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ABSTRACT 

 
Food insecurity remains high in many parts of Kenya due to recurrent seasons of failed rains occurring 

during crop growing seasons. This has resulted in drought situations which have led to extensive loss of 

yields, displacement of people, malnutrition, epidemics and sometimes resulting to famine. Variability in 

climatic conditions is projected to be more severe in subsequent years. This calls for concern because large 

part of Kenya’s population is dependent on rain-fed agriculture. Maize which is a rain-fed crop accounts 

for >80% cereals used at household level. Accurate and timely information on crop yields estimation in 

the stages of crop growth is fundamental towards ensuring food security. The use of satellite derived 

NDVI data for monitoring of crops is of key importance in providing accurate and timely estimation of 

yields to warn against impending poor or failed harvest. This study is centred on exploiting effectively the 

use of hyper-temporal SPOT-VGT NDVI-derived indicators to estimate maize yields. Three distinct 

steps, the ISODATA clustering technique, disaggregation of published maize statistics and simple linear 

regression model using hyper-temporal NDVI derived indicators as independent variable and maize yields 

as dependent variables were performed in this study. The ISODATA clustering produced useful temporal 

NDVI profiles for classification. The disaggregation of maize areas statistic data by NDVI classes gave 

reasonable fractions of maize per districts. Two NDVI-derived indicators, maximum NDVI and the sum 

of NDVI were used in establishing correlations with maize yields. Strong and significant correlations were 

found from both NDVI-derived indicators in estimating maize yields. A coefficient of determination (R2) 

of 0.71 was obtained between maximum NDVI and maize yields while R2 of 0.84 was obtained between 

sum of NDVI and maize yields at district level.. The results show the effectiveness of the NDVI-derived 

indicators in estimating maize yields. Thus this study has demonstrated that hyper-temporal NDVI-

derived indicators from SPOT -VGT data can be used for simple, early and reasonably accurate estimation 

of maize yields. 
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1. INTRODUCTION 

 
There are various challenges facing the African continent among which is food insecurity. Ensuring food 

security has been a burning issue on the mantles of the developed and developing nations. Several government 

institutions, organizations both nationally and globally, private sectors and non-governmental organizations 

have proposed and implemented several programs to tackle this problem. It is a major agenda on the United 

Nations Millennium development Goals (MDG) project. Food security exist “when all people at all times have 

physical and economic access to sufficient, safe and nutritious food to meet their dietary needs and food 

preferences for an active and daily life” (FAO, 1996). This is not the situation in many developing countries 

especially Africa due to socio-economic and political factors like rapid population growth, civil strife, absence 

of good governance, poor economic policies, political crisis that sometimes culminate into civil wars which 

exacerbates the problem. Natural factors such as drought, pest infestation, floods, earthquake, and other 

underlying natural constraints has been a major contributor to food insecurity. Drought has been a major 

cause of food insecurity experienced in the semi-arid and arid regions in Africa. 

 

Drought is a condition of moisture deficit sufficient to have an adverse effect on yields over a sizeable area. 

The National Drought Mitigation Centre (NDMC, 2011) defined drought as “a protracted period of deficient 

precipitation resulting in extensive damage to crops, resulting in loss of yield”. This deficiency results in a 

water shortage for some activity, group, or environmental sector. Thus short term drought on its own is not 

necessarily a disaster but when it occurs consecutively for several years to cause significant drop in agricultural 

production resulting in famine, then it becomes a natural disaster. The effects of drought may also lead to 

displacement of people, malnutrition and epidemics (Rojas et al, 2011) . Drought can be categorized into three 

types, meteorological drought, hydrological drought and agricultural drought. 

 

Agricultural droughts affect whole societies, leading to higher food costs, threatened economies, and even 

famine (Wilhite, 2000). This type of drought has adverse and consequent effects on African countries whose 

population derive their livelihood from subsistence farming which is mostly rain-fed agriculture. This 

variability in climatic condition has resulted in frequent occurrence of drought due to low precipitations. This 

has led to crop failures, decline in animal productivity and generally famine which has attracted world 

attention and thus the need to develop measures to guard against this threat, through early warning using 

remotely sensed data. 
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The introduction of the first earth observation satellite revolutionized the space industry and brought about 

new methods of acquiring information by satellite data. This also gave rise to the development of early 

warning systems by using remote sensing. A whole range of early warning systems such as the United Nations 

Food and Agricultural Organization Global Information and Early Warning System (FAO-GIEWS), the 

United States Agency for International Development Famine Early Warning Systems (USAID-FEWSNET), 

the European Joint Research Centre (JRC)-MARS project with specific interest in Africa, the Africa Real Time 

Environmental Monitoring using Imaging Satellites (ARTEMIS) of the UN/FAO are some of the 

organizations that are using satellite imageries together with ground observations, historical and statistical data 

to make predictions 

 

Satellite remote sensing is widely used for monitoring crops and agricultural drought assessment for early 

warning systems. This is because it provides high quality spatial and temporal information about the behaviour 

of agricultural crops (Lewis et al.,1998). It also provides an efficient and reliable means of collecting timely 

information for various purposes, such as mapping crop types, crop acreage, crop health, phenology, etc. It is 

used for deriving indicators for crop production assessment Genovese et al. (2001). Coarse resolution satellites 

sensors have been used to monitor vegetation and detect the impact of moisture stress on vegetation over the 

last twenty years. Since one key aspect of food security on regional or continental scale is timely monitoring of 

the food production conditions ,  therefore use of  repetitive satellite remote sensing data is a key aspect for 

systematically monitoring the different aspects of the resource base over the entire region (Huber et al.,2009). 

Remote sensing data has the potential to capture the spatial and temporal variations in climatic conditions 

which is characteristic of large areas of the African continent. The most commonly used satellite-sensors are 

the Advanced Very High Resolution Radiometer (NOAA-AVHRR), the Moderate Imaging Spectroradiometer 

(MODIS) and the System Pour l’ Observation de la terre (SPOT) VGT sensor.  It has been shown that data 

obtained from these polar orbiting satellite platforms can be used as a sole source of information, and can also 

be used complimentary to weather data, for the purposes of monitoring crop conditions and productivity on a 

large scale area (Groten, 1993b). 

