statistical tests, a generated series of extreme precipitation events is
used. For these series, a normal distribution, obtained from results of the annual one-day extreme
events from the re-forecast data, is used with the following mean and standard deviation:

Mean: = 0.024519

Standard deviation: = 0.004063

A total of 200 series was generated with the values mentioned above. For the detection power, two
different methods are used to see at which point a trend is possible to be detected in the data.
The first one is using a fixed time period of 20 years as the original data in this research. A forced
linear trend will then be applied to the data which has different strengths as 5% and 10%. This
will be done by multiplying the precipitation values by a factor that increases linearly over time,
resulting in increases of either 5% or 10% at the end of the period. Using statistical tests, the
probability of detecting a trend was evaluated. Therefore, the outcome is displayed as percentage,
indicating for how many series it was possible to detect a trend.

The second method uses a fixed linear trend of 5% over a period of 20 years. This time, the time
period is the variable and changes between 10 and 30 years. This means that the trend of 5% over
20 years is continuous up to 30 years, resulting in a total increase of 7.5%. Again the data will
be multiplied by a factor that increases linearly in time. The outcome will also be displayed as a
percentage, indicating how many series a trend is detected. It allows us to find out at which time
period a higher chance is to find a trend.

5.2.2 Extension of the data set

To study the behaviour of a possible trend in the future years where no trend is found yet, recent
years are used to extend the data-set in two different ways. This is done to see, if the existing
trend continuous with the same speed over the next few years, the significance changes below the
critical level. Events in the future are likely to be similar to those of the most recent years.

The first one is by adding the most recent events (last year 2015). The last year (2015) will be
added to the observation period, resulting in 21, 22, and so on, up to 25 years of observation.
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The reason for not going beyond 25 years is because the Wilcoxon-Mann-Whitney and Anderson-
Darling tests compare the first five years and the last five years of the time period. Adding a sixth
year does not influence the data, and therefore results in the same result.

The second method, is using several recent years, which are the years 2011 until 2015. For one
additional year only year 2015 is used. When the data-set is extended for two additional years,
the years 2015 and 2014 are used. This continuous until five years are added, which means that
year 2011 until 2015 is added a second time to the time series of 1996 until 2015. This results in
a total of 25 years, equal to the first method. Having the same number of years in both methods
allows a better comparison of the results.

The results obtained will be a p-value. Additionally, if the p-value goes below the critical value,
the year in which that was achieved is written next to it. This means that when the critical p-value
is achieved when the most recent year is added three times, a value of Y23 will be written down. It
means that when the time period is 23 years, the critical p-value is achieved and a trend is detected
statistically by extending the data series. This gives a quick overview at what time period length
a significant value is exceeded.
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6 Results

In the following section, the results of the statistical tests are shown and interpreted. These will
be done separately for the annual extreme events and seasonal extreme events. At the end, the
outcome from the sensitivity analysis and extension of the data are described.

6.1 Annual Extreme Events

The primary focus of this research was on the change in annual extreme events. In figure 8 the
annual extreme events are shown grouped by their year of occurrence. The plotted linear lines
show an increase in extreme events for all three durations, especially for one-day extreme events.
The five-day extreme events show some positive trend, but surprisingly there is rather no change
in the three-day extreme events. Astonishingly some one-day extreme events of some years are
larger than some three-day or even five-day events in other years. Between three-day and five-day
events, this is even more present.

Figure 8: The graph shows the ten annual extreme events between 1996 and 2015 for the
one-day, three-day and five-day events inclusive the trend-line determined by least square linear

regression. A larger representation can be found in the appendix, in section 10

In table 2 the results of the four statistical tests that were applied to test the significance of the
trend are shown. Based on these results, the null hypothesis can only be rejected for the one-day
extreme event with the Pearson t-test, Spearman and Mann-Whitey-Wilcoxon results which have
an outcome below the defined critical level of 5% (see the green values in table 2). It can be said
that with (more than) 95% certainty, there is a positive trend for one-day extreme events. For
the other events this cannot be stated, as none of the results are below the critical level of 5%.
The five-day extreme event is closer to rejection of the null-hypothesis than the three day-extreme
event. The results of the statistical tests reflect the trend line obtained by the least squares linear
regression in figure 8.
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Table 2: Outcome of the statistical tests applied to annually extreme events

