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MANAGEMENT SUMMARY 
INTRODUCTION 
This research is focused on a company that develops and exploits locker walls for the purpose of parcel 

distribution. The locker walls that are exploited by the company are located throughout the 

Netherlands and are used by multiple delivery companies. The delivery companies can deliver parcels 

in the locker wall that are picked up by customers. This is called the last-mile parcel stream. 

Furthermore, customers can use the wall to deliver a parcel that must be picked up by delivery 

companies, this is called the first-mile parcel stream. The lockers in the locker wall are allocated using 

a First-Come First-Served (FCFS) policy. This means that if a locker is free at the moment a locker is 

requested, the request is always accepted. When parcels that should be put in the wall do not fit 

anymore and are brought to another service point, delivery companies must make an extra stop and 

customers cannot pick up their parcel at their desired location. These two reasons combined raise the 

question if the FCFS policy is the most suitable or if there are other models that would work better. 

CHARACTERISTICS OF PARCEL DISTRIBUTION USING LOCKER WALLS 
The actor we focus on is the locker wall company. The most important relationships we focus on are 

with the customers and the delivery companies. As stated earlier, there are two different parcels 

streams: first-mile and last-mile. The last-mile parcels are delivered by the delivery company and the 

first-mile parcels are picked up by the delivery company. Furthermore, the last-mile parcels are picked 

up by the customer and the first-mile parcels are delivered by the customer. The delivery companies 

mainly arrive in the morning between 09:00 and 13:00. When they arrive, they first empty the first-

mile parcels dedicated to them and then they deliver the last-mile parcels.  

PROPOSED SOLUTION APPROACH 
The problem is formed into a small problem instance to analyse possible scenarios. We assumed the 

supply and demand are balanced. Furthermore, two delivery companies arrive at a fixed time (in the 

morning). They always arrive at the same time and in the same order (10:00 and 12:00). Furthermore, 

the first-mile deliveries follow a non-homogeneous Poisson distribution with 𝜆𝑓𝑚𝑑(𝑖) that varies per 

hour i. The last-mile parcels are also picked up with a non-homogeneous Poisson rate 𝜆𝑙𝑚𝑝(𝑖). Based 

on literature, three policies were devised.  

Threshold policy 

We defined a simple threshold policy for our dynamic rental system problem. The threshold policy only 

considers the current number of parcels in the locker wall. The policy does not distinguish between 

different types of parcels in the wall.  

Myopic allocation policy 

The myopic allocation policy allow customers based on a probability that is calculated based on the 

𝜆𝑙𝑚𝑝(𝑖). The probability must be given as a parameter. Based on the time of day, the mean value 

function until the next delivery company arrival is calculated by the following formula:  

𝑚(𝑡)  =  ∫ 𝜆(𝑢)𝑑𝑢

𝑡

0

 

Subsequently, the probability is calculated that enough lockers will be available tomorrow if the new 

customer is accepted using the following formula: 

𝑃(𝑇1 > 𝑡) = 𝑃(𝑁(𝑡) = 0) = 𝑒−𝑚(𝑡)   𝑡 > 0 
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The customer is accepted if the probability is equal to or higher than the desired probability. 

Markov Decision Process policy 

Finally, a policy was created by solving a MDP with a value iteration algorithm. The state of the MDP 

looks as follows: 

𝑆(𝑡) = [𝐿𝑀(𝑡), 𝐹𝑀1(𝑡), 𝐹𝑀2(𝑡), 𝑡𝑖𝑚𝑒_𝑙𝑒𝑓𝑡] 

The state keeps track of the number of last-mile parcels in the wall, the number of first-mile parcels in 

the wall per delivery company and the time that is left until the next delivery company arrives. The 

latter is kept track of to cope with the inhomogeneous Poisson arrival rates of the last-mile pickup and 

first-mile delivery streams. The transition probabilities are based on the 𝜆𝑙𝑚𝑝(𝑖) and 𝜆𝑓𝑚𝑑(𝑖) 

corresponding to the time of day. In the end, every hour a decision is made on how many first-mile 

parcels to accept of delivery company 2.  

RESULTS 
The myopic allocation policy only outperforms the current situation in crowded situations and if the 

income per parcel for delivery company 1 is higher than delivery company 2. In the figure below, the 

income per policy (five different settings for the myopic allocation policy) are shown. It can be seen 

that the First-Come First-Serve policy is outperformed by all other policies and the best setting would 

be a probability of 0.70.  

 

The MDP policy only outperformed the FCFS policy in extreme crowded situations. In the figure below 

these situations are shown. However, in the second case almost only no parcels of delivery company 

2 were accepted.  
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RECOMMENDATIONS 
The myopic allocation policies can be implemented in crowded situations in which one delivery 

company should get priority compared to the other company. Based on the crowdedness and the 

importance of the first company, the strictness of the policy can be adjusted. In really crowded 

situations or with a large difference in income, a higher probability will lead to better results. The same 

holds if the difference in income is minimal and the penalty (in money or goodwill) of not having 

enough lockers available for the first company is high. 

The Markov Decision Process policy that was developed did not outperform the FCFS policy in normal 

situations. However, when the situation got even more crowded, it started to perform better relative 

to the FCFS policy. In the most crowded situation, no more first-mile parcels of delivery company 2 

were accepted. This turned out to work quite well for the first delivery company. Therefore, it could 

be interesting to close off the possibility to deliver first-mile parcels for other delivery companies in 

really crowded walls while still allowing last-mile parcel delivery. 
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1. INTRODUCTION 
In this chapter, an introduction into this thesis will be given. First, the company and context will be 

introduced in Section 1.1. Subsequently, we will describe the motivation behind the research in Section 

1.2. Thereafter, we will describe the problem in Section 1.3. The research objective will be presented 

in Section 1.4 after which the research questions will be elaborated upon in Section 1.5. We will 

conclude this chapter by describing the research design in Section 1.6.  

1.1 RESEARCH CONTEXT 
This research is focused on a company that develops and exploits locker walls for the purpose of parcel 

distribution. The company owns walls throughout the Netherlands. The parcel distribution market has 

been growing rapidly over the past decade (eMarketer, 2017). This entails an increase in the demand 

for solutions like this company is offering. It is easier for the parcel distributors (they only have to drive 

to one destination instead of people’s homes), it is easier for the customers because they do not have 

to stay home to wait for their parcel, it reduces carbon emissions and it increases the liveability of 

residential areas as the number of vans driving past homes will decrease. The demand for the locker 

spaces is increasing, but it is not possible nor cost efficient to keep placing as many locker walls as 

possible. From this, the wish of the company arises. Namely, using the existing lockers as efficiently as 

possible.  

The locker wall company, the location partner or the delivery company can own locker walls. In the 

first two cases, the locker wall can be exploited openly or (partially) closed. In the former case, all 

lockers may be used by anyone. In the latter case, the locker wall is exclusively used by the delivery 

company and its customers. Rohmer & Gendron (2020) distinguish between exclusively owned locker 

walls and locker walls that are exploited openly. For the second category, they observe several 

challenges on strategic, tactical and operational level. The management on strategic level includes 

decisions about the location and configuration of the locker walls. Furthermore, the business model 

that is used is also a strategic choice. On a tactical level, the vehicle routing problems of the delivery 

companies are discussed. On operational level, the choice must be made which locker to assign to 

which customer and for what price.  

1.2 RESEARCH MOTIVATION 
The locker walls that are exploited by the company are located throughout the Netherlands and are 

used by multiple delivery companies. The delivery companies can deliver parcels in the locker wall that 

are picked up by customers. This is called the last-mile parcel stream. Furthermore, customers can use 

the wall to deliver a parcel that must be picked up by delivery companies, this is called the first-mile 

parcel stream. The lockers in the locker wall are allocated using a First-Come First-Served (FCFS) policy. 

This means that if a locker is free at the moment a locker is requested, the request is always accepted. 

A locker wall consists of lockers in different sizes.  

Some delivery companies send information about the parcels that they will deliver to a certain parcel 

locker beforehand and some companies do not. This makes it difficult to estimate how busy a wall will 

be and if all requests in a day can be accepted. Delivery companies receive an overview in the morning 

with the number of first-mile parcels they have to pick up and the number of free lockers in total. The 

combination of these two gives a rough estimate on how much capacity will be available to them. 

However, in the meantime another delivery company may arrive or multiple first-mile parcels that are 

meant for another delivery company may be put in the wall. This may lead to the situation in which a 

deliverer cannot put all the parcels that are meant for the wall in a locker. The parcels that do not fit 

in the wall have to be taken with the deliverer again and are delivered to the nearest service point.  
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When parcels that should be put in the wall do not fit anymore and are brought to another service 

point, delivery companies must make an extra stop and customers cannot pick up their parcel at their 

desired location. These two reasons combined raise the question if the FCFS policy is the most suitable 

or if there are other models that would work better. 

1.3 PROBLEM DESCRIPTION 
A problem cluster that describes the situation is presented in Figure 1. The combination of missing 

information from the parcel companies and the unknown occupation duration of the lockers results in 

the fact that it is impossible to allocate the lockers before drivers arrive. Furthermore, there is no real-

time availability overview. Therefore, a driver that wishes to use a locker wall always has to go there 

based on information that he or she received in the morning. Furthermore, the duration before the 

customer picks up its last-mile parcel cannot be influenced (or marginally). The complete registration 

of the parcels is done by some delivery companies but is often incorrect and for other delivery 

companies it is not possible yet. A real-time availability overview may not lead to improvement, as the 

routes of the delivery company are already made in the morning and cannot be adjusted when they 

are driving. Therefore, we will focus on the allocation model of the lockers, as this is the only core 

problem in Figure 1 that can be influenced and may lead to improvements.  

 

Figure 1 - Problem cluster of the locker wall problem 
 

We formulate the core problem of this research as follows: 

The allocation of the capacity and pricing of the locker walls is not done in a state-dependent 

way. There is no method based on historical data or demand information that dynamically 

allocates the capacity.  

1.4 RESEARCH OBJECTIVE 
As the popularity of the locker walls is growing and the capacity is limited, the company aims to 

optimize the utilization of the lockers. However, they are not certain how this can be realized. The 

most important performance indicators are the total profit and the satisfaction of the customers. The 

total profit will be defined to obtain the optimal utilization of the wall in different settings. The total 

profit will be calculated by multiplying the number of parcels with the income per parcel per unit of 

time. Furthermore, assumptions will be made to model the customer satisfaction as a service level. A 

certain service level must be obtained for a certain class of customers to be satisfied. There is not much 

literature available concerning allocation policies in locker walls. However, a parallel can be drawn with 

other rental systems with limited capacity and uncertain rental durations. In this branch of literature, 

admission policies and dynamic pricing policies are often proposed. However, these have never been 

analysed in a locker wall context. Therefore, the contribution of this research will be twofold.  
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First, we will investigate if there are policies that will optimize the usage of the lockers. We will look 

for various policies in literature about comparable rental systems and see if the policies can be applied 

to this context. We will analyse the different policies on total profit and will consider service levels for 

customers with whom explicit agreements are made. The total profit will be calculated using a 

prespecified income per parcel we will analyse the effect of different service level agreements on the 

admission and dynamic pricing policies. Therefore, the theoretical contribution will be the extension 

of existing literature to a new environment, an environment that has rapidly expanded over the last 

few years and will probably grow even further in the next decade. Investigating how an admission and 

dynamic pricing policy will behave in these situations will be valuable for future research in this 

direction.  

Second, we will analyse how such a model would work in the context of the company where the 

research is executed. We will analyse their current situation and investigate how the policies that are 

found will behave in their situation. Based on this, we will give recommendations on how they can 

adjust the admission policy of their locker walls. This will enable them to optimally allocate the capacity 

of their locker walls to their different customers. As the e-commerce market will only grow over the 

next decade, it will only become more important to allocate the lockers in an intelligent way.  

1.5 RESEARCH QUESTIONS 
First, we investigated whether we could develop a dynamic method to operate the locker walls. We 

distinguished between contract and walk-in customers. The contract customers are the delivery 

companies. They send their demand information beforehand and are guaranteed a certain service 

level. When they wish to use more lockers, they can make a request and the system will provide an 

offer based on the state of the locker wall on that moment. The state of the locker wall depends on 

the number of lockers that are still free. Combining this with the core problem that we found in Section 

1.3 gives us our main research question: 

What would be the effect on the utilization of the lockers, the service level of the different classes of 

customers and the total profit if a state-dependent allocation policy would be implemented?  

To be able to answer our main research question, we have divided our research and will answer 

multiple smaller research questions. The research questions will be formulated in the following 

paragraph.  

Research question 1: What does the locker wall environment look like?  

a. Where are the locker walls located?  

b. What are the characteristics of a locker wall?  

c. Which actors play important roles and how do they interact with each other?  

d. When are the first-mile parcels picked up and delivered?  

e. When are the last-mile parcels picked up and delivered?  

f. How does the utilization of a locker wall behave during the day (and week)?  

Research question 2: What literature exists concerning locker walls for parcel distribution and which 

relevant policies are described? 

a. What is written in the literature about the strategic, tactical and operational challenges of 

locker walls?  

b. What relevant admission policies are described in literature concerning rental systems?  
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Research question 3: Which methods will be used to model the locker wall environments and evaluate 

the policies that are found?  

a. How can the performance of the policies that are found be evaluated in a locker wall 

environment? 

b. What should be the input of the models and what should be the experimental factors?  

c. What should be the range of the experimental factors? 

Research question 4: What does the outcome of the performance analysis of the models mean for the 

locker wall company?  

a. What effect would implementing the new-found policy have on the utilization of the locker 

walls?  

b. What effect would implementing the new-found policy have on the service levels of the 

customers? 

Research question 5: What effect would relaxing certain assumptions have on the locker wall 

utilization and service levels?  

a. What would be the effect of not accepting first-mile parcels anymore?  

b. What would be the effect of not accepting last-mile parcels anymore?  

c. What would be the effect of having more different delivery companies?  

d. What would be the effect of spreading the delivery companies more throughout the day? 

e. From which utilization should expansion be considered? 

1.6 RESEARCH DESIGN 
In this research, we have aimed to answer all the research questions that are discussed in Section 1.5. 

The action problem in this thesis concerns the lack of an intelligent allocation model. However, before 

a solution for this was found, multiple knowledge problems had to be solved. To solve the knowledge 

problems, different methods have been used dependent on where the information could be found 

(Heerkens & Van Winden, 2017, pp. 21-25). 

The first research questions and all its sub-questions are answered in Chapter 2. We will answer them 

by analysing historical data of the company. The first questions (locations, configuration) can be 

answered by looking at the data and talking with the company’s director. Based on the data, an 

overview is made of the locker walls’ characteristics and the most important actors and their 

interactions. Furthermore, the data is analysed to investigate the arrival patterns of first-mile and last-

mile deliveries and pickups. The logs of the locker walls are used to get an overview which parts of the 

day are the busiest for all parcel streams. Furthermore, the logs of the locker walls are used to analyse 

the utilization of a locker wall (number of parcels in a locker wall per unit of time). For this analysis, 

five representative locker walls are chosen.  

The second research question is answered in Chapter 3. We will answer the questions by investigating 

relevant literature. We started by looking for literature about locker walls for parcel distribution. We 

have looked for literature that elaborates on the strategical, tactical and operational challenges of 

locker walls for parcel distribution. As this area is still new, not much literature is available. Therefore, 

we extended our research by looking for literature about rental systems in general. Furthermore, we 

have searched for admission policies and dynamic pricing policies that we can use in our situation. By 

the end of the literature research, more is known about the challenges of the locker wall business and 

we have obtained policies that can be applied to our context (either directly or slightly adjusted). 
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The third research question is answered by looking at previous research. If the problem can be solved 

exactly, we may choose to use a mathematical model. If the problem environment becomes too 

complex, we may opt to use a simulation model. A combination is also possible. We may isolate a part 

of the problem to solve exactly and subsequently evaluate its performance by implementing it in a 

simulation model. This will be further discussed in Chapter 4 and 5.  

The fourth and fifth research questions are answered by using the method that is found by answering 

research question 3. The method can be used to run experiments that will give answer to all the sub-

questions of research questions 4 and 5. The setup for these experiments will be presented in Chapter 

6. The outcome of this quantitative analysis will be the final result of this research. The results will be 

presented in Chapter 7. Subsequently, we will present some analyses for practical use in Chapter 8. 

Thereafter, we will draw conclusions and discuss the results in Chapter 9.  
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2. CURRENT SITUATION 
In this section, the current situation will be discussed. In Section 2.1, the general characteristics of the 

locker walls are described. Furthermore, all actors are described in Section 2.2. In Section 2.3, an 

analysis on the basis of the delivery and pick-up times is presented. Finally, an analysis of the utilization 

of a locker wall is presented in Section 2.4. 

2.1 LOCKER WALLS AND LOCATIONS 
A regular locker wall consists of lockers in different sizes. There are various versions of the locker walls, 

depending on the physical restrictions and expected demand. The walls can be open for everyone. This 

means that all parcel delivery companies may use them but also normal customers. There are some 

exceptions to this. A (part of a) wall may be reserved for the location partner. A location partner is the 

partner where the locker wall is located. Furthermore, a locker wall can be reserved for one delivery 

company. In this situation, other delivery companies cannot use the wall for last-mile deliveries and 

last-mile pick-ups. The wall can be used by customers that want to send a first-mile parcel that must 

be transported by the specific delivery company.  

Some delivery companies that use the locker wall already know in the morning how many parcels they 

will bring to a locker wall that day. They also have information about the size and weight of the parcels 

because this is measured during their sorting process. This information is sent to the locker wall 

company and the parcels are then registered in the system. When the size of the parcel is registered, 

the correct locker size is opened when the deliverer scans the parcel. He can also manually choose to 

open a bigger or smaller locker when the sizes are different or the parcel does not fit in the locker that 

was assigned. The parcels of the delivery company are registered in the system, but no reservations 

are made. This way, it is known which parcels will be delivered to speed up the process at the locker 

wall. However, no lockers are reserved and therefore the possibility exists that not all parcels will fit. 

Furthermore, the costs of all lockers are equal. However, when a private customer uses the locker wall, 

there is a difference in costs between the different sizes.  

Especially in the western part of the Netherlands, the number of walls is relatively high. Therefore, 

there are situations in which customers live at walking distance from multiple walls. However, it is not 

possible to use a wall as back-up for another wall. If a wall has reached its maximum capacity, the 

parcel is delivered at a service point. This leads to the situation in which the deliverers have to drive to 

more locations than necessary. Furthermore, customers have to pick up their parcel at a location they 

did not pick, which decreases customer satisfaction. Additionally, an extra destination means the 

delivery van has to drive a bigger distance. This will lead to more emission and increases traffic in 

residential areas, which is evidently undesirable. Finally, not having enough space for all parcels will 

lead to a loss of income for the locker wall company, as the parcels will be delivered elsewhere and 

will never return.  

2.2 ACTOR ANALYSIS 
In this section, the different actors that are involved will be described. First, the company that exploits 

the locker walls will be discussed in Section 2.2.1. Subsequently, the customers that use the locker wall 

are described in Section 2.2.2. The delivery companies are described in Section 2.2.3. Finally, the 

location partners will be discussed in Section 2.2.4.  

2.2.1 The company operating the locker walls 

The company that exploits the locker walls, operates a network of locker walls throughout the 

Netherlands. Delivery companies and customers can use the lockers. The company that exploits the 

locker walls used to only work with one delivery company. For this reason, it was easy to guarantee 
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capacity. Furthermore, the distributor had the same data as the company of the lockers. However, the 

market is growing and more distributors recognize the potential of the locker walls. This leads to more 

distributors wanting to collaborate and thus more parcels to distribute. The throughput time of parcels 

varies. However, a locker can be used multiple times on a day. If lockers are filled with a parcel in the 

morning and this parcel is picked up at noon, the locker becomes available again. It is also possible 

someone picks up a parcel and switches it for a parcel he or she wishes to return. Once the distributor 

picks up this parcel, the locker can be used again. Therefore, it is clear that a locker can be used multiple 

times per day. Allocation is currently first-come first-served and no real-time information is kept or 

shared.  

Every morning, the company sends a report to the biggest delivery company that uses the locker walls. 

In this report, there is an overview of the parcels that are signed up by the parcel deliverer. 

Furthermore, the capacity that is currently available is given. This consists of the number of lockers 

that are available, lockers that are filled with a first-mile parcel destined for them and parcels that 

must be picked up again because the time limit has passed. Based on this, the expected over- or 

undercapacity is given. This way, the possibility is given to the delivery company to estimate whether 

it is desirable to visit the locker wall or not. However, in the meantime a customer can return a parcel 

or another deliverer can bring parcels. The overview only considers the delivery company in question 

and does not include the advance demand information that may have been sent by other companies. 

Therefore, the information is mostly correct when the delivery company arrives first, but this is mostly 

uncertain.  

2.2.2 Customers 

In this context, the customers are defined as the customers that use the wall for last-mile pickups or 

first-mile deliveries: people who order a parcel online and choose a locker wall as delivery option from 

the last-mile delivery pickup customers. They receive an email when their parcel is delivered. The email 

contains a QR-code with which the right locker can be opened at the wall. Depending on the deliverer, 

the customers have a number of days to pick up the parcel. Normally, this period consists of five or 

seven days. Customers who use the wall to send a parcel are seen as the first-mile delivery customers. 

2.2.3 Delivery companies 

The company works with different parcel deliverers. The agreements differ between the deliverers. All 

parties pay for a certain occupation duration. This means the parcel can stay in the locker for at most 

the number of days that is agreed upon before the parcel deliverer has to pick it up again.  

For distributors, we believe that guarantees can be important because they otherwise take a risk by 

taking a detour with a full delivery van to a locker wall. When all the lockers are full, driving to the wall 

is useless. Too many of these useless trips may make collaborating with the locker wall exploiter less 

attractive. Therefore, it is important they are certain they can deliver (a big part of) their parcels in the 

lockers. All the parcels that do not fit in the wall are taken to the closest service point. As the parcels 

are delivered one by one, it can only be observed whether the wall is full after the first parcels have 

been delivered. Therefore, the part of the parcels that fit will always be delivered. However, this also 

depends on the size of the lockers that are still available. A deliverer cannot see how many lockers are 

still available. When he scans multiple large parcels (because those are on top of the pile) and none of 

them fit, he may draw the conclusion that the locker wall is full.  

When the same customer orders multiple parcels, they have to be delivered in different lockers. 

Currently, the software is not developed to support multiple parcels per locker. There are some 

developments aimed to make this possible in the future.  
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The parcel flow depends on the season. For example, the busiest months are December and January. 

In December, a lot of customers order gifts online. In January, a lot of customers send gifts back. 