 

Vegetation indices (VI) have been extensively used for monitoring vegetation and land cover changes using 

the above sensors (Swain & Davis, 1981). It is a mathematical combination of the satellite bands sensitive to 

the presence and conditions of green vegetation. These VIs are algorithms for simplifying data from multiple 

reflectance bands to a single value correlating to physical vegetation parameters such as biomass, leaf area 

index, vegetation ground cover or productivity (Tucker 1979). They are the most widely used in remote 

sensing measurements (Brown, 2008). .One of such vegetation indices is the Normalized Difference 

Vegetation Index (NDVI). NDVI is a broadband index known to correlate well with leaf area index and green 

biomass (Inman et al.,2007)  it is representative of the various spectral vegetation indices (Rouse et al, 1974). It 

is probably one of the most popular remote sensing vegetation indices used to monitor vegetation conditions 
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such as plant vigour, biomass, moisture stress, yield and other parameters and calculated as the ratio of the 

difference between the red and infrared reflectance to their sum (de Bie et al., 2011a) and is computed;  

NDVI= (NIR-VIS)/ (NIR+VIS)                                                 

Where NIR= reflectance in the near infrared band (Band4) and VIS= reflectance in the red (visible) band 

(Band3) 

 

NDVI measurements range between -1 and +1 in theory, but practically is observed at between 0.1 and 0.7 

for vegetated land with values greater than 0.5 indicating dense vegetation. Large NDVI values are expected to 

occur in areas where the amount of green vegetation increases. Bare soils also record NDVI values between -

0.1 and +0.1 whereas negative values are observed in clouds, water, snow and ice. In general, higher values of 

NDVI indicate greater vigour and amounts of vegetation (FEWSNET, 2011). Low values of NDVI have been 

associated with the lack of vegetation, dormant states of existing vegetation or stress caused by drought, over-

irrigation, or diseases (Hastings, 2005). NDVI has been used as an indicator to measure of the amount and 

vigour of vegetation by the level of photosynthetic activity in the observed vegetation , as well as an effective 

method for drought detection and also for estimating the impacts of moisture deficits on vegetation 

(Malingreau, 1989), (John et al,1993)  . NDVI from remote sensing products alone has been used in estimating 

crop yields (Lewis et al.,1998), (Hochheim & Bullock, 1994). Rasmussen(1992) and Groten (1993a) for 

Burkina Faso, Krause(1992) for Ethiopia, and Maselli et al., (1992)  for Niger which showed strong 

relationship between the radiant components of NDVI (the red and near-infrared band) and grain production.  

 

There are various NDVI phenological metrics such as green-up onset, green peak onset, senescence onset and 

length of growing season (Sibanda & Murwira, 2012). Vrieling et al., (2008) also described phenological 

indicators to include start of season (SOS), time of maximum NDVI, maximum NDVI, length of season 

(LOS) and cumulated NDVI over the season. SOS as defined by Rojas et al.(2011) is “the moment between 

maximum and minimum when NDVI reaches the average between maximum and minimum (i.e. 50% 

threshold) and EOS is the moment after maximum when the NDVI-curve again reaches the same level.” 

NDVI phenological indicators have been extensively used in crop yields as illustrated by (Funk & Budde, 

2009). Furthermore, NDVI-derived indicators from hyper-temporal imageries can monitor crop production 

growth and timely estimation of crop yields. Also hyper-temporal NDVI imageries can capture variability over 

time due to frequent changes in agro-ecosystem and can be observed in the temporal profiles. Therefore, 

higher temporal variability can be seen more than a spatial one using hyper-temporal data (de Bie et al, 2008)  . 

Since crop monitoring is a critical component of famine early warning, the use of hyper-temporal NDVI-

images is of immeasurable value. 

 

 The use of hyper-temporal data from MODIS, MERIS, AVHRR AND SPOT-VGT has given insight into 

the dynamics of temporal variability due to the 8 -16 days maximum value composites imagery as compared to 

their spatial resolution of 250m-1km. NDVI hyper-temporal data have been used in estimating crop yields 
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through mapping and analyses of vegetation indices. De Bie et al.,(2011b) showed how most frequently annual 

changes in NDVI class profiles reflected changes in cropped areas in small scale land use mapping using  

hyper temporal NDVI data. Consequently, using hyper temporal NDVI data derived from the SPOT-VGT 

(1998-2010) can capture variability and provide information which can be incorporated into early warning 

system. Early warning of impending poor crop harvests in highly variable environments can allow policy 

makers the time needed to take appropriate action to ameliorate the effects of regional food shortages on 

vulnerable rural and urban populations (Thornton et al., 1997).  

 

Traditionally, maize or other crop yields were estimated either through agro-meteorological parameters or by 

compiling information on crop growth throughout the growing season (Bognár et al., 2011). Recently, several 

remote sensing models have been developed using hyper-temporal imageries from NOAA-AVHRR and 

SPOT VGT data to relate between NDVI indicators and crop yields.  Some of these remote sensing models 

have been enumerated by Funk & Budde (2009), where specific studies have been carried put in Kenya. These 

studies have concentrated mostly on national and sub-national levels and crop production estimates. 

 

This study looks beyond the national and sub-national levels to provide a simple method for maize yield 

estimation by exploiting more effectively indicators derived from hyper-temporal SPOT VGT NDVI data and 

its correlation with maize yield data at district level. This is because most natural variations  and differences are 

concealed when agricultural data are aggregated over larger areas (Walker & Mallawaarachchi, 1998).  

 

1.1 Research problem  
 

 Food insecurity remains high in many parts of Kenya due to extremes in climate variability and consecutive 

seasons of poor rainfall. This variability in climatic conditions has resulted to drought situations and is 

projected to be more severe in subsequent years (Boko et al., 2007). Large parts of Kenya’s population are 

dependent on rain-fed agriculture and the growing climate unpredictability and low precipitation result in poor 

yields and sometimes total crop failure. In some districts in Kenya, fluctuating crop production levels affects 

the socio-economic and living quality of the people due to the effects of drought. Inaccurate and less timely 

information on crop production estimation in the early stages of growth portends a problem in ensuring food 

security. As earlier stated, most of the crop yield  estimation models do not capture variability at district levels 

because most often, agricultural production data collected over large statistical zones tends to smoothen out 

the natural variations and conceal differences (Walker & Mallawaarachchi, 1998). 
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1.2  Research Objective 
 
The objective of this study is to relate NDVI derived indicators from hyper-temporal SPOT NDVI data with 

maize yield statistics to establish their functional utility.  