Statistical test one day three day five day
Pearson t-test 3.9% 46.7% 29.2%
Spearman 2.9% 67.9% 13.4%
Mann-Whitney-Wilcoxon 2.4% 74.2% 12.2%
Anderson Darling 5.9% 48.0% 8.1%

6.2 Seasonal Extreme Events

After knowing the results of the annual extreme events, the question is if there is a difference
between the events in the summer and winter. Below in figure 9 the summer events and in figure
10 the winter events for one day, three days and five days are shown. Additional to the events
a trend line is added which is determined with the least square linear regression. The graphs
show some surprising results:for example, the one-day and five-day extreme events only show a
positive trend in the summer and not in the winter. That negative trend is noticeable for three-day
events in both summer and winter. Comparing the extreme events of the summer and winter, the
one-day events have similar values, however the five-day events differ. In the winter more extreme
events occurred and a clearer division between one-day, three-day and five-day events exists. In
the summer the different events overlap each other, where many three-day events are similar to
five-day events.

Figure 9: The graph shows the ten annual extreme events between 1996 and 2015 for the one
day, three day and five day events inclusive the trend-line determined by least square linear

regression for the summer season.
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Figure 10: The graph shows the ten annual extreme events between 1996 and 2015 for the one
day, three day and five day events inclusive the trend-line determined by least square linear

regression for the winter season.

In Table 3 the results of the four statistical tests are shown that are applied to test the significance
of the trend. Only the outcome of the Spearman and Mann-Whitney-Wilcoxon for the one-day
extreme event in the summer are below the defined critical level of 5%, resulting in the rejection
of the null hypothesis. For all other scenarios, the results mostly do not come close to the defined
critical level, and therefore the null hypothesis cannot be rejected. These results support the data
in the graphs in Figures 9 and 10, where the negative trend lines are supported by high significance
levels in the table.

Table 3: The statistical result of the tests applied to extreme precipitation events in the summer
and winter season.

Statistical test one day three day five day
summer winter summer winter summer winter

Pearson t-test 6.9% 63.0% 54.7% 94.2% 35.9% 93.3%
Spearman 3.9% 84.1% 67.7% 92.9% 46.8% 71.9%
Mann-Whitney-Wicoxon 3.8% 68.8% 73.5% 84.9% 49.2% 56.6%
Anderson Darling 10.2% 45.3% 48.4% 48.0% 66.1% 79.5%

6.3 Detection power of statistical tests

The first sensitivity analysis is used to see at what point a trend is possible to be detected with
the observation period that is available (20 years). Below in table 5 the results from the statistical
tests are shown of the data which has been modified with a fake trend of five and ten percent.
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With a trend of 5%, the statistical tests detect only a trend between 15% and 30% of the series,
where a series is a time period over 20 years with 10 extreme events per year obtained from a
normal distribution, . When there is a trend of at least 10%, the trend is significant enough to be
detected by more than half the series. Pearson and Spearman showed the same results with the
modified data. The results of varying the duration of the observation period show that, when there
is a trend of 5% from 30 years onward, more than 50% of the series are significant detected by
statistical tests. When increasing the length the Mann-Kendall-Wilcoxon and Anderson-Darling
show similar results, where as by increasing the trend different results are obtained. Overall the
sensitivity outcome of the statistical test show a rather low chance of detecting a trend. It shows
that the chance of detecting a trend of 10%, which is a very strong increase, is zero for 1/3 of the
series with the Pearson, Spearman and Anderson-Darling.

Table 4: The results (in percentages) of applying a fake trend of 0%, 5% and 10% to the
generated data by a normal distribution.

statistical test 0% 5% 10%
Pearson t-test 6 31.5 71
Spearman 4 31 71
Mann-Kendall-Wilcoxon 6.5 24 100
Anderson-Darling 6.5 17 51

Table 5: The results (in percentages) of a fixed trend in the generated data of a normal
distribution, but the time period used remained variable between 10 and 30 years.

statistical test 10 20 30
Pearson t-test 8 31.5 76.5
Spearman 9 31 71.5
Mann-Kendall-Wilcoxon 9.5 24 59
Anderson-Darling 6 17 45.5

6.4 Extension of the data

The extension of the data-set is tested to see how the behaviour of the trend is for all scenarios
when increasing the observation period. The aim is to see if a trend is detectable in the future,
assuming the existing trend continuous. This can be seen in the p-value and if that is becoming
lower or higher. A lower becoming p-value will indicate a trend that becomes stronger and maybe
below the critical p-value resulting in a positive trend. The tables below show the results of the
two different methods. For each scenario, the year is shown where the p-value is below the critical
level of 5% with the p-value. If the critical level of the p-value is not reached, the final p-value
and the year (25) is listed in the table.