Furthermore, some locations are used more than others. The possibility of expanding locker walls 

depends on a number of factors. First of all, it is sometimes physically impossible. When the existing 

locker wall is stationed between two objects, it may not be possible to add another module to it. 

Furthermore, the location partner must agree to the expansion.  

2.2.4 Location partners 

Not all location partner agreements are the same. Locker walls can be owned by the location partner, 

by the delivery company or by the company that exploits the locker walls. In the first case, the location 

partner purchases the wall and pays a fee for the software license and maintenance. The location 

partner can choose to use the lockers (partly) for themselves. This way, other parties can only use 

these lockers if it is certain the location partner will not. In the second case, the company that exploits 

the locker walls is still owner of the locker wall. Depending on the agreement with the location partner, 

the wall can be used for open exploitation or for (partly) closed exploitation. The latter entails that 

only the location partner may use these lockers. Finally, a delivery company can own the locker wall. 

In this case, only that specific delivery company and its customers are allowed to use the wall. The 

costs for exploiting the wall consist of a software license fee, a maintenance fee and internet costs.  

Because the locker walls that are exploited openly are more interesting from an operations 

management perspective, the choice is made to focus on locker walls that can be used by everyone. 

Additionally, the exploitation of the exclusively owned walls is more straightforward, as there are 

fewer different customers and thus there is less uncertainty. Furthermore, we will initially assume all 

lockers in a wall are open for everyone. So there are no lockers reserved for location partners.  

2.2.5 Actor relations 

The four important actors that were described in the previous sections all have a certain relation with 

each other. In Figure 2, the different relations between the actors are shown. The numbers in the 

arrows correspond with the relations that are described on the right-hand side.  

 

Figure 2 - Relations between the four actors 
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2.3 ANALYSIS OF DELIVERY AND PICKUP TIMES 
The activities at the wall can be divided in two main different categories: first-mile and last-mile 

delivery. Other usages of the wall also exist but are left outside the scope of this research. In the first 

category, a customer brings his parcel to the locker wall to be picked up. In the latter category, a 

delivery company brings a parcel to the wall and the customer picks it up later. To get more insight in 

the behaviour of customers, data from five different locker walls throughout the Netherlands is 

analysed. The five walls are all entirely openly exploited and may be used by all delivery companies. 

Data from 1/1/2021 until 31/5/2022 is used. Three different delivery companies deliver the last-mile 

parcels and pick up the first-mile parcels. In Section 2.3.1, the first-mile delivery stream will be 

analysed. In Section 2.3.2, the last-mile delivery will be analysed. Finally, in Section 2.3.3, the 

differences and similarities between the first-mile and last-mile delivery will be discussed.  

2.3.1 First-mile delivery 

In first-mile delivery, customers bring a parcel to the locker wall. The parcel is usually picked up by a 

delivery company that ensures the parcel reaches its destination. In Figure 3, the distribution of the 

delivery time of parcels on four different locations in the Netherlands is shown per hour. The first 

parcels are returned in the morning between 06:00 and 09:00. The biggest part of the parcels are 

delivered between 13:00 and 17:00.  

 

Figure 3 - Distribution per hour of the first-mile delivery of parcels to five different locker walls in the Netherlands 
 

In Figure 4, the distribution of the pickup time of the first-mile parcels are shown. The delivery 

companies take the parcels. The big difference with Figure 3 is the grouping of the data. It can be seen 

that the biggest part of the parcels are picked up between 9:00 and 13:00 and a smaller part between 

13:00 and 17:00. This may be explained by the fact that some delivery companies guarantee they will 

deliver a parcel the next day if it is delivered to the locker wall before a certain time. Therefore, only 

picking up the parcels that are delivered in the morning is not sufficient.  

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

09:00 - 13:00 13:00 - 17:00 17:00 - 21:00 21:00 - 01:00 01:00 - 05:00 05:00 - 09:00

P
er

ce
nt

ag
e 

of
 a

ct
iv

ity

Time of day

First-mile delivery per hour 

1 2 3 4 5



 10 

 

Figure 4 - Distribution per hour of the first-mile pickup of parcels from four different locations in the Netherlands  
 

In Figure 5, the distribution of the pickup time is shown. This is defined as the time between the 

moment a customer delivers his or her parcel to a locker and the moment it is picked up by the delivery 

company. As can be seen, the biggest part of the parcels is picked up between half a day and a day 

(between 12 and 24 hours).  

 

Figure 5 - The distribution of the first-mile pickup time of all delivery companies combined 

2.3.2 Last-mile delivery 

In last-mile delivery, the delivery companies bring the parcels to the locker wall where they are being 

picked up by the customers. In Figure 6, the distribution per hour of the last-mile delivery parcels is 

shown. It can be seen that almost all parcels are delivered between 9:00 and 13:00. Before delivering 

the parcels, the deliverer must empty all lockers in which a first-mile parcel lays that must be picked 

up by him.  
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Figure 6 - Distribution per hour of the last-mile delivery of parcels to five different locker walls in the Netherlands 
 

In Figure 7, the distribution per hour of the pickup of the last-mile parcels is shown. Customers arrive 

more spread out during the day. Most customers arrive between 13:00 and 17:00. Almost all 

customers arrive between 09:00 and 21:00. 

 

Figure 7 - Distribution per hour of the last-mile pickup of parcels from four different locations in the Netherlands 
 

In Figure 8, the distributions of the parcel pick-up time in the last-mile are shown graphically. Almost 

all data points fall within the first day (around 70 percent). Theoretically, the tail on the right-hand side 

can infinitely long. However, the delivery company is not allowed to leave the parcel in a locker for 

more than a week. If the customer did not pick up its parcel by then, the locker must be emptied again 

by the deliverer.  

 

Figure 8 - The distributions of the last-mile customer pickup time of all delivery companies combined 
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2.3.3 Differences and similarities in first-mile and last-mile delivery 

As we saw in the previous sections, there are four main different parcel streams. First-mile delivery, 

first-mile pickup, last-mile delivery and last-mile pickup. The customer does first-mile delivery and last-

mile pickup. The first concerns individuals sending parcels which are taken by delivery companies and 

the second stream concerns customers picking up parcels that are delivered by delivery companies. 

Furthermore, the delivery companies do first-mile pickup and last-mile delivery. They either pick up 

the parcels that are left in the locker wall by customers or leave parcels in the locker wall that are 

ordered by customers. Because these streams are linked to the same stakeholder, the distribution of 

pickup and delivery times show similarities. This can also be seen in Figure 9 and Figure 10. Namely, in 

Figure 9, the last-mile pickup and the first-mile delivery stream activity are plotted next to each other. 

It is clear that there is almost no difference between the two of them. This is fairly easy to justify, as 

the behavioural pattern of the customer does not depend on whether he or she delivers or picks up a 

parcel.  

 

Figure 9 - An overview of the activity in the last-mile pickup and first-mile delivery streams during the day on one location 
 

Furthermore, in Figure 10, the last-mile delivery and first-mile pickup stream activity are plotted. 

Between these two there is a small difference. In the morning, they are similar. Almost all activity is 

registered between 9:00 and 13:00. However, in the first-mile pickup stream there is also some activity 

in the afternoon. As stated earlier, this is explained by the fact that some delivery companies guarantee 

that a parcel that is delivered before a certain time (first-mile delivery) will be picked up on the same 

day. However, as can be seen in the graph, almost no parcels are delivered in the afternoon. 

 

Figure 10 - An overview of the activity in the last-mile delivery and first-mile pickup streams during the day on one location  
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2.4 ANALYSIS OF THE UTILIZATION OF A LOCKER WALL 
In Figure 11, an overview is given of the utilization of a locker wall at one of the five locations that are 

used. The number of occupied lockers is calculated by taking the starting volume and adding 1 if a 

locker is filled and subtracting 1 if a locker is emptied. By plotting the full number of lockers against 

the time, the graph is obtained. Three normal weekdays (Thursday, Friday, Wednesday) are plotted on 

top of each other. Each day starts at 08:30 am and ends at 10:00 pm. The capacity of the locker wall is 

58 and the first day is 21/04/2022, which is a Thursday. The pattern that is observed is the same every 

day. The delivery company arrives in the morning to collect the first-mile parcels that are destined for 

him from the locker wall and fill it again with last-mile parcels. Generally, some delivery companies 

arrive again in the afternoon to collect first-mile parcels.  

 

Figure 11 - An overview of the utilization of a locker wall during three weekdays in 2022 
 

In Figure 12, the number of occupied lockers can be seen during the weekend. The first day – 

23/04/2022 – is a Saturday (blue line). It can be seen that the delivery company arrives in the morning 

and collects the first-mile parcels. Subsequently, the last-mile parcels are put into the locker wall. After 

that, the line increases steadily during the day, which means more first-mile parcels are delivered by 

customers than last-mile parcels picked up. On Sunday (green line), no delivery companies visit the 

locker wall. On this day, the line increases until the full capacity is reached at 09:30 pm. Next day on 

Monday (orange line), the first activity is registered when the delivery company arrives and collects all 

the first-mile parcels. Subsequently, he delivers a number of last-mile parcels and then the pattern 

repeats itself.  

 

Figure 12 - An overview of the utilization of a locker wall during a weekend in 2022 
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3. LITERATURE 
Not much research is done in the field of capacity planning for locker walls. The literature study 

therefore focuses on locker walls in general and pricing and capacity planning in rental systems with 

uncertain demand and uncertain rental durations. In Section 3.1, the difficulties in last-mile delivery 

and the potential effect of locker walls is discussed. In Section 3.2, literature on rental systems and 

accessory strategical decisions is presented. Subsequently, literature on capacity planning in rental 

systems with stochastic demand and rental durations with multiple customer classes are discussed in 

Section 3.3. Thereafter, we will discuss literature concerning dynamic pricing in comparable 

environments in Section 3.4. 

3.1 LOCKER WALLS 
In this section, we will introduce the characteristics of locker walls used for parcel distribution. In 

Section 3.1.1, we will discuss literature that gives a general introduction of the locker wall 

environment. We will then discuss literature concerning the customer’s perspective in Section 3.1.2.  

3.1.1 General introduction 

Nowadays, the internet is available for almost everyone around the world. Consequentially, the 

number of digital buyers increases every year (eMarketer, 2017). In the beginning, mostly small parcels 

were ordered digitally. However, today everything can be ordered on the internet. Delivering all these 

goods to the customer requires a large and well-operating logistics network. A lot of parcels that must 

be delivered in the same area can be transported in bulk for a large part. However, in the end everyone 

desires to receive their parcel at a prespecified location. This last bit of the delivery chain is very 

complex. Furthermore, e-commerce shops are very concerned with the experience of their customers. 

Because they want to be seen as a convenient shop, they want to offer many delivery locations with 

time windows that are as small as possible (Macioszek, 2018). Furthermore, delivery at home can also 

be difficult because the delivery guy may have difficulties finding the right address or the receiving 

party may not be at home (Deutsch & Golany, 2018).  

Rohmer & Gendron (2020) distinguish between two different types of locker networks. They can be 

owned by the carrier company or not. In the first case, the carrier often exclusively uses the walls. In 

the latter case, the lockers are exploited by a company that owns a locker wall network. The lockers 

are available for everyone. The introduction of locker walls poses numerous challenges. On a strategic 

level, decisions must be made concerning the number and locations of the locker walls, the 

configuration of the locker walls and the business model. On a tactical level, vehicle routing problems 

must be adjusted to include the hubs. The possibility that a wall is full and the deliverer still has to visit 

another location is one of the situations that makes the planning of the routes more difficult. Finally, 

on operational level the lockers must be assigned to the parcels. When a request is made, the decision 

must be made if and which locker is assigned and for which price. This depends on the size of the locker 

and the parcel. Pricing may be used to incentivize users to use the lockers in off-peak hours, so the 

demand and capacity are more in line. (Rohmer & Gendron, 2020) Furthermore, other specific 

restrictions may exist. An example are the locker walls stationed at pharmacies in which the products 

often must be stored in refrigerated lockers.  

Rohmer & Gendron (2020) continue by discussing the pickup process. Namely, after a locker is assigned 

to a parcel, the customer must pick it up. The customer usually receives a pickup window. If the 

customer does not pick up the parcel within this time, the carrier takes the parcel with him again. They 

observe that more research should be done to see how customer behaviour can be influenced. For 

example, if a customer should pay a penalty if he fails to pick up his parcel in the pickup window. A 

short time window may incentivize customers to pick up a parcel faster and this increases the capacity 
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of the locker walls. However, it may also result in a higher rate of failed deliveries. This increases costs 

and decreases customer satisfaction. Liu, Wang, & Susilo (2019) analyse the travel patterns of 

customers to and from collection-delivery points. They observed that not much research has been 

done in this field despite the fact that it is one of the most important parts of the pickup point delivery 

chain. Knowing when and how the customers will arrive to pick up or deliver their parcel is very 

valuable information that can be used in allocation policies. To optimally utilize the capacity of the 

locker walls, the planning and scheduling of the lockers should be investigated on a tactical level.  

3.1.2 Customer’s perspective 

Conventionally, a parcel deliverer and customer are constrained by opening times at traditional pickup 

points. Locker walls offer the possibility to arrive at any time and deliver or pick up your parcel. 

Furthermore, compared to delivery to the door, customers do not have to stay home anymore, the 

number of failed deliveries decreases dramatically and the delivery costs are much lower. The latter 

can be explained by the fact that the deliverer can drive to one location instead of multiple houses. 

This dramatically decreases carbon emissions and improves liveability in residential areas (Davydenko 

& Hopman, 2020). Furthermore, Yuen, Wang, Ma, & Wong (2019) observed that customers of last-

mile deliveries in China use the wall because they think the walls add value (according to the perceived 

value theory this means that customers will always choose the option that maximizes their utility). 

Furthermore, they state that they use the locker walls for parcel deliveries because they think it is 

dependable and convenient. Two other factors that were included in the research, privacy security and 

transactions costs, did not play a big part in the customers’ intention to use the locker walls. Molin, 

Kosicki & Van Duin (2022) investigated the incentives that work best for Dutch customers to use locker 

walls for parcel delivery. They compared three different types of delivery: home delivery, service point 

pickup locations and locker walls. Their comparison entailed three attributes: price, delivery moment 

and the distance to the pickup location. One of the conclusions is that if home delivery prices increase 

and parcel lockers are available for free on a small distance, the majority of the customers would go 

for the last option. However, they argue that this can only be achieved if there exists a dense parcel 

locker network and it is important that the locker walls have a white label. This means that any delivery 

company can use it. Furthermore, they indicate that (local) governments should assist in facilitating 

the placement of white label locker walls. Iwan, Kijewska & Lemke (2016) also underline the key role 

local governments play in the development of last-mile deliveries in cities. They argue that 

municipalities too often focus on access restrictions instead of efficiency measures. When some half 

empty vans may enter residential areas and others not, some customers may not receive their parcels. 

Therefore, it would be better to focus on the efficiency.  

Vakulenko, Hellström & Hjort (2018) executed a similar research in Sweden. The location was also one 

of the most important points according to the customers. This means the locker wall should either be 

located close to home or work or at the route between home and work. Furthermore, long opening 

hours (or even 24/7) are expected and seen as a positive aspect. Some of the negative points were the 

lack of track and trace information, unclear locations or service failures in combination with a lack of 

support. Another interesting point is the proposition that from the customer’s perspective, value is not 

created instantly but evolves as he uses the locker wall more often. For example, when one uses the 

locker wall and has a positive experience, he will most likely return the next time he orders something. 

However, when a customer goes to the locker wall and no locker is available, he may never return as 

he does not want to take the risk the next time.  

3.2 STRATEGIC CHOICES IN RENTAL SYSTEMS 
Savin, Cohen, Gans & Katalan (2005) describe rental systems as a system in which the supply party (the 

rental company) invests in equipment with potential demand. The equipment can be used over a 
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longer period of time and the rental periods are relatively short. The rental company wishes to utilize 

their rental capacity as efficiently as possible to earn the best return on their investment.  

Lazov (2017) investigates the simplest version of a rental system. He investigates a location of a car 

rental company with one type of cars and one type of customers. He models the system as a Birth-

Death process with homogeneous arrival and service rates. The company has M cars available, which 

can be seen as the number of available servers in a queueing system.  

Biesinger, Hu, Stubenschrott, Ritzinger & Prandtstetter (2017) describe an instance of an electric car-

sharing system in an urban area. Important strategical decisions are which number of hubs to place, 

where they should be located, the number of charging slots per hub and how many cars to purchase. 

Angelopoulos, Gavalas, Konstantopoulos, Kypriadis, & Pantziou (2016) research a comparable rental 

system: a bicycle sharing system in the centre of Athens. They develop a mathematical model for the 

determination of the locations of the stations. Furthermore, they show what the optimal number of 

bikes is and how they should initially be distributed. They aim to maximize the customers’ utility. This 

is done by preventing the situation in which an individual wishes to rent a bike but the station is empty 

as much as possible. On the other hand, they aim to minimize the investment costs. They implement 

a mixed linear programming model to solve the capacitated facility location problem. In this problem, 

there are a finite number of possible facility locations and the aim is to find the optimal locations to 

cover all demand in the region. Yang, Lin, & Chang (2010) investigate a comparable situation. They 

analyse the situation in which an individual takes a bike from a vehicle station and drives it to another 

vehicle station, from which he departs to his destination. The included service level is twofold. First, 

customers that want to take a bike want to not be disappointed when they arrive at a vehicle station. 

However, when the customers arrive at their destination they wish to return the bike to a station. 

When all spots are full, the customer must drive to the next station, which is presumably further from 

his destination. 

A rental system may consist of one type of rental units. However, most of the time there are different 

classes of rental units that are defined by some characteristic (size, luxury, age etc.). Customers that 

rent a certain rental unit class are often also satisfied with an upgrade if that specific class is not 

available. This is called an upgrade policy and is used to keep customers satisfied. When this 

phenomenon applies, it makes it easier for rental companies, as the demand of the group of customers 

of which the desired rental class is not available can be satisfied with an upgrade (Wu, Hartman, & 

Wilson, 2005). This can be translated to our context by assuming parcels may always be delivered in 

bigger lockers but it is physically impossible to deliver big parcels in smaller lockers.  

From all different rental systems we obtain a number of strategical decisions that belong to the 

exploitation of rental systems. Firstly, the locations of the stations are important. Furthermore, the 

choice should be made how many rental units to deploy and how to distribute them over the rental 

stations.  

3.3 ALLOCATION AND ADMISSION POLICIES OF RENTAL SYSTEMS WITH 

STOCHASTIC DEMAND AND DIFFERENT CUSTOMER CLASSES 
The stream of literature that is described by Savin et al. (2005) relates to the more traditional revenue-

management problems like plane seat reservation. However, there are two main differences. First, the 

plane seat allocation problem has a finite horizon: from the moment it is possible to book until the 

plane departs. As soon as the booking is open, everyone can book seats (including travelling 

organisations). But as soon as the plane leaves, the planning problem ends. Second, all seats can be 

used only once. Therefore, the allocation of the rental units is seen as a continuous-time infinite-

horizon problem. The arrival pattern of customers is stochastic as is the rental period. 
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The growing pressure on rental systems incentivizes the development of new business models. 

Customers can be divided into different classes based on revenue, service level requirements or sales 

volume. Subsequently, each customer class can be treated differently to optimize capacity utilization 

and thereby revenue. For each class, a service level and a fixed fee can be agreed upon. Based on this 

agreement, the choice must be made to either accept or reject a rental request (Papier & Thonemann, 

2010b). The trade-off focuses on choosing between a direct income and going to a state with one less 

rental unit or rejecting the direct income because a penalty may be incurred if no rental units are 

available in the near future (Jain, Moinzadeh, & Dumrongsiri, 2015). 

Savin et al. (2005) show that a rental system with different classes of customers with class-dependent 

earnings and penalties can be reduced to a form of the stochastic knapsack problem. This method uses 

historical data to assume the arrival distributions of the different classes of customers. Furthermore, 

they assume the system behaves as a continuous-time Markov chain, only depending on the state 

(number of free rental units). They show that the complete sharing method can be optimal in two 

situations. The complete sharing method assigns its resources without considering types of customers 

(Wang & Pinsky, 1989). Complete sharing works well if the capacity is high relative to the demand. 

When this is not the case, it can still work well if the differences between the different classes is 

negligible. In these situations, the physical and economic utilization of the rental units are optimal. This 

means the revenue is as high as possible when the wall is as full as possible. However, in other 

scenarios, the physical and economic utilization of the wall may not behave the same.  

Besides the complete sharing method, Wang & Pinsky (1989) describe four other resource allocation 

methods. They analyse a system with N identical resources that are used for different activities. The 

different classes of customers arrive with independent Poisson processes at the multi-server station. 

They wish to use a number of servers for a random period of time. The paper focuses on calculating 

the blocking probabilities, which is the chance that a request must be denied. The other methods they 

analyse are the complete partitioning method, the sharing with minimum allocation method, the 

complete sharing policy with an order constraint and the sharing with maximum allocation method. 

The complete partitioning method allocates a fixed number of resources to each customer and 

allocates all resources. The sharing with minimum allocation method also assigns a fixed number of 

dedicated resources to each customer. However, the resources that are not assigned are shared. The 

complete sharing policy with an order constraint does not allow a customer of type i to use more 

lockers than a customer of type i + 1. Which means that some customers may not use more than other 

customers. The last method, sharing with maximum allocation, is the same as complete sharing but 

every customer may only use a maximum number of resources. Kaufman (1981) also analyses the 

blocking phenomenon. He analyses a system with a finite capacity of c servers. customers arrivals are 

modelled as a Poisson process. Customers are defined by two requirements, a spatial requirement and 

a temporal requirement. This means they request a number of servers for an amount of time. It is 

assumed all servers are the same. Customers whose demand cannot be met are blocked. This means 

they are not served and disappear. Blocking of customers does not further affect the system.  

Altman, Jiménez & Koole (2001) study a similar situation in which they focus on a resource-sharing 

system. In the system, there are multiple classes of customers that all yield a certain class-dependent 

reward. Subsequently, they devise a dynamic program in which it is decided whether to accept or reject 

a certain customer. When all resources are used, the only possibility is to reject an arriving customer. 

Because the rewards differ per customer class, dynamic programming is used to estimate the future 

rewards of a certain choice. They develop an optimal admission policy and extend it by analysing a 

situation with three classes of customers.  
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Gans & Savin (2007) describe a rental system with two types of customers. The first type of customers 

pays a fixed fee which give them a guarantee they can have a certain amount of the rentals at any time 

for a fixed price. When there are not enough rentals available, the rental company pays a penalty. 

These are contract customers. The second group of customers are the walk-in customers. They are not 

guaranteed a certain service level and they receive an offer at request. The rental company does not 

have any obligation towards them. They develop a Markov decision process model that includes 

different classes of two types of customers. The value function is shown in Equation 1.  

