
1

Improving the Informativeness of Abstractive
Opinion Summarization

Eric van Schaik

AbstractÐAlthough current state-of-the-art abstractive text summarization has improved significantly since the introduction of the

transformer architecture, opinion summarization has lagged somewhat behind, partly due to the lack of labeled training data. Various

unsupervised learning methods have been tried to solve this problem. Most seem to produce less informative text than regular text

summarization, reflecting the lower quality of the opinion summarization datasets. This effect is exaggerated by an apparent lack of

metrics measuring this perceived informativeness, resulting in little attention being payed to this aspect of opinion summarization in

related research. Therefore, this research will focus on the following research question: How can the informativeness of opinion

summarization be improved? First, some ways of measuring informativeness are proposed. Then, a new opinion summarization model

is proposed, in an attempt to improve upon these metrics. This new proposed model roughly consists of three parts: topic modeling,

where a number of relevant review topics are generated, ranking, where all the sentences from the input reviews are ordered based on

importance, and filtering, where only the most important sentences are selected as input for the summarization model. Finally, the

model is tested and compared with current opinion and text summarization models, namely the COOP [1] and PEGASUS [2] model,

respectively. It is shown that the performance of our model is often closer to the state-of-the-art text summarization than to opinion

summarization models, while retaining an accurate sentiment value. Small-scale human evaluation is included as well, its results partly

supporting the conclusions drawn from the automatic evaluation. Therefore, the model proposed here can provide a good alternative to

existing models, albeit dependent on the context.

Index TermsÐOpinion Summarization, Topic Modeling, Natural Language Processing, Transformers

✦

1 INTRODUCTION

1.1 Brief Overview

S INCE the introduction of the transformer architecture in
2017 [3], language models have become significantly bet-

ter at solving various Natural Language Processing (NLP)
problems, such as machine translation or question answer-
ing. Improvements have been made in text summarization
as well, the goal of which is to produce shorter versions
of the input texts while retaining the most relevant infor-
mation. In particular, more focus has been given to ab-
stractive summarization as opposed to extractive summa-
rization. With extractive summarization, the most relevant
words and phrases are simply extracted from an input text
and combined to form a summary, while abstractive sum-
marization focuses on generating new original sentences
capturing the most relevant semantic information of the
input text. Therefore abstractive summarization is seen as
a more complex problem. With the introduction of more
complex language models, such as the transformer BERT
(Bidirectional Encoder Representations from Transformers
[4]), this type of summarization has become significantly
more effective.

Despite this progress in language models, opinion sum-
marization models have lagged somewhat behind. These
models aim to summarize texts that mainly convey opin-
ions, such as texts from social media or from customer
reviews. The lack of progress in this field seems to be partly
due to the lack of labeled training data. With regular text
summarization, large text corpora are available with gold-
standard summaries, that summarization models can use
to optimize their loss function. Those datasets can be news
articles, where journalists often already provide a short

summary of their article at the beginning (e.g. the XSum
dataset [5]), or scientific papers, where the abstract can be
used as a gold-standard summary (e.g. the PubMed dataset
[6]).

With opinion summarization, the retrieval of such la-
beled datasets becomes more difficult. The most common
datasets in this domain consist of customer reviews. For in-
stance, for products on Amazon [7] or businesses from Yelp
[8]. In these scenarios, when users comment on a product,
they typically do not include summaries of their opinion.
Sometimes gold-standard summaries are produced, purely
for the purpose of training and evaluating opinion summa-
rization models, but those datasets remain small [9].

Because of this difficulty in opinion summarization, most
new state-of-the-art models use some form of unsupervised
learning to train their neural networks [9]. This makes it
harder for an opinion summarization model to recognize
which parts of the input text are important for summariza-
tion. What makes it worse is that the quality of the input
texts varies greatly as compared to the text that is generally
used for text summarization (in terms of grammatical and
syntactical errors, language formality, etc), so that it becomes
harder for language models to capture the semantic infor-
mation [10]. All this has contributed to a lack of progress
and consequently, interest into the field of opinion summa-
rization, as compared to text summarization.

This paper will address some of the problems of the field
in two ways.

First, some new ways of measuring the performance of
existing opinion summarization models are proposed. This
is necessary since the lack of training data means there is
also a lack of information on how well a certain model is

2

performing. These new metrics should give some indication
of the performance of a model without labeled data, thereby
enabling unsupervised learning.

Second, a new model will be proposed that aims at
improving primarily upon those new metrics. Because these
new metrics are still tentative, fine-tuning a new model
on these new metrics would not ensure that the model
addresses the given problems, so unsupervised learning is
not yet applied here.

1.2 Problem Description

In order to make the problem more specific, it
becomes instructive to look at the output of each
kind of summarization model. The state-of-the-art text
summarization model PEGASUS from Zhang et al. [2]
summarizes an introduction section of the Eiffel Tower
Wikipedia page as follows:

"The tower is 324 metres (1,063 ft) tall, about the
same height as an 81-storey building, and the
tallest structure in Paris .<n>Its base is square,
measuring 125 metres (410 ft) on each side
.<n>During its construction, the Eiffel Tower
surpassed the Washington Monument to become
the tallest man-made structure in the world ."

This summary generated by a PEGASUS model trained
on the CNN/DailyMail dataset [11], and is taken from the
HuggingFace Hub [12].

To compare it to summaries produced by current
state-of-the-art opinion summarization models, take the
following summary, produced by the MeanSum model [9]:

"Was in the area for a few days and I’ve heard
it’s been here. The last time we went there, it was
just as bad. Food was very good but not very
good. I got the same thing as my first time trying
this place. Their fries are good but not great either."

MeanSum generated this summary based on the Yelp
dataset [8]. Note the contradictory sentence "Food was good
but not very good", which is a good example of how
much the language understanding of opinion summariza-
tion models have lagged behind regular text summarization
models.

MeanSum is a typical case of an unsupervised learning
model, where the model tries to generate the "average"
review, and therefore these summaries merely reflect the
average quality of the opinions written on the internet, or
on Yelp in this case. To measure their performance, Chu
et al. primarily use the ROUGE score. They collected gold-
standard summaries by using Amazon Mechanical Turk, a
crowdsourcing platform mainly used to label data, where
workers were asked to write a summary that "best sum-
marizes the content and the sentiment of the reviews", but
also to "write your summary as if it were a review itself"
[9]. The underlying assumption that summaries should be
written in the language of an average reviewer has led
the summaries to suffer from the same drawbacks as the
text of the original reviews, such as the aforementioned

variety in text quality. In particular, when comparing the
two summaries given above, the summary from MeanSum
would seem less informative to a reader, given its amount
of personal information and use of relatively simple, generic
words (generic words are generally unable to carry as much
information as more specific words, although it could very
well be the case that the simple words are describing things
that the reader is more curious about than the more compli-
cated words). As will be shown in Section 3.2, MeanSum
can be seen as representative for the current abstractive
summarization field, and it has set a standard for looking for
the best "average" opinion of the dataset as the main goal in
the field. This paper will argue for a more consumer-centric
approach, where the goal is to best inform the consumer of
a summary of the general opinion of a product or service.

The problem of current opinion summarization models
being uninformative to readers was recognized by Iso et
al. [1] as well. They used entropy as a metric to show this,
where the amount of information contained in the encoding
of some text was linked to the informativeness to a reader.
On average this method proved a step in the right direction.
However, simply equating information of a word vector to
informativeness to a reader could have its shortcomings as
well. Take the following summary generated by the COOP
framework for example.

"Took this bag on a recent trip to Europe and was
very happy with it. It is light weight and holds a lot
of things. The pockets are great for outside pockets
to hold a camera or a spare battery."

When comparing to the MeanSum summary given
above, COOP summaries seem to be an improvement in
that they convey more information. A shortcoming would
be that some of the information given at the beginning of the
summary is not as informative for a consumer (a consumer
likely would not care about the recent trip to Europe).
Therefore, a more nuanced look at what would make a
summary informative to a reader, needs to be established.