 

1.3  Research Questions  
 

 How well can hyper-temporal SPOT NDVI data disaggregate published maize area statistics 

per districts in Kenya?  

 To what extent can hyper-temporal SPOT NDVI data capture maize areas with variability for 

various districts in Kenya? 

 What is the strength per districts in Kenya of the relationship between NDVI derived 

indicators and maize yields? 

 Which of the two tested NDVI derived indicators performed better? 

 

1.4   Research Hypothesis 
 

 Ho: There is no significant correlation between indicators derived from hyper-temporal 

NDVI and maize yields with coefficient of determination (R2) > 0.65 

 Ha: There is significant correlation between indicators derived from hyper-temporal NDVI 

and maize yields with coefficient of determination (R2) > 0.65. 

 

1.5   Research Assumptions 
 

 The yield data obtained from the Ministry of agriculture (MoA) is correct 

 The fractions of maize obtained from the stepwise regression analysis in disaggregating 

published maize statistics are correct 

 Choices made in defining the growing seasons and the derived indicators are correct. 

 The up-scaling of administrative boundaries in relationship to maize yields are correct. 
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2. MATERIALS AND METHOD  

 

2.1  Study Area 
 
Kenya was chosen as a study area due to the growing food insecurity as a result of recurrent seasons of poor 

or failed rains, its relative richness in data and thirdly, the agro-ecological heterogeneity of the districts. It is a 

country in East Africa situated at the equator. It lies between latitude 50N and 50S and longitudes 340 and 

420E. The country has a population of nearly 41,000,000 people presently and occupies an area of about 

580,367km2.  It consists of 8 provinces and several districts. The country’s geography is as diverse as its people 

and agriculture is practiced in coastal, low land and high land areas which have diverse climate conditions 

(Rojas, 2007). Kenya’s agro-ecological zones are characterized by the following; humid, sub-humid, semi-

humid, semi humido/semi-arid (transitional), semi-arid and arid. The production systems are high potential 

(mixed farming), high potential (cereal and dairy), marginal agriculture, agro-pastoral and mostly pastoral. 

There are six Agro-Ecological Zones (AEZs) and five major production systems in Kenya (USDA, 2004). 

These AEZs are humid, sub-humid, semi-humid, semi-humido/semi-arid (transitional) semi-arid and arid. 

These zones vary from tropical along the coast to temperate inland to arid in the north and northeast parts of 

the country with long rains beginning from march-June (or sometimes late February- August/ September) and 

short rains from October- December. The average temperature is 190C.   

 Agriculture plays an important role in the livelihood of the people and about 80 percent of Kenyans derive 

their livelihoods from this activity. The livelihood/production systems are the high potential (mixed farming), 

high potential (cereal and dairy), marginal agriculture, agro-pastoral and mostly pastoral. There are other 

ecosystem services that contribute to the  livelihood of the people as well such as the tourism sector with its 

array of mountains, rangelands, wildlife, beaches and timber production. Maize (Zea mays) is the major food 

crop cultivated in Kenya and represents 90 percent of the country’s total national cereal production (Rojas, 

2007). It is an annual crop with solid jointed stem and its mode of photosynthesis is very efficient and growth 

is rapid with a life cycle of 90-270 days (FAO, 2012) . Three provinces are known for high maize cultivation 

and these are Rift Valley, Nyanza and Western and they produce more than 80 percent of the national maize 

production. Also, these three provinces are characterized by one period of rainfall while Central, Eastern and 

Coast provinces have two periods of rainfall and thus have two cropping seasons per year (Rojas, 2007). The 

large and widely dispersed rural populations in the semiarid zone make their living out of rain-fed agriculture 

and pastoral farming and this is greatly affected by agricultural drought which has resulted in poor yields 
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sometimes leading to crop failures and death of animals. This persistent rainfall variability makes subsistence 

farming difficult and as such, results in food insecurity. Estimation of crop yields prior to harvest is required 

for early intervention in case of a deficit. Figure 1 below represents the maize area statistics per district 

collected from by the Ministry of Agriculture presented in spatial context. It is the study area and shows the 

area of maize from 20000 hectares (ha) to greater than 100000ha. 

 

 

 
Figure 1: Maize areas in Kenya (‘000 ha/district) 
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2.2 Data used  
 

 Hyper temporal SPOT NDVI data 
 
The major data source for this research was the SPOT VEGETATION (VGT) NDVI data from 

http://www.VGT.vito.be. This dataset consist of 10-day Maximum-Value Composites (MVC), synthesis (S10) 

images at 1km x 1km resolution from April 1998 to July 2011. The images were corrected for atmospheric, 

radiometric and geographically effects. The maximum value compositing of the data corrects for cloudy days 

which might interfere with the NDVI values. A total of 475 images were geo-referenced and de-clouded. De-

clouded as explained by de Bie et al(2008) are “those pixels with good radiometric quality, not having cloud or 

uncertainty, but clear image”. The NDVI image was in the Plate Caree projection system and comprised of 

four bands: 

Blue band- 0.43 to 0.47μm  

Red band (R) - 0.61 to 0.68 μm 

Near infrared (NIR) - 0.78 to 0.89μm  

Short- wave infrared (SWIR) - 1.58 to 1.75μm.  

The red and near infrared bands are the main wavelengths used by VITO in deriving the NDVI. The NDVI 

measure the greenness of vegetation and is calculated from NIR-R / NIR+R. It ranges from 0-1 but mostly 

represented as Digital Numbers (DN) ranging from 0-255 by applying the formula: DN = NDVI + 0.1/ 0.004.                      