𝑣(𝑘)  =  ∑ 𝜆𝑖
𝜑𝛨𝑖

𝜑[𝑣(𝑘)]𝑁
𝑖=1 + ∑ 𝜆𝑗

𝜛𝛨𝑗
𝜛[𝑣(𝑘)]𝑀

𝑗=1 + 𝜇𝑘𝑣(𝑘 − 1) + 𝜇(𝑐 − 𝑘)𝑣(𝑘) (1) 

The c in Equation 1 represents the capacity of the rental system and k the number of lockers in use. 

The first summation part represents the N different classes of the premium customers. The arrival rate 

is multiplied with the expected value. Likewise, the second summation part represents the M walk-in 

customers. The third term represents the situation in which a locker becomes available again. The last 

term represents the possibility that nothing happens. The model is analysed at constant discrete 

moments. Therefore, the last term is needed to make sure the possibility nothing happens exists.  

When a premium customer enters and there are lockers available (k<c) he can either be accepted or 

rejected. In the first case, the next stage is entered in the same state and a penalty is paid. In the 

second case, a direct reward is yielded and the next stage is entered. In this case, the state is increased 

with one. When there are no more lockers available (k=c), a penalty is paid and the next stage is 

entered in the same state. This is shown in Equation 2 and Equation 3, respectively.  

𝛨𝑖
𝜑[𝑣(𝑘)]  =  max[𝑓(𝑘)  − 𝜋𝑖, 𝑓(𝑘 + 1) + 𝑟𝑖  if 𝑘 <  𝑐   (2) 

𝛨𝑖
𝜑[𝑣(𝑘)]  =  𝑓(𝑘)  −  𝜋𝑖 if 𝑘 =  𝑐     (3) 

When a walk-in customer enters and there are lockers available, a price 𝜔𝑙  is offered and customer j 

accepts this price with possibility 𝜌𝑗𝑙. The price is chosen such that the value function is the highest. 

This is shown in Equation 4. When no lockers are available, nothing happens. This is shown in Equation 

5.  

  

𝛨𝑗
𝜛[𝑣(𝑘)]  =  max𝑙[𝜌𝑗𝑙 ∗ 𝑓(𝑘 + 1) + (1 − 𝜌𝑗𝑙) ∗  𝑓(𝑘)] if 𝑘 <  𝑐  (4) 

𝛨𝑗
𝜛[𝑣(𝑘)]  =  𝑓(𝑘) if 𝑘 =  𝑐      (5) 

Furthermore, the aggregate event rate is given in Equation 6. 

Γ = ∑ 𝜆𝑖
𝜑𝑁

𝑖=1 + ∑ 𝜆𝑗
𝜛𝑀

𝑗=1 + 𝜇𝑐 + 𝛾     (6) 

The authors define the time scale in such a way so that Γ = 1. This means that every time step, one of 

the terms in 6 happens. The last term represents a discount rate, which is modelled as the probability 

that the next event is terminating. When this happens, the system stops and no more profits are 

earned. Adding a termination probability is said to be equivalent to discounting.  

It is shown that threshold-based policies are optimal for the admission of contract customers. The fee 

that should be charged to walk-in customers should be calculated based on the congestion in the 

system. Furthermore, it is shown that the optimal threshold for a specific class decreases if the arrival 

intensity and the expected rental duration increase. Additionally, it depends on the fixed fee of other 

classes. The fee for walk-in customers increases when the arrival intensity, expected rental duration 

or fixed fee of contract customers increase. Finally, they show that higher contract fees guarantee a 

higher level of access.  
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One of the conclusions of the paper is that myopic management policies do not perform well if the 

demand significantly exceeds the capacity. The myopic policy always allows contract customers and a 

walk-in customer is offered a fee that maximizes the discounted revenue from his rental. When the 

demand is significantly larger than the available capacity, it becomes more important to allocate the 

capacity carefully. However, for systems in which the capacity and the demand are balanced, myopic 

allocation policies can be (near) optimal. This means decision are only based on the reward that can 

be earned now instead of also looking at the future.  

Papier & Thonemann (2010) add to this by describing a system with two different types of customers: 

premium and classic. The premium customers pay a fixed fee and receive a service guarantee. When 

a service request is rejected, the rental company must pay a penalty. The classic customers can be 

seen as walk-in customers. They are not given any guarantee and can be denied without paying a 

penalty. The rental period is described by a random variable. In further research, they extend the 

system by assuming the premium customers provide their demand information beforehand (Papier & 

Thonemann, 2010a).  

A classic customer is accepted if the revenue that can be earned is greater than the expected loss in 

profit of having one rental unit less in the future. In this situation, the number of premium customers 

in the coming time interval are known. However, the rental period is random. This means that if a 

classic customer is accepted, the capacity will be one less for a random period of time. This could either 

lead to not being able to accept a premium customer in the near future, not being able to accept a 

classic customer in the near future or neither of those cases. The probabilities of these states are used 

to calculate the expected profit of both choices. To be able to analyse the models, all demand is 

assumed to be homogeneous. To deal with inhomogeneous demand, they propose to implement the 

Average Stationary Approximation (ASA) by Whitt (1991). This method initially calculates the 

stationary performance of each period separately and then takes the weighted average over all 

periods. Papier & Thonemann (2008) use this method in their research to fleet planning. They develop 

and solve analytical models that can determine the size and the structure of a rental fleet. The latter 

is focused on the types of rental units that should be used (and in what proportions). They consider 

one type of rental unit but include seasonality. As the demand varies heavily per season, they show 

that fleet leasing can increase profit. In this scenario, the company owns a base number of rental units 

and lease extra units during peak demand. This outcome, however, is not applicable in our situation, 

as our rental units cannot be leased and the setup costs of rental units are higher. Furthermore, they 

distinguish between two commonly used objectives in their models. First, the profit can be optimized. 

However, it can be more realistic to minimize the costs using a service level constraint. This way, the 

penalty cost of not meeting demand (lost sales) does not have to be estimated. This may be better, as 

the penalty costs have a high impact on the solution and estimating it can be difficult. 

Pazour & Roy (2015) investigate a vehicle rental company with two types of customers. At every arrival 

of a non-priority customer they must decide to rent them a car or reject them because they expect the 

arrival of a priority customer. They use a Markov-chain based solution approach to determine the 

optimal threshold. When the number of available cars is below that threshold, non-priority customers 

cannot rent a car. Additionally, they use a discrete-event simulation model to analyse the effect of the 

threshold policy on the waiting times of the different classes of customers.  

Örmeci & Burnetas (2004) include another phenomenon in their description of admission control 

systems. Namely, the fact that rental companies often largely depend on orders from corporate clients 

rather than individual customers. They include this in their research by using batch arrivals to model 

the demand. Such systems are defined by a queueing system with a number of parallel identical 

servers, no waiting room and different job classes. The latter is defined by an arrival pattern and a job-
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specific service time. Adding to this, they consider a system in which batches can also be accepted 

partially (Örmeci & Burnetas, 2005). Furthermore, they consider dynamic admission control policies 

instead of static admission control policies. Dynamic admission control policies can increase profit 

compared to static admission control policies because the decisions are based on the current state of 

the system.  

Satır, Erenay & Bookbinder (2018) describe a vehicle capacity allocation problem. For every vehicle, 

they have to decide which goods to accept and which to reject. They distinguish between two types of 

orders: expedited and standard. They model their problem as a continuous-time Markov decision 

process. The arrival rates of the different types of orders follow a compound Poisson distribution. They 

each have an independent arrival rate and a discrete random variable which determines the size of the 

arrival order. They develop an optimal policy and define the state space of the problem as the amount 

of normal and expedited orders that have already been accepted.  

In this section we have seen that a lot of research has been done into rental systems with different 

customer classes. Most research is rooted in the wish of rental companies to use their rental units 

more efficiently. By differentiating in customer classes, one can justify treating groups of customers 

differently. For example, some pay a higher fee for a higher service level and some do not have 

expectations and try to get the best deal at a certain moment in time. Most literature focuses on 

determining optimal (threshold) admission policies. For this, dynamic programming and Markov 

decision chains are used. They are used to determine what action would be the smartest in a certain 

state. These models are extended by adding batch arrivals, varying service times per customer classes 

and customers who send their demand information in advance.  

3.4 DYNAMIC PRICING 
In this section we will discuss the topic of dynamic pricing. First we will introduce dynamic pricing in a 

general context in Section 3.4.1. Subsequently, we will discuss literature that investigates dynamic 

pricing strategies in problem instances with a finite horizon in Section 3.4.2. Finally, we will discuss 

dynamic pricing in environments with an infinite horizon in Section 3.4.3.  

3.4.1 Introduction to dynamic pricing 

The topic of dynamic pricing concerns environments in which prices for products or services can be 

adjusted if circumstances change. The prices can be adjusted monthly, weekly, daily or even hourly. 

Dynamic pricing strategies are mostly seen in companies that operate digitally and have a lot of 

available data. From the data, important customer patterns and behaviour can be deduced (Den Boer, 

2015). Exploiting this knowledge can help companies to maximize their revenue and/or balance the 

workload. The process in which all the sales data is used to determine the best price for a product on 

a certain moment is called dynamic pricing and learning. This topic concerns dynamic pricing 

algorithms that learn based on the data what the price should be (Den Boer, 2015). Elmaghraby & 

Keskinocak (2003) observe an expansion in types of companies that use dynamic pricing strategies. 

Initially, it was adopted by companies with a fixed capacity and a small horizon, e.g., airlines, cruises, 

hotels, energy providers and healthcare. However, they saw that companies with bigger capacity and 

longer horizons also started to introduce dynamic pricing strategies. Three main causes are discussed. 

First, the amount of available data rapidly increases. Second, it has become very easy to change your 

prices due to technological developments. Finally, more methods are available to easily process 

demand data and to even suggest decisions. On the other side, customers now have access to the 

internet from everywhere, which gives them the chance to compare multiple providers of the same 

product in seconds. Therefore, it is important to stay competitive as a seller and dynamic pricing 

strategies may help (Bitran & Caldentey, 2003).   
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Historically, determining a price was based on the operating costs and availability of certain products. 

These variables were known and therefore it was relatively easy to determine the price of a certain 

product. Nowadays, two other factors are included: how much the customer wants the product and 

the expected demand in the (near) future. The last two factors are not known and must be estimated 

and forecasted. There are a lot of different techniques for this and a lot of data is needed. Therefore, 

dynamic pricing strategies are more difficult to implement than traditional pricing strategies. Roughly, 

a distinction between two different dynamic pricing strategies can be made. Namely, posted-price 

policies, which concerns a non-negotiable price determined by the sellers and price-discovery policies 

in which the buyers determine the price. The latter can for example be implemented as an online 

auction. Furthermore, customers can also be divided in two different classes: myopic and strategic. 

Myopic customers will accept a price if it is beneath a certain boundary. This boundary can very per 

(class of) customer and does not change. The strategic customer follows the development of a price 

and includes this in his decision process. It is evident that dynamic pricing is harder when a customer 

falls in the second category. Assuming a customer behaves myopically can be correct in a number of 

cases. First, if a customer really needs an item and cannot longer wait. Second, when the price changes 

are so small a strategic customer would also not wait. Third, when there are so many customers that 

one rejection does not affect the system much. Finally, if it concerns an impulse buy (Elmaghraby & 

Keskinocak, 2003). Based on a combination of the first, second and third reason, we would argue 

customers of a locker wall can be seen as myopic. Within certain boundaries, customers who already 

decided to use a locker wall will not return if a small price change is observed. Furthermore, when this 

happens occasionally, the lockers will be filled with other parcels.  

3.4.2 Dynamic pricing with a finite horizon 

Farias & Roy (2010) analyse a dynamic pricing problem with uncertain demand, limited inventory and 

with the goal to maximise their discounted earnings over an infinite time horizon. Customers arrive 

according to a Poisson process of which the rate is uncertain. The customers make a myopic decision 

when they are offered a price. The customers only purchase a product if the price they are offered is 

equal to or below their reservation price. A reservation price is the boundary myopic customers have. 

They do not consider historical data or expected future prices. They develop a simple heuristic as 

dynamic pricing strategy which is called decay balancing. Furthermore, they extend their model by 

distinguishing between different products which can be offered to different classes of customers for 

different prices.  

Gallego & Van Ryzin (1994) also focus on a problem in which the earning must be maximized. However, 

they consider a finite horizon problem. This type of problem is applicable to the types of business we 

mentioned earlier: airlines, cruises and hotel rooms. These problems are defined by posted-price 

strategies from the seller side and myopic customers on the other side. In the paper, a function is 

developed that calculates the price a certain product should cost at a given moment depending on the 

number of products in stock and the length of the horizon. They still saw a lot of difficulties in 

introducing dynamic pricing strategies as it was difficult to implement and constant price adjustments 

were seen as undesirable. However, as stated earlier, Elmaghraby & Keskinocak (2003) and Bitran & 

Caldentey (2003) explained that due to the increased amount of data, easiness in adjusting prices 

online and the development of decision tools this has become more popular. Therefore, introducing a 

state-dependent function to determine a price at any moment is not unthinkable anymore in any 

context.  
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3.4.3 Dynamic pricing with an infinite horizon 

Gosavi, Bandla & Das (2002) use reinforcement learning to solve a semi-MDP over an infinite time 

horizon. The problem concerns a revenue management problem in the airline industry. For a single 

flight, they create a model that considers different classes, possible overbooking, different arrival 

patterns of different customer classes and possible cancellations. They observe that prices are heavily 

influenced by the prices that are set by competitors. However, there are two factors that can be 

affected. The first is seat allocation and the second is overbooking. The former concerns the concept 

of selling seats in the same cabin for different prices to different classes of customers. A number of 

seats may be saved to prevent higher class customers from not having a seat. However, it is difficult to 

determine the number of seats that should be saved. It is evident it depends on the class-dependent 

fares. Customers can be allocated to classes based on how many weeks they book in advance, their 

itinerary Furthermore, the overbooking problem focuses on the problem that customers sometimes 

do not show without cancelling their ticket. Without overbooking, the plane would leave with some 

empty seats and this is obviously a missed chance on revenue. However, the question arises how many 

seats should be overbooked to compensate for the no-shows.  

The overbooking problem is less interesting for our context. However, the seat allocation problem 

shows resemblances with the locker wall problem. Normally, different classes of customers are made 

based on different characteristics and customers within the same class are treated equally. In the 

paper of Gosavi et al. (2002), customers arrive according to independent Poisson processes. 

Furthermore, the probability that a customer cancels his ticket is fixed but differs per customer class. 

The problem is modelled as a semi-MDP and the system state is defined by four state variables. 

Namely, the class of the most recent customer, a vector with the number of seats that are sold per 

class, a vector with the arrival times of all customers per class and the time that is left until the plane 

leaves. The state can change if any of these three events occur: a new customer arrives at the system 

requesting a ticket, a cancellation occurs or the flight departs (the time horizon is reached). The time 

between the customer request arrivals are seen as the time between the decisions, which is also 

known as the time epochs. Furthermore, the arrival rates of the customer do not change over time. 

This could, however, easily be implemented using reinforcement learning (Gosavi et al., 2002).  

Carroll & Grimes (1995) describe a dynamic pricing strategy in the car rental business. In the paper, a 

yield management system is described that was used at the car rental company Hertz. In the situation 

that is described, customers do not always return the car after the specified period. Therefore, Hertz 

developed a model to estimate the probability that the car would be returned on a certain day. This 

would nowadays maybe not apply to the car rental business, but the system is comparable to the one 

we are investigating. Like airline bookings, the products are perishable. This means a product 

disappears if it is not sold before a specific day or time. This is often represented by a finite horizon in 

operation research problems. Normally, products perish after the day or time. However, in the car 

rental industry, cars that are not rented out on a certain day, can still be rented out the next day. 

Therefore, the product is perishable on a given day, but the next day it starts again. This can be seen 

as small sequential finite horizon problems. However, one could also choose to not rent out a car on a 

given day because he expects that he will generate more revenue by renting it out the next day. 

Extending a problem with these kind of decisions would make it an infinite horizon problem and a lot 

more difficult. Furthermore, it is heavily affected by the duration of the rentals as we have also seen 

in Section 3.3.  

Another area in which dynamic pricing is considered in an infinite horizon setting is cloud computing 

capacity providers. Customers pay a time-varying rate for the time they use the capacity of for their 

calculations. Xu & Li (2012) implement a revenue management policy to solve the problem. They 
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ultimately investigate optimal pricing strategies for the infinite horizon revenue management problem. 

They also observe that capacity (in this specific case computing resources) is perishable if they are not 

used they do not add value. However, in environments with stochastic demand pricing is difficult. As 

accepting customers now for a low rate could lead to not having capacity for a customer tomorrow 

who is willing to pay more. On the other hand, rejecting a customer now could lead to not having a 

customer the coming days. This phenomenon is meant by products being perishable. Furthermore, 

setting the price high will give you a direct high reward but may decrease the future demand because 

customers will not return. Moving from a finite horizon problem to an infinite horizon problem, the 

problem state does not include any information about the time anymore. The state is now solely 

defined by the utilization of the system. However, the earnings are calculated based on the time 

someone uses the cloud capacity. Therefore, the time a customer is in the system is modelled explicitly. 

The departure process is modelled as a price-dependent Poisson process. The rate increases with the 

price.  

3.5 CONCLUSION 
In this chapter, we have presented and discussed literature from four different streams. Namely, 

literature concerning locker walls in general, literature concerning the strategic choice in rental 

systems, literature about admission policies rental systems with stochasticity and dynamic pricing. The 

first part explained the challenges and the current situation concerning locker walls. It explained that 

customers are willing to use the locker walls but it highly depends on usability. Furthermore, an 

important role is seen for local governments to focus on solutions like this. It will reduce emissions and 

improve liveability of residential areas. Based on this, we can say with confidence that this is a 

promising area and therefore research into the exploitation of locker walls can be valuable.  

The strategic choices regarding locker walls for parcel distribution boil down to a few important ones. 

First, the location of the locker wall should be decided. As already said in the previous section, 

customers value usability and the distance to a locker wall is an important factor. Furthermore, the 

configuration of the locker wall must be decided upon. The number of lockers that are used and in 

what ratio the different sizes should be chosen. In this research, we will not focus on the strategic 

choices regarding the locker walls. However, we will focus on finding the right moment for expansion 

based on the  utilization in the analyses for practical use. 

Given a number of locker walls, a few delivery companies and customers that wish to use the walls, 

another problem arises. Namely, who may use the wall given a certain state and time. The literature 

we presented in Section 3.3 concerns rental systems with different types of customers. The common 

divisor is that all rental unit owners wish to optimize the utilization and earnings of their business. By 

dividing the customers in different categories and estimating the arrival patterns, admission policies 

can be devised that optimize the profit of the companies. This can be used in the context of the locker 

walls. By distinguishing between different users, the lockers can be divided based on category-

dependent earnings and penalties. Therefore, we will use the MDP model that was presented by Gans 

& Savin (2007) and apply it to our situation. Furthermore, we will see if myopic allocation policies work 

in our situation. We will investigate in which settings they perform best.  

Finally, we have discussed literature about dynamic pricing. The admission policy that will be 

developed and evaluated can be extended by a dynamic pricing method. Instead of accepting or 

rejecting a customer when the locker wall is in a certain state, a state-dependent price can be offered 

(which can also depend on the type of customer that wishes to use a locker). In this research, only the 

admission policies will be studied. However, we will describe how they can be extended to also include 

dynamic pricing strategies.  
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4. PROBLEM FORMULATION 
In this chapter, the research problem will be elaborated upon. Furthermore, it will be linked to the 

literature that we discussed in Chapter 3. After this chapter, the research problem will be clear to the 

reader and it will be known which parts of the literature can be used in this context and why. In Section 

4.1, a more in-depth problem description will be provided and it will be linked to the literature. In 

Section 4.2, the problem settings will be discussed. In Section 4.3, the problem will be formulated as a 

Markov decision process.  

4.1 PROBLEM DESCRIPTION 
Rohmer & Gendron (2020) describe choices on the operational level of locker walls. This includes when 

to assign a locker to which customer and for what price. The literature that was discussed in Section 

3.3 all use different customer classes to describe their different customers. The classes can be used to 

agree on different service levels and prices. The consequence of not having a locker available at arrival 

of a customer may also be class dependent . This means that the penalty may not be the same for all 

classes of customers. For example, rejecting a contract customer could have a bigger negative effect 

than rejecting a walk-in customer.  

This segmentation enables a company to treat different classes of customers differently. The classes 

can be divided based on revenue, sales volume and service requirements. Contract or premium 

customers pay a fixed fee and receive a guaranteed service. Other customers see if anything is available 

at request and then decide whether they think it is worth it. This gives the rental company the 

possibility to accept or reject specific classes of customers in a certain state or to adjust the prices 

based on the congestion of the system.  

To be able to investigate certain areas, we will have to make some assumptions to be able to create a 

reasonable framework in which we can do our research. For this rental system, we will assume delivery 

companies (at least the ones that will be considered ‘premium’) send all information about their 

parcels beforehand (e.g. in the morning). Additionally, they will pay a lump sum premium for the 

service. The advance demand information will be used to determine if a walk-in customer may use a 

locker and for what price. For this purpose, the number of occupied and expected premium parcels 

will be added to analyse the expected congestion in the system. Delivery companies that do not send 

their information beforehand will be allowed to use the wall but will be considered walk-in customers. 

Additionally, the service levels that are communicated to the contract customers will be measured 

over the long term. So, when a service level of 0.90 is promised, a request from them should be 

accepted nine out of ten times on average. The walk-in customers are not guaranteed any service and 

can either be accepted or rejected, depending on the crowdedness in the locker wall at their arrival. 

In Figure 13, a flowchart is shown that illustrates three different arrival processes . The first customer 

stream is called the contract customer stream. It depicts the stream of customers that is marked as 

premium in the literature. A customer is marked as premium if they send their demand information 

beforehand. On arrival, the system checks whether the customer is accepted or not. This may depend 

on the state of the system, the current service level of the partner and the service level that is promised 

to him. Furthermore, it may depend on the expectation of other customers in the near future and what 

their current and promised service levels are. Penalties are only paid if the service level is not met over 

a longer period of time. Therefore, they are not captured in this flowchart.  

If non-premium customers arrive at the system, the process is different. The flowchart in the middle 

of Figure 13 shows the process if an admission policy is implemented at the locker wall. When a 

customer arrives, the system determines based on the current state whether the customer can be 
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accepted or not. The flowchart in the bottom of Figure 13 shows the process if a dynamic pricing policy 

is implemented. At arrival, the system checks the current state of the locker wall. In combination with 

the type of customer and time of day, a price is calculated which is offered to the customer who wishes 

to use the wall. Subsequently, the customer can either accept or reject the offer and the state of the 

locker wall is updated accordingly.  