Table 6 shows the summary of the results of the first method where the year 2015 is used for
extending the data-set. In many scenarios the critical significant level is accepted, as, for example,
with annual 3 day events a trend is detectable. A different result is achieved for seasonal events
with a length of 5 days, where a trend is rather more difficult to be verifiable the longer the
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observation period is. All p-values from the extension with the year 2015 can be found in the
appendix, section 11. Additional to the outcome of the statistical test a table is added that shows
how wet 2015 was compared to the other year. The lower the value the wetter the year is.

Table 6: Outcome of the first extension method with the statistical tests applied to annual and
seasonal scenarios showing in which year the p-value has reached the significant value. If a

p-value of 5% or less is not reached, the final p-value is listed of the 25th year.

First extension method (Year 2015)
statistical test Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
Annual 1 day 20Y 4% 20Y 3% 20Y 2% 21Y 2%
Annual 3 day 23Y 5% 24Y 2% 24Y 1% 24Y 2%
Annual 5 day 25Y 8% 22Y 3% 24Y 2% 21Y 4%
Summer 1 day 21Y 3% 20Y 4% 20Y 4% 22Y 5%
Winter 1 day 25Y 99% 25Y 100% 25Y 100% 25Y 100%
Summer 3 day 25Y 28% 25Y 69% 25Y 69% 23Y 5%
Winter 3 day 25Y 100% 25Y 97% 25Y 98% 25Y 100%
Summer 5 day 25Y 52% 25Y 74% 25Y 80% 24Y 2%
Winter 5 day 25Y 100% 25Y 92% 25Y 94% 25Y 100%

Table 7: The rank of 2015 compared to all years from 1996 until 2015. The lower the rank, the
higher the extreme events were in that year. A one means that the year was the wettest year of

all years.

Scenario Rank
one-day annual 1
three-day annual 2
five-day annual 8
one-day summer 2
one-day winter 19
three-day summer 9
three-day winter 20
five-day summer 11
five-day winter 20

The results of the second method are shown in table 8. For this the years 2011-2015 were used,
depending on the length by what the original data is extended. The results of the annual scenarios
show less significant p-values, especially for the three-day extreme events. When looking at the
seasonal results, similar values can be seen comparing it with the first method. However the
results are less extreme than the first method, where all p-value get close to 100% in the winter.
The second method shows similar p-values in summer and winter. All p-values are shown in the
appendix, in section 12. It shows that the p-value sometimes moves up or down, depending on
how wet the added year has been.
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Table 8: Outcome of the second extension method with the statistical tests applied to annual
and seasonal scenarios showing in which year the p-value has reached the significant value. If a

p-value of 5% or less is not reached, the final p-value is listed of the 25th year.

Second extension method (Year 2011-2015)
Statistical test Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
Annual 1 day 20Y 4% 20Y 3% 20Y 2% 21Y 2%
Annual 3 day 25Y 36% 25Y 56% 25Y 74% 25Y 48%
Annual 5 day 25Y 9% 24Y 5% 25Y 12% 21Y 4%
Summer 1 day 21Y 3% 20Y 4% 20Y 4% 25Y 10%
Winter 1 day 25Y 34% 25Y 64% 25Y 69% 25Y 55%
Summer 3 day 25Y 65% 25Y 73% 25Y 73% 25Y 48%
Winter 3 day 25Y 80% 25Y 73% 25Y 85% 25Y 48%
Summer 5 day 25Y 44% 25Y 53% 25Y 49% 25Y 66%

7 Discussion

In this section, the results shown will be critically discussed and reflected on, followed by a rec-
ommendation.

7.1 Result Discussion

Both the visual analysis (figure 8) and the trend analysis (table 2) of the annual events show similar
results. A trend exist for all three scenarios. Only one-day extreme events are 95% significant for
the Pearson, Spearman and Wilcoxon-Mann-Whitney test. This corresponds with literature that
tells that there exists especially an increase in short precipitation events. When taking a closer
look at figure 8, the most extreme five-day events are not very different in heaviness between 1996
en 2015, however for one-day extreme an increase is noticeable. This can indicate that the peak
precipitation values of an event over several days is much higher as often the one-day extreme
events are part of the five-day extreme events, instead of having it distributed over the affected
days. A different development is noticeable for three days, where a very low trend is shown in
the graph that is different to one-day and five-day extremes. An explanation could be that two
one-day extremes that are closely forecasted after each other may form one five-day extreme. In
a three-day event, this is never possible due to the time gap of 2 days. A possible option to avoid
that, is applying a larger time gap for the shorter extreme events, however this maybe results in a
larger spread of the most extreme events, which may has a negative impact on the trend analysis.

