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Abstract—With the growth of applications using neural net-
works, there is an increase in need for compact C models. The
work of [1] presents interesting results on QKeras models and
its impact on memory footprint. With that in mind this paper
presents a modified version of the keras2c library to adapt
to the needs of QKeras models. The modified library is used
for studying the influence of data representation on memory
and inference time in C-translated Qkeras models. The results
show a memory reduction of 2.5x in case of the fixed-point
representation with no loss in inference time. Even though the
output of the inference could not be studied in accuracy, the
study shows interesting and promising results that need further
investigation.

I. INTRODUCTION

Machine Learning is widely used in a multitude of ap-
plications (some examples include medicine, spam sorting,
speech and face recognition, translation, automation etc.) [7].
Multiple reasons are involved in the increasing need of neural
networks to be deployed in mobile devices or limited resource
systems. For some applications new data privacy laws require
a local storage [1]. Other applications require easy deployment
on existing models or real time inferences [3]. In any case it
is interesting to study possibilities of memory size reduction.

Translating a machine learning model from Python to C
is not a new concept. There are multiple articles that have
focused on solving the issue of real time inference on an
edge computing. The majority of those methods require large
libraries or are time consuming and thus making them ineffi-
cient [3]. The work of [3] created a new C library for Keras
API for real time inference. The library is simple and small
in size compared to other solutions and puts out interesting
results for Keras models [3]. The paper of [1] successfully
reduced the memory footprint of a face recognition neural
network from 32-bits down to 8-bits and 4-bits using QKeras.

A. Research Question

This paper aims to answer the following question: How
does number representation influence the memory footprint
and inference time of a C-translated QKeras model?

To answer this question a workflow has been developed
aiming to answer the following subquestions chronologically:

• What are the possible number representations?
• How can keras2c methodology be adapted for quantized

QKeras models?
• How are memory footprint and inference time influ-

enced by the number representations of QKeras model
in C?

II. RELATED WORK

A. Number Representations
The definition of data representation is the way information

is stored and described in computers [8]. There are two
types of data representation, fixed-point and floating-point
representation. The choice of the representation type depends
on the application and needs of the programmer (storage
available, precision etc.) [8]. Arithmetic and operations are
influenced by the representation and it is therefore important
to understand them. This paper will only focus on signed
numbers therefore only the signed cases will be studied

Fig. 1. N-bits fixed-point representation

1) Fixed-Point Representation: Figure 1 shows the N-bit
fixed point representation. This type of data representation has
a fixed amount of bits for the integer and fractional part of
the number, meaning the radix point is always at the same
place, hence its name ‘fixed-point representation’ [8]. The
only important information that needs to be stored is the total
number of bits (N ) and either the fractional bits (f ) or integer
bits (i).

The integer representation of a N -bit number is given by
[1]:

(−1)s ·m · 2−f (1)

In equation 1, s is the signed bit, m is the mantissa (N −1
with N the total number of bits) and f is the number of bits
for the fractional part (the part after the radix point) which is
given as N − 1 − i (i is the amount of bits for the integer)
[1]. 2−f is a scaling factor and depending on the f parameter
the representation will change.

When using a dynamic fixed point representation f can
take a range of values, this will influence the position of the
decimal point. Thus by regulating f , the amount of bits for
the integer representation can vary [1]. The full fractional
bit representation has the most promising results according
to the results obtained by [1]. This means that no bits are
given for the integer part of the representation and all bits
of the mantissa are used for the fractional part, meaning it
normalizes the integer between [1,−1].

When using fixed-point representation two characteristics
are important to keep in mind, range and precision. The range
is defined as all the possible numbers that the data can have
and the precision as the difference between two consecutive
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numbers [8]. These two values have a trade-off, increasing one
may result in a reduction of the other due to the limitation of
the fixed-point representation.