 

Africover map of Kenya 
 

The Africover map was obtained from International Livestock Research Institute (ILRI). The land cover data 

was produced using LANDSAT TM at 30m spatial resolution under the FAO/UNEP international standard 

LCCS classification system at a scale of 1: 100,000 or 1:200,000 respectively for small or large countries. It has 

a planimetric accuracy of 50m. The projection system was in WGS _1984_ UTM_Zone_37N but was re-

projected to Plate Caree projection system to enable the calculation of areas in hectares. It consists of various 

land cover classes in which a section is described below in table1.  
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Table 1: Description of the land cover classes from Africover that were assigned to fields 

 
Africover land cover classification Fields 

  AG 1- Rainfed Herbaceous Crop 
AG 1B- Scattered (in natural vegetation or others) Rainfed herbaceous crop 
(field density 20-40% of polygon area) 
AG 1C- Isolated (in natural vegetation or others) Rainfed herbaceous crop (field 
density 10-20% of polygon area) 
AG2- Irrigated herbaceous crop 
AG-2B Scattered (in natural vegetation or others) irrigated herbaceous crop (field 
density 20-40% of polygon area) 
AG 3 Rainfed shrub crop 
AG 3B Scattered (in natural vegetation or others) Rainfed shrub crop (field 
density 20-40% of polygon area) 
AG 3C Isolated (in natural vegetation or others) Rainfed shrub crop crop (field 
density 10-20% of polygon area) 
AG 5B Scattered (in natural vegetation or others) rainfed tree crop (field density 
20-40% of polygon area) 
AG 6 Rice fields 

 
 
The above land cover description assigmned fields is srepresented below in figure2. The fields were extracted 

from the Africover land cover data using the extraction function in ArcGIS. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Map showing fields extracted from Africover data 
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District map of Kenya 

This was equally obtained from ILRI comprising the 47 districts in Kenya with D-WGS_1984 Datum, Zone 

37N and Universal Transverse Mercator (UTM) projection system but re-projected to Plate Caree projection 

system. 

 

Maize crop statistics  
 

 Maize crop statistics by districts was collected (part of the fieldwork) from the department of crop 

 development in the Ministry of Agriculture (MoA). Kenya started collecting disaggregated agricultural 

 crop statistics in 1997 (Rojas, 2007). The government agencies routinely gathers crop data, including planted 

 and harvested areas on periodic basis through districts agricultural officers and are aggregated at provincial 

 levels. This data reported by the MoA is considered as a standard source of information although other 

 agencies are also involved in the final publishing of the crop statistics data. The data consist of maize 

 cultivated areas in hectares (ha) and maize production some in tonnes per hectares (t/ha), or 90 kilograme 

 bag per hectare (90kgbag/ ha). The data was reported in EXCEL format consisting of Provinces, Districts and 

 Counties.  The data were in two formats, one with data from 1976-2006 and the other from 2007 -2010. The 

 first format had maize production data in tonnes per hectare while the second format had maize production in 

 90kg bags per hectare. To obtain uniform units, the number of bags was converted to tonnes using the 

 formula: Tonnes=No. of Bags*90/1000. The yield data (Y) was obtained from the maize statistics data by 

 dividing maize production(P) in tons by the area of cultivation (A) in hectares(ha) represented as Y=P/A 
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Crop calendar data 
 
This was obtained from the Food and Organization (FAO) website (FAO, 2012). Table 2 below shows 

planting, length of days and harvesting periods for the different provinces and selected districts.  

 

Table 2:  Part of maize crop calendar for some provinces and selected districts from FAO website: 

Administrative areas Crop 
Additional 
Information 

Planting 
period 

Length of 
days 

Harvesting 
period 

Western province   (Embu, Meru) 
Central province  Rift valley 
province  Maize First season 28/02 180-270  01/09 
Western province ,  (Embu, 
Meru) Central province (Except 
Kirinyaga), Rift valley, Maize Second season 01/09 180-270  01/02 
kisumu,  (Busia, , Embu, Meru,   
Kirinyaga Maize First season 01/03 110-150  01/08 
Kisumu,  Busia, , Embu, Meru, 
Kirinyaga Maize Second season 15/10 110-150  01/02 
Meru, T/Nzoia,  Maize Second season 15/10 210-280  01/05 
Kisumu Maize First season 15/02 135-160  01/08 
Kisumu Maize Second season 01/08 135-160  15/12 
Embu, Meru, Kirinyaga, T/Nzoia Maize First season 15/03 135-160  01/08 
Embu, Meru,, Kirinyaga, T/Nzoia Maize Second season 01/08 135-160  15/12 
Lamu Maize   15/04 90-120  15/07 
Lamu Maize   15/03 90-120  15/07 
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2.3  Method 
 
The method employed in this study comprised of three distinct steps depicted below in figure 3, ISODATA 

clustering, disaggregating crop statistics into NDVI classes and selecting NDVI derived indicators, their 

relationship to yields and comparison of the indicators.  

 

 Figure 3: Flowchart of work process and hypothesis test. 

 
 
The first step was the ISODATA clustering (unsupervised classification) to determine the useful number of 

classes to be used for further analysis. The second step was to disaggregate published maize statistics data by 

NDVI classes and the third step was to select NDVI-derived indicators and establish their correlation with 

maize yields. 
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 ISODATA Clustering 
 
The ISODATA (Iterative Self Organizing Data Technique Analysis) was performed to derive spectral classes 

from 475 stacked NDVI image layers. It is an unsupervised classification algorithm in the ERDAS Imagine 

software to naturally group the study area into clusters (group of pixels with similar characteristics). This 

method as described by de Bie et al.(2008), Campbell (2006) and Swain & Davis (1981), was carried out to 

generate temporal profiles for the land cover classes. The method uses minimum spectral distance to assign a 

cluster for each candidate pixel beginning with a specified number of arbitrary clusters and then processes 

repetitively (ERDAS, 2003). Separate ISODATA runs were carried out with number of iterations set at 50 and 

convergence threshold at 1.0. A predefined number of classes were optimized at 100. Iteration is explained as 

the process of repeatedly performing an entire classification resulting to thematic layers, and then the statistics 

are recalculated (ERDAS, 2003). The convergence threshold was set at 1.0 to ensure that the maximum 

percentage of classes of pixels whose values are to be unchanged do not run indefinitely between iterations. 