A surprising difference in significant p-value is obtained between annual and seasonal extreme
precipitation events when comparing table 2 and table 3. Only one-day extreme events in the
summer receive a p-value that is below the critical value that is set at the beginning of the research,
which indicates the increase of short duration extreme events in the summer for the future. The
summer extreme events are the events that have the most effect on the positive trend in all three
scenarios annually. The winter extreme events rather show a negative trend, that can be seen in
figure 10 and the low statistical results in table 3 compared to the results of the summer extreme
events. However, part of the precipitation in the winter can fall as snow and therefor is not a
problem on the day of incident, but could become a problem for the discharge when it is melting.
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The p-values for most seasonal scenarios have turned out to be very high which means that a
trend is rather difficult to be detected. A reason for that is the low detecting power of the four
statistical test. This can be seen with the forced trend of 10% on the series, where three of the
four tests detected no trend for 1/3 of the series. A trend of 10% is very high and having a chance
of 33% failing detecting the trend, is rather high. A reason for this is the large spread of extreme
event values, where the difference between the highest value and lowest value is quit high. This
also means that a possible trend can exist in the data set, however is not detected by the applied
statistical tests.

The amount of extreme events chosen for each year also affects the seasonal outcomes. The number
of extreme events remained the same for the annual analysis (12 months) and the seasonal analysis
(6 months). Choosing, for example, 10 extreme events with a duration of five days, including the
dry period (time gap) of two days between the events, a total of 70 days are covered. This means
that more than two months are included which are annually about 16%, on the other hand more
than 30% for the seasonal time period. Applying a larger time gap increases the time period which
makes it difficult to implement. Covering such large time period means that much lower extreme
precipitation events are chosen to finally have ten extreme events for each period that have a strong
effect on the outcome. Lowering the total extreme events for each period will give more extreme
events, however it could results in to few data points which make the tests less decisive. This is the
difficult part of balancing the amount of data points for the statistical tests and the total amount
time period covered by the extreme events, including their independence depending on the time
gap between the events. A possibility is also to let the amount of events chosen, be depending
on the total time period covered by the events including their time gap. This will results in less
events for the seasonal scenarios, than the annual scenarios.

The results of the extension of the data showed rather less impressive results. For method one,
year 2015 was often either very wet or very dry which had a high influence in detecting a trend
or not. A different results can be seen when adding the years 2011-2015 where the p-value lowers
just slightly but not a lot, therefore becoming slightly more significantly. Therefore the outcome
of the sensitivity test give low evidence on upcoming significant trends in the different scenarios.
It depends a lot on how wet the most recent years have been.

7.2 Recommendations

As mentioned in the discussion, the number of the most extreme events chosen for the statistical
tests may have a negative influence on the trend. A possible option for further research is the
analysis on reducing the amount of events without loosing the strength of the statistical test by
having less data points. Another factor which can be analyzed further, is the time gap applied to
assure the independence of the different extreme events. When increasing the total period of the
data until 2020 or further, a deduction of the total extreme events used for the statistical tests is
possible.

The model currently uses a very rough replication of the Meuse basin to calculate daily precipita-
tion. Due to the fact that an average over the whole replication is used, values outside the original
Meuse catchment can have a negative or positive effect on the outcome. This can be improved by
selecting that area much more accurately and even more realistic results can be achieved.

Interesting for water management is also the discharge that is caused by the precipitation obtained
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from the re-forecasts and what the impact is at Borgharen, the location where the Meuse enters the
Netherlands. The question is whether the discharge and precipitation values follow the same trend,
or if different results would be obtained due to the characteristics of the Meuse catchment with its
tributaries. Of course the position of the precipitation plays an important role for discharges in the
river Meuse, however this data can give a first impression of the impact on discharges. The next
step then would be taking the movement of the precipitation event into account, as for example
when it is moving north, a larger discharge can be expected in the lower areas when discharge
from the upper areas collides with precipitation in lower areas.
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8 Conclusion

The objective of this thesis is to answer the question, whether a positive trend can be identified
in precipitation data in the ensemble re-forecasts of the ECMWF in the Meuse catchment.