Like Pazour & Roy (2015), we will use discrete-event simulation to test the policies and compare it to 

the current situation in which a FCFS policy is used. This way, we will evaluate what the effects of 

implementing the admission policies and dynamic pricing policies would be that are found with our 

mathematical models. We will be able to use empirical data and analyse the potential effect of the 

policies in a realistic environment. It also makes it easier to analyse the impact of changes that are 

made in certain parameters. For example, the distribution of the arrival times of the delivery 

companies and the number of lockers. The simulation model will be further elaborated upon in Chapter 

6.  

 

 

 

Figure 13 - A flowchart of the arrival process of a contract customer (above), the arrival process of a walk-in customer to a 
locker wall with an admission policy (middle) and the arrival process of a walk-in customer to a locker wall with a dynamic 
pricing policy (below) 
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4.2 PROBLEM SETTINGS 
We will analyse a small problem instance to analyse possible scenarios. We will assume the supply and 

demand are balanced. Furthermore, we will assume the delivery companies arrive at a fixed time (in 

the morning). They always arrive at the same time and in the same order. The arrival rate varies per 

hour i and is based on historical data. Furthermore, the first-mile deliveries follow a non-homogeneous 

Poisson distribution with 𝜆𝑓𝑚𝑑(𝑖) that varies per hour i. The arrival rates are based on the five locations 

that were also analysed in Chapter 2. The last-mile parcels are also picked up with a non-homogeneous 

Poisson rate 𝜆𝑙𝑚𝑝(𝑖). The arrival rates are calculated per locker. When the arrival rates are used in a 

problem setting, they are multiplied with the number of lockers that are used. The pickup time of first-

mile deliveries is a constant time 𝑇𝑓𝑚𝑝. The non-homogeneous Poisson arrival rates per hour are 

shown in Table 1. 

Table 1 - Non-homogeneous arrival rates per hour of last-mile and first-mile deliveries scaled to one locker 

From Until 𝝀𝑙𝑚𝑝(𝒊) 𝝀𝑓𝑚𝑑(𝒊) 

00:00 01:00 0.0002 0.0005 

01:00 02:00 0.0001 0.0004 

02:00 03:00 0.0001 0.0000 

03:00 04:00 0.0000 0.0000 

04:00 05:00 0.0000 0.0004 

05:00 06:00 0.0001 0.0002 

06:00 07:00 0.0002 0.0009 

07:00 08:00 0.0009 0.0034 

08:00 09:00 0.0043 0.0227 

09:00 10:00 0.0058 0.0292 

10:00 11:00 0.0070 0.0364 

11:00 12:00 0.0170 0.0425 

12:00 13:00 0.0278 0.0455 

13:00 14:00 0.0312 0.0504 

14:00 15:00 0.0283 0.0533 

15:00 16:00 0.0294 0.0587 

16:00 17:00 0.0358 0.0621 

17:00 18:00 0.0345 0.0514 

18:00 19:00 0.0216 0.0389 

19:00 20:00 0.0161 0.0331 

20:00 21:00 0.0084 0.0170 

21:00 22:00 0.0044 0.0060 

22:00 23:00 0.0018 0.0021 

23:00 00:00 0.0012 0.0007 

 

The decision to accept or reject a request to use a locker that must be made when customers or 

delivery companies arrive at a locker wall can be difficult. We will start by analysing a myopic allocation 

policy that only considers the direct probability that accepting a customer now will lead to not being 

able to accept another customer in the future. When we are going to distinguish between different 

classes of customers, these probabilities can be used to determine whether a customer should be 

accepted or rejected. Furthermore, the policy can be extended by using the probabilities to determine 
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the dynamic price certain customers should pay based on the expected arrivals of other classes of 

customers. Because the service level agreements and penalties are class-dependent, the probabilities 

can be used to determine if accepting a customer now will lead to having to pay a certain penalty in 

the future. Multiplying the probabilities that are found with those penalties will give an insight into the 

consequences a certain choice might have. We will further define the problem instance and myopic 

allocation policy in Section 5.2. 

4.3 MARKOV DECISION PROCESS 
In this section, we will introduce an MDP formulation. We will discuss the situation and context in 

Section 4.3.1. Subsequently, we will introduce the state and action variable in Section 4.3.2 and 4.3.3, 

respectively. Furthermore, we will analyse the transition probabilities in Section 4.3.4. We will then 

discuss the reward function in Section 4.3.5 after which the value function will be discussed in Section 

4.3.6. Finally, we will introduce a possible solving method in Section 4.3.7. 

4.3.1 Case description 

The Markov decision process model developed by Gans & Savin (2007), that was described in Section 

3.3, will be used to analyse the problem mathematically. In the model, different classes of premium 

customers can be analysed with different Poisson arrival rates. Furthermore, the rental service time is 

exponentially distributed for all customers. The model will be adapted to the problem setting we 

described in Section 4.2. The assumption was made that the delivery companies arrive in the same 

order. In between, last-mile customers can pick up a parcel from the locker wall and first-mile 

customers can bring parcels to the locker wall, which are dedicated to a delivery company. The arrival 

patterns of the last-mile and first-mile customers are represented by inhomogeneous Poisson 

distributions. To be able to cope with this in a MDP formulation, a time variable will be added to the 

state variable.  

Puterman (1990) describes the problem formulation of MDPs and the various adaptations. First, the 

choice must be made at which time steps the system is analysed. The time set can either be continuous 

or discrete and finite or infinite. We will implement an MDP with discrete time steps of 1 hour and a 

finite horizon. The system consists of two delivery companies, a locker wall with a fixed capacity c and 

customers that arrive to either pick up or deliver a parcel to the locker wall. Parcels are dedicated to 

one of the two delivery companies. A first-mile parcel dedicated to delivery company 2 cannot be 

picked up by delivery company 1 and the other way around. In this problem instance, it is assumed the 

delivery companies always arrive at the same time and in the same order. For this reason, it is always 

known when first-mile parcels will be picked up and when last-mile parcels will be delivered. As the 

time horizon goes from the moment delivery company 2 leaves until the moment delivery company 1 

arrives, accepting first-mile parcels of delivery company 2 will lead to a smaller available capacity for 

delivery company 1. When a delivery company arrives, the first-mile parcels that are dedicated to them 

are emptied and the last-mile parcels that they carry with them are delivered (if accepted).  

The time horizon will be 22 hours. At t=0, the second delivery company will just have left the system 

(12:00 at noon) and at t=22 (10:00 in the morning), the other delivery company will arrive. Because 

the delivery company heavily affects the state of the system, we only capture the time between the 

delivery companies with our MDP. At the end of the horizon of the MDP, the delivery company will 

arrive. All first-mile parcels dedicated to him will be collected and new last-mile parcels will be 

delivered. However, this is not a stationary process and therefore we choose to focus on the hours 

between the arrival of the two delivery companies. The parcels that are delivered by the delivery 

companies are either last-mile parcels from delivery company 1, first-mile parcels for delivery company 

1, last-mile parcels from delivery company 2 or first-mile parcels for delivery company 2.  
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In this model, the number of parcels delivery company 1 will wish to deliver to the wall is known. 

Therefore, during the day on arrivals, decisions must be made whether to accept or reject arriving 

customers. Not being able to provide lockers for all last-mile parcels will lead to a penalty whereas 

declining first-mile parcel requests leads to a direct loss of income.  

4.3.2 State variable 

The state of the system is defined by three variables. The number of first-mile parcels for delivery 

company 1, the number of first-mile parcels for delivery company 2, the number of last-mile parcels 

that are in the locker wall and the time that is left until the end of the time horizon is reached. No 

difference is made between last-mile parcels for delivery company 1 or delivery company 2, because 

they are picked up with the same distribution and it does not matter for the decision or action. We 

have to make the state time-dependent because the arrival patterns of first-mile deliveries and last-

mile pickups are represented by a non-homogeneous Poisson distribution. The Markovian property 

dictates that the system should only depend on its currents state and not on history (Puterman, 1990). 

Therefore, the changing 𝜆𝑙𝑚𝑝(𝑖) and 𝜆𝑓𝑚𝑑(𝑖) can only be included if the time 𝑖 is included in the state. 

This follows the same structure as the state vector that was presented by Gosavi et al. (2002) and 

discussed in Section 3.4.2. Therefore, our state vector looks as follows: 

𝑆(𝑡) = [𝐿𝑀(𝑡), 𝐹𝑀1(𝑡), 𝐹𝑀2(𝑡), 𝑡𝑖𝑚𝑒_𝑙𝑒𝑓𝑡] 

𝐿𝑀(𝑡): the number of last-mile parcels in the locker wall at time 𝑡 

𝐹𝑀1(𝑡): the number of first-mile parcels of delivery company 1 in the locker wall at time 𝑡 

𝐹𝑀2(𝑡): the number of first-mile parcels of delivery company 2 in the locker wall at time 𝑡 

𝑡𝑖𝑚𝑒_𝑙𝑒𝑓𝑡: number of hours that are left until the time horizon 

We will initially analyse a locker wall with 10 lockers. Every sub-state can take any value between 0 

and 10. However, their sum can never exceed the total capacity, which is equal to the total number of 

lockers that are available. We can calculate the number of possible states by analysing it like a 

statistical combination problem. We have three different types of parcels and ten spots. We can 

calculate the number of possible combinations with repetition, which means the number of different 

combinations we can make with the three different parcels if we can use each of them as many times 

as we wish. The formula for this is provided in Equation 7 (Taboga, 2021).  

𝐶𝑛,𝑘 = (𝑛+𝑘−1
𝑘

) =
(𝑛+𝑘−1)!

(𝑛+𝑘−1−𝑘)!𝑘!
=

(𝑛+𝑘−1)!

(𝑛−1)!𝑘!
    (7) 
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The number of different objects 𝑛 and the number of spots 𝑘, are - if all spots are filled - equal to 3 

and 10, respectively. Therefore, the number of possible different states amounts to 66. This calculation 

must be done for all possible numbers of filled lockers.  

Table 2 - Number of possible combinations for all possible numbers of full lockers 

𝑛 𝑘 𝐶𝑛,𝑘 

3 10 66 

3 9 55 

3 8 45 

3 7 36 

3 6 28 

3 5 21 

3 4 15 

3 3 10 

3 2 6 

3 1 3 

3 0 1 

Total: 286 

 

Additionally, the 𝑡𝑖𝑚𝑒_𝑙𝑒𝑓𝑡 variable can take on 23 different values. Therefore, the total number of 

possible states is equal to 286 ∗ 23 = 6578. 

As said earlier, the problem horizon starts when the second delivery company has just left. The 

𝑡𝑖𝑚𝑒_𝑙𝑒𝑓𝑡 variable is then equal to 22, as we assume the second delivery company leaves at 12am and 

the next delivery company arrives at 10am in the morning. During the time horizon, customers will 

arrive to pick up last-mile parcels and first-mile customers will arrive to deliver first-mile parcels. Both 

arrival patterns follow a Poisson arrival process. The distributions of the last-mile customers will be 

combined. The arrivals of first-mile parcel customers are analysed separately, as they are dedicated to 

a delivery company.  

4.3.3 Action variable 

When the agent is in a certain state, he must pick an action from a prespecified list of possible actions, 

picking an option triggers the transition to a next stage. Given a certain action, a probability distribution 

is specified on the next system state. Furthermore, a direct reward is earned based on the state and 

the action that was taken. The action does not only affect the direct income but also affects the 

evolution of the process. Eventually, the decision maker wants to make decisions that optimize the 

total reward over the whole time horizon (Puterman, 1990). In this situation, the decision maker only 

focuses on the first-mile parcels, because no decision can be made regarding last-mile parcels that are 

already accepted (they cannot be emptied preemptively). The decision can be made to allow 0 parcels 

or to allow up to the number of parcels that is equal to the number of empty lockers in the current 

state. However, the sum of allowed first-mile parcels for delivery company 1 and delivery company 2 

must not exceed the available capacity. The action variable vector looks as follows:  

𝐴(𝑡) = [ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑_𝐹𝑀1,𝑡, 𝑎𝑙𝑙𝑜𝑤𝑒𝑑_𝐹𝑀2,𝑡] 

Given that:   
𝑎𝑙𝑙𝑜𝑤𝑒𝑑_𝐹𝑀1,𝑡  +  𝑎𝑙𝑙𝑜𝑤𝑒𝑑_𝐹𝑀2,𝑡 ≤ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑙𝑜𝑐𝑘𝑒𝑟𝑠 

With:  

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑙𝑜𝑐𝑘𝑒𝑟𝑠 = 𝑡𝑜𝑡𝑎𝑙_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − (𝐿𝑀(𝑡) + 𝐹𝑀1(𝑡) + 𝐹𝑀2(𝑡)) 
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4.3.4 Transition probabilities 

In Table 3, the arrival rates are shown that will be used for this problem. The arrival rates are the same 

arrival rates as presented in Table 1, but they are multiplied with a factor 10 to correct for the number 

of lockers. Furthermore, it is assumed the first-mile parcels of the first and second delivery company 

arrive with the same rate. Therefore, the arrival rates that were presented in Table 1 are multiplied 

with a factor of ten and then divided by two. In the left-most column, the 𝑡𝑖𝑚𝑒_𝑙𝑒𝑓𝑡 variable is shown. 

Furthermore, the decision will be made at the start of the hour. So, the first decision is made at 

𝑡𝑖𝑚𝑒_𝑙𝑒𝑓𝑡 = 22, which is at 12:00 in the morning.  

Table 3 - Non-homogeneous arrival rates per hour of last-mile and first-mile deliveries scaled to ten lockers 

𝑡𝑖𝑚𝑒_𝑙𝑒𝑓𝑡 From Until 𝝀𝑙𝑚𝑝(𝒊) 𝝀𝑓𝑚𝑑_𝑑𝑐1(𝒊) 𝝀𝑓𝑚𝑑_𝑑𝑐2(𝒊) 

22 12:00 13:00 0.2779 0.2274 0.2274 

21 13:00 14:00 0.3115 0.2520 0.2520 

20 14:00 15:00 0.2834 0.2664 0.2664 

19 15:00 16:00 0.2940 0.2933 0.2933 

18 16:00 17:00 0.3581 0.3106 0.3106 

17 17:00 18:00 0.3449 0.2571 0.2571 

16 18:00 19:00 0.2163 0.1943 0.1943 

15 19:00 20:00 0.1612 0.1653 0.1653 

14 20:00 21:00 0.0844 0.0849 0.0849 

13 21:00 22:00 0.0440 0.0299 0.0299 

12 22:00 23:00 0.0178 0.0103 0.0103 

11 23:00 00:00 0.0120 0.0033 0.0033 

10 00:00 01:00 0.0024 0.0023 0.0023 

9 01:00 02:00 0.0011 0.0018 0.0018 

8 02:00 03:00 0.0008 0.0000 0.0000 

7 03:00 04:00 0.0002 0.0000 0.0000 

6 04:00 05:00 0.0000 0.0018 0.0018 

5 05:00 06:00 0.0007 0.0008 0.0008 

4 06:00 07:00 0.0024 0.0047 0.0047 

3 07:00 08:00 0.0090 0.0170 0.0170 

2 08:00 09:00 0.0426 0.1134 0.1134 

1 09:00 10:00 0.0577 0.1461 0.1461 

 

To calculate the transition probabilities, the probability mass function of the Poisson distribution is 

used. The probability density function is shown in Equation 8 (Kissell & Poserina, 2017).  

𝑃𝑥(𝑘) =
𝜆𝑘𝑒−𝜆

𝑘!
      (8) 

The probability density function will be used to calculate the chance that a certain number of events 

happen in the next epoch. For example, if the state would be: 𝑆(0) = [5, 0, 0, 22]. The chance that the 

state in the next stage would be equal to 𝑆(1) = [5, 1, 0, 21], would be equal to the probability that 

one first-mile customer of delivery company 1 has arrived multiplied with the probability that no first-

mile parcels of delivery company 2 have arrived multiplied with the probability that no last-mile 

customer has picked up a parcel, given that the action taken allows new first-mile parcels in the system. 

We assume that the probabilities are independently distributed. The chances would look as follows: 
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𝑃(𝑜𝑛𝑒 𝐹𝑀 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑜𝑓 𝐷𝐶1) = 𝑃𝑓𝑚𝑑_𝑑𝑐1(1) =
0.10731𝑒−0.1073

1!
= 0.0964 

𝑃(𝑛𝑜 𝐹𝑀 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑜𝑓 𝐷𝐶2) = 𝑃𝑓𝑚𝑑_𝑑𝑐2(0) =
0.10730𝑒−0.1073

0!
= 0.8983 

𝑃(𝑛𝑜 𝐿𝑀 𝑝𝑖𝑐𝑘𝑢𝑝𝑠) = 𝑃𝑙𝑚𝑝(0) =
1.20460𝑒−1.2046

0!
= 0.2998 

Therefore, the total probability of moving from 𝑆(0) = [5, 0, 0, 22] to 𝑆(1) = [5, 1, 0, 21] would be 

equal to: 

𝑃((𝑆(0) = [5, 0, 0, 22]) → 𝑆(1) = [5, 1, 0, 21])) = 0.0964 ∗ 0.8983 ∗ 0.2998 = 0.0230 

Furthermore, when the next stage is entered it is only possible to go to a state of which the 𝑡𝑖𝑚𝑒_𝑙𝑒𝑓𝑡 

variable is one less than the state in the previous stage. The transition probabilities to all other states 

will be equal to zero. The states in which the 𝑡𝑖𝑚𝑒_𝑙𝑒𝑓𝑡 variable is equal to zero are absorbing states. 

This means that the only transition probability that is bigger than 0 is towards themselves and is equal 

to 1.  

4.3.5 Reward function 

The rewards that can be earned in the system are twofold. First, a direct reward can be earned by 

accepting first-mile parcels. However, if there are not enough lockers available for the delivery 

company that arrives at t=0, a penalty will be incurred. This is represented by terminal rewards. 

Terminal rewards are earned if the agent ends up in a certain state (Puterman, 1990). The terminal 

rewards are negative in this case. It is assumed, the number of parcels the next deliverer will bring is 

known. Per parcel that does not fit in the wall anymore, a penalty must be paid.  

As stated earlier, the direct rewards are earned by accepting first-mile parcels. The reward function is 

shown in Equation 9.  

𝑟𝑡(𝑠, 𝑠′) = 𝑖𝑛𝑐𝑜𝑚𝑒_𝑝𝑎𝑟𝑐𝑒𝑙 ∗ ((𝐹𝑀1,𝑠′(𝑡) − 𝐹𝑀1,𝑠(𝑡)) + (𝐹𝑀2,𝑠′(𝑡) − 𝐹𝑀2,𝑠(𝑡)))  (9) 

The terminal rewards are dependent on the number of parcels that will be delivered by the end of the 

time horizon, the number of parcels that fit in the wall and the number of lockers that are occupied at 

the end of the time horizon. The number of lockers that are short will be multiplied with a prespecified 

penalty to obtain the terminal reward for that state. If the number of lockers that are needed is smaller 

than the available lockers, no penalty will be incurred. Therefore, a maximum operator is included, 

which takes the value 0 in the latter case. 

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙_𝑟𝑒𝑤𝑎𝑟𝑑 = max (0, (𝑙𝑜𝑐𝑘𝑒𝑟𝑠_𝑛𝑒𝑒𝑑𝑒𝑑 − 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑙𝑜𝑐𝑘𝑒𝑟𝑠))  ∗ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 

With:  

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑙𝑜𝑐𝑘𝑒𝑟𝑠 = 𝑡𝑜𝑡𝑎𝑙_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − (𝐿𝑀(𝑇 + 1) + 𝐹𝑀1(𝑇 + 1) + 𝐹𝑀2(𝑇 + 1)) 

4.3.6 Value function 

The value function does not only consider the reward that is earned by moving from one state to 

another. It optimizes the rewards earned over the whole horizon, including the terminal penalties that 

may be incurred. The value function is shown in Equation 10. 

𝑉(𝑠) = max
𝑎

(𝑟(𝑡) + 𝐸[𝑉(𝑠′|𝑠, 𝑎)])    (10) 

The value function forces the system to take the actions that maximize the rewards that are obtained 

and the terminal penalties that are incurred. Normally, future rewards are discounted with a factor to 
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adjust for the fact that income now is more valuable than income later. However, because the 

complete time horizon of the problem is only a day and the income per parcel is marginal, we choose 

to not use a discount factor.  

4.3.7 Value iteration algorithm 

We analyse our problem using the value iteration algorithm. This algorithm first initializes the values 

of each state to the immediate rewards of that state. Thereafter, the values are updated until the 

change in values is lower than 𝜀= 0.01 or the maximum number of iterations is reached. The value of 

a state is updated by the value of the next best state multiplied with the probability of getting there 

given a certain action. In the end, the best possible action is obtained from each state. The combination 

of all best actions in all states is called a policy. The algorithm is shown below (Pashenkova, Rish, & 

Dechter, 1996): 

1. 𝑆𝑒𝑡 𝑉𝑎𝑙𝑢𝑒𝑠 = {𝑠𝑡𝑎𝑡𝑒 ∶ 𝑅(𝑠)𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑡𝑒 𝑠} 

2. 𝑈𝑛𝑡𝑖𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑑𝑜𝑛′𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑟 max 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑜𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑡ℎ𝑎𝑛 𝜀:  

3.  𝑐𝑜𝑝𝑦_𝑣𝑎𝑙𝑢𝑒𝑠 = 𝑣𝑎𝑙𝑢𝑒𝑠 

4. 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑡𝑒 𝑠: 

5.   𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑏𝑒𝑠𝑡_𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑉𝑎𝑙𝑢𝑒 

6.   𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎𝑐𝑡𝑖𝑜𝑛: 

7.    𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑉𝑎𝑙𝑢𝑒 = 0 

8.    𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 𝑛𝑠: 

9.     𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑉𝑎𝑙𝑢𝑒 += 𝑡𝑟𝑎𝑛𝑠_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑐𝑜𝑝𝑦_𝑣𝑎𝑙𝑢𝑒𝑠[𝑛𝑠] 

10.    𝑏𝑒𝑠𝑡_𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑉𝑎𝑙𝑢𝑒 = max (𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑉𝑎𝑙𝑢𝑒, 𝑏𝑒𝑠𝑡_𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑉𝑎𝑙𝑢𝑒) 

11.   𝑣𝑎𝑙𝑢𝑒𝑠[𝑠] = 𝑅(𝑠) + 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 ∗ 𝑏𝑒𝑠𝑡_𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑉𝑎𝑙𝑢𝑒 
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5. SOLUTION APPROACH 
In this chapter, we will discuss different methods that are used to form a solution. First, we will discuss 

a simple threshold policy in Section 5.1. Thereafter, we will elaborate on and work out the myopic 

policy and the Markov decision process policy that were discussed in Chapter 4. First, we will present 

a myopic allocation policy in Section 5.2. Thereafter, we will discuss the MDP we devised in Section 

5.3.  