Fig. 2. 32 bit floating point representation

2) Floating-Point Representation: Figure2 shows an exam-
ple of 32 bits floating point representation. Floating-point
representation allows for a greater range compared to fixed-
point representation [8]. It achieves this by using parts of the
mantissa for exponent bits. This reduces the precision, as now
parts of the mantissa are no longer accessible, but it increases
the range considerably. In floating point representation the
mantissa is the fixed point part of the number [8].

The floating point representation of a 32-bit number is given
by [1]:

(−1)s ·m · 2e−127 (2)

In equation 2, s is the sign bit, m is the mantissa of 23-bits
and e is the exponent of 8-bits [1].

B. Quantization
The process of storing and operating data at lower bit-

widths than floating point representation is defined as quan-
tization [10]. Quantization is very useful when applications
require a compact neural network. [4] and [10] explain in
detail how quantization schemes work. In summary: the
mapping of the floating point to a quantized bit integer is
defined as [10]:

q = round(
1

S
r − Z) (3)

In equation 3 q is the quantization (an N -bit integer
depending on the quantization), r is a floating point of
range r ∈ [α, β], S and Z are quantization parameters. The
dequantization equation is shown in the equation below [10],
[4]:

r = S(q + Z) (4)

In order to find the quantization parameters the detail
derivation can be found in [10] and in the Appendix A. The
important information to remember is that S is the scale and
is represented as a float and Z is the zero point with a bit
representation identical to q. Z is an important requirement
of quantization as zero needs to be represented without any
error after the conversion as neural networks use zero-padding
[10],[4].

C. Qkeras
Keras is a high level API that is part of tensorflow. Some

of the reasons Keras is widely used is due to it’s user friendly
interface, it is modular and extensible, this makes Keras
simple to use [6] [3]. Qkeras, is a quantized extension of
Keras [1] [2] [9]. The benefits of using QKeras is that it
is based on the same idea and principles as Keras and is
intended to extend those functionalities that make Keras so

widely used [2] [9]. In addition, this last point offers the
possibility for QKeras to be used easily with Keras or replace
Keras [1] [9] [2]. The layers of QKeras are similar to Keras
and the main difference is that they label all variables with the
quantization functions in order to create a shell and perform
the necessary tasks [1] [2]. QKeras provides quantization-
aware training (QAT), this has better accuracy results in
comparison to post training quantization [2] [5]. One more key
element of QKeras is that it allows a customized quantization
per layer, meaning a potential heterogeneous quantization.
Compared to homogeneous quantization where all the model
is quantized post training by the same fixed point precision,
heterogeneous quantization allows each layer to be quantized
independently from the other layers [2]. The real benefits of
heterogeneous quantization is further reduction of the model
while simultaneously assuring a high accuracy [2].

QKeras can have three possible quantization representation:
dynamic fixed-point, exponent, sub-byte [1]. Another addition
to the possibilities of the library is the options concerning the
scaling factor. The scaling factor (QKeras use the notation α)
has the option of None, Automatic and Auto po2 [1].

D. Keras2c [3]
Keras2c is a library that was introduced by [3]. It targets

to translate a hdf5 file of a trained model into a callable C
network. Hdf5 is a format used to store data efficiently [11].
Keras and QKeras use this type of file format to save the
weights, parameters and model architecture. The idea of the
library is based on the same design idea as Keras. The idea
is that the layer stays as a simple callable function in Keras,
making the forward pass simple [3]. Each layer will extract the
parameters from the hdf5 file and write it on the C extension
file. One of the key ideas of keras2c is the k2c tensor [3]
introduced. All information will use the tensor datatype that
they created in order to save the weights either on the stack
or in memory [3].

Fig. 3. Keras2c workflow [3]

Figure 3 shows the workflow of keras2c project [3]. The
hdf5 file of the trained model is passed with all information in
the python script of the Keras2c. From the script the weights
and architecture are extracted and used to generate the C file.
The Keras2c C library is written and will be compiled along
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with the C file. The python script also generates a test file to
verify the C model.