In short, this paper will attempt to address the problem
of current opinion summarization models producing sub-
optimal summaries when looking at informativeness to the
reader. Put another way, this paper will attempt to bridge
the gap between the textual quality of state-of-the-art text
summarization models and state-of-the-art opinion summa-
rization models. Here it must be noted that this search for
more informative summaries should not be at the expense
of the retainment of sentiment value. The conveyance of the
correct sentiment value is what differentiates opinion sum-
marization from text summarization, so this must be taken
into account when focusing on generating more informative
summaries. Consequently, this will be taken into account
when addressing the previously stated problem.

1.3 Research Questions

The problem described above is addressed by the following
research question:

Main Research Question:
How can the informativeness of opinion summarization
be improved?

3

This question can be divided into the following subques-
tions:

Research Question 1: How can the informativeness of
text be measured?
Research Question 2: How can the informativeness of
existing opinion summarization methods be improved?
Research Question 3: How can the sentiment value be
maintained when focusing on informativeness?

The first two subquestions reflect the two important
steps that need to be taken to answer the main research
question, while the third reflects an important condition un-
der which the other research questions need to be answered.

To answer the first subquestion, this paper will propose
a new set of metrics by which different aspects of informa-
tiveness are measured. As the term "informativeness" is not
well-defined, and since this research falls within the field of
computer science, not psychology, the validity of these new
metrics as correctly measuring "informativeness" to a reader
will not and cannot be thoroughly checked, and it will take
some assumptions to accept the use of these new metrics.
This paper will attempt to substantiate these assumptions
as best it can, however large-scale human evaluation would
be necessary to fully validate the results of this research,
and such experiments fall outside its scope. Therefore, the
results of this approach should be taken as a step in a new
direction for the field of opinion summarization, not as hard
evidence that this is the "better" approach.

The answer to the second subquestion will involve the
proposal of a new opinion summarization model, using ele-
ments of existing text and opinion summarization methods
and adding some original elements. Some design choices are
substantiated by results of intermediate experiments, where
the design choices are given in the methodology section,
while the results of these experiments are given later in the
results section.

By answering these research questions, this paper
presents a new, consumer-centric approach to the problem
of opinion summarization, as an alternative to the more
mathematically-driven approaches of most papers in the
field.

The rest of this paper is structured as follows. First, a
scientific background is presented to better understand the
problem, as well as some concepts behind the proposed
solution. Second, a related work section is presented, going
more specifically into relevant papers in related fields. In
Section 4, the methodology of this project is laid out, which
can be seen as the proposed solution to the given problem.
Section 5 discusses the technical details of the experimental
setup, used to answer the research questions, while Section
6 presents the actual results of the research experiments. In
Section 7, the results are further discussed, and the paper
concludes with Section 8, in which the contributions of this
research are summarized.

2 SCIENTIFIC BACKGROUND

2.1 Problem Background

2.1.1 Recurrent Neural Networks

Before the introduction of the transformer architecture, the
Recurrent Neural Network (RNN) [13] and its derivatives,
such as the Long-Short Term Memory networks (LSTMs)
[14], were commonly used for text summarization and Nat-
ural Language Processing (NLP) tasks in general. The RNN
is a type of artificial neural network, and as such is designed
to generate a number of output values, based on an inde-
pendent number of input values. In its simplest form, an
artificial neural network accomplishes this by multiplying
the input values by a certain number of weight matrices.
This can be visualized by a graph, such as shown in Figure 1.

Each weight matrix represents all the edges between two
adjacent layers in the graph. In the figure, the input values
propagate from left to right through the network, being
multiplied by the weights between the layers, and resulting
in a number of output values. The layers in between the
input layer and output layers are generally called "hidden
layers" (only one is shown in the figure for simplicity).
The term "neural network" comes from a resemblance to
a common conceptualization of a human brain, where the
nodes are likened to neurons and the edges are seen as
connections [16].

Finding the appropriate weights for such a network is
typically reformulated as minimizing the loss function of
the network, given a number of training examples. These
examples consist of valid input/label pairs, and the loss
function measures the difference between the ground-truth
label and the predicted label. Many loss functions are used
in practice, however for illustrative purposes consider the
Mean Squared Error (MSE) [17] given below.

MSE(Y, Ŷ) =
1

n

n
∑

i=1

(Yi − Ŷi)
2, (1)

where Y is the ground-truth label, Ŷ is the predicted
label, and n is the number of dimensions of the labels.

Training the network would then consist of iterating
through the following steps. First, the network is initialized
with random weights. Second, a training example is pushed
through the network by multiplying the training example
with a weight matrix at each layer. Third, the MSE is cal-
culated, and fourth, the derivative of the loss function with
respect to each weight is calculated. Fifth, that derivative
is used to nudge the weight into the right direction, since
the derivative represents the influence a weight has on the
loss function. By proceeding through these steps for each
training example, the loss function is minimized.

The key contribution of the RNN, as first proposed by
David Rumelhart in 1986 [13], is that the value of the hidden
layers propagates not only to the output layer, but also to
the hidden layers of next iterations. While with the simple
neural network, only one input vector was considered, the
RNN takes in a sequence of input vectors, and assumes that
the value of a previous input vector has some bearing on
desired interpretation of the next input vector. See Figure 2
for an illustration of an RNN in its simplest form.

4

Fig. 1: Neural Network [15]

Fig. 2: Recurrent Neural Network [18]

Here the xt is the input vector at time t (consisting of
only one value for simplicity), ot is the output vector at time
t and ht is the hidden state at time t. Here it is shown that for
the calculation of the hidden state at time t, both the value
of the current input layer is taken into account, as well as
the previous hidden state.

Because of the nature of natural language, the RNN
has been the model of choice for many NLP tasks before
the advent of the transformer architecture. With natural
language, the meaning of one word often greatly depends
on the preceding words, so the RNN was a natural fit, since
the value of one iteration influences the next. However, with
RNNs there is one major drawback: the vanishing gradient
problem [19]. This problem is not exclusive to RNNs, as
it generally occurs when a neural network gets sufficiently
complex. Taking the simple neural network of Figure 1 as
a reference, adding more hidden layers would make the
influence of weights in the first layers on the output layer
much smaller. Therefore, during backpropagation, when the
weights are updated according to their influence on the loss
function, the weights in the first layers change relatively
little, and training these layers of the network becomes un-
feasible. With RNNs, this becomes an even larger problem,
as the weights of previous iterations need to be updated
as well. This problem can be seen as a trade-off, where
making the hidden layers more complex would result in the
influence of previous hidden layers decreasing. Since the
meaning of natural language is complex and is determined
by a significant number of previous words, this has been the
largest drawback of RNNs in NLP.

Fig. 3: Transformer Architecture [3]

2.1.2 Transformers

The transformer is a new deep learning method, developed
in 2017 by Google [3], and has become one of the most
popular neural network architectures for many NLP tasks.
It adopts an encoder-decoder architecture, and its most
prominent feature is its use of attention mechanisms. Where
some previous state-of-the-art NLP architectures also made
use of attention mechanisms, most notably the LSTM, they
mostly relied on a form of recurrence. As the name of the
paper by Vaswani [3] ("Attention Is All You Need") suggests,
the transformer architecture lets go of this dependence on
recurrence and relies solely on attention mechanisms.

The transformer architecture is shown in Figure 3.
The architecture can be divided into an encoder on

the left side and a decoder on the right side. Instead of
dealing with a sequence of input tokens one token at a
time and propagating intermediate values to next iteration,

5

the transformer deals with the whole sequence of inputs
at once. In the figure, this sequence of inputs goes into
the transformer in the lower left corner. Each input is first
converted into an input embedding, which can be thought
of as a form of compression, making the rest of the processes
more efficient. Then positional encoding is added, so that
the encoder can distinguish between a word that is at the
start of the sentence and one that is at the end. This sequence
of embeddings is fed into the encoder, which performs
multi-head attention on them. Each attention head performs
the attention function, which is given below.

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2)

Here the matrices Q, K and V are all obtained by
multiplying the input embeddings with a different learned
weight matrix. Conceptually, the K matrix is thought of
as the Keys, the Q matrix is thought of as the Queries,
and the V matrix is thought of as the Values, whereby the
attention weight aij is given by the dot product between
the query vector qi and the key vector kj , and represents
the attention that token i pays to token j. The Value matrix
then determines how valuable that connection is.