The signatures from the runs were evaluated using the divergence statistics analysis to determine the most 

useful or best classes for analysis (i.e. grouping similar NDVI profiles into meaningful classes). This was 

achieved by selecting the highest peak values recorded from the minimum seperability measure of distance 

above the exponential line curve (see figure 4). The selected classes were then exported to excel and plotted to 

visualize the NDVI temporal profiles of all the classes. The selected classes called best NDVI classes were 

converted to polygons without simplying. The method of classification is simpler than the supervised 

classification because the cluster signatures are automatically generated Khan et al.(2010). 

 

Disaggregating maize statistics data using NDVI classes 
 
 
This step involved Geographic information systems (GIS) analysis in ArcGIS. The NDVI classes derived 

from the ISODATA clustering technique after converting to polygons were intersected with the districts 

shapefile. Thus the intersection produced a shapefile consisting of districts and NDVI classes and a new area 

was calculated in hectares. The fields (crops) map which was extracted from the Africover land cover data 

was intersected with the district/ NDVI classes’ shapefile. This intersection resulted in a shapefile consisting 

of district, NDVI classes (as grid codes) and fields and a final area calculated in hectares. The data was 

exported to EXCEL and parsed which enabled the easy interpretation and management of data. The maize 

area statistics data was sorted by averaging maize areas from 1998-2010 relevant for the purpose of this study 

though only data from 2000-2006 were finally used. The average maize area was linked to the parsed data in 
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EXCEL with equal representation of the districts to ensure spatial compatibility in EXCEL. This resulted in 

a matrix (table 3) showing districts, reported maize areas and areas of NDVI classes.   

 Table 3: Part of table showing parsed districts, averaged maize area (ha) statistics with NDVI 
 classes (ha)
 

 
The linking of the districts/ 36 NDVI classes/fields with averaged maize area statistics produced the 

statistical function:  Maize area by district (ha) =f [Area of NDVI classes by district (ha)]. The function was 

estimated through stepwise regression as illustrated by Khan et al., (2010). 

n

i
biY

1

xi + єi 

Y= Maize area per district (ha)  

b= Regression coefficient for NDVI class i per district 

x= Average area (ha) of NDVI class i per district 

n= Number of NDVI classes 

є= Residual error 

A stepwise linear regression analysis was performed using average area of maize per district as dependent 

variable and the fields (crops) covered by the 36 NDVI classes as independent variables to estimate the 

contribution of NDVI classes in predicting maize in the various districts. No constant was applied and no 

coefficient was constrained to the 0.0 -1.0 because as explained by Khan et al (2010), “the area of a crop in a 

district can neither be negative or more than the area of that particular district”. Model performance was 

evaluated by removing negative values until only coefficients with positive values were attained. This produced 

the NDVI classes that related to maize. Thus this produced a map showing the fractions of maize per district.  
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NDVI derived indicators and their relation to maize yields. 
 
To derive NDVI indicators, mean temporal NDVI profiles were generated per districts. The NDVI classes 

that related to maize were individually clipped to respective districts (as shape files) in which the classes were 

found. The extent of the NDVI class in the district was found by calculating the area in ArcGIS. These 

shapefiles consisting of the districts and respective NDVI classes were defined as area of interest (AOI) and 

superimposed over the original SPOT VEGETATION NDVI stacked image in ERDAS. This process 

calculated the mean temporal NDVI value of the pixels per district for the 475 layers. The mean value and the 

standard deviation were obtained from the statistics properties window in Arc catalogue and exported as XML 

format. These were parsed to obtain the mean NDVI values in digital numbers (DN) per pixels per districts. 

These values were used in generating the temporal NDVI profiles per districts. To avoid the complexity of 

having more than a single temporal profile in a district, weighted averages were applied to the respective 

NDVI classes.  Weighted averages were obtained by dividing the extent (area in ha) of each NDVI class by the 

total area (ha) of all NDVI classes in that district and multiplied by the fractions of the maize predicted by the 

NDVI classes. The weighted average for each class was multiplied to the DN values of the classes per district. 

The summation of the product was divided by the sum of weighted averages to produce a single mean NDVI 

profile per district.  

The NDVI growth seasonal curves derived from the mean temporal NDVI profiles per districts were 

generated by defining the growing seasons for the maize crop using fixed calendar dates from February to 

September from the FAO website (FAO, 2012) and also by adjusting the NDVI values and smoothing it. A 

sudden rise in NDVI values indicated the onset of greenness (significant photosynthetic activity) while a 

sudden decrease in NDVI values signaled the end of greenness thus the growing season (GS) and non-

growing season (NGS) were established. The growing season represents period from onset of greenness, 

maximum greenness and decrease in greenness. Non growing season represents period after the growing 

season for the long rains. To establish the correlation between NDVI and maize yields, two indicators were 

considered, the maximum NDVI and the sum of NDVI. The highest DN value recorded within the growing 

season depicted the highest greenness value on the curve and was selected as the maximum NDVI.  This 

indicator was considered as a potential indicator for estimation of maize yields before harvest.  The maximum 

NDVI was regressed with the annual maize yield data for the respective years for selected districts. Below 

(table4) is an example showing the selection of maximum NDVI–derived indicator. Maximum NDVI 

generally occurred in May for most of the districts.  
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Table 4:  A sample showing the selection of maximum NDVI in a growing season. 

 
 

Another indicator considered was the sum of NDVI above a defined threshold and its relationship to maize 

yields. This threshold was based on selecting the highest DN value of the onset of greenness (hereby used as 

start-of-season) from the growing seasons of individual years and subtracting this value from the proceeding 

NDVI values for the entire growing seasons. The differences in each of the growing seasons were summed up 

to give the sum of NDVI above the threshold.  

A simple linear regression analysis was used in developing the maize yield model using the derived NDVI 

indicators as independent variables and the maize yields as dependent variable. 