E. Summary
This section provides a lot of information that will be

needed later on during the implementation of this project.
The first subquestion can be already be answered. There are
two major data representations that can be used for storing
the weights and parameters. The floating point representation
is the default 32-bits implementation. The fixed point repre-
sentation provides more compact options. Depending on the
number of bits used for the storage the fixed point represen-
tation can be more flexible as the number of fractional bits
can change. The previous statement allows for dynamic fixed
point representation. The choice of representation relies fully
on the type of application and the programmer. A resource
limited application will require a fixed point representation.
An application with large computer storage could use floating
point representation.

III. METHOD

Figure 4 shows the workflow that will serve as a guidance
for the implementation of the goal of the project. The figure
is separated in two parts the, the python part on the left and
the C part on the right. The green boxes are the python scripts
that the Mnist neural network is written. The light pink are
the output of the scripts. Between the Mnist Qkeras and the
HDF5 file there is an additional function that will be added
(the saving function) in order to meet the requirements of the
input of the qkeras2c script. Blue boxes represent the parts
that are written using the keras2c model. The red boxes are
the keras2c library that are used with no changes added.

Fig. 4. Project workflow

The workflow of figure 4 can be separated in three different
sections: Model coding, Qkeras C-translator and C model
testing

Fig. 5. Qkeras2c workflow and connections with the Keras2c library

A. Model Coding

Before the Qkeras C-translator is implemented a simple
neural network application is implemented using Keras and
QKeras in Python. The application that is chosen is the Mnist
neural network. The structure of this neural network can
be found in Appendix B, C). The model architecture and
weights/parameters is saved in an HDF5 file. Currently Qkeras
only support saving of model weights, therefore an additional
saving function is written to ensure model architecture and
quantization information are stored in the file. This type of
information is required at the input of the Qkeras C-translator.

B. Qkeras C-translator

The Qkeras C-translator is based on the design of the
Keras2c library. Figure 5 shows the Qkeras2c structure and
links with the existing Keras2c library. For consistency the
colors have similar meanings as for figure 4. Blue boxes are
the contributions of this paper, red boxes are unchanged ex-
isting libraries (keras2c) and light pink represent the outputs.
The translator has three steps: name compatibility, layer &
weight C generation and C library.

1) Name Compatibility: In C there is a strict requirements
concerning names given to variables, functions and etc. There-
fore the first step of the translator is a name check for each
layer and the output C name file. To do so the existing
functions of keras2c library are called from the qkeras2c.

2) Layer & Weight C generation: This step consist of the
extraction of the model architecture and weight/parameters.
Depending on the application the programmer can choose to
write the weights in the heap or in memory. This option exist
in keras2c and is adapted for the needs of the qkeras2c. The
weights is then written depending on the layer. The last step
is to write the layer itself and to do so the input variables
needed for inference are written in the C file. If the model
uses some Keras layers qkeras2c will call the keras2c to write
those functions.

The previous section showed that there is two different
ways of representing data. In Python data are stored in
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float32 by default, this is not the case for C. In C every
variable, function need to be explicitly define the data type.
For Qkeras the translator aims to output the weights in a fixed-
point representation. To do so the weights are converted to
their fixed-point representation and then written in the C file
as an integer.

3) C library: For the C libraries the k2c_tensor datatype
is used for the structure. Information are passed through this
datatype. This datatype is define in the keras2c C library. A
new qkeras2c C library is defined in order to allow operations
of the QKeras model. Currently only the QDense, QActivation
and QConv layers is going to be implemented. For the
qactivation only the quantized_relu will be possible.

C. C Model Testing

The keras2c outputs a test_suite C file in order to
test the output C model. There is two things that the test
file checks, the time required for inference and the error of
the model output. As the qkeras2c is based on the keras2c,
the test_suite will be implemented to fit the needs of
QKeras.