The attention mechanism is performed multiple times in
parallel within the same layer, hence the name Multi-Head
Attention. With this, the attention layer can focus on dif-
ferent important relationships between parts of a sequence.
Intuitively, given a sentence, this could mean one attention
head could focus on the relationship between a noun and its
adjectives, while another attention head could focus on the
relationship between a subject and its verb. In reality, these
attention mechanisms quickly become much more complex.

To fully understand the transformer architecture, two
more nuances to the attention mechanism need to be ex-
plained. First, in the figure it is shown that the decoder
starts with performing Masked Multi-Head Attention. This
is because the decoder takes as input the whole output
sequence. Since the output sequence has only partially been
predicted at the time of decoding, the part of the output
sequence that is not yet predicted needs to be taken out of
the equation. This is done by partially masking the output
sequence.

Second, the model makes a distinction between self-
attention within the encoder and the decoder layers, and
encoder-decoder attention, which is performed when the
encoder feeds into the decoder. Everything explained above
concerns self-attention, and the only difference between it
and encoder-decoder attention is that the value matrix V

and the key matrix K come from the encoder, while the
query matrix Q comes from the previous decoder layers.
That way, the decoder can base its focus partly on the
already generated output.

By focusing not only on the previous token in a sequence
but on the whole sequence at once, the transformer archi-
tecture has managed to largely get rid of the vanishing
gradient problem [20], but has also made the generation
of one output token much more complex. The impact of
this complexity on computational time is greatly reduced
by its ability to be parallelized. Most of the calculations in
the encoder can be done from the start, and many of the

calculations in the decoder can be done when not all of the
output embeddings are ready. All this has contributed to the
success of the transformer architecture in NLP tasks.

BERT: The Bidirectional Encoder Representations from
Transformers, or BERT, is one of the most prominent pre-
trained language models using the transformer architecture.
Created and published in 2018 by Google [4], it is trained
on approximately 3 billion words, and the base version of
the model consists of 12 transformer blocks and 110 million
parameters. It is trained on only two tasks, namely next
sentence prediction and language modeling (i.e. predicting
masked words in context), which is why the model only
needs an encoder, as the previously predicted tokens are
irrelevant with these two tasks. By training only on these
two tasks, BERT has become a successful general language
model. By using BERT as an encoder and adding some
decoder layers, a new model can easily be built and fine-
tuned on more specific tasks, such as question-answering or
machine translation. This has made BERT one of the most
widely used language models in various NLP applications.

2.1.3 Text Summarization

Text summarization is the subfield of NLP which focuses
on generating a textual summary given a number of source
documents. As mentioned, there are generally two types
of text summarization, namely abstractive summarization,
i.e. generating new original content, summarizing the
most relevant information from the source documents, and
extractive summarization, i.e. extracting the most important
content from the source documents. The textual units
that are extracted are arbitrary, although sentences are
commonly used [21]. To illustrate the difference between
these two types of summarization, take the following
example [22]:

"Peter and Elizabeth took a taxi to attend the night
party in the city. While in the party, Elizabeth
collapsed and was rushed to the hospital."

An extractive summary of this text could be:

ªPeter and Elizabeth attend party city. Elizabeth
rushed hospital.º

In this example, the textual units are assumed to be
words, since sentences would make the example much
larger and likely less clear.

An example of an abstractive summary would be:

ªElizabeth was hospitalized after attending a party
with Peter.º

In the provided example, it seems like the extractive
summarization method has succeeded in finding the most
important words in the source text. However by simply
appending them, the output summary becomes less read-
able and more ambiguous, since now it is not clear whether
Elizabeth rushed or was rushed to the hospital. The abstractive
summarization method doesn’t have these drawbacks, and
still succeeds in capturing the most important semantic

6

information from the source text. Given that extractive
summarization often uses sentences as extracted units, these
drawbacks are somewhat exaggerated. However, a signifi-
cant decrease in coherence from one textual unit to the next
can be expected, resulting in a decrease in readability and
clarity (the ambiguity would likely be less of a problem).

Before the introduction of the transformer architecture,
abstractive summarization was largely unfeasible. To quote
a text summarization survey paper from 2017, "there is no
completely abstractive summarization system today" [23].
Nowadays, a large number of transformer-based abstrac-
tive summarization systems are available. HuggingFace has
developed an user-friendly API to download and use these
models [12], and on their website https://huggingface.co/,
a quick search for text summarization models already offers
562 models to choose from. The models differ in a number
of aspects, notably their network size. The more parameters
a network is given, the better summaries it can produce but
the longer it takes to run. How to best handle this trade-
off depends on the context, so some variety in models is
offered.

Datasets: An important aspect where various text sum-
marization models differ is the dataset they are trained on.
One popular dataset is the CNN/DailyMail dataset [11].
This dataset contains approximately 300.000 news articles
from CNN or DailyMail, where each news article is pro-
vided with a "highlights" section, a short text naturally
written by the journalist to draw the reader in. This sec-
tion provides the text summarization models with a gold-
standard summary, ideal for fine-tuning.

Another dataset with this feature is the XSum dataset [5].
This dataset contains approximately 230.000 news articles
from the BBC, with the most notable difference that the
human-written summaries are no longer than one sentence.
This leads to models trained primarily on the XSum dataset
producing shorter summaries than its CNN/DailyMail
trained counterparts.

Another notable dataset is the arXiv dataset [6], consist-
ing of 200.000 scientific articles, mainly in the STEM fields.
Here the abstract of each article is used as a gold-standard
summary, and therefore also provides a large source of
naturally formed labeled datasets for text summarization.
The PubMed dataset [6] is a similar dataset consisting of
medical research papers.

As a final example, the public sector often provides
articles with human-written summaries. There is the BIG-
PATENT dataset [24], consisting of approximately 1.3 mil-
lion patent documents. Each US patent claim needs an
abstract to be taken into account, so this also provides good
human-written summaries. Similarly, the BillSum dataset
[25] provides around 20.000 US Congressional and Califor-
nia state bills, along with a human-written summary as well.

All these datasets show that for regular text summariza-
tion, there is no lack of labeled data, and this has made
the advances in abstractive text summarization in the last
couple of years possible.

Performance Metric: A popular set of metrics for text sum-
marization evaluation is Recall-Oriented Understudy for
Gisting Evaluation, or ROUGE [26]. This metric measures
the word overlap between a generated summary and a gold-
standard summary. There are a number of different ROUGE

metrics, the most commonly used being the ROUGE-L
score, measuring the Longest Common Subsequence, and
the ROUGE-N score, measuring the amount of overlap of n-
grams. For unigrams, this score is called the ROUGE-1 score,
for bigrams, the ROUGE-2 score, etc. This metric already
exists since 2004, and has been used for both extractive
and abstractive summarization. It seems to be ill-equipped
to take into account the added value of abstractive sum-
marization over extractive summarization. Again taking
the example given above, the increased coherence of the
text would not be captured by the word overlap metric.
Additionally, the ability of abstractive summarization to
generate new text that could capture the meaning of the
original text with fewer words could even be punished
(depending on the reference summaries). Nevertheless, no
widely adopted alternative to this metric seems to exist in
the text summarization field.

2.1.4 Opinion Summarization

Opinion summarization is a type of text summarization
where there is generally more emphasis on the retainment of
a texts its sentiment value. A typical use case is the summa-
rization of customer reviews, where a customer or producer
of a product wants to know how people generally feel about
the product. Text summarization is usually concerned with
retaining the most important facts and information from the
input text, while in this case it is especially important that
the resulting summary retains the same sentiment value as
all the input reviews. It is also often important in opinion
summarization that the summary is aspect-specific, e.g. the
customer wants to know what other consumers think about
a certain feature of the product.

In the rest of this section, the field of opinion summa-
rization is laid out based on a paper by Kim et al. [27].
Kim et al. give a nice overview of the different techniques
that are traditionally used in opinion summarization, as well
as the different NLP subfields that opinion summarization
touches and what the relation of those fields is to opinion
summarization. They divide the related subfields of opinion
summarization into four areas, namely subjectivity classi-
fication, sentiment classification, text summarization and
topic modeling.