5.1 THRESHOLD POLICY 
We introduced the phenomenon of threshold policies in rental systems in Section 3.3. We will now 

define a simple threshold policy for our dynamic rental system problem. The threshold policy will only 

consider the total number of parcels in the locker wall. Based on this, the decision will be made 

whether an arriving first-mile customer may use a locker or not. The policy will not distinguish between 

different types of parcels in the wall. For example, a threshold of 0.90 means no one may use a new 

locker anymore if 9 out of 10 lockers are filled. That is, until a last-mile parcel customer arrives and 

collects a parcel. This will bring the utilization down to 0.8 and will make it possible for a new customer 

to use the wall. In the discrete-event simulation model, we will experiment with various threshold 

values ranging between 0.1 and 0.9.  

5.2 MYOPIC ALLOCATION POLICY 
In this section, we will discuss a myopic allocation policy. The myopic allocation policy will be more 

complex than the threshold policy as it will be based on information about historical arrival patterns. 

In Section 5.2.1, we will introduce the method and discuss the theoretical background. In Section 5.2.2, 

we will present calculations and probabilities that lay on the basis of this policy. In Section 5.2.3, we 

will conclude and define the policy.  

5.2.1 Introduction 

Gans & Savin (2007) showed that within certain conditions, myopic policy management may be near 

optimal. We propose to analyse a myopic policy and analyse this mathematically. For this, we can use 

a small problem and use the exponential interarrival times of the different classes to analyse the 

possibilities that assigning a locker now will lead to loss of income and/or a penalty in the near future. 

We can analyse this situation for different interarrival times and different rental durations. We can 

also analyse the difference between exponentially distributed rental durations and rental durations 

that are constant. The latter could be the case in first-mile delivery pick-ups, because you almost 

always know the parcels will be picked up between 10:00 and 12:00 or in the afternoon.  

From Huseby (2021), we obtain some useful theorems. For example, the mean value function that is 

shown in Equation 11.  

𝑚(𝑡)  =  ∫ 𝜆(𝑢)𝑑𝑢
𝑡

0
     (11) 

Additionally, to calculate the possibility that no arrivals occur until 𝑡 is given in Equation 12.  

𝑃(𝑇1 > 𝑡) = 𝑃(𝑁(𝑡) = 0) = 𝑒−𝑚(𝑡)   𝑡 > 0    (12) 

Moreover, the density of 𝑇1 is given in Equation 13. 

𝑓𝑇1
(𝑡)  =  𝜆(𝑡)𝑒−𝑚(𝑡) 𝑡 > 0     (13) 

We will use these properties to analyse certain scenarios in which one locker is empty or all lockers are 

full. Subsequently, we will have to decide on the spot whether to accept a locker request when a locker 

is free. Or we can calculate the chance that a customer will arrive before any locker is free. We can 
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experiment with the duration of the first-mile pick up deliveries (constant time) and the decisions we 

make in certain scenarios. Furthermore, we can calculate the probability at any given time a last-mile 

parcel will be picked up before the next delivery company arrives again. This can be valuable 

information because the virtual capacity at the delivery company’s arrival then increases and another 

first-mile parcel may be accepted. 

To calculate the probability that a last-mile parcel that is currently in the wall will be emptied, the 

𝜆𝑙𝑚𝑝(𝑖) from Table 1 are used. The 𝜆𝑙𝑚𝑝(𝑖) are scaled per locker. However, the utilization of the locker 

walls in reality is approximately equal to 0.50. Furthermore, half of the parcels in the wall are first-mile 

parcels. To be able to use the Poisson arrival rates per individual parcel, we therefore multiply the 

𝜆𝑙𝑚𝑝(𝑖) from Table 1 with a factor 4 (times two because of the 0.50 utilization and times two because 

half of the utilization are first-mile parcels). Suppose the time of day is 15:00 and the next delivery 

company arrives at 10:00. Using the mean value function shown in Equation 11 and the 𝜆𝑙𝑚𝑝(𝑖) from 

Table 1, we obtain 𝑚(𝑡) = 0.6596. Inserting this in Equation 12, we obtain 𝑃(𝑁(𝑡) = 0) = 𝑒−𝑚(𝑡) =

𝑒−0.6596 = 0.52. Therefore, the probability that the parcel is picked up before the next delivery company 

arrives is equal to 1 − 0.52 = 0.48. This will be further explained and presented in the next section. 

Furthermore, when two last-mile parcels are in the wall at 15:00, the probability that at least one 

parcel is picked up before the next delivery company arrives again is calculated using the probabilities 

above and the possible scenarios. The probability that both parcels will be picked up is equal to the 

multiplication of both separate chances, as we assume independence. Therefore, the probability that 

both lockers will be free when the next delivery company arrives is equal to 0.522 = 0.27, this will be 

later presented in Figure 15. Furthermore, the probability that at least one of the two lockers will be 

available in the morning consists of the sum of the following probabilities: 

▪ The probability that parcel 1 will be collected and parcel 2 not; 

▪ The probability that parcel 1 will not be collected and parcel 2 is; 

▪ The probability that both parcels are collected.  

The first two probabilities are equal to 0.48 ∗ 0.52 = 0.25. Therefore, the sum of the three probabilities 

that is equal to 0.25 + 0.25 + 0.27 = 0.77. When more lockers are considered, the probabilities of all 

possible combinations are calculated and added. We will now further present the probabilities in 

Section 5.2.2. 

5.2.2 Myopic policy 

In this section, we will present the probabilities that will form the basis of our myopic policy. The model 

will only consider the current state of the wall and - based on historical data and arrival patterns - we 

will determine how many lockers can be given away at what time. In this problem instance, we 

distinguish four different arrivals. Namely, the arrivals of the first-mile delivery, first-mile pickup, last-

mile delivery and last-mile pickup. Delivery company 1 always arrives at 10:00 in the morning and 

delivery company 2 always arrives at 12:00 in the morning. The delivery companies deliver last-mile 

parcels. Furthermore, the last-mile pickup customers arrive with a non-homogeneous Poisson 

distribution. The first-mile parcels that are delivered are picked up by the delivery company (the 

parcels are dedicated to delivery company 1 or 2). For clarity, the arrival distributions are shown in 

Table 4.  

Table 4 - Arrival patterns of the four different arrivals 

Arrival How 

Last-mile delivery Fixed moment during the day 

Last-mile pickup Non-homogeneous Poisson 

First-mile delivery  Non-homogeneous Poisson 

First-mile pickup Constant 
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First-mile parcels that are delivered and must be taken by delivery company 2, cannot be taken by 

delivery company 1. Because delivery company 1 always arrives before delivery company 2, the lockers 

that are filled with first-mile parcels for delivery company 2 cannot be used by delivery company 1. 

When a delivery company arrives, it first empties all the first-mile parcels that are dedicated to them 

and subsequently fills the wall with the last-mile parcels they have. The last-mile parcels that are 

delivered to the wall are picked up by customers. The customers arrive following a non-homogeneous 

Poisson distribution. It is assumed the number of lockers that is needed by the delivery companies is 

known one day beforehand. Therefore, the allocation policy can be used with a horizon of one day.  

In the next paragraphs, we will analyse the probabilities that last-mile parcels in the wall are picked up 

before the next delivery company arrives. In Section 5.2.3, we will extend this by explaining how the 

probabilities can be used in an admission policy.  

Probabilities last-mile parcels are picked up before the next delivery company arrives 

In scenarios where first-mile customers of delivery company 2 arrive and delivery company 1 is the 

next arriving deliverer, accepting the customers means that the locker will not be available for delivery 

company 1. The lockers that can be used by delivery company 1 are the lockers that are: 

▪ empty on that moment; 

▪ lockers that contain first-mile parcels of delivery company 1; 

▪ lockers that contain last-mile parcels that will be picked up before delivery company 1 arrives.  

Out of these three possibilities, only one contains stochasticity. First-mile customers of delivery 

company 1 may always be accepted after delivery company 2 has visited, because the first-mile parcels 

will be taken before delivery company 2 uses the wall again. It is evident empty lockers can always be 

used. But in a scenario where first-mile customers of delivery company 2 arrive in the afternoon and 

you know (approximately) how many lockers delivery company 1 will need tomorrow, you must decide 

to accept or reject them. In that moment, only the last-mile parcels that are in the wall can still be 

emptied before the next delivery company arrives. Because the first-mile parcel that is accepted will 

definitely be not empty when the deliverer arrives. In this problem instance, the number of last-mile 

parcels in the wall makes a difference. Therefore, we analysed the scenarios that 1, 2, 3 or 4 last-mile 

parcels are in the locker wall. For the last scenario, the probability is calculated that at least 1, at least 

2, at least 3 and at least 4 parcels are picked up before the next delivery company arrives. For the other 

scenarios, the same is done depending on the maximum number of last-mile parcels in the wall. The 

probabilities are calculated for each hour after delivery company 2 has visited at 12:00 and before 

delivery company 1 arrives at 10:00 in the morning.  
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Scenario 1: One last-mile parcel in the wall 

When there is only one last-mile parcel in the wall, the probability that it is emptied before the next 

deliverer arrives is between 0.6 and 0.7 after deliverer 2 has left. The probability decreases steadily 

during the day and stays approximately constant during the night, as can be seen in Figure 14. 

 

Figure 14 - The probability that one last-mile parcel will be collected before the next delivery moment 
 

Scenario 2: Two last-mile parcels in the wall 

When there are two last-mile parcels in the wall, there is a chance that least one of them will be 

emptied and the chance that they will both be emptied before the next deliverer will arrive. In Figure 

15, these probabilities are projected. The chance that either of them will be collected during the day 

is fairly high. However, the chance that they will both be collected is approximately 0.4 at the highest.  

 

Figure 15 - The probability that at least one or two last-mile parcels will be collected before the next delivery moment 
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Scenario 3: Three last-mile parcels in the wall 

In the scenario with three last-mile parcels in the wall, the chance that at least one parcel will be 

collected before the next deliverer arrives is almost 1 in the beginning. The chance that at least two 

parcels will be collected starts just above 0.7. The probabilities are shown in Figure 16.  

 

Figure 16 - The probability that at least one, two or three last-mile parcels will be collected before the next delivery moment 
 

Scenario 4: Four last-mile parcels in the wall 

Delivery companies arrive each day from Tuesday until Saturday. On Sundays and Mondays they do 

not visit the wall. To illustrate the effect, we analysed the problem instance from Thursday to Sunday. 

First, a normal weekday is shown in Figure 17. The graph starts just after delivery company 2 has left 

and ends at 10:00 in the next morning, when the next delivery company arrives. The different lines are 

chances that at least that number of lockers will become available before the next delivery company 

arrives. For example, the blue line is the chance that at least one locker becomes available. This 

probability consist of the chance that 1, 2, 3 or 4 lockers will become available before the next morning.  

 

Figure 17 - Probability that a specific number of last-mile parcels will be picked up before the next delivery company arrives 
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In the graph it can be seen that the chance that one last-mile parcel will be picked up before the next 

delivery company arrives starts around 100%. Until approximately 19:30 the chance is above the 50%. 

This means that when a last-mile parcel is in the wall at that time, the chance is still fifty-fifty that it 

will be picked up before 10:00 in the morning. When a first-mile customer of delivery company 2 

wishes to use the wall and there are lockers available, the choice must be made to either accept or 

reject the customer. When it is known that there are 5 lockers free at 19:30 and it is known delivery 

company 1 needs 5 lockers in the morning, accepting a first-mile customer of delivery company 2 

means that there will be a 50% chance delivery company will have enough available lockers tomorrow.  

As stated earlier, the delivery companies do not visit the wall on Sundays and Mondays. Therefore, the 

chances on Saturday afternoon and Sunday that parcels will be picked up before the next delivery 

company arrives are higher than on normal days. To illustrate this, we plotted the probabilities in 

Figure 18. As can be seen, the probabilities that one, two or three lockers will be emptied is very high 

during the weekend.  

 

Figure 18 - Probabilities that a number of lockers will be available before delivery company 1 arrives again during the weekend 
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To get a good overview of the behaviour of the probabilities over the days and weekends the 

probabilities from Thursday to Tuesday are presented in Figure 19.  

 

Figure 19 - Probabilties that a number of lockers will be emptied before the next delivery company arrives (from Thursday until 
Tuesday) 

5.2.3 Admission policy 

The probabilities that were calculated and presented in Section 5.2.2 can be the basis of  an allocation 

policy to determine whether to accept or reject certain customers. When first-mile customers arrive 

at the wall and are not dedicated to the next arriving deliverer, accepting them will definitely lead to 

having a smaller capacity compared to when they are rejected. The capacity that is expected can be 

calculated by the number of available lockers, the number of lockers that are filled with first-mile 

parcels that are dedicated to the next arriving deliverer and the number of lockers that contain a last-

mile parcel and are expected to be empty before the next deliverer arrives.  

Using the policy, it must be possible to decide at every moment based on the state of the wall, type of 

customer and the time of day. In Figure 20, a flowchart is shown that shows the myopic allocation 

policy. First, it is checked whether the arriving customer belongs to the first arriving delivery company. 

If so, the customer is accepted because his parcel will first be emptied by the delivery company and 

will therefore not occupy a locker that may have to be used for last-mile parcels. If not, the capacity of 

the locker wall is checked. If the sum of first-mile parcels for delivery company 1 and empty lockers is 

bigger than the expected number of needed lockers, the customer is always accepted. If this is not the 

case, a calculation is triggered. This moment is represented by the green highlighted square. The 

calculation was explained in Section 5.2.1 and 5.2.2 and is based on the number of last-mile parcels 

that are currently present in the locker wall. Based on this probability, the decision is made to either 

accept or reject the customer. When accepting a customer now leads to the probability of not having 

enough lockers in the morning being smaller than the service level, the customer is not accepted. 

Otherwise, the customer is accepted.  
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Figure 20 - A flowchart of the myopic allocation policy 
 

As can be seen in the flowchart, the green square is not reached if there is already enough capacity 

available. In the event not enough capacity is available, the green square is entered. First, the number 

of last-mile parcels in the wall is determined. Based on this and the time of day, the calculation is made 

with which probability sufficient last-mile parcels will be picked up before the next delivery company 

arrives. In Table 5, the expected number of last-mile parcels that will be picked up before the next 

delivery company arrives is shown. The probability must be at least 90% and it depends on how many 

parcels are in the wall at that moment. For example, from 18:00 it cannot be said with a probability 

higher than 0.90 anymore that any of the last-mile parcels will be picked up, so no locker can be 

assigned anymore that is needed in the morning if the promised service level is 0.90. 

We will illustrate the policy using an example. Let us assume that we know delivery company 1 that 

comes first tomorrow morning needs 4 lockers and it is currently 15:00. The state of the wall is as 

follows:  

▪ Three lockers are empty; 

▪ One locker contains a first-mile parcel for delivery company 1; 

▪ Two lockers contain a first-mile parcel for delivery company 2; 

▪ Four lockers contain last-mile parcels. 

The question is whether we can now accept a customer of delivery company 2. When the delivery 

company arrives, he will first empty the first-mile parcel dedicated to him and he will be able to use 

the available lockers. That will give him  four lockers in total. Looking at Table 5, we see that we expect 
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that one of the four last-mile parcels will be collected before the next morning (4 last-mile parcels, 

15:00 in the afternoon). Therefore, we can accept the new customer as we will still have enough 

lockers the next morning if one last-mile parcel is picked up.  

Table 5 – Maximum number of last-mile parcels that are expected to be collected from the locker wall with a probability of at 
least 0.90.  

 Number of last-mile parcels in the wall 

Tuesday - Saturday 1 2 3 4 

 12:00 0 1 1 2 

13:00  0 0 1 1 

14:00 0 0 1 1 

15:00 0 0 1 1 

16:00 0 0 0 1 

17:00 0 0 0 1 

18:00 0 0 0 0 

19:00 0 0 0 0 

 

5.3 MARKOV DECISION PROCESS POLICY 
In this section, we will elaborate on the policy that is obtained by solving the MDP defined in Section 

4.3. This policy will be more complex than the threshold policy and the myopic allocation policy 

because we have analysed the best decision to take in every feasible state. It includes both the 

inhomogeneous arrival pattern of last-mile parcel customers as the inhomogeneous arrival patterns of 

first-mile parcel customers. We will discuss the definition and input parameters in Section 5.3.1. 

Thereafter, we will present the resulting policy in Section 5.3.2.  

5.3.1 Definition and parameters 

The MDP formulation that was given in Section 4.3 was solved using the algorithm that was given in 

Section 4.3.7. The decision space consisted of nine possible actions. Each hour, the decision must be 

made how many first-mile parcels may be accepted from each delivery company. Due to 

computational limits, nine possible actions were considered. Each hour, the decision was made to 

accept 0, 1 or 2 parcels per delivery company in the next hour. Two delivery companies are involved, 

so nine different decision can be made in total. The parameters of the model and their values are 

shown in Table 6. The reward for a first-mile parcel of delivery company 1 is equal to 0.5, the reward 

for a first-mile parcel of delivery company 2 is equal to 0.7 and the penalty for not having enough space 

for a last-mile parcel in the morning is equal to 0.8. The latter is the sum of three different costs. First, 

the direct loss of 0.5 in income of a last-mile parcel, the loss of goodwill of the customer because his 

parcel is not delivered at the desired location is valued equal to 0.25 and the loss of goodwill of the 

delivery company is valued at 0.05.  

Table 6 - Parameters and their values of the MDP 

Parameter Value 

Reward first-mile parcel delivery company 1 0.5 

Reward first-mile parcel delivery company 2 0.7 

Penalty not enough space per last-mile parcel 0.8 

5.3.2 Policy 

The resulting policy gives an action for every possible state of the locker wall. In total, there are 6578 

states (see Section 4.3.2). For every state, the policy prescribes to take any action in the  list 

[0,1,2,3,4,5,6,7,8]. The number of allowed first-mile parcels of delivery company 1 and delivery 

company 2 that belong to each action. However, because in this situation delivery company 1 will be 

our premium customer, we will always accept first-mile parcels of delivery company 1. Therefore, we 

will implement the policy based on the actions for delivery company 2. Which means first-mile parcels 
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of delivery company 2 will be accepted according to the policy and first-mile parcels of company 1 will 

always be accepted if there are lockers available.  

Table 7 - The different actions that can be taken and the corresponding number of parcels that are allowed 

Action 
Number of allowed first-mile 
parcels of delivery company 1 

Number of allowed first-mile 
parcels of delivery company 2 

0 0 0 

1 1 0 

2 2 0 

3 0 1 

4 1 1 

5 2 1 

6 0 2 

7 1 2 

8 2 2 
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6. SIMULATION MODEL 
Like Pazour & Roy (2015), we will use discrete-event simulation to analyse the performance of our 

policies. We have developed a simulation model using Plant Simulation. With this model, the 

performance of the policies found in Chapter 5 can be analysed, different configurations can be 

experimented with and alternative policies can be analysed (Robinson, 2014). Because the system we 

analyse is subject to a lot of variability and the processes are interconnected, analysing the policies in 

a simulation environment may give valuable insights into the behaviour of the different policies. First 

of all, a conceptual model is devised in which all the inputs and outputs of the model are described. 

Initially, a base model will be developed that will resemble a simple version of reality. In Section 6.1, 

an overview will be given of the conceptual model and the in- and outputs of the system. In Section 

6.2, we will present the configuration settings of the simulation environment. Subsequently, we will 

define the experiments in Section 6.3.  

6.1 CONCEPTUAL MODEL 
The base model will be a simple representation of a locker wall. The system will be modelled using 

discrete event simulation. We will now describe the most important features on the basis of four 

concepts: the scope, the level of detail, the input and the output.  

6.1.1 Scope 

The model will represent one locker wall. The locker wall consists of 10 lockers. Initially, the lockers 

will all have the same size. Each delivery company will deliver once per day (at 10am and at 12am) and 

will bring a random number of parcels. This amount will be based on the historical data of the past 

year. The parcels will stay in the wall for a certain amount of time. This duration is taken from an 

exponential distribution which is based on the historical data. When parcels have not been picked up 

after seven days, the parcel is removed from the wall. This represents the event in which the parcel 

deliverer has to take the parcels with him again.  

Furthermore, the arrival process of first-mile deliveries will be modelled as a non-homogeneous 

Poisson process. The arrival rate will vary by hour following 𝜆𝑙𝑚𝑝(𝑖) and 𝜆𝑓𝑚𝑑(𝑖) that were shown in 

the fourth column of Table 1. The arrival rates are calculated on average per locker. When the 

simulation initializes, the total number of lockers is multiplied with the lambdas and that results in the 

arrival rates that are used in de simulation. The assumption is made that the deliverer of the last-mile 

parcels will always pick up all first-mile deliveries that are dedicated to him. Therefore, the pickup time 

of first-mile deliveries is constant.  

6.1.2 Level of detail 

The model that will be developed will be used for statistical analysis. The model will not be used for 

visualization purposes. For this reason, the model will be abstract. It will present all the objects and 

processes but will not include unnecessary visual elements. The arrival and pickup process will be 

represented by distributions.  

6.1.3 Input 

The main inputs of the base model are as follows: 

▪ the distribution of the number of last-mile parcels that are delivered each morning. On 

average, 0.25 last-mile parcels are delivered per locker. The distribution is uniform. The 

average is multiplied with the scaling factor. The lower bound is 0.75 times the scaled average. 

The upper bound is 1.25 times the scaled average. 

▪ the distribution of the last-mile pickup process representing the customers; 
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▪ the distribution of the delivery process of first-mile parcels of delivery company 1; 

▪ the distribution of the delivery process of first-mile parcels of delivery company 2; 

▪ the income per last-mile parcel of delivery company 1. The default value is equal to 0.5; 

▪ the income per last-mile parcel of delivery company 2. The default value is equal to 0.7; 

▪ the income per first-mile parcel of delivery company 1. The default value is equal to 0.5; 

▪ the income per first-mile parcel of delivery company 2. The default value is equal to 0.7; 

▪ a penalty per last-mile parcel of delivery company 1 that cannot be delivered. The default value 

is equal to 0.8; 

▪ the configuration of the locker wall (number and size of lockers) . The default configuration 

will be 10 lockers of 1 size; 

▪ the proportion of delivery company 1 and delivery company 2. The default setting is that the 

number of parcels they bring follow the same distribution; 

▪ a scaling factor that makes it easier to experiment with busier situations. It multiplies all arrival 

rates with the factor. The default value is equal to 1.  