D. Arithmetic

This subsection concerns the arithmetic that will be used.
Depending on the data representation the implementation of
arithmetic differ. As the weights are stored using integer
datatype the arithmetic will require integer only arithmetic.
In order to avoid this (integer only arithmetic is harder to be
implemented) the weights will be converted back to floating
point for calculations. Before storage the weights will be
converted to an integer once again.

E. Summary

This section explains the implementation workflow and
method. The subquestion: How can keras2c methodology be
adapted for quantized QKeras models? can be answered at this
point. The keras2c targets Keras models, in order to achieve a
QKeras translator the QKeras includes functions that translate
Qlayers. In some cases the qkeras2c uses functions of the
keras2c python script. Additional utilities functions are added
in order to allow fixed-point representation. The C libraries
of qkeras2c are programmed to allow Qkeras layers to do
inference with the same design structure as keras2c.

IV. RESULTS & DISCUSSION

The last subquestion to be answered is: How are memory
footprint and inference time influenced by the number repre-
sentations of QKeras model in C?. This section tries to answer
this in order to fully answer the main research question.

In the previous section it was mentioned that a
test_suite is automatically created, in order to calculate
the error and run time of the inference. A number of tests
were run in order to have a clear comparison. The Keras Mnist
model was used to output a Keras C file. The results of this
file will be used to compare with the Qkeras file.

The results of the test are summarise in the figure 6 below:

Fig. 6. Result table for the different types of models

The table of figure 6 has four different case studies. The
first consist of the Keras C model (generated using the keras2c
library) with weights saved on the heap. The second case is
the Keras C model with weights saved in memory using csv
files. The third case is the Qkeras C model (generated using
the new library) with weights saved in integer representation
in the heap. In this case the arithmetic was implemented
using integer and floating point conversions. The last case is
the QKeras C model with integer representation and weights
saved in memory. This case uses integer datatype.

The results of figure 6 show that storing the weights
with fixed-point representation in memory, has a clear size
reduction compared to the Keras model. The Keras model uses
1914Kb of memory in total to store the weights in a CSV
file and 476Kb for the executable. The executable requires
the CSV files to perform the inference. In the QKeras model
which is stored in integer form, requires 445Kb of memory
to store the weights and 506Kb for the executable file. This
means that there is more than 4x reduction in the CSV file for
memory in fixed-point representation. In total there is a 2.5x
reduction in the total memory footprint. The inference time is
not reduced compared to the Keras model. This shows a clear
improvement in memory footprint, with no loss in inference
time.

The table above also shows a high error percentage for the
Qkeras model. The reason for this error is due to the integer
arithmetic implementation. These results were obtained, using
an initial integer arithmetic which was not optimal. The model
using integer and floating conversion to perform arithmetic,
was not able to work properly and could not output a time of
inference nor error at this point.

The last subquestion can now be answered. The memory is
influenced by the usage of the fixed-point representation. Even
though this is a good achievement, unfortunately the current
results don’t show anything interesting with respect to the
inference itself. It is important for a neural network to have
a high accuracy. Therefore further investigation is required
to study the influence on the accuracy of the inference, with
more optimal and working algorithms.

A. Improvements & Future Work
Due to time constraints the qkeras2c was implemented

to translate a very simple model. Currently floating-point
arithmetic is supported, which is useful for mobile devices.
If the application requires the model to be used in a micro-
processor, integer only arithmetic should be implemented to
further reduce the memory footprint. The qkeras2c library is
a project that I will keep investigating further after the end
of this project. Some of the future improvements concern
the efficiency of the algorithms, the current version was
implemented to have a proof of concept. Another idea that
would be studied is the possibility of conversion of the keras2c
C library to support integer arithmetic to allow for a fully
independent library that could potentially import functions
and convert them to it’s needs. For the integer arithmetic,
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the algorithms were written but errors were not allowing the
files to compile, further work is required in order to allow
for a successful use of integer arithmetic. Lastly the idea of
possibly choosing the type of arithmetic during the inference
is interesting as it would allow for the converted model to be
used in a larger range of applications.