 Y= α + βI                                            

Where Y is Yield (t/ha), α is constant, β is the coefficient (slope) and I is the NDVI indicator (dimensionless) 
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 Coefficient of determination (R2) was obtained between NDVI derived indicators and maize yields in 

EXCEL. The districts were selected based on Agro-Ecological Zones (AEZ) and also from high potential 

maize areas. 
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3. RESULTS 

3.1.  ISODATA clustering 
 
The ISODATA clustering algorithm of Erdas Imagine software was used in carrying out unsupervised 

classification of 475 NDVI image data layers with a predefined number of 100 classes. The result of this runs 

produced minimum and average divergence indicators that best suited the data (debie, 2008). The minimum 

separability distance measure considered minimum seperability between two most similar classes while average 

separability indicator considered values between all pairs of classes. The minimum seperability distance 

measure was used in identifying the best number of classes to be used for further analysis. The highest peak 

observed from the minimum seperability distance measure (arrowed in figure 4) was used in defining the 

suitable number of classes for analysis. Thus the unsupervised classification produced 36 NDVI classes as the 

best classification for the data from 1998-2011 as seen in figure 4 below. 

 

 
 

Figure 4: Result of seperability analysis to identify the best classes. 

 
These 36 classes were converted into polygons and intersected with the district map. Figure 5 below shows the 

representation of the 36 NDVI classes within the districts. 
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The unsupervised classification analysis produce the useful number of classes to used for further analysis and 

is presented below ( Figure 5) 

 

 
   Figure 5:  Map showing NDVI classes based on unsupervised classification 
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3.2.  Disaggregating maize statistics data into NDVI classes 
 
The result of the stepwise linear regression analysis displayed a model summary showing four steps with 

adjusted R2 of 0.32, 0.62, 0.72 and 0.79 respectively shown in table5 below.  

Table 5: Summary results of the 4 steps of the stepwise linear regression analysis 

 

 

 

 

 

 

 

 

Therefore Maize area (ha)= 0.597**(Class 31) + 0.312** ( Class 35) +0.308** (Class 33) +0.851*(Class 35) 

** = Signifcant at P= 0.000 

* = Significant at P=0.001 

Regression parameters were considered to be significant at the p ≤ 0.05 level of significance. Independent 

variables that were significant at the p ≤ 0.05 level of significance were retained in the model and thus the four 

models were highly significant but the best was the fourth model that had more NDVI classes related to maize. 

Figure 7 below shows the representation of the fractions of maize(%) per 1Km2 . 

Step NDVI classes Coefficient Adjusted R2 

1 31 .727 0.32 

2 31, 35 .716, .475 0.62 

3 31, 35, 33 .697, .333, .347 0.72 

4 31, 35, 33 and 17 .597, .312, .308 and .851 0.79 
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    Figure 6: Maize fractions in percentage per 1Km2 per district obtained from the stepwise  
   regression analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



HYPER-TEMPORAL NDVI-DERIVED INDICATORS TO ESTIMATE MAIZE YIELDS IN KENYA 

23 

3.3. NDVI –derived indicators and their relationship with yields  
 

Temporal NDVI profiles 
 

In order to derive indicators from NDVI, single mean temporal profiles were generated from the four 

NDVI classes that related to maize. Figure 8 below shows mean temporal profiles of the four classes. Meru 

district was one of the districts that had all the four NDVI classes that related to maize.  

 

 

 

 

Figure 7: Mean NDVI temporal profile for four classes 
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  Figure 7: Single mean temporal NDVI profile for Meru district. 

 
 
 
 Simple linear regression between indicators and maize yields 
 

 The selected indicators were regressed with maize yields to determine their correlations. The growing 

 season (GS) represents period from onset of greenness, to end of greenness for the long rains while 

 non-growing season (NGS) represents period after the growing season for the long rains. The blue

 lines across in the NDVI profile represents the threshold which was the highest value recorded during 

 the onset of greenness for the growing period. Graphical representation showing the derived 

 indicators and maize yields and their correlations for selected districts are presented below. 
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 Figure 8: A=NDVI profile showing maximum NDVI and maize yields, B= NDVI profile showing sum of NDVI and 
maize yields, C=Linear relationship between maximum NDVI and maize yields and D= Linear relationship between sum 
of NDVI and maize yields for Busia district. 
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Figure 9: A=NDVI profile showing maximum NDVI and maize yields, B= NDVI profile showing sum of NDVI and 
maize yields, C=Linear relationship between maximum NDVI and maize yields and D= Linear relationship between sum 
of NDVI and maize yields for Bomet district. 
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 Figure 10: A=NDVI profile showing maximum NDVI and maize yields, B= NDVI profile showing sum of NDVI and 
maize yields, C=Linear relationship between maximum NDVI and maize yields and D= Linear relationship between sum 
of NDVI and maize yields for Kirinyaga district. 

 

147 

188 191 192 193 192 202 

0.41 
0.72 

0.98 0.91 
0.77 0.8 

1.3 

0

0.5

1

1.5

2

80
100
120
140
160
180
200
220

2000 2001 2002 2003 2004 2005 2006

Yi
el

d 
(t

/h
a)

 

N
DV

I (
DN

 v
al

ue
s)

 

Years 

GS MaxNDVI NGS YIELD

0.41 
0.72 

0.98 0.91 
0.77 0.8 

1.3 

0

0.5

1

1.5

2

80
100
120
140
160
180
200
220

2000 2001 2002 2003 2004 2005 2006

Yi
el

d 
(t

/h
a)

 

N
DV

I (
DN

 v
al

ue
s)

 

Years 

GS SumNDVI NGS YIELD

1.9 250 342 377 324 369 385 

 
R² = 0.69 

0.4

0.6

0.8

1

1.2

1.4

145 160 175 190 205

Yi
el

d 
(t

/h
a)

 

MaxNDVI 

 
R² = 0.66 

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400

Yi
el

d 
(t

/h
a)

 

SumNDVI 

A

B 

C D 



HYPER-TEMPORAL NDVI-DERIVED INDICATORS TO ESTIMATE MAIZE YIELDS IN KENYA 

28 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
Figure 11: A=NDVI profile showing maximum NDVI and maize yields, B= NDVI profile showing sum of NDVI and 
maize yields, C=Linear relationship between maximum NDVI and maize yields and D= Linear relationship between sum 
of NDVI and maize yields for Kisumu district. 
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 Figure 12: A=NDVI profile showing maximum NDVI and maize yields, B= NDVI profile showing sum of NDVI and 
maize yields, C=Linear relationship between maximum NDVI and maize yields and D= Linear relationship between sum 
of NDVI and maize yields for Lamu district. 