6.1.4 Output 

When a parcel arrives, the arrival time is stored in a table. Once the parcel is picked up again, the 

departure time is saved and the duration the parcel has occupied the locker will be calculated and 

saved. Based on this, the average utilization of the locker wall will be calculated. Furthermore, the 

main output we focus on is the percentage of accepted last-mile parcels and accepted first-mile 

parcels. The percentages will be stored per delivery company and type of stream (first-mile or last-

mile). This is necessary so we can see the effect if we are going to discriminate between different 

(classes of) deliverers.  

6.2 CONFIGURATION 
In this section, we will determine the configuration of the simulation model. First, we will calculate the 

warm-up period and the run length in Section 6.2.1. Thereafter, we will calculate the number of 

replications in Section 6.2.2.  

6.2.1 Warm-up period and run length 

Our simulation output is not cyclic and reaches a steady state. We want to delete the data points that 

lie within the period in which the output is not steady yet, because this would otherwise bias our 

results. We use the graphical method to determine our warm-up period (Robinson, 2014, p. 166). To 

determine the warm-up period and the run length we consider the service levels of the four parcel 

streams as key performance indicators. A locker wall with ten equally sized lockers is analysed and 

every time a parcel is accepted or rejected; the corresponding service level is updated. The FCFS policy 

is used with a scaling factor of three. The latter choice is made because the output of the system will 

need more time to stabilize if it is more crowded. Therefore, the choice is made to analyse a crowded 

situation and set the scaling factor equal to three. We took the average of 30 replications of 1000 days 

long and plotted the outcome in a graph. For visualisation purposes, the data was stored as 1 – the 

service level. For example, a service level of 0.9 was stored as 1 – 0.9 = 0.1. The resulting graph is 

presented in Figure 21. 
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Figure 21 - Graph of the utilization over time for the warm-up period determination 
 

As can be seen in Figure 21, the output becomes stable after approximately 250 occurrences. For the 

last-mile parcel streams, approximately 3300 data points were stored (only the first 2000 are shown 

in Figure 21). 250/3300 is approximately equal to 0.075. This means the warm-up period will be equal 

to 0.075 x 1000 (days) = 75 days.  

Banks, Nelson, Carson, & Nicol (2009) state that the run length after the deletion point should be at 

least ten times as long as the period of which the data was deleted. Therefore, the run length is set 

equal to the warm-up length multiplied with 10. This results in a run length equal to 825 days (10 x 75 

+ warm-up period). Data will be stored from the 76th day.  

6.2.2 Number of replications 

To determine the number of replications we need to get trustworthy results, we use the confidence 

interval method (Robinson, 2014, p. 184 - 186). We use a significance level of 𝛼 = 0.05. Initially, we 

execute 5 replications. All data is recorded after the warm-up period ends and the run length of all 

replications is equal to 750 days (excluding the warm-up period). For each run, the average per service 

level is taken and the cumulative average and standard deviation are calculated. These are used to 

calculate the confidence interval half width. Subsequently, the error relative to the mean is calculated 

by dividing the error by the mean. The first time the value is smaller (and stays smaller if the number 

of replications increase further) than the relative error, the number of replications is sufficient. 

Furthermore, at least 3 to 5 replications are recommended because the results of single replications 

should not be considered trustworthy (Robinson, 2014, p. 182). This was done for all four different 

service levels to ensure that enough replications are executed for all key performance indicators. In 

Table 8, the number of replications that are needed per performance indicator are presented. The full 

analysis per performance indicator can be found in Appendix A. The number of replications is 4. 

Table 8 - The number of replications that are needed per performance indicator 

Performance indicator 
Number of replications needed to be able to say with 95% confidence 
the real mean is within the confidence interval 

Service level of last-mile 
parcels of delivery company 1 
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6.3 EXPERIMENTS 
As stated earlier, the model revolves around one locker wall and two different delivery companies. The 

first delivery company arrives at 10:00 and the second delivery company arrives at 12:00. Initially, all 

lockers will have the same size and the locker wall will contain ten lockers. We will study four different 

situations:   

▪ A benchmark situation in which a FCFS policy is used; 

▪ A threshold policy as explained in Section 5.1; 

▪ The myopic allocation policy as explained in Section 5.2; 

▪ The MDP policy as explained in Section 5.3. 

Furthermore, we will analyse the environment with a scaling factor of 1, a scaling factor of 2 and a 

scaling factor of 3. The former represents reality, the latter represents a situation in which there are 

more customers that wish to use the wall. Additionally, the number of parcels the delivery company 

bring follow the same uniform distribution. The threshold factor takes the values [0.1, 0.3, 0.5, 0.7, 

0.9]. Furthermore, we will experiment with different goals for the service level in the myopic allocation 

policy. The service levels that will be aimed for take the values [0.1, 0.3, 0.5, 0.7, 0.9]. The policy that 

was obtained using the MDP has only one setting. The total number of experiments thus amounts to 

12 (different settings) * 3 (scaling factor) = 36. The experimental settings are shown in Appendix B. 

Furthermore, an overview of the simulation model is shown in Appendix C.  
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7. NUMERICAL EXPERIMENTS AND RESULTS 
In this section, we will discuss the results of the experiments that were presented in Section 6.3 and 

fully shown in Appendix C. We will analyse the outcomes in Section 7.1. Thereafter, we will execute 

additional experiments based on the most promising outcomes of the first thirty experiments in 

Section 7.2.  

7.1 GENERAL OUTCOMES  
In Table 9, the results of the thirty experiments are shown. Furthermore, the policy that was used per 

experiment is given in the second column. The full settings can be found in Appendix B. Furthermore, 

the service levels of the four different parcel streams are provided together with the total profit and 

the average utilization of the locker wall. The four different policies were evaluated with different 

settings and with three different scaling factors.  

Table 9 - Results of the experiments 

Scaling 
factor 

Policy 
LM1 

service 
level 

FM1 
service 
level 

LM2 
service 
level 

FM2 
service 
level 

Total profit 
Utiliz
ation 

1 FCFS 0.99 0.96 1.00 0.96 3295.28 0.52 

1 Thr [0.1] 1.00 0.08 1.00 0.09 1114.87 0.19 

1 Thr [0.3] 1.00 0.33 1.00 0.33 1736.14 0.29 

1 Thr [0.5] 1.00 0.61 1.00 0.60 2417.16 0.40 

1 Thr [0.7] 1.00 0.81 1.00 0.81 2930.25 0.47 

1 Thr [0.9] 1.00 0.92 1.00 0.93 3217.07 0.51 

1 Myo [0.1] 1.00 0.96 1.00 0.95 3292.43 0.52 

1 Myo [0.3] 1.00 0.96 1.00 0.95 3287.54 0.52 

1 Myo [0.5] 1.00 0.96 0.99 0.95 3282.48 0.52 

1 Myo [0.7] 1.00 0.96 0.99 0.94 3273.19 0.52 

1 Myo [0.9] 1.00 0.96 0.99 0.93 3264.38 0.52 

1 MDP 1.00 0.97 0.99 0.77 3036.33 0.48 

2 FCFS 0.96 0.74 0.97 0.74 5610.33 0.80 

2 Thr [0.1] 0.99 0.04 0.96 0.04 2181.75 0.28 

2 Thr [0.3] 0.99 0.16 0.96 0.16 2761.15 0.37 

2 Thr [0.5] 0.99 0.31 0.96 0.31 3524.92 0.49 

2 Thr [0.7] 0.99 0.48 0.96 0.49 4384.98 0.63 

2 Thr [0.9] 0.97 0.66 0.97 0.66 5214.28 0.76 

2 Myo [0.1] 0.98 0.75 0.96 0.68 5476.74 0.80 

2 Myo [0.3] 0.98 0.76 0.96 0.65 5430.54 0.80 

2 Myo [0.5] 0.99 0.78 0.95 0.62 5372.81 0.80 

2 Myo [0.7] 0.99 0.79 0.95 0.59 5317.57 0.79 

2 Myo [0.9] 1.00 0.81 0.95 0.56 5259.83 0.78 

2 MDP 0.99 0.81 0.95 0.58 5314.30 0.75 

3 FCFS 0.90 0.56 0.95 0.57 6932.95 0.90 

3 Thr [0.1] 0.99 0.03 0.92 0.03 3225.58 0.29 

3 Thr [0.3] 0.99 0.12 0.92 0.12 3862.87 0.38 

3 Thr [0.5] 0.99 0.22 0.92 0.23 4667.92 0.51 

3 Thr [0.7] 0.97 0.35 0.92 0.35 5557.64 0.66 
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3 Thr [0.9] 0.93 0.49 0.94 0.49 6496.39 0.82 

3 Myo [0.1] 0.98 0.64 0.90 0.39 6597.62 0.87 

3 Myo [0.3] 0.99 0.67 0.88 0.35 6520.53 0.86 

3 Myo [0.5] 0.99 0.70 0.88 0.32 6479.44 0.86 

3 Myo [0.7] 0.99 0.72 0.87 0.30 6420.50 0.85 

3 Myo [0.9] 0.99 0.73 0.87 0.27 6361.96 0.84 

3 MDP 0.96 0.64 0.91 0.46 6891.78 0.86 

 

We will now discuss the different variables in the following paragraphs. To determine whether the 

differences in the results are significant, T-tests are executed for all results. A T-test is statistical test 

that can be conducted to see if, given a certain significance level, one may presume the means of two 

datasets are different. The default level of significance used in the T-tests is 95%. We will now first 

discuss the situation with a scaling factor of 1 (normal situation) in Section 7.1.1. Subsequently, we will 

discuss the results of the experiments with a scaling factor of 2 in Section 7.1.2. Finally, we will discuss 

the results of the experiments with a scaling factor of 3 in Section 7.1.3.  

7.1.1 Scaling factor = 1 

In the normal situation we expect to see less strict admission policies to perform well in terms of profit. 

Therefore, we expect the FCFS policy, the myopic allocation policies focused on lower probabilities to 

perform best. However, we do expect all other policies to outperform the FCFS policy in terms of the 

service levels of delivery company 1, while these policies focus on obtaining a high service level for 

delivery company 1. Furthermore, the utilization is expected to be highest using the FCFS policy as all 

parcels will be accepted.  

The result in total profit for the normal situation (scaling factor = 1) is shown in Figure 22. It can be 

seen that the FCFS policy works best in this situation. The threshold policy performs best if the 

threshold is higher. When the threshold is equal to 1, the threshold policy behaves the same as the 

first-come first-serve policy. Therefore, it is logical that the result approaches the FCFS result. The 

myopic allocation policies perform approximately equally well and slightly underperform compared to 

the first-come first-serve policy. The performance of the myopic allocation policies increases as the 

service level it aims for decreases. The myopic allocation policy will behave as the FCFS policy when 

the service level it aims for is equal to zero. In this situation, the results of the T-tests showed that the 

results of the FCFS policy and all settings of the myopic allocation policies are not significantly different. 

Finally, the MDP policy only outperforms the lower threshold functions. 

 

Figure 22 -The total profit per policy for the normal situation 
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In Figure 23, the service levels are shown per policy. Four different service levels are distinguished. 

Namely, the service level of last-mile parcels of delivery company 1 and delivery company 2 and the 

service level of first-mile parcels of delivery company 1 and delivery company 2. It can be seen that the 

FCFS policy approximately reaches service levels above 0.95 for all parcel streams. The threshold 

functions and the myopic allocation policies perform better on the last-mile streams but underperform 

on the first-mile stream (specifically the first-mile stream of delivery company 2). The MDP policy 

performs bad on the first-mile parcels of delivery company 2 and performs well on the last-mile parcel 

streams and the first-mile parcel stream of delivery company 1. The results in service level are as 

expected. The service levels of delivery company 1 are equal or higher using the admission policies 

compared to the FCFS policy. However, we saw in Figure 26 that the threshold and MDP policies are 

too strict in this situation as the slightly improved service level of delivery company 1 costs a big 

proportion of the total profit.  

The myopic allocation policies and the FCFS policy all have a utilization of 0.52. As expected, the 

utilization is highest using the FCFS policy. Furthermore, it seems to be the maximum utilization 

obtainable in these circumstances as the service levels all approach 1.0. The service levels of the lower 

threshold policies are between 0.24 and 0.44. This can mainly be explained by the low service levels of 

the first-mile parcel streams.  

 

Figure 23 - Service levels obtained by the different policies in the normal situation 

7.1.2 Scaling factor = 2 

In a more crowded situation, we expect the myopic allocation policies and the MDP policies to perform 

better compared to the FCFS policy. The differences in the service levels of delivery company 1 will be 

bigger. The myopic allocation policies will deny more first-mile parcels of delivery company 2 to ensure 

a good performance on the service levels of delivery company 1. Therefore, we expect the first-mile 

service level of delivery company 2 to be lower than using the FCFS policy. The threshold policies will 

probably also perform better on the last-mile service level of delivery company 1. However, they may 

be too strict for the first-mile parcel streams .  

The result in total profit for the situation in which it is more crowded (scaling factor = 2) is shown in 

Figure 24. It can be seen, that the FCFS policy still outperforms all other policies. The difference 

between the total profit using the FCFS policy and the other policies only became bigger. The lower 

threshold policies do not perform well. The myopic allocation policies perform approximately the 

same. The MDP policy only outperforms all threshold policies and the highest myopic policy.  
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Figure 24 - The total profit per policy for the situation with a scaling factor of 2 
 

In Figure 25, the results of the service levels are shown in the situation with a scaling factor equal to 

two. It can be seen that the last-mile service levels are still above 0.9 using the FCFS policy. The first-

mile stream service levels do not exceed 0.75. With the first three threshold policies and the last 

myopic allocation policy a service level of 1.0 is obtained for the first last-mile stream. As we expected, 

the threshold admission policies are too strict for the first-mile parcel streams. In terms of total profit, 

the improved service level of delivery company 1 does not outweigh the missed income of the first-

mile parcels. The first-mile parcel stream of delivery company 2 performs best using the FCFS policy. 

The myopic allocation policies perform better for the first-mile stream of delivery company 1 than the 

first-mile stream of delivery company 2. This is logical as myopic allocation policies only accept the 

first-mile parcels of delivery company 2 with a certain probability and the first-mile parcels of delivery 

company 1 always if there is space.  

The utilizations of the FCFS and the myopic allocation policies are all around 0.80. The threshold 

utilizations vary between 0.32 and 0.69. The utilization of the MDP policy is equal to 0.75. This is lower 

than the utilization that was obtained using the myopic policies or the FCFS policy. This is mainly caused 

by the fact that the service level of the first-mile parcels of delivery company 2 is lower. Therefore, less 

parcels go through the wall as the other service levels seem comparable. 

 
Figure 25 - Service levels obtained by the different policies in the situation with scaling factor = 2 
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highest using the FCFS policy. In terms of total profit, we expect the myopic allocation and the MDP 

policies to perform well due to the extra parcels of delivery company 1 and the avoidance of penalties.  

In Figure 26, the result in total profit of a situation that is three times as crowded as normally is shown. 

It can be seen that the FCFS policy still performs best, closely followed by the MDP policy. It is surprising 

the myopic allocation policies do still not outperform the FCFS policy. The threshold policy and myopic 

allocation policy still perform best when they approach the FCFS policy.  

 
Figure 26 -The total profit per policy for the situation with a scaling factor of 3 
 

In Figure 27, the results of the service levels in the situation with a scaling factor equal to three are 

shown. It can be seen that the service levels of the last-mile parcel streams still exceed 0.90 with all 

policies. However, the service levels of the first-mile parcel streams are low. Using the FCFS policy, 

they first-mile service levels do not exceed 0.60. The best service level for a first-mile parcel stream is 

obtained using the myopic allocation policies. The first-mile parcels stream of the first delivery 

company exceed 0.60 for all four settings. Furthermore, the last-mile service level of delivery company 

1 is high using the myopic allocation policies.  

The utilization is 0.90 using the FCFS policy and this is the highest utilization that was obtained during 

the experiments. The utilization using the myopic allocation policies is 0.87 at the highest. Using the 

MDP policy, a utilization of 0.86 is obtained. The difference between the best-performing myopic 

allocation policy and the FCFS policy is 0.03 in terms of utilization. This difference can be explained by 

the fact that the myopic allocation policy builds in a safety factor to ensure the service level of delivery 

company 1 can be obtained with a certain probability. The penalties that are avoided using this policy 

do not outweigh the income that is missed by the rejected parcels of delivery company 2.  

 

Figure 27 - Service levels obtained by the different policies in the situation with scaling factor = 3 
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7.2 ADDITIONAL EXPERIMENTS 
In Section 7.1, we saw the results of 36 different experiments (Appendix B). The results of these 

experiments gave some interesting insights. To further deepen these insights, we will execute extra 

experiments in this section into two different directions. First, we will look at the myopic allocation 

policy and the effect of the cost setting in Section 7.2.1. Thereafter, we will look at the MDP policy in 

Section 7.2.2.  

7.2.1 Myopic allocation policy 

We have observed that the myopic allocation policy works better in terms of total profit if the service 

level that is aimed for is lower. When the probability with which first-mile parcels of delivery company 

2 are accepted is lower, the total profit is higher. However, we only tried four different settings. 

Namely, the situations that will only accept first-mile parcels of delivery company 2 if the probability 

is 0.7, 0.8, 0.9 and 1.0 that enough lockers will be available in the morning. As the probability 

approaches 0, the myopic allocation policy will behave like the FCFS policy. Then the policy will accept 

first-mile parcels of delivery company 2 even when that will lead to the probability of having enough 

lockers in the morning being zero. However, we want to see if there is a setting with which the myopic 

allocation outperforms the FCFS policy. Therefore, we will try more different settings. Thereafter, we 

will see for the different myopic allocation settings in which environments they perform best. 

Therefore, we will experiment with the income per parcel and the penalty per locker to see what the 

effect is.  

Different environment settings 

In the previous paragraph, we concluded that the myopic allocation policies will not outperform the 

FCFS policy with the current settings. In this paragraph, we will investigate the effect of the other 

settings and see if there are situations in which the myopic allocation policy will outperform the FCFS 

policy. As we specified in 6.1.3, the income per parcel of delivery company 1 is equal to 0.5 and the 

income per parcel of delivery company 2 is equal to 0.7. Furthermore, if a last-mile parcel of delivery 

company 1 cannot be accepted a penalty of 0.8 will be incurred. We will analyse the situation in which 

the income per parcel of the different delivery companies is equal and the situation in which the 

parcels of delivery company 1 will yield 0.7 and the parcels of delivery company 2 0.5. We will execute 

the experiments in an environment with a scaling factor of 3, because the differences will be clearer if 

the situation is more crowded. The penalty of 0.8 will stay the same in all situations.  

In Figure 28, the results in total profit are shown of the situation in which the income per parcel of 

both delivery companies is equal to 0.5. The FCFS policy performs best followed by the lower myopic 

allocation policies. The higher the probability of the myopic allocation policy, the worse it performs. 

So, in a situation in which the income per parcel is equal, the FCFS policy would still outperform the 

myopic allocation policies.  
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Figure 28 - The results in total profit of the situation in which the income per parcel is equal for both delivery companies 
 

In Figure 29, the results are shown of the situation in which a parcel of delivery company 1 yields 0.7 

and a parcel of delivery company 2 yields 0.5. The results show that the myopic allocation policies now 

outperform the FCFS policy. The performance of the myopic allocation policies increase with the 

probability that is configurated. The best-performing policy is the myopic [0.7] policy with a total profit 

of 7008.  

 

 

Figure 29 - The results in total profit of the situation in which the income per parcel of delivery company 1 is higher 
 

Now, we will take the best performing myopic allocation policy and see what the influence is of 

changing the penalty that is incurred if a last-mile parcel of delivery company 1 cannot be delivered. 

We will use the last situation (delivery company 1 parcels yield 0.7 and delivery company 2 parcels 

yield 0.5). We will compare the FCFS policy with the myopic [0.7] policy on the result of total profit and 

we will analyse three different penalty values: 0.4, 0.8 (normal situation) and 1.2.  

In Figure 30, we can see the results of three experiments. When the penalty is equal to 0.4, the FCFS 

policy and the myopic [0.7] policy are almost equal in terms of total profit. The myopic policy will have 

less income due to the higher number of rejections of first-mile parcels of delivery company 2. 

However, it compensates for that by having less costs because the service level of last-mile parcels of 

delivery company 1 is higher. If the penalty is lower, rejecting first-mile parcels of delivery company 2 

will start to cost more (missed income) than the higher service level of last-mile parcels of delivery 

company 1 will compensate for. On the other hand, if the penalty is adjusted to the other direction 

and set equal to 1.2, the difference grows. It becomes more valuable to choose to reject first-mile 

parcels of delivery company 2 to ensure a high service level of last-mile parcels for delivery company 
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Figure 30 - The results of the three experiments with different penalties for lost last-mile parcels of delivery company 1 

7.2.2 MDP policy 

We observed that the MDP policy performed relatively better when the scaling factor was higher. So, 

when we analyse more crowded situations it performs better in terms of total profit. Therefore, we 

want to find out when the MDP policy outperforms the FCFS policy. In Section 7.1.3, we saw that the 

MDP policy started to perform better with an increasing scaling factor. Therefore, we will analyse the 

situations in which the scaling factor is equal to 4 and 5. 

In Figure 31, the results of the experiments are shown. It can be seen the MDP policy now outperforms 

the FCFS policy and the difference only grows when it gets more crowded. The results in terms of 

service level are shown in Table 10. It can be seen, the service level of last-mile parcels of delivery 

company 1 is still 0.99. However, the service levels of the first-mile stream of delivery company 2 is 

really low in the first situation and in the second situation even equal to 0. The results show that it may 

be interesting to open really crowded walls for the most important party entirely and for another party 

only for last-mile delivery.  

 

Figure 31 - The results of the experiments with the FCFS and MDP policy for scaling factors equal to 4 and 5 
 
Table 10 - The results in terms of service levels of the experiments in crowded situations with the FCFS and MDP policy 

Policy Scaling factor 
LM1 service 

level 
FM1 service 

level 
LM2 service 

level 
FM2 service 

level 

FCFS 4 0.82 0.44 0.85 0.44 

MDP 4 0.99 0.68 0.68 0.12 

FCFS 5 0.76 0.37 0.80 0.37 

MDP 5 0.99 0.67 0.49 0.00 
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8. ANALYSES FOR PRACTICAL USE 
In this chapter, we will analyse different scenarios that can provide helpful insights. Initially, we will 

analyse the different scenarios based on the policy that is currently being used (FCFS). First, we will 

analyse the scenario in which no first-mile parcels are accepted in Section 8.1. Thereafter, we will 

analyse a scenario in which only last-mile parcels are accepted in Section 8.2. Furthermore, we will 

analyse the scenario in which the second arrival of last-mile parcels is bigger than the first last-mile 

arrivals. Then, we will discuss the effect of spreading the delivery companies more over the day in 

Section 8.4. Finally, we will try to determine when a locker wall should be considered to be expanded 

in Section 8.5.  