The goal of subjectivity classification is to differentiate
between text that contain sentiment value and text that
conveys mainly factual information. This is often used as
a preprocessing step for the other opinion summarization
steps. By removing the purely factual information from the
input text, the accuracy of the opinion summarization can
be increased.

Sentiment classification concerns the determination of
the sentiment orientation of the input text, and could al-
ready be used as a quick statistical summary of a product
or aspect (for instance, "80% of the reviews were posi-
tive" would be such a summary). Sentiment classification
is generally done in two ways, there are the lexicon-based
methods and the learning-based methods. Lexicon-based
methods generally relies on a sentiment word dictionary,
where each word is assigned a certain sentiment value, and
the sentiment value of a piece of text is the sum of the
sentiment values of the individual words. These lexicon-
based methods were the most popular methods in previous

https://huggingface.co/

7

decades, due to its relative simplicity. The simplicity is its
main drawback as well, since it can be somewhat limited in
the amount of complexity it can capture, and it fails to take
the context of each word into account when determining
its sentiment value. Nowadays learning-based methods are
more often used, which requires more computing power
but can fix most of the limitations of rule-based classifica-
tion/prediction.

The next step is text summarization, which can be di-
vided into extractive summarization and abstractive sum-
marization. The difference has been laid out in Section 2.1.3.
This summarization step differs from regular text summa-
rization in that the sentiment orientation of the input text
is crucial. The goal of the opinion summarization model is
to reflect sentiment polarity of the input text as accurately
as possible, and after the subjectivity and sentiment classifi-
cation steps, the model knows which phrases in the input
text are the most central to the whole text with regards
to sentiment. By combining this knowledge with regular
text summarization techniques, the opinion summaries are
generated.

Topic modeling, or feature identification, is an optional
part of opinion summarization, and is used to discover a
number of abstract topics, given a piece of text. It has a
prominent role in the paper by Kim et al. [27], and this
shows that it used to be a more central part of opinion
summarization (more recent papers rarely include topic
modeling in their model, as shown in later sections). The
discovered topics were often used to generate a summary
for one specific feature of a product. For example, this would
enable a retailer to get a summary of what his customers
thought of the price of his product, or its durability. Kim
et al. go into a number of feature identification techniques,
and divide them into shallow NLP-based methods and
mining-based methods. Both tend to use rules, although
the mining-based methods are more capable of handling
more complex input. Shallow NLP methods often use POS-
tagging (Part of Speech-tagging, where every word is put
into an grammatical category) and parsing to find candidate
features, for instance by assuming that all features must
be nouns. Mining-based methods tend to be less strict, but
often use domain-dependent rules and heuristics for finding
features.

These different subfields of opinion summarization do
not need to be explicit, as later sections will show. Since the
advent of abstractive summarization, and as text summa-
rization models have become more complex, these subfields
are often implicitly captured by one model.

Datasets: In the opinion summarization field, two
datasets have become the standard for training and test-
ing summarization models. These datasets are the Amazon
dataset [7] and the Yelp dataset [8]. The Amazon dataset
contains 142.8 million reviews, written between May 1996
and July 2014, and is strictly divided into separate cate-
gories, such as "Books", "Video Games", etc. Each review
contains, in addition to the review text, a rating, product
id, and a customer id, among other things. The Yelp dataset
is less structured. It is separated into files containing dif-
ferent JSON objects, with a file containing businesses, a file
containing reviews, a file containing users, etc. These files
are linked together with IDs, where one review object for

instance would contain both a customer id and a business id.
Other notable metadata features are the rating in the review
file, and the categories in the business file, where Yelp
handles the categories aspect more as if it were tags, giving a
number of different categories with no clear order, and other
businesses having only partial overlap. For instance, one
categories instance could be "Gastropubs, Food, Beer Gar-
dens, Restaurants, Bars, American (Traditional), Beer Bar,
Nightlife, Breweries", where other businesses could have
similar but not identical categories. By structuring reviews
in this manner, Yelp offers no simple way of handling
reviews on a per-category basis.

For the rest of this paper, opinion summarization will
be discussed in the context of summarizing these kinds of
customer reviews, as most current opinion summarization
research is done with these datasets as well.

2.2 Technologies

2.2.1 Word Vectors

Word vectorization, or word embedding, is the process of
translating a word in natural language to a real-valued
vector, capturing as much of the meaning of the word
as possible. These vectors makes certain calculations with
words possible, such as measuring the semantic similarity
between two words. This has enabled a number of advances
in the field of NLP.

There are two types of word embeddings, namely
frequency-based embeddings and prediction-based embed-
dings. Frequency-based embeddings are word embeddings
that are generated by counting how often a word in occurs,
and in what context. TF/IDF is traditionally taken as an
example of this, although it can be considered an almost
trivial example, as this method only produces one value per
word, and is therefore able to encode little meaning. In short,
TF/IDF is calculated by the Term Frequency (TF), i.e. how
often the word occurs in the given document, multiplied by
the Inverse Document Frequency (IDF), i.e. the inverse of
how often the word occurs in the other documents of the
corpus. This gives an indication of how important, or how
informative, a word is in a given context.

Another example of frequency-based embeddings which
does produce a meaningful vector is the co-occurrence ma-
trix. In its simplest form, this method computes a matrix
with all the unique words in the corpus on both axis,
and each cell representing the co-occurrence of the words
associated with the column and the row, i.e. how often
does the word from row i occur next to the word from
column j, resulting in the value of cell ij. In practice, these
matrices take more than the next word into account, and
to remain computationally feasible are also normalized and
compressed, however the general idea remains.

More recently, prediction-based embeddings have be-
come the standard for word vectorization. These kinds of
methods focus on predicting a word given its context, and
its most well-known example is Word2Vec. Word2Vec was
proposed by Mikolov et al. [28] at Google in 2013, and it
has become a standard in NLP due to its simplicity and
versatiliy. Word2Vec consists of a shallow neural network,
which is trained with a large corpus of text. This is made
possible by the network not retaining the intermediate

8

results, as opposed to the co-occurrence matrix discussed
above. Due to the larger corpus size becoming computa-
tionally feasible, the retention in semantic meaning proved
to be more effective as well. This was demonstrated by the
vector space preserving, in addition to semantic similarity,
other semantic patterns as well. For instance, it could be
demonstrated that by subtracting the word vector of "man"
from that of "brother", and adding the "woman" vector,
using regular vector arithmetic, a vector is produced that
most closely resembles the "sister" vector in the vector space,
thereby preserving those semantic relationships as well.
Such features underline the robustness and the versatility
of this method.

A research team at Stanford developed an alternative to
Word2Vec, called GloVe [29], which does take into account
all the co-occurrences of two words. Due to certain ma-
trix factorization techniques, training this model remained
computationally feasible, and in practice the performance of
both models is similar.

Both models can easily be used through the API of the
Gensim library. This library offers a number of pre-trained
word vector dictionaries, in addition to methods for training
a Word2Vec or GloVe model with one’s own corpus.

One notable criticism of these kinds of word embeddings
is the fact that they are unable to distinguish between
different uses of ambiguous words, since they do not take
the context into account after training. The word "pound"
will produce one vector with a pre-trained Word2Vec or
GloVe model, while the meaning could vary from the British
currency unit to the British mass unit. To account for this
ambiguity, BERT has increasingly been used to produce con-
textual word embeddings. However, due to the simplicity
of the context-free word embeddings, Word2Vec and GloVe
remain popular as well.

2.2.2 Topic Modeling

Topic modeling usually refers to an unsupervised ma-
chine learning method, where a collection of documents
is scanned for important words and phrases, and is clus-
tered along a number of word groups, representing abstract
topics. A popular topic modeling tool is Latent Dirichlet
Allocation (LDA), already developed in 2003 by Blei et al.
[30], which has become a standard in NLP. Similar to some
of the word vectorization techniques, this method builds on
the assumption that similar words occur in similar contexts.
The context in this case is the whole document that the word
occurs in, where each word is taken into account equally.
This is called a bag-of-words model, referring to the fact that
the order in which the words occur does not matter. In short,
LDA works as follows. It assumes a given number of topics,
and randomly assigns each word to one of the topics. It then
continually updates the probability that a word belongs to
a certain topic by calculating both the proportion of words
in the document that belong to the given topic (a measure
of how likely it is that the document belongs to the topic),
and the proportion of documents that belong to the given
topic and contain the same word (a measure of how likely
it is that the word correctly belongs to the given topic). By
continually updating each word with these steps, this model
eventually converges towards stable topics. The words with

the highest probability of belonging to the topic are chosen
to represent the topic.