The research showed that a positive trend exists in one-day extreme events, annually, according
to the Pearson, Spearman and Wilcoxon-Mann-Whitney statistical tests. All three tests yielded a
p-value below the critical value. This is mainly caused by the events in the summer period which,
compared to the winter period, showed a strong trend. The p-values in the summer period were
more significant than the results of the winter period. Analysis of the one-day events during the
summer period resulted in a p-value below the critical level. For the three-day and five-day event
a trend can be observed as well, but it is weaker and the results are not found to be statistically
significant.

The power of detection was low for all statistical tests, which means that having detected the trend
for one-day events, clearly shows that there indeed is a trend. However, there is a probability that
for the other scenarios, a trend exists but was not detected. Taking into account that the data
set used covers the period 1996-2015, plus the fact that the present is 2022, there is the option to
expand the data set with at least an additional 5 years, allowing for a much better trend analysis.
After extension of the data set, the results shown were significant, but they were depending on the
amount of precipitation in the latest year (2015). Using a larger extension period resulted into a
slightly lower p-value over time, in the majority of cases. However, also that was associated with a
large dependency on the precipitation levels in the latest years (2011-2015). However, in general,
extension of the time period of the data set is expected to increase the reliability and validity of
the statistical tests.

A rather positive result was the low p-value for the winter events, indicating a negative trend.
This implies that an increase of extreme precipitation events in the winter is not expected. For all
scenarios based upon the winter period, the statistical significance reduced, in spite of extending
the time period. It is recommended that further research focuses on the short extreme events
during the summer period.
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9 Appendix A

9.1 Selecting the extreme events

The steps below describe how the ’extreme event’ was selected from a single ensemble member
from all re-forecasts.

• Data is obtained from the ECMWF data base. These files are a 5-D matrix which contain
Longitude, Latitude, Ensemble member number, Time and the Precipitation.

• The data is a re-forecast over the whole world. However, only the data for the Meuse basin
are interesting; therefore, the grid variables are only in the range of the simplified Meuse
basin (3.4N-6.6N and 51.8W-48.0W), reducing the overall data and file size.

• The files are grouped in years from the date of creation of the file. This means that it starts
with the group 1996, 1997, 1998, and so on.

• Starting with the group of re-forecasts in 1996, the first file (re-forecast) is picked out.

• Next step is to pick-out the first ensemble member from the re-forecast.

• Having one ensemble member, the first step is to calculate the average precipitation over the
whole simplified Meuse catchment by taking the mean over all the single grid cells in the
re-forecast file. This will result in a vector file that gives the precipitation throughout the
area per time step

• The time step is set at 6 hours in the data files. This is changed by summing up four values
which results in precipitation for one day. The new vector gives a precipitation value for
each day in the ensemble member. This vector is called daily precipitation.

• To pick out the extreme event from the ensemble member, a moving sum is used to calculate
the possible extreme events in the vector of daily precipitation.

– For one-day events, this step is skipped because the values already contain daily pre-
cipitation.

– For three-day events, a three-day moving sum is used on the daily precipitation vector,
which calculates the sum of the three consecutive values. This means that the last two
values can be neglected because they are the same as or lower than the third last day
in the precipitation vector.

– For five-day events, a moving sum of five is used which calculates the sum of the following
five values. This means that the last four values can be neglected because they are the
same as or lower than the fifth last day in the daily precipitation vector.

• With the result of the moving sum, a vector is obtained with all possible extreme events.
From these events, the maximum value is chosen. About that extreme event useful data for
later processing is stored. The different parameters of interest are listed below:

– year of the re-forecast (between 1996-2015)

– month of the re-forecast (between 1-12)

– day of the re-forecast (between 1-31)
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– days since 0-0-0000 of the event

– ensemble member (between 1-10)

– day in the ensemble number (between 1-15)

– precipitation in m

• Now the next ensemble member is chosen from the re-forecast and the same steps from... are
followed again. When the last ensemble member (number 10) is done the next re-forecast is
chosen from the group and the steps from ... are followed again.

• When an extreme event is selected from each ensemble member in the group of that certain
year, a single matrix for each extreme event duration (1,3 and 5 days) is the result. The total
number of extreme events in those matrices is the number of re-forecasts times ten. The next
step is the selection and filtering of the data to finally end with the ten most extreme events
of that group (year/season).