8.1 NO FIRST-MILE PARCELS 
In Figure 32, the service levels and utilization are shown of the situation in which no first-mile parcels 

are accepted. The situation is shown for three different scaling factors. When the scaling factor is equal 

to 1 (the normal situation), all last-mile parcels can be accepted and the average utilization is equal to 

0.16. Furthermore, when the scaling factor is equal to two, almost all parcels of delivery company 1 

can be accepted and approximately 95% of the parcels of delivery company 2. The average utilization 

increases to 0.23. In the last situation (scaling factor = 3), the service level of delivery company 1 is still 

almost equal to 1.0. The service level of the second delivery company is approximately equal to 0.9. 

The average utilization increases to 0.25.  

 

Figure 32 - Service levels and utilization of three situations in which no first-mile parcels are accepted 
 

In Table 11, the results of the scenarios without first-mile parcels are shown next to the situation in 

which there are first-mile parcels. When the scaling factor is equal to 1, the service levels are all 

equal to 0.99 or 1.00. However, the utilization without first-mile parcels is really low. It is only equal 

to 0.16. This may be explained by the fact that the wall is never filled entirely and most of the parcels 

will be picked up before the evening. What is interesting to see, is that in the situation with a scaling 

factor equal to 3, the last-mile service level of delivery company 2 decreases from 0.95 to 0.91. This 

can be explained by the fact that accepted first-mile parcels of delivery company 2 normally ‘reserve’ 

spots for the last-mile parcels. As the first-mile parcels of delivery company 2 cannot be collected by 

delivery company 1 and delivery company 2 can fill the wall with his last-mile parcels after collecting 

his first-mile parcels.  
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Table 11 - The results in service levels and utilization of the normal situation compared to the situation without first-mile parcels 

  Normal situation No first-mile parcels 

Scaling factor = 1 

LM1 percentage 0.99 1.00 

LM2 percentage 1.00 1.00 

Utilization 0.52 0.16 

Scaling factor = 2 

LM1 percentage 0.96 0.99 

LM2 percentage 0.97 0.96 

Utilization 0.80 0.23 

Scaling factor = 3 

LM1 percentage 0.90 0.99 

LM2 percentage 0.95 0.91 

Utilization 0.90 0.25 

 

8.2 NO LAST-MILE PARCELS 
In Figure 33, the service levels and the utilization are shown of the situation in which no last-mile 

parcels are accepted. The situation is shown for three different scaling factors. When the scaling factor 

is equal to 1, all first-mile parcels can be accepted and the average utilization is equal to 0.37. When 

the scaling factor is equal to two, both service levels are approximately 0.85. The average utilization 

increases to 0.69. Furthermore, when the scaling factor is equal to three, the service levels decrease 

below the 0.7 and the average utilization increases to 0.83. It can be seen that the first-mile parcel 

stream is bigger than the last-mile parcel stream as the average utilization is almost four times as high 

as it was in Figure 32. Furthermore, the service levels are more equal than in the situation in which no 

first-mile parcels were accepted. This can be explained by the fact that last-mile parcels of delivery 

company 1 always arrive first but first-mile parcels of both companies arrive equally spread during the 

day.  

 

Figure 33 - Service levels and utilization of three situations in which no last-mile parcels are accepted 
 

Table 12, the results are shown of the normal scenarios and the scenarios in which no last-mile parcels 

are accepted. It can be seen that the first-mile service levels are equal to 1.00 in the normal situation 

instead of 0.96. The utilization of the wall is 0.37 instead of 0.52. Furthermore, in the situation with a 

scaling factor of 2, a service level of 0.90 is almost obtained for both streams with a utilization of 0.69. 

In the last scenario (scaling factor = 3), the service levels are only slightly better and the utilization is 

0.83. Compared to the situation we analysed in 8.1, in which no first-mile parcels were accepted, the 

effect on the service levels and utilization is smaller. Banning last-mile parcels from the wall will enable 

the company to obtain an acceptable service level in situations that are twice as crowded as normal. 

But when it is more crowded, the service levels decrease rapidly. 
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Table 12 - The results in service levels and utilization of the normal situation compared to the situation without last-mile parcels 

  Normal situation No last-mile parcels 

Scaling factor = 1 

FM1 percentage 0.96 1.00 

FM2 percentage 0.96 1.00 

Utilization 0.52 0.37 

Scaling factor = 2 

FM1 percentage 0.74 0.87 

FM2 percentage 0.74 0.87 

Utilization 0.80 0.69 

Scaling factor = 3 

FM1 percentage 0.56 0.66 

FM2 percentage 0.57 0.66 

Utilization 0.90 0.83 

 

8.3 MORE “OTHER” DELIVERY COMPANIES 
In Figure 34, the results in terms of service levels and average utilization are shown for six experiments. 

In the experiments, the situations are analysed in which the proportion of other delivery companies is 

bigger. This is simulated by making the share of delivery company 2 bigger. Normally, the distribution 

was 50/50 and now they are evaluated for a distribution of 0.3 and 0.1. This means that 70% and 90% 

of the last-mile and first-mile parcels will be from delivery company 2, respectively. Delivery company 

2 can represent multiple different delivery companies that arrive later on a day than delivery company 

1.  

In the first and third experiment, the distributions are evaluated with the scaling factor equal to 1. The 

utilization is approximately 0.50 in both cases and the service levels are all above the 0.95. In the other 

experiments it can be observed that the service level of the last-mile parcels of delivery company 2 is 

really high whereas the other three service levels decline. This can be explained by the situation in 

which a lot of first-mile parcels of delivery company 2 are accepted and therefore last-mile parcels 

always fit after emptying the first-mile parcels. The service level of the first-mile parcel stream is lower 

because this stream is bigger in absolute numbers and therefore there are more customers that wish 

to visit the wall but find no locker available.  

 

Figure 34 - Six experiments in which scenarios are simulated where the share of other delivery companies is bigger 
 

8.4 DELIVERY COMPANIES SPREAD THROUGHOUT THE DAY 
In this section, we will analyse what the effect would be of spreading the delivery companies more 

during the day. To investigate this, we will analyse six experiments. First, we will analyse the current 

situation with a scaling factor equal to 1 and 3 using the FCFS policy. In this situation, the first delivery 

company arrives at 10:00 and the second delivery company at 12. Thereafter, we will analyse what the 
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effect would be if the second delivery company would arrive at 14:00, 16:00 and 18:00 for both scaling 

factors. The experimental settings are presented in Table 13.  

Table 13 - Experimental settings for the experiments focused on spreading the delivery companies throughout the day 

Exp. Scaling factor Arrival time delivery company 1 Arrival time delivery company 2 

1 1 10:00 12:00 

2 1 10:00 14:00 

3 1 10:00 16:00 

4 1 10:00 18:00 

5 3 10:00 12:00 

6 3 10:00 14:00 

7 3 10:00 16:00 

8 3 10:00 18:00 

 

In Figure 35, the results of the experiments in terms of total profit are shown. On the left, the results 

of the experiments with a scaling factor equal to 1 are shown. It can be seen, the total profit increases 

slightly but the values are really close to each other. The p-values of the T-tests between the 

experiments showed that experiment 1, 3, 5 and 7 do not have different means with 95% confidence. 

Therefore, the differences seen in the left graph of Figure 35 are not significant. However, the 

differences in mean between the experiments with a scaling factor of 3 (experiments 2, 4, 6 and 8) are 

different. In the right graph in Figure 35 we can see that the total profit increases if delivery company 

2 arrives later until 16:00 and after that decreases again. When delivery company 2 arrives around 

12:00, the profit is approximately equal to 6900. When the delivery company arrives four hours later, 

the total profit increases to almost 7500. The other two experiments also have a higher total profit as 

result.  

 

Figure 35 - Results in total profit of the experiments with other delivery times for delivery company 2 
 

The total profit that is obtained by shifting the second delivery company to 16:00 in the afternoon is 

equal to 7473. The highest reward that was obtained by any of the implemented policies was equal to 

6892. Shifting the second delivery time to 16:00 in the afternoon outperforms all policies and will also 

outperform the current situation. 

In Figure 36, the service levels are presented of the four experiments with a scaling factor of 1. As can 

be seen, the service levels do not seem to vary. The small differences seem larger due to the small 

range on the y-axis. The lack in difference was to be expected as we already saw that there was no 

significant difference in total profit. 
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Figure 36 – The four service levels different delivery times of delivery company 2 with a scaling factor of 1 
 

In Figure 37, the results of the experiments 2, 4, 6 and 8 are presented. In these experiments, the 

scaling factor was equal to 3. It can be seen that the last-mile service level of the delivery company 1 

approaches 0.95 when delivery company 2 arrives later. This seems counterintuitive but can be 

explained by the fact that all first-mile parcels of delivery company that are delivered during the day 

are collected and therefore do not occupy lockers that can be used by delivery company 1.  

 

Figure 37 - The four service levels different delivery times of delivery company 2 with a scaling factor of 3 
 

To make a comparison of the effect of the spreading of the delivery companies, we have put the total 

profit and utilization of the best-performing policies next to the results we obtained here. We analyse 

the results that are obtained in the scenario with a scaling factor of 3. The results are shown in Table 

14. It can be seen that with the normal cost and income configuration, changing the second delivery 

time yields more profit than implementing any other policy.  

Table 14 - The results in terms of total profit and utilization of the policies and the scenario with a later delivery time for delivery 
company 2 

Policy Total profit Utilization 

FCFS 6933 0.90 

FCFS (delivery time DC2 16:00) 7473 0.86 

Myopic [0.1] method 6598 0.87 

MDP 6892 0.86 
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8.5 FROM WHICH UTILIZATION SHOULD EXPANSION BE CONSIDERED? 
In this section, we will analyse the average utilization of the locker wall for different situations. We will 

first analyse the normal situation. This means the scaling factor will be equal to 1 and the FCFS policy 

will be used. Thereafter, we will analyse more crowded situations and increment the scaling factor 

with 0.5 each experiment. In Figure 38, the results of the experiments in terms of average utilization 

are presented. As can be seen, the utilization in the normal situation is equal to 0.46. Thereafter, it 

increases rapidly to 0.66 (scaling factor = 1.5) and 0.73 (scaling factor = 2). Subsequently, the average 

utilization increases less rapidly. Over the last four experiments it only increases with 0.04 in total. 

 

Figure 38 - The average utilization for situations with nine different scaling factors 
 

In Figure 39, the results of the nine experiments are shown in terms of service levels. As can be seen, 

all service levels exceed the 0.9 in the normal situation. Evidently, the service levels decrease when 

the scaling factor increases. However, the first-mile service levels decrease more rapidly than the last-

mile service levels. The last-mile service levels are equal to 0.9 or higher with a scaling factor between 

the 1 and 3.5. However, the service levels of the first-mile parcel streams are only higher than 0.9 in 

the first experiment, which represents the normal situation. Thereafter, the service level  of the first-

mile parcel streams decrease. When the scaling factor is higher than 3.5, the service levels do not 

exceed the 0.5 anymore.  

 

 

Figure 39 - The service levels of the four different  parcel streams for situations with nine different scaling factors 
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Looking at Figure 38 and Figure 39, it can be seen that if the company aims to obtain a service level of 

at least 0.9 for all four parcels streams, the utilization should be somewhere between 0.46 and 0.66 

maximum. To find out where the turning point is exactly, five more experiments are executed with 

scaling factors between 1 and 1.5 incrementing with a step of 0.1. The experiments and resulting 

service levels and average utilization are shown in Table 15.  

Table 15 - The results in service levels and average utilization for six situations with different scaling factors between 1.0 and 
1.5 

Exp. 
Scaling 
factor 

LM1 service 
level 

FM1 service 
level 

LM2 service 
level 

FM2 service 
level 

Average 
utilization 

1 1 1.00 0.97 1.00 0.97 0.46 

2 1.1 1.00 0.96 1.00 0.96 0.46 

3 1.2 0.99 0.93 0.99 0.93 0.54 

4 1.3 0.99 0.93 0.99 0.93 0.54 

5 1.4 0.99 0.88 0.98 0.88 0.60 

6 1.5 0.97 0.82 0.97 0.82 0.66 

 

In Table 15, it can be seen that the last time all service levels are above the 0.9 is in experiment 4. In 

this experiment, the scaling factor is equal to 1.3 and the average utilization is equal to 0.53. This 

means that when the average utilization of the locker wall is between 0.55 and 0.60, a service level of 

0.9 cannot be guaranteed in these circumstances. Therefore, from an average utilization between 0.55 

and 0.60 expansion of the locker wall should be considered.  
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9. CONCLUSION AND DISCUSSION 
In this chapter, we will reflect on the results and discuss their meaning. First, we will look back on the 

research objective and questions (Section 1.4 and 1.5) and draw conclusions in Section 9.1. 

Subsequently, we will discuss the results and conclusions in Section 9.2. Thereafter, we will discuss 

interesting research directions in this area in Section 9.3.  

9.1 CONCLUSION 
We will first look back at the first chapters of our research and conclude these findings in Section 9.1.1. 

Thereafter, we will look back at our results and interpret them in Section 9.1.2.  

9.1.1 Conclusion of research environment  

In this research, we have found, developed, implemented and analysed different policies to allocate 

lockers of a locker wall used for parcel distribution. First, we discovered that the parcel locker 

environment consists of different actors (Figure 2) and there are four different parcel streams. Namely, 

the last-mile parcel delivery, the last-mile parcel pickup, the first-mile parcel delivery and the first-mile 

parcel pickup. There are two important actors regarding the four parcel streams: the customer and the 

delivery company. The delivery company delivers the last-mile parcels (between 11:00 and 13:00) and 

picks up the first-mile parcels that are dedicated to him. The customer picks up the last-mile parcels 

(throughout the day) and brings away first-mile parcels that must be picked up by the delivery 

company. Because the delivery companies all arrive relatively short after each other, the locker wall 

can become full. When a parcel cannot be delivered to the locker wall, a direct income is missed 

because the parcel cannot be accepted. Furthermore, goodwill is lost on two sides. First, the customer 

needs to pick up his parcel on another location than he wished. When this happens too often, 

customers may not choose the locker wall as a pickup location the next time. Second, the delivery 

company must visit another drop-off point to deliver the parcels that do not fit. 

Therefore, we have investigated if there are policies that optimize the capacity of the lockers in the 

locker wall. Because it is not always possible to expand locker walls that are placed at busy locations, 

it may be valuable to have a method other than First-Come First-Serve that allocates the scarce 

resources.  

To investigate this, we devised multiple research questions. First, we focused on the current situation 

and background knowledge of the locker wall environment. The first research question is answered in 

a number of key points.  

What does the locker wall environment look like?  

▪ The locker walls are located at locations that are convenient for customers and delivery 

companies. On the one hand, they should be near locations customer already pass (e.g. 

supermarkets, petrol stations, carpooling spots). On the other hand, they should be easily 

reachable by car so deliverers do not lose a lot of time visiting the locker walls.  

▪ The locker wall consists of lockers in different sizes to accommodate all types of parcels. The 

number of lockers and configuration of the locker walls can be tailored to the specific needs 

or expectations of a location.  

▪ There are four main actors. Namely, the delivery companies, the customers, the locker wall 

owners and the location partner. They all have different relationships with each other. If 

everything goes well, the delivery companies and the customers should mostly interact with 

each other. The owner of the locker wall company offers service if anything goes wrong and 

the location partner provides the location.  
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▪ The first-mile parcels are delivered by customers throughout the day. This follows the same 

pattern as the pickup process of last-mile parcels.  

▪ The last-mile parcels are delivered by the delivery companies in the late morning and early 

afternoon. They also collect the first-mile parcels that are dedicated to them.  

▪ The utilization of the locker wall increases steadily during the day. When the delivery company 

arrives, the first-mile parcels dedicated to him are emptied and the new last-mile parcels are 

delivered. Therefore, a V-shape is observed in the utilization of a locker wall at the arrival of a 

delivery company.  

Subsequently, we investigated what is already known about using locker walls in last-mile parcel 

distribution. Furthermore, we investigated if there already exist other policies that cope with this 

challenge. This research question was answered and answered in some most important key points.  

What literature exists concerning locker walls for parcel distribution and which relevant policies are 

described? 

▪ The main strategical challenges in the locker wall industry concerns the placing and 

configuration of the locker walls. The location of the locker wall is very important as we already 

explained at the last question that it should be easy to use for customers and easy to reach for 

delivery companies. On a tactical level, a business model and policy should be chosen. This 

means the choice should be made which customers may use the wall in what capacity. Finally, 

on an operational level, the decision must be made to accept or reject a customer when he 

arrives at the locker wall. Another operational challenge can be determining the price for 

which a locker can be used. 

▪ The problem of parcel locker allocation borders on more traditional revenue-management 

areas in the literature in which a lot of research has been done. Examples of this are plane seat 

reservation and car rental problems. What companies in these area tend to do is making a 

distinguishment in customer classes. Subsequently, one can make different agreements with 

different customers. The customer that wishes to receive the highest service levels pays a 

premium but penalty costs are incurred if this level is not met.  

▪ Based on this customer classes system, a Markov Decision Process model was developed in 

the literature by Gans & Savin (2007). The model captures a system in which two types of 

customers arrive to a rental system with a fixed capacity and uncertain rental durations.  

▪ A myopic allocation policy is also proposed in which contract customers are always accepted 

and walk-in customers are offered a fee that maximizes the discounted revenue from his 

rental. This is expected to work well if the demand and capacity are balanced.  

▪ Other policies that are discussed are the so-called threshold policies. Threshold policies look 

at the state of the wall in terms of what percentage is full. If that percentage exceeds a certain 

threshold, no more parcels of specific types of customers are not accepted anymore.  

Thereafter, we developed our own policies based on the ones that were found in the literature. A 

threshold policy was proposed. A policy that was based on the myopic allocation policy was proposed 

and the MDP policy was applied to this situation. Like Pazour & Roy (2015), we used a discrete-event 

simulation environment to analyse our policies in a locker wall environment. We implemented a 

simplified representation of a locker wall environment with 10 locker in the same size. The arrival rates 

of first-mile and last-mile customers were based on historical data of the locker wall company. 

Furthermore, the assumption was made that two equally big delivery companies deliver to the locker 

wall. One arrives at 10am in the morning and the other arrives at 12 in the afternoon. The performance 

of the simulation was measured based on the total profit and the service levels of the last-mile and 

first-mile parcel streams of both delivery companies.  
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9.1.2 Conclusion of results 

The results of applying the different policies to the current situation showed that the current policy 

(FCFS) works best. This can be explained by the fact that the capacity of the locker wall is big enough 

for all the demand at this point. The myopic allocation policies perform equally well. This can be 

explained by the fact that all customers of delivery company 1 are accepted and the customers of 

delivery company 2 if it will not lead to not having enough space for the premium delivery company in 

the future with a prespecified probability. The threshold policies were less intelligent and perform 

worse. It can be seen, the threshold policy with the highest value performed best. This can be explained 

by the fact that the threshold policy with the highest value approached the FCFS policy. We  will now 

analyse the results of the myopic allocation policies and the MDP policy. Finally, we will look back at 

the extra analyses that were done to see what the effects of other settings would be.  

Myopic allocation policy 

The myopic allocation policies focus on the service level of delivery company 1. During the first 

experimental settings, the income per parcel of the walk-in customers was higher than the income per 

parcel of delivery company 1. However, when there are not enough lockers available for the last-mile 

parcels of delivery company 1, a penalty is incurred. In the most crowded situation (a scaling factor 

equal to 3), the myopic [0.7] policy slightly underperformed compared to the FCFS policy. The results 

of the experiments are shown again in Table 16. The service levels of delivery company 1 are a lot 

better using the myopic allocation policy. However, the total profit of the other policy is still higher. 

This is explained by the fact that the penalties that are prevented using the myopic allocation policy 

do not outweigh the missed income of the denied customers of delivery company 2.  

Table 16 - Results of the FCFS policy and the Myopic [0.7] policy in terms of total profit and service levels 

 FCFS policy Myopic [0.7] policy 

Total profit 6933 6631 

LM1 service level 0.90 0.98 

FM1 service level 0.56 0.64 

LM2 service level 0.95 0.91 

FM2 service level 0.57 0.40 

 

As we saw in Section 7.2.1, the myopic allocation policy will still not outperform the FCFS policy if the 

income per parcel is equal for both companies. However, if the parcels of delivery company 1 yield 

more than the parcels of delivery company 2, the policy starts to outperform the FCFS policy. A small 

difference was already made implementing the myopic [0.1] policy. When the income per parcel of 

delivery company 1 is equal to 0.7 and the income per parcel of delivery company 2 equal to 0.5, the 

myopic allocation policies all outperform the FCFS policy and especially the policies that build in more 

certainty (with a probability of 0.5 or higher). Using these settings with a myopic [0.7] policy with a 

lower penalty (equal to 0.4 per parcel that does not fit) leads to a result in total profit that is equal to 

when the FCFS policy is used. Therefore, we can conclude that with a difference of 0.2 in income per 

parcel between the delivery companies, it is valuable to implement the myopic allocation policy when 

the penalty is higher than 0.4. This was confirmed when the experiment with a penalty of 1.2 showed 

that the difference grew larger.  

The policies focus on ensuring that the possibility that there are enough lockers available for delivery 

company 1 in the morning is equal to a prespecified probability. In order to ensure this, first-mile 

parcels of delivery company 2 may be rejected. The penalty that is incurred for not having enough 

space in the morning is equal to 0.8 per last-mile parcel. Furthermore, the income per parcel of delivery 

company 2 is equal to 0.7 and the income per parcel of delivery company 1 equal to 0.5. When first-

mile parcels of delivery company 2 are rejected, a direct income of 0.7 is rejected. When the probability 
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that is focused on is really high, e.g. equal to 1.0, a lot of last-mile parcels of delivery company 2 will 

be rejected to ensure no last-mile parcels of delivery company 1 have to be rejected. When the 

proportions are like this, rejecting parcels of delivery company 2 is costly. Namely, when a last-mile 

parcel of delivery company 1 does not fit in the morning, a direct income of 0.5 is missed and a penalty 

of 0.8 is incurred. So not having enough space costs 1.3 per parcel. If two last-mile parcels of delivery 

company 2 are rejected, this costs 1.4. Therefore, if, on average, more than 2 first-mile parcels are 

rejected to ensure there is space for a last-mile parcel, the myopic allocation policy will cost money. 