V. CONCLUSION

This paper aimed to study the impact of data representation
in the memory footprint and inference time. The output of this
thesis shows that there is a clear impact in memory size, when
using fixed-point representation. In addition the inference time
is not influenced. Despite this, it was not possible to prove
that this method produces accurate inference. The reasons
for this has been identified in the discussion. Even though
the accuracy doesn’t show satisfying results, this work shows
interesting outcomes. The methodology is not a failure but
rather a start for further studies.
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APPENDIX

A. Quantization

The following section can be found in [10] in more details,
it is included in this paper for easy access on additional
information concerning quantization and derivations.

1) Derivation of Quantization Parameters: The range of
possible values for r is r ∈ [α, β] and for q is q ∈ [αq, βq].
The range need to also follow the mapping requirements of
r and q (equations 3 and 4). Solving the following system of
equations will provide the quantization parameters.{

β = S(βq + Z)

α = S(αq + Z)
(5)

In equation 5 subtracting α from β will give the scale
parameter S.

β − α = S(βq − Z)− S(αq − Z) = S(βq − αq)

S =
β − α

βq − αq
(6)

By substituting equation 6 in the first equation of 5 results
in the zero-point.

β =
β − α

βq − αq
(βq + Z)

β(βq − αq) = (β − α)(βq + Z)

−βαq = (β − α)Z − αβq

Z =
αβq − βαq

β − α
(7)

To prove that Z is the zero point the following equation
needs to be solved:

q0 = round(
1

S
0− Z) = round(−Z) = −Z (8)

B. MNIST model

The figure below 7 shows the Keras model for the MNIST
application. The input is again 784 and there is two hidden
layers of 128 nodes each. The activation is Rectified Linear
Unit (RELU). Between the hidden layers and the output, the
Dropout function of Keras is used to ensure that the model
is not overfitting. In this simple model the Dropout layer is
not really needed. The output layer has 10 nodes for the 10
different numbers from 0 to 10. The activation function for
the last layer is the softmax in order to output a probability.
This will output the probability of each number, the highest
probability is the predicted number.

Fig. 7. Keras MNIST model
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C. QMNIST model
Figure 8 shows the Python code of the QKeras version of

the MNIST model. The model consist of one Input layer like
the Keras version with an input of 784 nodes. The hidden body
of the model consist of 2 QDense layers, with 128 nodes and
8bits quantization and 0 bits for the integer part. The activation
of those layers is quantized relu (the quantized version of the
relu function of Keras), the quantization bits are 8 bits for the
total and 3 bits for the integer part. The output layer consist of
a QDense layer with 10 nodes and same quantization pattern
as the hidden layers. The output activation function is softmax
as we want to have a probability as an output to classify the
results.

Fig. 8. QKeras MNIST model

D. Save function for QKeras
The saving function implemented to save the weight-

s/parameters, model architecture and quantization infor-
mation of QKeras model follows the structure of the
model_save_quantized_weights function. The rea-
son QKeras currently only save the weights can be found
in the previous mentioned function, it calls the Keras
save_weights function. Therefore the new QKeras func-
tion only changes the call to the Keras function save that will
save the full model information (including the quantization
and model architecture).

E. Floating to Fixed point Representation in Python
A major difference between the keras2c and qkeras2c

library is the fact that weights are stored in fixed-point
representation. To do so a function that converts from floating
point to fixed point.

Fig. 9. Convert to a fixed-point representation function

In order to ensure that the function work
two packages need to be imported qkeras

and NumpyFloatToFixConverter from the
rig.type_casts package.

In order to print the weights in the C file as an integer using
the following syntax: s += ":".format(temp[i]) +
’,’ in the qarray2c function of the qweights2c python
file.
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F. C translated QKeras model

Fig. 10. Model structure in the C file