9.2 Filtering the extreme events

After selecting the extreme event, the large matrix is sorted and filtered to finally have 10 extreme
events for each year/season at the end. The steps of this process are described below. The process
is divided into annual extreme events and seasonal extreme events. First, the annual process is
described.

• As input for this process, the matrix with the extreme events of one group (one year) is
used. Then, this matrix is sorted by the amount of precipitation in descending order, with
the highest value being the top row.

• When the table of the ten most extreme events is empty, the highest value of the sorted table
with all extreme events is selected. That event will form the start of the list of the ten most
extreme events in that group(year).

• The next highest extreme event is picked.

• The first step is the comparison of the date of the incident of the chosen event and the listed
events in the list of the ten most extreme events. This is done with the use of the unit of the
days since 0-0-0000. If there is a match the chosen event is removed and step ... is repeated.
If not continue to the next step.

• The second step is to see if there is at least a 2 day time gap between the chosen event
and the existing events in the list of the ten most extreme events. The value that must be
between the date of the incident is the duration of the extreme event plus two. That means
three days for one-day extremes, five days for three-day extremes, and seven days for five-day
extremes. Using that value, the unit of days since 0-0-0000 for the date of the incident can
be used. If the difference between events is within the time gap the event is removed and
step ... is repeated. If not, the chosen event complies with the rules and becomes the next
event in the list of the ten most extreme events. If this list consists of ten events, this process
is stopped. If not, step... is repeated.

When the process is stopped, it means that ten events are selected. These ten events are saved in
the final list of extreme events between 1996 and 2015. Now the next group (year) is selected, and
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the first process of selecting the extreme events is started over again. These processes are repeated
for all groups(years), resulting in a matrix with ten extremes of all years (1996-2015), which are
in total 200 events. However, an aspect of this research is also to find out if there is a difference
in summer and winter. For that a different sorting and filtering process is applied.

• As input for this process, the matrix with the extreme events of one group (one year) is
used. However, before this is sorting out, the group is divided into three groups. The three
different groups are shown below.

– Winter second half (1.January - 31. March)

– Summer (1. April - 31. September)

– Winter first half (1. October - 31. December)

• They are grouped by dates. After they are grouped, they are sorted from highest precipitation
to lowest precipitation.

• For the first year (1996), the winter second half is removed, because the data starts in march
1996 which means that there is almost no data. Therefore, the first group that is filtered are
the summer events. The filtering functions the same as in the filtering process for the annual
year until the ten most extreme events are found, therefor that process can be followed. The
only difference is the final matrix, which is called extreme events from 1996 until the 2015
summer.

• After the summer 1996, exactly the same is done with the events in the first half of winter
1996. The outcome of these events are, as described later, compared to the events in the
group winter second half from the upcoming year.

• From the second year on (1997-2015) the data is grouped by dates (groups described in
step...). Additionally, the ten most extreme events from the first half in the previous year
are called back to be added to the group for winter second-half events and sorted from highest
precipitation to lowest (descending order). The same filter process used for annual events
is used to produce a table with the ten most extreme events in winter. They get an extra
column that receives the value of the year where the winter started. The data is stored in
the list of extreme events from 1996 until the 2015 winter.

• The summer and winter first half groups use the same steps as the first group (1996) described
in step....

• When all the years are complete, there will be a matrix for the winter events and a matrix
for the summer events. Both will have 200 extreme events for the time period 1996-2015.
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10 Appendix B

Figure 11: The graph shows a larger representation of the ten annual extreme events between 1996 and 2015 for the one-day, three-day and five-day events
inclusive the trend-line determined by least square linear regression.
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Figure 12: The graph shows a larger representation of the ten annual extreme events between 1996 and 2015 for the one day, three day and five day events
inclusive the trend-line determined by least square linear regression for the summer season.
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Figure 13: The graph shows a larger representation of the ten annual extreme events between 1996 and 2015 for the one day, three day and five day events
inclusive the trend-line determined by least square linear regression for the winter season.
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11 Appendix C

In the following section the outcome of the extension of the data is shown of the first method.
The first method is extending the data set by only using the year 2015. The year 2015 is added
up to five times to the existing data set. The tables below show the p-value obtained by the four
statistical tests.

Table 9: The results of the one-day extremes annually with the first method. The values are the
p-values obtained by the statistical tests.