The main drawback of this method is inherent in all
the bag-of-words models, namely that the context of each
word is not taken into account when predicting the topic
associations. As in many other NLP subfields, attempts are
made to tackle this problem also with BERT, as this has
proved effective in capturing semantic information from
text in general. In particular, BERTopic [31] offers a well-
documented and intuitive API for topic modeling with
BERT. BERTopic uses a variety of existing methods to pro-
duce a topic model, given a number of input documents. It
starts by using the sentence_transformers package [32]
to import a version of BERT called "all-MiniLM-L6-v2"

[33]. With this model, a vector representation is produced
for each document, after which the amount of dimensions
of the embeddings is reduced with a method called UMAP
[34]. This is necessary for the clustering of the documents,
as HDBSCAN [35] (the chosen clustering algorithm) is not
able to deal with the high dimensionality of the embeddings
produced by BERT within feasible computational limits.
To find useful topic representations, TF/IDF is used. Here
each cluster is viewed as one document, and by performing
TF/IDF on each in the cluster, the most important words are
discovered and used as topic representations.

2.2.3 Sentiment Analysis

Sentiment analysis is a subfield of NLP that focuses on
predicting the affective value of text. Many use cases can
roughly be assigned to one of two forms of sentiment anal-
ysis, mirroring the first two steps of opinion summarization
laid out in Section 2.1.4, namely the sentiment orientation,
or whether a text is positive or negative, and the intensity, or
how positive or negative a text is. One popular pre-trained
model for sentiment analysis is Valence Aware Dictionary
for sEntiment Reasoning (VADER) [36]. This is a lexicon-
based method, meaning that each word has an associated
set of polarity scores. VADER gives for some text a positive
score, a neutral score, a negative score and a compound
score. The positive, neutral and negative score can be seen
as a probability distribution, where all the scores add up to
one, based on the distribution of positive, neutral and nega-
tive words in the text. The compound score is calculated as
follows:

x√
x2 + α

, (3)

where x is the sum of polarity scores and α is a chosen
constant, defaulted to 15. This score reflects the sum of all
the polarity ratings of the individual words.

3 RELATED WORK

In this section, a number of related papers are discussed.
Firstly, a popular text summarization model is discussed,
which is later used as a baseline model as well. Secondly,
multiple relevant opinion summarization models are laid
out. Finally, the field of text quality is explored, and various
papers attempting to measure it are presented.

9

3.1 Text Summarization

While BERT is the most prominent transformer-based lan-
guage model, some derivative models have been designed
and trained more specifically for text summarization. PE-
GASUS (Pre-training with Extracted Gap-sentences for Ab-
stractive SUmmarization Sequence-to-sequence models [2])
is such a model, also developed at Google, and is able to out-
perform BERT on several text summarization benchmarks.
Its most notable contribution is that of a slightly altered pre-
training objective. Where BERT uses a Masked-Language
model (MLM), PEGASUS chooses a new method called Gap
Sentences Generation (GSG), which more closely resembles
the final downstream task of summarization. With MLM,
BERT performs pre-training by randomly masking certain
words from the input text and then tries to predict those
masked words (this is called self-supervised training). With
GSG, PEGASUS masks whole sentences during pre-training,
and chooses these sentences based on importance. It es-
timates this importance by calculating the ROUGE score
between the sentence and the rest of the document, where
the masked sentence could be viewed as a pseudo-summary.
This pre-training task of predicting a pseudo-summary bet-
ter resembles the downstream task of text summarization,
and therefore PEGASUS performs better in the latter case.

3.2 Opinion Summarization

OpinionDigest is a system developed by Megagon [37], and
is a typical opinion summarization architecture, with special
attention given to transparency. The core of the model is
a transformer that is able to generate a summary, given a
number of extracted opinion phrases. These opinion phrases
are extracted with Snippext [38], an opinion mining system
that is fine-tuned through semi-supervised learning. During
the training phase, those opinion phrases are extracted from
a given review with a pre-trained tagging model, and the
transformer is trained to reproduce the original review
with the opinion phrases as faithful as possible. To subse-
quently generate a summary, all the reviews of an entity are
collected, all opinion phrases are extracted and clustered
according to their similarity in text, polarity and aspect
category, and the most central opinion phrases in those
clusters are selected. The opinion phrases are given as input
to the trained transformer, which generates a summary. See
Figure 4.

This setup is inspired by the MeanSum architecture
of Chu et al. [9], while improving on some important
drawbacks of the original model. MeanSum has become a
standard for opinion summarization models, due to its use
of unsupervised learning, enabling opinion summarization
without large quantities of labeled data. First they use an en-
coder to map each review to a vector in a lower-dimensional
latent space, in this case by taking the last hidden and
output state of an LSTM. Each vector is then decoded by
the decoder LSTM to produce a reconstructed review, and
the cross-entropy loss between the original review and re-
constructed review is used to train the decoder. A summary
is produced by taking the mean of all the encoded reviews
(so simply the mean of all the final hidden and output state
values) and decoding that mean. The encoder is trained by
using the summary as input and using the cosine distance

between the encoded summary and encoded reviews as loss
function. These two loss functions allow the model to be
trained unsupervised. See Figure 5.

The approach of MeanSum is very similar to what the
OpinionDigest model does, although it replaces the encoder
with a pre-existing tagging model that extracts all the opin-
ion phrases from a given review. This allows the model
to filter the selected opinions based on aspect category,
where MeanSum can only calculate the mean from the all
encoded reviews. It also makes the model more transparent,
making it easier for developers and researchers to use and
understand. It would theoretically also make the model
computationally more expensive, as it can be assumed that
extracted opinion phrases constitute a higher dimensional
latent space then the final hidden and output states of the
LSTM in the encoder of MeanSum.

In a 2021 paper, Amplayo et al. [39] use a reconstruction
loss to train an LSTM network, similar to MeanSum, but
split the encodings into an aspect and a sentiment specific
encoding. These encodings are used to model probability
distributions, which are later used to create a synthetic
dataset. The model learns the aspect and sentiment em-
bedding matrices by using the rating accompanying each
review. In addition to the reconstruction loss function, they
add the disentanglement loss function, which is a measure
of both how well the sentiment probability distribution
predicts the rating, as well as how bad the aspect probability
distribution predicts the rating. Assuming that the rating
correctly reflects the sentiment value of each review, this loss
function is able to train the sentiment embedding matrix to
capture all the sentiment related information, and the aspect
embedding matrix to capture all the non-sentiment related
information.

Iso et al. [1] observed that most of the summaries pro-
duced by the state-of-the-art opinion summarization models
are very generic, due to the simple averaging of the la-
tent vectors, representing the encoded input reviews. It is
hypothesized that these generic summaries are caused by
the L2-norm of the produced summaries being very low.
The L2-norm, or Euclidean norm, is the length of a vector,
and the paper poses that "as we expect each dimension in
the latent space to represent a distinct semantics, L2-norm
shrinkage may cause some information loss in the summary
vector". To address this problem, they developed a latent
vector aggregation framework called COOP, which takes as
input the encoded reviews and tries to predict an optimal
encoded summary, based on the word overlap between the
original review and the predicted decoded summary. See
Figure 6.

With this simple new metric, the word overlap, the
COOP framework is able to improve upon most of the
state-of-the-art opinion summarization models by making
the summaries more informative. Since ROUGE is not able
to measure the informativeness of summaries, Iso et al.
also used human evaluation to measure the performance
in addition to the ROUGE score. They found that COOP
improved upon existing opinion summarization models,
both automatically measured by the ROUGE score as well
as with human evaluation regarding the informativeness.

10

Fig. 4: OpinionDigest framework [37], where (1) opinions are extracted from reviews, (3a) those reviews are reconstructed
to train the decoder, (2) the most important opinions are selected and (3b) used to decode into a summary.