 
 

 

196 201 196 
204 207 205 204 

0.99 0.99 
0.81 

0.58 

0.99 
1.25 

1.08 

0

0.5

1

1.5

120

140

160

180

200

220

2000 2001 2002 2003 2004 2005 2006

Yi
el

d 
(t

/h
a)

 

N
DV

I (
DN

 v
al

ue
s)

 

Years 

GS MaxNDVI NGS YIELD

 
R² = 0.05 

0.5

0.7

0.9

1.1

1.3

195 200 205 210

Yi
el

d 
(t

/h
a)

 

MaxNDVI 

R² = 0.34 

0.5

0.7

0.9

1.1

1.3

435 485 535 585 635

Yi
el

d 
(t

/h
a)

 

SumNDVI 

A 

0.99 0.99 
0.81 

0.58 

0.99
1.25 

1.08 

0

0.5

1

1.5

120

140

160

180

200

220

2000 2001 2002 2003 2004 2005 2006

Yi
el

d 
(t

/h
a)

 

N
DV

I (
DN

va
lu

es
) 

Years 

GS SumNDVI NGS YIELD

436 526 468 464 442 579 622 

B 

C D 



HYPER-TEMPORAL NDVI-DERIVED INDICATORS TO ESTIMATE MAIZE YIELDS IN KENYA 

30 
 

 

 

 

 
 

                  
 

 
 Figure 13: A=NDVI profile showing maximum NDVI and maize yields, B= NDVI profile showing sum of NDVI and 
maize yields, C=Linear relationship between maximum NDVI and maize yields and D= Linear relationship between sum 
of NDVI and maize yields for Meru district. 
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 Figure 14: A=NDVI profile showing maximum NDVI and maize yields, B= NDVI profile showing sum of NDVI and 
maize yields, C=Linear relationship between maximum NDVI and maize yields and D= Linear relationship between sum 
of NDVI and maize yields for Trans-Nzoia district 
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  Figure 15: Linear relationship between maximum NDVI and maize yields for seven selected districts   

 
 

 
 
 
 Figure 16: Linear relationship between sum of NDVI and maize yields for seven selected  

 
 

The above graphical representation of the linear relationship between maximum NDVI and yields show the 

variability that exists in the different districts from the different AEZs. 
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 Table 6: Summary of simple linear relationship between maximum NDVI and maize yields  

 

Selected Districts Simple Linear Relationship R 2 Significance 

Busia Yield =0.04MaxNDVI - 7.54 0.26  0.2 

Bomet Yield =0.05MaxNDVI- 8.59 0.64  0.03 

Kirinyaga Yield =0.01MaxDNVI- 1.51 0.69  0.02 

Kisumu Yield =0.05MaxNDVI- 7.7 0.68  0.02 

Lamu Yield=0.01MaxNDVI-1.15 0.05  0.64 

Meru Yield =0.04MaxNDVI- 3.87 0.71  0.01 

Trans-Nzoia Yield =0.09MaxNDVI- 15.74 0.56  0.05 

 
 

 Table 7: Summary of simple linear relationship between sum of NDVI and maize yields 

 

The results of the statistical analyses showed varying coefficient of determination for the selected districts. 

These ranged from R2 of 0.05-0.71 for maximum NDVI derived indicator versus yield and R2 of 0.34-0.84 for 

the sum of NDVI derived indicator. Both indicators showed strong positive linear correlation with maize 

yields and were significant estimators of yield in most of the districts selected (Tables 6 and 7) except for 

Lamu and Busia districts that had R2 of 0.05 and 0.26 respectively for maximum NDVI versus yields. Lamu, 

Meru and Busia districts equally had low correlations between sum of NDVI versus maize yields.  

Selected districts Simple Linear Relationship R
2
  

Significance 

Busia Yield= 0.004SumNDVI +0.34 0.47  0.09 

Bomet Yield= 0.02SumNDVI +0.62 0.65  0.05 

Kirinyaga Yield= 0.002SumNDVI +0.37 0.66  0.02 

Kisumu Yield= 0.005SumNDVI +0.73 0.84  0.003 

Lamu Yield=0.002SumNDVI+0.10 0.34  0.17 

Meru Yield= 0.001SumNDVI +1.32 0.46  0.14 

Trans-Nzoia Yield= 0.007SumNDVI -3.49 0.65  0.03 
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The best fitting model was an R2 of 0.71 significant at 0.01 estimated for Meru district between maximum 

NDVI and maize yields and for sum of NDVI versus yield, it was an R2 of 0.84 estimated  for Kisumu district 

and significant at 0.003. It is evident from the results (tables 6 and 7) that NDVI derived indicators with R2 

above 0.55 were significant at P ≤ 0.05 and strongly correlated with maize yields.  
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4 DISCUSSION 

 

4.1 Baseline information on fractions of maize per district by NDVI classes 
 
Given the complexity of spectrally determining maize areas due to the mixes of crops in a field, the 

ISODATA algorithm was able to produce the useful number of classes to be used for analysis. The minimum 

seperability measure distance was used in selecting the best number of NDVI classes. The disaggregation of 

the published maize area statistics data by these NDVI classes provided the reasonable information on the 

fractions of maize per districts by NDVI classes (see also table 4). The fractions of maize compare favourably 

with the maize area statistics from the MoA (figure1).  

Khan et al.,(2010) also showed the usefulness of the above procedure in stratifying a study area into map units 

or classes. The advantages of the ISODATA clustering algorithm are the capability at finding spectral clusters 

that are inherent in the data, not geographically biased due to its iterative nature and it produces results similar 

to the minimum distance classifier on signatures created (ERDAS, 2003). This shows that analyses of NDVI 

time series with coarse resolution together with crop statistics data can provide useful information on the 

fractions of crop on a field.  

 

4.2 Capturing variability in the various districts using Hypertemporal data 
 

. Mean temporal NDVI profiles were generated per districts. These profiles reflected the NDVI time series 

growth cycle of maize and change that occured throughout the growing season. These changes can be seen by 

the behavior of the NDVI-profiles for each growing season. In the year 2000, there was considerable 

variability in some of the selected districts especially in Bomet, Kirnyaga and Meru districts. (Figures 10, 11 

and 14). This is an indication of possibly a bad year equally noticeable in the yields. de Bie et al.(2008) also 

proved this procedure to be a useful tool in image analysis for crop mapping, monitoring and change 

detection. .The varying results obtained from the simple regression analysis explained substantial variability. 