Annual one-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 3.9% 2.9% 2.4% 5.9%
21 years 0.8% 0.4% 0.7% 1.8%
22 years 0.2% 0.1% 0.9% 2.0%
23 years 0.1% 0.1% 0.1% 0.1%
24 years 0.1% 0.1% 0.1% 0.1%
25 years 0.1% 0.1% 0.1% 0.1%

Table 10: The results of the three-day extremes annually with the first method. The values are
the p-values obtained by the statistical tests.

Annual three-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 46.6% 67.9% 74.1% 48.0%
21 years 25.3% 38.4% 56.0% 66.9%
22 years 12.2% 17.1% 30.5% 57.1%
23 years 5.4% 6.4% 14.1% 35.9%
24 years 2.3% 2.1% 0.7% 1.8%
25 years 1.0% 0.7% 0.7% 1.8%
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Table 11: The results of the five-day extremes annually with the first method. The values are the
p-values obtained by the statistical tests.

Annual five-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 29.2% 13.4% 12.2% 8.1%
21 years 22.2% 6.7% 10.4% 3.7%
22 years 16.8% 3.3% 12.5% 1.5%
23 years 12.8% 1.6% 8.2% 0.5%
24 years 9.8% 0.8% 2.3% 0.1%
25 years 7.5% 0.4% 2.3% 0.1%

Table 12: The results of the one-day extremes in the summer period with the first method. The
values are the p-values obtained by the statistical tests.

Summer one-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 6.9% 3.9% 3.8% 10.2%
21 years 2.6% 2.0% 4.2% 8.2%
22 years 1.0% 1.0% 4.1% 4.7%
23 years 0.4% 0.5% 2.3% 1.2%
24 years 0.2% 0.3% 0.3% 0.2%
25 years 0.1% 0.2% 0.3% 0.2%

Table 13: The results of the one-day extremes in the winter period with the first method. The
values are the p-values obtained by the statistical tests.

Winter one-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 63.0% 84.1% 68.8% 54.7%
21 years 81.3% 95.4% 94.5% 94.4%
22 years 91.5% 98.9% 99.8% 99.9%
23 years 96.4% 99.7% 99.9% 100%
24 years 98.5% 99.9% 100% 100%
25 years 99.4% 100% 100% 100%
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Table 14: The results of the three-day extremes in the summer period with the first method. The
values are the p-values obtained by the statistical tests.

Summer three-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 54.7% 67.7% 73.5% 48.4%
21 years 47.1% 68.1% 71.6% 32.4%
22 years 40.8% 68.5% 58.5% 17.0%
23 years 35.7 68.9% 72.1% 5.0%
24 years 31.5% 69.2% 68.5% 0.8%
25 years 28.2% 69.5% 68.5% 0.8%

Table 15: The results of the three-day extremes in the winter period with the first method. The
values are the p-values obtained by the statistical tests.

Winter three-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 94.2% 92.9% 84.9% 48.0%
21 years 97.5% 94.5% 85.9% 25.8%
22 years 98.9% 95.6% 97.0% 23.2%
23 years 99.5% 96.4% 97.4% 0.6%
24 years 99.7% 97.0% 98.2% 0.1%
25 years 99.8% 97.4% 98.2% 0.1%

Table 16: The results of the five-day extremes in the summer period with the first method. The
values are the p-values obtained by the statistical tests.

Summer five-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 35.9% 46.8% 49.2% 66.1%
21 years 40.2% 54.4% 53.0% 65.3%
22 years 44.0% 60.8% 53.0% 18.7%
23 years 47.2% 66.1% 70.7% 6.8%
24 years 50.0% 70.6% 79.6% 2.4%
25 years 52.5% 74.2% 79.6% 2.4%
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Table 17: The results of the five-day extremes in the winter period with the first method. The
values are the p-values obtained by the statistical tests.

Winter five-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 93.3% 77.7% 56.6% 20.5%
21 years 97.9% 82.4% 57.1% 59.3%
22 years 99.3% 85.9% 89.5% 95.2%
23 years 99.8% 88.5% 88.1% 98.0%
24 years 99.9% 90.4% 94.4% 99.5%
25 years 100% 91.9% 94.4% 99.5%

12 Appendix D

In the following section the outcome of the extension of the data is shown of the second method.
The second method is extending the data set by adding the period 2011-2015. When the data set
is extended by one year only year 2015 is used. When the data set is extended by two years, the
year 2014 and 2015 are added. This pattern is followed until five year are added, which is the
period 2011-2015. The values in the table below are the p-values obtained by the four statistical
tests. Because the added years have different precipitation values, the p-value can go up and down.