Fig. 5: MeanSum architecture [9], where reviews are encoded to a lower-dimensional latent space, then individually
decoded to train the decoder, and also aggregated to be decoded into a summary.

Fig. 6: COOP Framework [1], which improves the MeanSum
framework [9] by replacing the mean aggregation with
an aggregation based on maximizing input-output word
overlap.

3.3 Text Quality

With the Research Question 1 being "How can the
informativeness of text be measured", it would also
be instructive to look at previous work regarding the
measurement of text quality in general. In the field of
NLP, the quality of text is measured for a number of

reasons. In some cases, the quality of each term is measured
individually, for instance with keywords extraction. Here
the importance of each word is calculated, which can in
turn be used to classify, summarize or cluster documents.
Wu et al. [40] present a novel approach to this. They
calculate the informativeness of a term t in a certain context
ci by measuring the semantic similarity between the given
context and all other contexts found for the term, denoted
by Uf (t). More specifically, they use the following equation:

I(t, ci) =
∑

cjϵUf (t)

k(ci, cj) · CA(cj), (4)

where

CA(ck) =
∑

l

DA(dkl). (5)

k(ci, cj) is the semantic relatedness and DA(d) denotes
the authority of a certain document (a Wikipedia page can
be given more authority than some blog post for instance).
The equation given above can be explained intuitively with
the following example. Take the context "PL/SQL is one of
three key programming languages embedded in the Oracle
Database". The idea is that if you search on the internet for
"programming", the results will be more different from the

11

given context than if you search for "PL/SQL", so the seman-
tic relatedness of the given context and other contexts with
that term will be lower, and therefore the term "PL/SQL"
is more informative than the term "programming" in that
context.

In other cases, the quality of larger volumes of text
is considered. Horn et al. [41] attempt to measure how
readable or informative a certain document is, with the goal
of ranking documents in a search engine or filtering out
the least useful documents from a corpus. They do this by
calculating the factual density fd of a document d. They
use an OpenIE (Open Information Extraction) system called
ExtrHech to extract all the facts from a given text, and
simply divide the amount of facts by the total amount of
text, so:

fd(d) =
fc(d)

size(d)
, (6)

where fc denotes the fact count and size(d) denotes the
amount of words in document d.

Open Information Extraction here is the extraction of
triples, representing facts, which take the form of {noun, verb,
noun} ({child, rides, bicycle} for example). ExtrHech takes
POS-annotated text, which in the paper is provided by the
Freeling-2.2 system, and filters out most of the useless facts.
Although a relatively simple system, it is shown that it is a
feasible measure of informativeness of text on the Web.

In the paper by Iso et al. [1], discussed in Section 3.2,
the quality of summaries of customer reviews is also mea-
sured with two metrics, namely text length and information
amount. For information amount, they take an approach
inspired by the field of information theory as proposed by
Shannon [42]. Iso et al. estimate the entropy of a summary
by training an RNN on the original dataset to predict the
next word in a sentence, and then use the original negative
log probability function to calculate the information amount
H of summaries X :

H(X) =
n
∑

i=1

−log(P (xi)). (7)

Here the result of an opinion summarization model X
consists of summaries {x1, . . . , xn} and P (xi) is given by
the RNN. This entropy is then used as an indication of how
informative a textual summary is.

A paper by Liu et al. [10] has the goal of detecting low-
quality customer reviews in order to be able to get the
most useful reviews to a retailer or consumer. They train a
Support Vector Machine (SVM) to classify reviews as either
high quality or low quality, and use human annotators to
provide the ground-truth. For informativeness, the SVM
uses features such as the number of sentences in the review,
the average length of a sentence, the number of products in
the review or the number of product features in a review to
predict the quality of a review. They find that with only
sentence level features, the quality of a review can only
be predicted with an accuracy of around 73%, and the
word level and product feature level features can increase
this percentage to around 83%, while the readability and
subjectiveness features contribute next to nothing.

Antiqueira et al. [43] modeled text as a graph, where
each term represents a node, and a graph was constructed

by defining an edge between two nodes when the two as-
sociated words are adjacent. They found that the coherence
and cohesion of the text, as evaluated by human judges, was
negatively associated with the out-degrees (i.e. the amount
of edges going from a node), clustering coefficient (i.e. the
degree to which groups of nodes tend to cluster together)
and deviation from a linear network growth of the graph
(i.e. if the network grows linearly as each new word is added
to the network).

Research done by Mesgar et al. [44] takes a more com-
plex approach. A neural network is developed to predict
text quality in two domains, namely readability and essay
scoring. For readability assessment, a number of English
texts are taken from the British National Corpus and from
Wikipedia, and the network needs to predict how readable
they are, as evaluated by human judges. In the case of essay
scoring, a dataset is taken from the Automated Student
Assessment Prize competition from Kaggle1, and the net-
work needs to predict which student essay ranks highest,
again as evaluated by human judges. To accomplish this, the
researchers develop a local coherence model. Specifically,
they use an LSTM to encode the semantic information
between (the most similar words of) two adjacent sentences,
and a CNN that subsequently encodes the semantic in-
formation across all the sentences in a text. To evaluate
their performance, they compare their model with the open-
source essay scoring system EASE, and fail to improve upon
the QWK score, which is used to measure the agreement
between the generated ranking and the human ranking.
However, by combining their local coherence model with
EASE, they do manage to improve upon the performance of
EASE, with a QWK score of 0.728 as compared to the 0.705
of EASE.

4 METHODOLOGY

This sections consists of two parts. First, new metrics are
proposed by which to measure "informativeness". Second, a
new model is proposed that could improve performance on
these metrics.

4.1 Metrics

With regards to the first research question, "How can the
informativeness of text be measured", this paper takes the
liberty of answering it by proposing the following metrics,
inspired by other papers: the information amount, the rele-
vance and the frequency of common words.

4.1.1 Information Amount

As mentioned in Section 3.2 and 3.3, Iso et al. [1] used the
information amount as an indication of informativeness to
the reader, where information amount is defined by

H(X) =

n
∑

i=1

−log(P (xi)). (8)

Here the result of an opinion summarization model X
consists of summaries {x1, . . . , xn} and the probability of
each summary is given by a trained RNN. The intuition

1. https://www.kaggle.com/competitions/asap-aes/overview

https://www.kaggle.com/competitions/asap-aes/overview

12

behind this is that the more predictable a summary is, the
less information it must contain. In this paper, we will use
this idea as well, albeit in the following, simplified form. We
will use the t5-small-next-word-generator-qoogle
from the HuggingFace Hub [12], a generic English next-
word-predictor, to measure the predictability of a summary.
To clearly communicate the results of this metric, the ratio
of correctly predicted words will be presented.

4.1.2 Relevance

A problem which could be observed in the results of the
work by Iso et al. [1] is the inclusion of more irrelevant infor-
mation in summaries during the pursuit of more informa-
tive summaries. To address this problem, we will try to mea-
sure the relevance of a summary. This is done by using the
general subject of a summary, i.e. the product_category
in the Amazon dataset and the categories in the Yelp
dataset, and calculate average distance between the words
used in the summary and the subject. Since word vectors
are grounded in semantic similarity, they can be used to
calculate the semantic distance between two words. More
specifically, the average Euclidean distance of the words in
the summary to the product category name is taken, where
the Euclidean distance between two n-dimensional vectors
is defined by

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + · · ·+ (pn + qn)2.
(9)

The word vectors from the pre-trained Word2Vec model
word2vec-google-news-300 from Gensim [45] will be
used, where each word vector has 300 dimensions, and each
value is normalized between -1 and 1. This means that the
lower bound for this metric is given by the distance of two
identical vectors, which will be zero since

d(p, p) =
√

(p1 − p1)2 + (p2 − p2)2 + · · ·+ (p300 − p300)2

=
√

02 + 02 + · · ·+ 02 = 0.
(10)

The upper bound for this metric is given by the distance
of two vectors who have the largest difference in value on
each dimension, which is 2, since each value is between -1
and 1. This gives

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + · · ·+ (p300 + q300)2

=
√
4 + 4 + · · ·+ 4

=
√
300 ∗ 4 =

√
1200 = 20

√
3.

(11)
So the upper bound for this metric is 20

√
3.