Thus the use of hyper-temporal NDVI SPOT data was able to capture variability. These trends in variability 

can be used to detect drought years and thus estimate their re-occurrence which is fundamental towards 

ensuring food security (Rojas et al., 2011).  
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4.3  Relationship between indicators derived from NDVI and maize yield 
 
 

To establish relationships between NDVI-derived indicators and maize yields, only yields from the long rains 

were considered even though Kenya is characterized by two growing seasons. According to Lewis et al.(1998) 

about 95 percent of the yields are obtained from the first season. This is also supported by Rojas (2007) more 

than 82 percent and Galu & Gideon (2007) that about 80 percent of the yields are obtained from the first 

season. Maize yield data for seven years were used. (2000-2006). Yield data from 2007-2011 were excluded due 

to missing data and inconsistency as a result of the fragmentation of districts and the aftermath of post-

election violence which caused the temporary displacement of farmers across Nairobi, Rift Valley, Nyanza, 

Western and the coastlands (USAID, 2009). Thus there were disruptions in agricultural production in the 

three provinces responsible for producing maize. The third important reason was that the released crop 

production data compendium of the Kenyan Agricultural Sector Data Compendium volume2 compiled by the 

Kenyan Institute for Public Policy Research and Analysis (KIPPRA) in collaboration with the Ministry of 

Agriculture (MoA), Ministry of Livestock & Fisheries Development (ML&FD) and Ministry of Cooperative 

Development (MoCD) officially published crop production data from 1976 to 2006.   

The maximum NDVI and the sum of NDVI were selected as indicators to estimate yields based on their 

functional utility in providing information on yields before harvest. The maximum NDVI  as a median area 

NDVI (Lewis et al., 1998) recorded  the peak of greenness ( grain filling) stage and the sum of NDVI  which 

is often used as a proxy for biomass, thus accumulation of biomass should correlate with crop yields (Wiegand 

& Richardson). Furthermore, Labus et al.(2002) explained that the inclusion of the summation of entire NDVI 

growth profile through each consecutive month could detect early and accurate estimation of yields. Maximum 

NDVI were recorded in the month of May, three months before harvest for most districts selected except in 

Meru where it was recorded in April year 2000 (Figure 14).  

 

The results of the statistical analyses showed varying coefficient of determination for the selected districts. 

(Tables 6 and 7). The regression model between maximum NDVI and maize yield was highest in Meru district 

and recorded an estimation of R2 of 0.71. The regression model between sum of NDVI and maize yield 

recorded the highest R2 of 0.84 in Kisumu district. The high correlations recorded in these districts indicated 

that NDVI was a major influence on yields and thus is a good indicator for early estimation of maize yields. 

With such strong correlations, estimation of yields will be of great significance because only then can timely 

monitoring be effective to safeguard against food insecurity which manifest as a chronic problem in marginal 

agricultural areas (Galu & Ng’anga, 2007). There were low correlations with yields in a few of the districts 

selected indicating that other factors could be responsible for yield. Mkhabela et al.,(2005) explains that even 

with high rainfall leading to high NDVI, yields could still be low. Other factors that could be responsible for 

correlation with  low yields are soil fertility, pest and disease infestation (Prasad et at., 2006) . However, in 
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Kenya,  USAID(2009) reported that low yields resulted from flooding caused by the October- December 

heavy rains which affected the un-harvested maize crops. These crops require dry conditions. Again, the heavy 

rains resulted in flooding of the riverine and coastal areas damaging crops and potentially decreasing yields. 

This may explain why there were low correlations in Lamu district even with the high maximum NDVI values 

and sum of NDVI recorded. Another possible reason for low correlations even with high NDVI values, apart 

from the reasons mentioned above could be that officials from the MoA do not always go the farms to collect 

data and as such data collected on maize yields might be subjective.  

 

Though other studies have been carried out in Kenya  such as the Crop Specific water balance (CSWB) model 

(Rojas, 2007) where the cumulative NDVI and maximum NDVI metrics throughout the crop season were 

used to correlate maize yields and the beta--version stand-alone Geospatial Water Requirement Satisfaction 

Index (GeoWSRI) crop model (Galu & Ng’anga, 2007) which incorporated locally available agro-

meteorological datasets and crop phenology to estimate maize production, these were carried out at sub-

national levels. Thus, this method used in this study is a simplified procedure which has demonstrated that 

reliable estimates on maize yields can be obtained from NDVI-derived indicators at district level. 
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5  CONCLUSION  AND RECOMMENDATION 

 

5.1 Conclusion 
 
 
 Results obtained from the analysis explained sufficiently the variability that exist between district and thus 

interpretations between districts differed considerably and therefore targeting a nation-wide (aggregated) 

relationship is not recommended. This method is suitable for district specific aspect of crop monitoring 

therefore timely information on the specific districts on estimation of yields is valuable for adequate and 

prompt response by relevant government institutions targeted at those districts with poor yields estimation. 

The study also shows both NDVI derived indicators can be used in estimating maize yields, although the 

maximum NDVI regression model showed significant levels in one or more districts than the sum of NDVI, 

the sum of NDVI had the best fit model. This can be explained that increase in biomass reflects increase in 

yields, thus as the season progresses, higher correlations are attained. (Labus et al., 2002). The use of seven 

years yield data were marginal to reach firm conclusions because in order to  adequately  identify critical 

periods such as drought and monitor crop yields for firm estimations, long term seasonal growth profiles are 

required (Labus et al., 2002). However, the method applied and results obtained can be used for simple, early 

and reasonably accurate estimation of maize yields and therefore can be adopted as an operational tool for 

ensuring timely estimation of maize yields in Kenya and countries that have similar agro-ecological 

heterogeneity.  

 

5.2 Recommendation 

 The study recommends that further analysis with hyper-temporal SPOT-VGT NDVI data and crop 

yield data the analysis should be carried out with longer time frame to be able to study temporal 

trends and thus make concrete predictions. 

 An independent collection of  crop production/yield data would be ideal. 
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