Table 18: The results of the one-day extremes annually with the second method. The values are
the p-values obtained by the statistical tests.

Annual one-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 3.9% 2.9% 2.4% 5.9%
21 years 0.8% 0.4% 0.7% 1.8%
22 years 2.4% 3.5% 13.1% 19.3%
23 years 4.1% 7.7% 13.1% 19.3%
24 years 3.2% 1.6% 0.7% 1.8%
25 years 2.1% 1.3% 2.4% 5.9%
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Table 19: The results of the three-day extremes annually with the second method. The values
are the p-values obtained by the statistical tests.

Annual three-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 46.7% 67.9% 74.2% 48.0%
21 years 25.3% 38.4% 56.0% 66.9%
22 years 53.4% 72.3% 81.5% 24.7%
23 years 47.3% 67.4% 81.5% 24.7%
24 years 43.9% 65.9% 56.0% 66.9%
25 years 36.3% 56.3% 74.2% 48.0%

Table 20: The results of the five-day extremes annually with the second method. The values are
the p-values obtained by the statistical tests.

Annual five-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 29.2% 13.4% 12.2% 8.1%
21 years 22.2% 6.7% 10.4% 3.7%
22 years 33.4% 13.3% 29.3% 29.3%
23 years 29.7% 12.1% 29.3% 4.5%
24 years 13.6% 4.9% 10.4% 3.7%
25 years 9.1% 3.5% 12.2% 8.1%

Table 21: The results of the one-day extremes in the summer period with the second method.
The values are the p-values obtained by the statistical tests.

Summer one-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 6.9% 3.9% 3.8% 10.2%
21 years 2.6% 2.0% 4.2% 8.2%
22 years 5.5% 8.3% 16.4% 16.1%
23 years 8.1% 9.9% 16.4% 16.1%
24 years 8.6% 7.1% 4.2% 8.2%
25 years 9.0% 5.2% 3.8% 10.2%
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Table 22: The results of the one-day extremes in the winter period with the second method. The
values are the p-values obtained by the statistical tests.

Winter one-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 63.0% 84.1% 68.8% 54.7%
21 years 81.3% 95.4% 94.5% 94.4%
22 years 76.8% 92.1% 98.5% 98.2%
23 years 74.6% 95.3% 98.5% 98.2%
24 years 54.3% 80.9% 94.5% 94.4%
25 years 34.1% 64.0% 68.8% 54.7%

Table 23: The results of the three-day extremes in the summer period with the second method.
The values are the p-values obtained by the statistical tests.

Summer three-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 54.7% 67.7% 73.5% 48.4%
21 years 47.1% 68.1% 71.6% 32.4%
22 years 56.5% 70.6% 62.4% 28.2%
23 years 44.3% 54.0% 62.4% 28.2%
24 years 62.5% 69.6% 71.6% 32.4%
25 years 65.2% 72.6% 73.5% 48.4%

Table 24: The results of the three-day extremes in the winter period with the second method.
The values are the p-values obtained by the statistical tests.

Winter three-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 94.2% 92.9% 84.9% 48.0%
21 years 97.5% 94.5% 85.9% 25.8%
22 years 96.7% 91.5% 95.8% 7.4%
23 years 95.7% 91.0% 95.8% 7.4%
24 years 78.8% 71.0% 85.9% 25.8%
25 years 79.7% 73.5% 84.9% 48.0%
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Table 25: The results of the five-day extremes in the summer period with the second method.
The values are the p-values obtained by the statistical tests.

Summer five-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 35.9% 46.8% 49.2% 66.1%
21 years 40.2% 54.4% 53.0% 65.3%
22 years 39.0% 50.8% 41.8% 32.1%
23 years 27.2% 38.3% 41.8% 32.1%
24 years 38.6% 45.6% 53.0% 65.3%
25 years 43.6% 53.5% 49.2% 66.1%

Table 26: The results of the five-day extremes in the winter period with the second method. The
values are the p-values obtained by the statistical tests.

Winter five-day event
Time period Pearson t-test Spearman Mann-Kendall-Wilcoxon Anderson-Darling
20 years 93.3% 77.7% 56.6% 79.5%
21 years 97.9% 82.4% 57.1% 40.7%
22 years 96.2% 73.0 80.2% 11.0%
23 years 97.5% 81.8% 80.2% 11.0%
24 years 78.4% 44.9% 57.1% 40.7%
25 years 82.5% 55.2% 56.6% 79.5%
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