4.1.3 Word Frequency

The last metric that will be taken into account is the fre-
quency of common words. Inspired by the approach of
Wu et al. [40] (see section 3.3), the informativeness of a
certain term will also be measured by how often it oc-
curs in other contexts. Although Wu et al. take a more
sophisticated approach, where they calculate the semantic
similarity between the given context and all other contexts
the term occurs in, here it would be too computationally
expensive to take into account all the other contexts for
each word. Instead, the most common English words are
taken from the Corpus of Contemporary American English

[46], a corpus containing texts from sources such as TV and
movie subtitles, academic texts, newspapers, blogs, works
of fiction, etc. Since the explicit goal of this corpus is to
be genre-balanced, the most common words of the corpus
are assumed to be relatively uninformative, as they appear
in a lot of different contexts. The validity of the use of
this metric is substantiated by the prevalence of TF/IDF in
NLP research, as this metric rests on the same assumption.
The importance of a term in a document is calculated by
multiplying with the Inverse Document Frequency, which
depends on how often the term occurs in other contexts.
The more it occurs in other contexts, the lower the IDF, and
the lower the importance, or informativeness.

The top 5000 most common words from the COCA
dataset are freely available, and those are the words that will
be used for this metric. Each word in the dataset has a freq
attribute, which gives the frequency of the word occurring
in the corpus. This value ranges from approximately 50
million for the word "the", to 11 thousand for the word
"bizarre". To give an indication for the informativeness of
a summary, these word frequencies are summed up for all
the words in the summary that are also in this dataset, and
divided by the total amount of words a summary contains.
This results in the following aggregate.

a(W) =

∑

wiϵW
freq(wi)[wiϵCOCA]

|W | , (12)

where freq(wi) gives the frequency of word wi in the
COCA dataset, and summary W consists of words wi.

4.2 Model Proposal

In this subsection, the second research question, "How
can the informativeness of existing opinion summarization
methods be improved?", will be answered by proposing a
model that will attempt to improve the informativeness of
existing opinion summarization methods with a combina-
tion of topic modeling and sentiment analysis, as shown in
Figure 7. This model will be called TopSum 2, because it is
a summarization model that bases its summaries on topic
associations. It is used to generate one summary for one
product, based on eight customer reviews for that product.
It roughly consists of four steps, namely sentence extraction,
topic modeling, ranking per topic and text summarization.

4.2.1 Sentence Extraction and Topic Discovery

The first step of TopSum is to extract the sentences from
all the reviews of a certain product. This is done by split-
ting each review text on the ’.’ character. This approach
is relatively simple as compared to the phrase extraction
from the OpinionDigest model [37]. Although many regular
keyphrase extraction systems exist [47] [48] [49], using a
reliable opinion phrase extraction system would be more
complex. Simple sentence extraction is used for TopSum,
both to reduce the dependency on external libraries, and to
keep the model transparent and understandable.

The second step of TopSum is a more central part of
the research, and involves topic modeling of the extracted
sentences. For reasons discussed in section 2.2.2, BERTopic

2. https://github.com/EricvanSchaik/TopSumProject.

https://github.com/EricvanSchaik/TopSumProject

13

Fig. 7: Given a number of input reviews for one product or service, the TopSum model extracts the sentences, performs
topic modeling to retrieve the most relevant aspects, gives a ranking of sentences per topic, and summarizes the 20% most
important sentences per topic. This produces one summary for the given product or service.

[31] is chosen for this. BERTopic is initialized with 10 topics,
and is trained on the entire dataset. A topic model per
product or service was considered as well, however with
only 8 reviews per product, this does not result in a stable
topic model. The results of this step are a topic model,
which can be used to retrieve the 10 topics or to assign topic
probabilities to new text, and for each review a probability
distribution over those topics (i.e. what is the probability
that a review is about a certain topic).

4.2.2 Ranking per Topic

The third and most complex step of TopSum is to rank the
sentences per topic, in order to determine which are the
most important sentences for a certain topic. This ranking
will be based on three aspects, namely the topic association,
the sentiment deviation and the L2 norm. The topic model
from the first step is used to produce a topic probability
distribution, this time on a per-sentence basis, resulting in a
value between 0 and 1 per topic per sentence.

Ideally, a summary of customer reviews would include
multiple aspects of the product or service, described with
opinion phrases that reflect the average sentiment polarity
of the customer reviews with respect to those aspects. This
model attempts to do this by attaching more importance
to sentences in the customer reviews that are closer to the
average sentiment value of a topic, during this ranking
phase. To achieve this, first the average sentiment value per
topic needs to be calculated. This is done as follows.

s̄i =

∑n

j=0(wij · cj)
∑n

j=0 wij

, (13)

where s̄i is the average sentiment value for topic i, n is
the amount of reviews, wij is the topic association between
topic i and review j as predicted in the second step, and
cj is the compound score of review j, given by the VADER
dictionary (see Section 2.2.3). After having calculated the
average sentiment value per topic, the sentiment deviation
per topic per sentence is calculated by taking the absolute
difference between the average and the compound score of
the sentence.

Finally, the L2 norm is calculated. The L2 norm, or
Euclidean norm, is the Euclidean distance between a vector
and the origin, and is given by the following equation.

||x||2 =
√

x2
1 + · · ·+ x2

n. (14)

Here n is the dimension of the vector and xk is the k-th
dimension of vector x.

The L2 norm is calculated for each word in a sen-
tence, and the average taken. Words not in the pre-trained
Word2Vec [28] dictionary are ignored.

With these three aspects, a final score is calculated per
sentence per topic, as follows.

fij = pij + α · −dij + β · lj . (15)

Here, α and β are two hyperparameters of this model,
and are chosen to be 0.1 and 0.05 after experimentation.
fij is the final score of topic i and sentence j, pij is the
topic prediction, dij is the sentiment deviation and lj is the
Euclidean norm.

The inclusion of the Euclidean norm in the calculation
of the final score is inspired by the results of Iso et al.
[1], that show that there is a correlation between the L2

norm of latent vectors and the information amount of the
summaries. Here the situation is somewhat different, as
the L2 norm of the word vectors according to Word2Vec
[28] are taken, while the latent vectors of the paper by
Iso et al. are the embeddings given by the encoder of
the transformer architecture. Therefore, this step makes the
additional assumption that the correlation would still hold
between the Euclidean norm of a Word2Vec vector and the
semantic information of that word.

On a surface level, this assumption is reasonable since
a vector that has a larger L2 norm (i.e. that is farther away
from the origin of the vector space) would require more
bits to encode. Therefore, Word2Vec would be a highly
inefficient encoding scheme if the most common words
would be furthest away from origin. More specifically, this
assumption is also reasonable considering the main con-
tribution of Word2Vec. Word2Vec provides word vectors
where the cosine similarity indicates the semantic similarity

14

(i.e. words that are semantically similar have word vectors
that are close together in the vector space), and it should
be expected that common words have more words that are
semantically similar than very specific uncommon words.
Assuming the origin is the average of all the word vectors,
most word vectors will be in that area, so the most common
words should be as well, giving them a small Euclidean
norm.

In addition to these theoretical arguments, this choice
will also substantiated by the calculation of the Euclidean
norm of the 5000 most common English words, see Section
6.1.2

4.2.3 Text Summarization

Within each topic cluster, sentences are now ranked based
on relevance, sentiment value and information. The last step
of this model is to summarize these sentences, and this
is done with the pegasus-cnn_dailymail model. The
20% most important sentences from each topic cluster are
selected and used as input for PEGASUS. This percentage is
another one of the hyperparameters for this model, initially
chosen somewhat arbitrarily and therefore open to experi-
mentation.

An example of the whole process is given in the form
of Figure 7. Three of the eight input reviews are shown,
concerning an Amazon product called "APC UPS Battery
Replacement". After cutting the reviews up into sentences,
BERTopic is used to calculate ten different topic models,
along with a probability distribution over the topics for
each sentence. Only one of these distributions is shown
for simplicity. In the next step, all the sentences are ranked
for each topic, to reflect how important each sentence is in
describing the average sentiment for each product aspect.
In the last step, only the 20% most important sentences
per topic are fed into the PEGASUS model to produce a
summary.