When the penalty becomes higher, or the difference in income smaller (or bigger in favour of delivery 

company 1), this ratio changes. It will become more worthwhile to reject first-mile parcels of delivery 

company 2 to save space for last-mile parcels of delivery company 1.  

MDP policy 

The MDP policy did not outperform the FCFS policy in the normal situation and the situation with a 

scaling factor equal to two. However, from a scaling factor equal to three it started to perform equally 

well and better. As we have seen in Section 7.2.2, the MDP policy starts to outperform the FCFS policy 

when the locker wall is really crowded. In the most crowded situation, no more first-mile parcels of 

delivery company 2 are accepted. It can be seen that this results in a service level of 0.99 for the last-

mile parcels of delivery company 1. It is interesting to see that denying first-mile parcels of the second 

delivery company in really crowded situations has such a positive effect on the service levels of the 

first delivery company.  

The solution of the MDP policy is strict. This means is does not allow a lot of first-mile parcels of delivery 

company 2 are accepted. For example, it could be seen in Figure 25 (scenario with scaling factor = 2) 

and Figure 27 (scenario with scaling factor = 3) that the last-mile service level of delivery company 1 

was higher using the MDP policy than in the scenario that used the FCFS policy. However, the amount 

of missed direct income of rejected first-mile parcels of delivery company 2 does not outweigh the 

prevented penalties.  

The MDP policy only focuses on maximizing the total profit based on the income per parcel of delivery 

company 1 and 2 and the penalty that are given. The MDP policy does not focus on obtaining a given 

service level. What can be seen is that the MDP policy is so strict in comparison with the FCFS policy 

that the utilization is much lower. In Table 17, the results of the experiments with the FCFS and MDP 

policies are shown for all three different scaling factors. First of all, it was seen that the total profit of 

the FCFS policy is higher but the difference decreases as the situation becomes more crowded. We saw 

in Section 7.2.2, that the MDP policy starts to outperform the FCFS policy in really crowded situations. 

In the three scenarios in Table 17 it can be seen the utilization using the MDP policy is approximately 

0.04 lower. The difference in service level of the last-mile parcel stream of delivery company 1 is higher 

in all scenarios. The difference in the service level of first-mile parcels of delivery company 2 is bigger. 

In the normal situation, it is still equal to 0.77 but in the most crowded scenario it is only 0.46 (against 

0.57 using the FCFS policy). This means that using the MDP policy will results in a lower utilization of 

the locker wall. It focuses on keeping lockers free for last-mile parcels of delivery company 1.  

Table 17 - Results of the experiments in terms of total profit, utilization and the LM1 and FM2 service levels 

Scaling 
factor 

Policy Total profit Utilization LM1 percentage 
FM2 

percentage 

1 
FCFS 3295 0.52 0.99 0.96 

MDP 3036 0.48 1.00 0.77 

2 
FCFS 5610 0.80 0.96 0.74 

MDP 5314 0.75 0.99 0.58 

3 
FCFS 6933 0.90 0.90 0.57 

MDP 6892 0.86 0.96 0.46 
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Conclusions of extra analyses 

We will now discuss the extra experiments that were executed to see what the effect of certain choices 

or differences in environment. We will discuss them per point.  

▪ No more first-mile parcels: without first-mile parcels the average utilization of the locker wall 

would be relatively low (0.16 normal situation and 0.25 with a scaling factor equal to 3). The 

service levels of the last-mile parcels would be equal to 1 in the normal situation. In more 

crowded situations, the service level of the delivery company that does not arrive first 

decreases. Thus, implementing this rule would lead to slightly higher service levels but also to 

a low utilization. At least as long as the delivery companies arrive at approximately the same 

time. The utilization and service level of delivery company 2 would probably increase if the 

second delivery company arrives in the late afternoon. 

▪ No more last-mile parcels: in the normal situation this would lead to a utilization of 0.37 and 

both service levels would be equal to 1. In a more crowded situation (scaling factor = 2), this 

would already lead to service levels below the 0.90 and a utilization of 0.69. The average 

utilization in this situation is higher than the previous situation because the first-mile stream 

is bigger and the parcels are delivered throughout the day.  

▪ More “other” delivery companies: in this situation, the proportion of parcels from the second 

delivery company was larger. If the proportion is 30/70 in the normal situation (scaling factor 

= 1), the service levels would be still between 0.95 and 1.00 for all parcel streams. However, if 

it becomes more crowded or the proportion moves to 10/90, the service level of the first 

delivery company decreases. This can be explained by the fact more first-mile parcels of the 

other delivery companies arrive and are accepted at the locker wall. This leads to lockers not 

being available when the first delivery company arrives and therefore it happens more often 

not all parcels fit in the locker wall.  

▪ Delivery companies more spread throughout the day: in the normal situation (scaling factor = 

1), the total profit increased when the arrival time of the second delivery company was later. 

No significant difference was found between different times (14:00, 16:00 and 18:00). 

However, in a more crowded situation (scaling factor = 3) the results in total profit were 

different. It could be seen that the total profit was highest when the arrival time of the second 

delivery company was 16:00. What is interesting to see is that when we look at the lambdas 

of the arrival rate in Section 4.2, the sum of the lambdas from 10:00 to 16:00 are approximately 

equal to the sum of the lambdas from 16:00 to 10:00 for the first-mile arrival rate as the last-

mile arrival rate. This could clarify why this would be the optimal time to let the other delivery 

company arrive. Assuming that customers will behave the same after changing the time, they 

would be spread equally. Furthermore, we also saw that changing the delivery time of delivery 

company 2 would yield more extra profit than implementing any other policy. It is less costly 

to implement but may turn out to be more difficult. However, implementing this rule depends 

on external delivery companies and their routes. Explaining to them that their own service 

level will likely also be improved if they switch their arrival time may help.  

▪ From which utilization should expansion be considered?: the utilization in the normal situation 

was equal to 0.46. The last-mile service levels are approximately equal to 1.00 and the service 

levels of the first-mile streams are also above the 0.95. When the scaling factor increases to 

1.5, the utilization increases to 0.66. The service levels of the last-mile parcel streams are still 

above 0.95. However, the first-mile parcel stream service levels are only just above 0.80. From 

a scaling factor of approximately 3.5, the utilization does not increase fast anymore. A 

utilization around 0.90 seems the maximum. With a scaling factor of 3.5, the last-mile parcel 
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stream service levels are still 0.90 but the first-mile service levels are just above 0.50. In the 

extra experiments that were executed, it was seen the first-mile parcel streams are first below 

0.90 when the utilization is equal to 0.60. We would therefore advise to consider expansion 

when the utilization is around that value. However, when the delivery companies are spread 

better a higher utilization can be used as reference.  

9.1.3 General conclusion 

During this research we have analysed the current situation and created different policies based on 

relevant literature to see if we could improve the current situation. The performance indicators we 

considered where the total profit, service levels and the utilization of the locker wall. The policies were 

evaluated in a simulation environment that represented a simplified version of reality. We have seen 

that in the normal situation, the implemented FCFS policy outperformed all other policies that were 

experimented with. All other policies focused on obtaining a high service level for delivery company 1 

by rejecting parcels of delivery company 2. However, in all cases the income that was missed of 

rejecting first-mile parcels of delivery company 2 did not outweigh the penalties that were prevented 

for not having enough space for delivery company 1. In Section 7.2.1, we saw that the myopic 

allocation policies will outperform the FCFS policy if the income per parcel of the premium delivery 

company is higher than the income of the other delivery company. Therefore, it is good to ensure that 

the service that is promised to the premium delivery company outweighs the parcels that may be 

missed because of the service level that must be obtained. In crowded areas, it might be a good option 

to give one company a premium position and implement the myopic allocation policy. This will ensure 

that the service level of that company is sufficient and other companies and customers can still use 

the locker wall if there is space available. As said, this will only be profitable if the premium that is paid 

by the premium delivery company outweighs the missed income of the other delivery companies of 

which the parcels are rejected.  

We also saw that in the current situation, changing the delivery time of the companies will outperform 

any policy that is focused on delivery company 1. As explained in the previous section, this will make 

sure that the mean value function of the arrival rates between the delivery companies is approximately 

equal to each other. This means that the number of first-mile and last-mile customer that arrive 

between the first and second delivery company is approximately equal to the number of customers 

that arrive between the second and the first delivery company. Therefore, this would balance the 

demand of the lockers and ensure a higher total profit can be obtained and higher service levels with 

the same number of lockers. The applicability of this solution depends on external parties, but it could 

be an interesting direction to further explore. 

9.2 DISCUSSION 
In this section, we will discuss our results and the conclusions. We will do that in two parts. First, we 

will discuss the usability of the results and conclusions of our research. Thereafter, we will discuss the 

limitations of our research.  

9.2.1 Applicability of research 

In this research, we aimed to find alternative policies to the First-Come First-Serve policy that is 

currently used. For this reason, we have developed and researched multiple policies. There are 

multiple outcomes from this research that may be useful in reality. First, the myopic allocation policies 

can be implemented in crowded situations in which the first-mile parcel stream of one delivery 

company should get priority over the other company. Based on the crowdedness and the importance 

of the first company, the strictness of the policy can be adjusted. In really crowded situations or with 

a major difference in income, a higher probability will lead to better results. The same holds if the 
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difference in income is minimal and the penalty (in money or goodwill) of not having enough lockers 

available for the first company is high.  

The Markov Decision Process policy that was developed did not outperform the FCFS policy in the 

situations with a scaling factor between 1 and 3. However, when the situation got even more crowded, 

it started to perform better relative to the FCFS policy. In the most crowded situation, no more first-

mile parcels of delivery company 2 were accepted. However, this turned out to work quite well for the 

first delivery company. Therefore, it could be interesting to close off the possibility to deliver first-mile 

parcels for other delivery companies in really crowded walls while still allowing last-mile parcel 

delivery.  

The conclusions of the extra analyses that were presented in Section 9.1.2 are based on the results 

from an abstract discrete-event simulation model. The effects of implementing these ideas can have 

the same effect in reality. However, before implementing or using them there should be thought about 

the differences between the simulation model and reality and the effect that these differences could 

have on the outcome of implementing these ideas. Two things that are mainly important to think about 

is the effect of having different sizes of lockers for different sizes of parcels. Another key point is that 

more than two delivery companies can use the white-label parcel locker walls. The effects could stay 

the same, but more delivery companies will also bring more first-mile parcels of different delivery 

companies to the wall. This could lead to a higher proportion of parcels in the wall that cannot be 

collected by individual delivery companies.  

9.2.2 Limitations of research 

The first limitation of this research is that it was difficult to get the data for a standard locker wall. 

Every locker wall stands on a unique location and a lot of factors play a role. Therefore, the arrival rates 

for every wall vary a lot. The proportions in which delivery companies visit locker walls also heavily 

depend on  the location of the wall. Therefore, the simulation model and the lambdas that were used 

may not represent all locker walls throughout the Netherlands. However, the ideas may be helpful and 

implementable on comparable locations. In other situations, with walls that are not well represented 

by the model that was created in this research, the ideas still may be effective after adjustments are 

made. For this reason, we also showed results for situations with other delivery company proportions 

or more and less crowded situations. By showing how the service levels, utilization and total profit 

react to these kind of changes we have provided an idea of how the proposed solutions can be 

implemented in different situations. 

One of the most things that may have influenced the results of this research, are the differences in the 

parameters of the different models and the simulation. An overview of the parameters of the models 

and simulation model are shown in Table 18. Every locker wall is different. The arrival rates of the walls 

that were studied at the start of the research represent the most standard situation. The 

inhomogeneous Poisson distribution makes it possible to cope with varying arrival rates during the 

day. However, correctly translating the empirical arrival rates into an inhomogeneous Poisson 

distribution is complex. First of all, the probabilities that are calculated in the myopic allocation policies 

are based on individual parcels. The assumption was made that the inhomogeneous Poisson 

distribution could be translated to calculate the probability that a specific parcel would be collected 

before the next morning. To this end, the mean value function in Equation 11 and the probability 

calculation in Equation 12 were used. The lambdas were multiplied with a factor of four to cope with 

the fact that normally only a quarter of the wall is filled with last-mile parcels. The MDP policy and the 

simulation are also based on inhomogeneous Poisson arrival rates. The arrival rates are scaled to 

lockers instead of parcels. For example, if there are four last-mile parcels in the locker wall with ten 

lockers, the arrival rates per locker are multiplied by ten and this is used to calculate the probability 
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that a last-mile customer will arrive. The last-mile customer then randomly picks a last-mile parcel in 

the wall and leaves. If a last-mile customer arrives and no last-mile parcels are in the wall, he also 

leaves. In reality, this will never happen. Because last-mile parcel customers will only come to the wall 

if they are notified that their parcel is delivered. These differences make it difficult to compare the 

reality, policies and the discrete-event simulation. Furthermore, the decision moment of the myopic 

allocation policies and the discrete-event simulation differed from the decision moment of the MDP 

policy. To cope with and include the inhomogeneous Poisson arrival rates of the last-mile delivery 

companies and the first-mile customers, the decision had to be taken every hour. However, by 

decoupling the decision from the transition to another state, the MDP turned out to be very hard to 

solve. The idea behind it was that a chosen action could lead to the transition to multiple states, 

defined by the transition probabilities. So, an action did not ensure going to another state but ruled 

out going to a number of states. For example, choosing to only allow one first-mile customer the 

coming hour would set the transition probability of going to a state with more than one extra first-mile 

parcel to zero. Another limitation was that the program that was used solved the MDP really slowly. 

Because of this, few iterations were possible. Furthermore, it was not possible to implement a lot of 

different actions. 

Table 18 - The differences between the input parameters of the models, discrete-event simulation and reality 

 Focus LM arrivals FM arrivals 
Number of LM 
parcels per batch 

Decision 
moment 

Reality - Empirical Empirical 
 0.25 per locker on 
average 

On event 

Myopic 
allocation 
policy 

Service 
levels 

Inhomogeneous 
Poisson distribution 
scaled to parcels 

Inhomogeneous 
Poisson distribution 
scaled to lockers 

3 (10 lockers) On event 

MDP 
policy 

Total 
profit 

Inhomogeneous 
Poisson distribution 
scaled to lockers 

Inhomogeneous 
Poisson distribution 
scaled to lockers 

3 (10 lockers) Hourly 

Simulation - 

Inhomogeneous 
Poisson distribution 
scaled to lockers 

Inhomogeneous 
Poisson distribution 
scaled to lockers 

U[0.75*2.5*scaling 
factor; 
1.25*2.5*scaling 
factor] 

On event 

 

Another reason the MDP policy may behaved too strictly and thus rejected too many first-mile parcels 

of delivery company 2, is the cost configuration. The income of parcel of delivery company 1 is equal 

to 0.5 per parcel. The income per parcel of delivery company 2 is equal to 0.7. The amount that was 

lost in number of first-mile parcels that were rejected is not compensated by the penalties that were 

prevented. The MDP was focused on the policy that optimized the total profit. First-mile parcels that 

were accepted yielded an income of 0.5 and 0.7 for delivery company 1 and 2, respectively. 

Furthermore, when a terminal state is reached in which the available lockers (empty + first-mile parcels 

of delivery company 1) are smaller than the expected number of parcels, a penalty is given per locker 

short. The penalty is equal to 0.8 and consists of 0.5 missed income (parcel of delivery company 1) and 

0.3 lost goodwill (0.25 of the customer and 0.05 of the delivery company). Because the horizon of the 

MDP setting ends when delivery company 1 arrives, the 0.5 income is included as missed income. 

However, the penalty cost is also used in the simulation. A penalty of 0.8 is incurred if a last-mile parcel 

of delivery company 1 cannot be delivered. However, the horizon of the simulation is 1000 days. 

Therefore, the parcel cannot be delivered and the time continues. Which means the penalty is incurred 

and the income is missed. Therefore, it may be argued that the penalty of missed income is incurred 

twice per parcel using the MDP policy. This could be a reason it is too strict.  
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Another point is the probability that was the central part of the myopic allocation policy. First, the 

policy would focus on a certain service level and the probabilities that were calculated with, were 

based on the service level. However, a service level is a long-term average. Given that in a lot of 

scenarios, all parcels can be accepted, the service level will always be higher on average. The myopic 

allocation policies now focused on obtaining a certain minimal service level. It was seen in the results, 

that the service level was almost always a lot higher than the probability that was focused on. 

Therefore, the myopic allocation policies could be adjusted so they focus on a service level on average 

instead of a minimum service level. This would allow the policy to be less strict and accept more first-

mile parcels of delivery company 2. This would have a positive effect on the total profit and the service 

level of delivery company 2, while on the other hand the average service level to delivery company 1 

can still be lived up to.  

9.3 RECOMMENDATIONS FOR FUTURE RESEARCH 
In this section we will discuss multiple directions for future research that we encountered during this 

research. First of all, it would be interesting to expand the current model and implement different 

locker and parcel sizes. This could, for example, show that the configurations of the locker walls could 

be adjusted to obtain a higher throughput on the same locker wall. For example, by changing bigger 

lockers for smaller ones. Besides this, research could be done into the seasonality of the demand at 

the locker walls. We have showed results for multiple scaling factors, by including the seasonality the 

policy that is used at the locker walls could include this. This would even make it possible to switch 

between different policies during the year. For example, during low season weeks/months the FCFS 

policy could be used whereas a myopic allocation policy could be implemented in the busier months 

to make sure the biggest clients still obtain a high service level.  

Another point that is interesting to look at is extending the admission policy models with a dynamic 

pricing part. The same models can be used for determining the optimal pricing strategy. However, a 

price-response function should be devised. Based on the price-response function, the penalty per 

locker that is short, income per parcel and the probabilities that we used in the myopic allocation 

model, a dynamic pricing model can be applied to the locker wall environment. The revenue 

management model Xu & Li (2012) devised for computing capacity problems, a revenue management 

model could be made for the locker wall situation. The utilization can be used as a state and based on 

a price-response function, the price that maximizes the discounted profit can be offered. It is, however, 

difficult to say whether customers will visit the wall not knowing what it is going to cost. Therefore, it 

is important to not only research how dynamic pricing models could be designed for this purpose, but 

also in what way they should be implemented. Another way to overcome the price-response function 

that must be devised, is to use a reservation price like Farias & Roy (2010). That is simply enough a 

price that a customer from a certain customer class is willing to pay. If the price is beneath or equal to 

the reservation price, the offer is accepted and otherwise the customer leaves. 

A third interesting direction to investigate would be the forecasting of the demand. A good forecasting 

method can serve as a basis for admission and dynamic pricing policies. Currently, the number of 

parcels that are missed due to locker walls that are too full is not kept track of. This could be 

investigated using censored demand estimation. Knowing this would give a better image on which 

bottlenecks to focus on.  

An important part of the admission policy is the moment at which customers are accepted or denied. 

In this research, we assumed all decision are made at the locker wall. However, it may be desirable to 

already know at home if it will be worthwhile to drive to a locker wall, visit another parcel station, or 

drop off point. This can for example be done by giving customers insight into the real-time availability 
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of the lockers. This can also be done by letting them indicate what type of parcel they wish to deliver 

and then say whether it is possible or not, without giving them all the information. This would also 

make it possible to implement admission policies as it will be difficult to say to a customer that he 

cannot use the wall after he saw there are lockers available.  
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APPENDIX A – CONFIDENCE INTERVAL METHOD 
LM1 

N KPI Average St. Dev. T-value Delta Error Runs 

1 0.87942 0.879424 0 0 0 0 - 

2 0.87495 0.877188 0.003162 12.7062 0.028411 0.032389 Sufficient 

3 0.87713 0.877169 0.002236 4.302653 0.005555 0.006333 Sufficient 

4 0.87215 0.875916 0.003102 3.182446 0.004936 0.005635 Sufficient 

5 0.86970 0.874673 0.003865 2.776445 0.0048 0.005487 Sufficient 

 

LM2 

N KPI Average St. Dev. T-value Delta Error Runs 

1 0.96117 0.961169 0 0 0 0 - 

2 0.96602 0.96359 0.003427 12.7062 0.030792 0.031956 Sufficient 

3 0.96677 0.96465 0.003039 4.302653 0.007549 0.007826 Sufficient 

4 0.94657 0.96013 0.009376 3.182446 0.014919 0.015539 Sufficient 

5 0.96720 0.96154 0.008714 2.776445 0.01082 0.011252 Sufficient 

 

FM1 

N KPI Average StDev Tstatistic Delta Error Runs 

1 0.82964 0.829644 0 0 0 0 - 

2 0.80928 0.81946 0.014403 12.7062 0.129404 0.157914 - 

3 0.81490 0.81794 0.01052 4.302653 0.026132 0.031948 Sufficient 

4 0.81686 0.81767 0.008606 3.182446 0.013694 0.016748 Sufficient 

5 0.79444 0.81302 0.012784 2.776445 0.015873 0.019523 Sufficient 

 

FM2 

N KPI Average StDev Tstatistic Delta Error Runs 

1 0.83719 0.837186 0 0 0 0 - 

2 0.81080 0.82399 0.018656 12.7062 0.167619 0.203422 - 

3 0.80265 0.81688 0.018053 4.302653 0.044846 0.054899 - 

4 0.80926 0.81498 0.015224 3.182446 0.024225 0.029724 Sufficient 

5 0.79682 0.81134 0.015483 2.776445 0.019224 0.023694 Sufficient 
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APPENDIX B – EXPERIMENT SETTINGS 
Exp. Scaling factor Policy # Exp. Scaling factor Policy 

1 1 FCFS 19 2 Myopic policy [0.1] 

2 1 Threshold [0.1] 20 2 Myopic policy [0.3] 

3 1 Threshold [0.3] 21 2 Myopic policy [0.5] 

4 1 Threshold [0.5] 22 2 Myopic policy [0.7] 

5 1 Threshold [0.7] 23 2 Myopic policy [0.9] 

6 1 Threshold [0.9] 24 2 MDP 

7 1 Myopic policy [0.1] 25 3 FCFS 

8 1 Myopic policy [0.3] 26 3 Threshold [0.1] 

9 1 Myopic policy [0.5] 27 3 Threshold [0.3] 

10 1 Myopic policy [0.7] 28 3 Threshold [0.5] 

11 1 Myopic policy [0.9] 29 3 Threshold [0.7] 

12 1 MDP 30 3 Threshold [0.9] 

13 2 FCFS 31 3 Myopic policy [0.1] 

14 2 Threshold [0.1] 32 3 Myopic policy [0.3] 

15 2 Threshold [0.3] 33 3 Myopic policy [0.5] 

16 2 Threshold [0.5] 34 3 Myopic policy [0.7] 

17 2 Threshold [0.7] 35 3 Myopic policy [0.9] 

18 2 Threshold [0.9] 36 3 MDP 
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APPENDIX C – SIMULATION PROGRAM 

 

 

 