5 EXPERIMENTAL SETUP

5.1 Datasets

The two most popular datasets in opinion summarization
research are used for the experiments, namely the Yelp
dataset and the Amazon dataset, both also used by Iso et
al. [1] and available at https://www.yelp.com/dataset and
http://jmcauley.ucsd.edu/data/amazon/links.html, or via
the HuggingFace website https://huggingface.co/datasets.
For both datasets, only products are chosen for which there
are exactly 8 reviews, following the example of the Mean-
Sum paper [9]. With this condition, 10.000 reviews are sam-
pled from the Amazon Electronics dataset and 8960 reviews
are sampled from the Yelp dataset. For Amazon, calculating
the relevance is straightforward, since it can be assumed
that the general subject of each summary is "Electronics".
For the Yelp dataset, this requires some preprocessing, since
an example of the categories feature is "Food, Ethnic
Food, Nightlife, Restaurants, Dive Bars, Bars, Vietnamese,
Specialty Food, Street Vendors, Event Planning & Services,
Asian Fusion, Caterers, Food Stands". Here, simply the first
word of all the categories is taken as the subject of the
summary.

5.2 Baseline Models

The frameworks that are used as baselines are the text sum-
marization PEGASUS [2] and the opinion summarization
model COOP [1], both as explained in Section 3.

On the HuggingFace Hub [12], Google has pub-
lished a number of versions of PEGASUS, most no-
tably pegasus-xsum, pegasus-cnn_dailymail and
pegasus-large, where the first model is trained on
the XSum dataset, the second model is trained on the
CNN/DailyMail dataset, and the last model is the original
model from the paper, trained on a wide range of datasets,
including XSum and CNN/DailyMail. As mentioned in
Section 3.2, the most significant difference between the
XSum and the CNN/DailyMail dataset is the length of the
summaries, as the XSum summaries are restricted to just
one sentence. For the purpose of summarizing customer
reviews, it would be useful to include multiple aspects in
the summaries, as the associated sentiment per aspect can
vary, and each reader could be interested in a different as-
pect. Therefore, summaries longer than one sentence would
be preferred, so the pegasus-cnn_dailymail model is
chosen for the following experiments.

The COOP framework is taken from the GitHub repos-
itory 3, and this model is chosen as a baseline for two
reasons. It is based on and very similar to the MeanSum
model [9], which is an influential framework in opinion
summarization, and is therefore being used as a baseline
in many other opinion summarization papers as well [50]
[51] [51] [37] [52] [53]. Also, it is particularly relevant to
this research as it is one of the few papers that also sees
the low amount of information as one of the key problems
in new unsupervised opinion summarization frameworks,
and some ideas to solve this problem serve as inspiration
for the proposals laid out in this paper.

5.3 Human Evaluation

A survey has been set up to test which model produces more
informative summaries. The survey contained 12 questions
in total, 6 for each dataset. Each question focused on one
product, first giving the full texts of the 8 reviews and 3
summaries (from our proposed TopSum, PEGASUS [2] and
COOP [1]), followed by asking how they would rank the
summaries from most to least informative. An example of
such a question is given in Appendix B.

This survey was distributed in two ways. It was dis-
tributed to personal contacts (students at the University of
Twente for instance), and on the SurveySwap [54] platform.
On the SurveySwap platform, students can swap their sur-
veys, so a user has to fill in surveys of other students in
order to get participants for his survey. The source of the
survey responses will be given when presenting the results
of this human evaluation.

After collecting the responses from the survey, the results
are processed to be able to measure a difference in perfor-
mance. To this end, a score is calculated for each model, on
each dataset and for each survey respondent source. This
score is calculated as follows. A response is in the form
of a ranking of the models from most to least informative.

3. https://github.com/megagonlabs/coop

https://www.yelp.com/dataset
http://jmcauley.ucsd.edu/data/amazon/links.html
https://huggingface.co/datasets
https://github.com/megagonlabs/coop

15

For each individual response, the most informative model
is given two points, the second most informative model is
given one point and the last model is given zero points. All
these points are summed up for each respondent for each
question, giving each model a score between 0 and 12 per
dataset per participant.

6 RESULTS

This section is divided into three subsections. First, the
results of the intermediate experiments are presented, which
were used during the process of designing TopSum to
support various design decisions. Second, the performance
of the proposed model as compared to the baseline models
is considered. This can be considered the main part of
this section. It is followed up by the results of the human
evaluation.

6.1 Intermediate Experiments

6.1.1 Sentiment Deviation per Sentence

In order to decide whether to split the reviews into sentences
before performing ranking and summarization, an experi-
ment was carried out. It was assumed that one review was
likely to cover multiple aspects, and that the reviewer would
feel differently about each aspect. Since the proposed model
tries to select the most important pieces of text per topic,
a smaller level of granularity could be more appropriate,
and the sentence would be an obvious candidate, due to the
ease of splitting text into sentences. To test this assumption,
the deviation of sentiment of individual sentences with
respect to the whole review was measured and visualized. A
larger deviation would suggest a more meaningful distinc-
tion between individual sentences, and would support the
decision of splitting the reviews into individual sentences
before summarization. The results of this experiment are
show in Figure 8. For this experiment, 200 reviews were
sampled from the Amazon dataset in such a manner as to
reflect the average sentiment value distribution of the full
dataset, and sorted based on sentiment value. The blue line
in Figure 8 shows the average sentiment value of the 200
reviews, and the red line reflects the sentiment value of the
individual sentences of the reviews. As shown in the figure,
the sentiment of individual sentences roughly correlates
with the sentiment of the reviews, as expected, although
large deviations are visible as well. Especially in reviews
with a compound score between between 0 and 0.5, the
deviation is substantial. The result of this experiment seems
to support the decision to split the reviews into sentences.

6.1.2 Information in Most Common Words

To further substantiate the claim that the L2-norm of
Word2Vec vectors negatively correlates with how common
a word is, another experiment was carried out. Again,
COCA [46] was used to get the most common English
words, and the L2-norm of each word was calculated. More
specifically, the 2000 most common words were taken from
the corpus, sorted on frequency, and the average L2-norm
of 10 subsequent words was calculated and plotted. The
result is in Figure 9, where the words with COCA index
0 are the 10 words that have the lowest frequency in the

corpus (of the 2000 most common words) and a higher
COCA index signifies a more common English word. With
this word selection, it is shown that there is a strong negative
correlation between word frequency and L2-norm, and that
therefore ranking based on L2-norms should produce more
informative summaries.

6.2 Performance of Model

The final results for the Amazon dataset are shown in Table
1a and for the Yelp dataset in Table 1b. As shown, our
TopSum model performs well in terms of predictability (i.e.
information estimation), with a score of 0.184 on the Ama-
zon dataset and a score of 0.177 on the Yelp dataset. This is
close to the scores of PEGASUS of 0.180 and 184, and both
are much better scores than those of COOP, which are 0.314
and 0.297, for the Amazon and Yelp dataset respectively.
Note that the numbers reflect the ratio of well predicted
words, so a lower score indicates a higher information
estimation.

The model performs worse than the baseline models in
terms of relevance, with a score of 3.458 on Amazon and
a score of 3.481 on Yelp as opposed to 3.420 and 3.422 for
PEGASUS and 3.323 and 3.366 for COOP on the Amazon
and Yelp datasets respectively. Since the relevance metric
gives the average distance of the summary to the subject, a
lower distance means it is more relevant.

TopSum performs significantly better in terms of com-
mon word usage, with a score of 4.363 · 106 on Amazon
and a score of 4.128 · 106 on Yelp, where PEGASUS reached
scores of 4.634 · 106 and 4.744 · 106 and COOP got scores of
6.557 · 106 and 6.768 · 106 on Amazon and Yelp respectively.

TopSum also performed significantly better in terms of
sentiment deviation, with a score of 0.432 on Amazon and a
score of 0.372 on Yelp, while PEGASUS got 0.547 and 0.536
and COOP 0.477 and 0.457 on Amazon and Yelp respec-
tively. It must be noted that sentiment deviation is the only
metric that is already taken into account during the ranking
and filtering part of the model, and therefore is not a good
measure of how well our model is performing. However, it
is so central to the difference between text summarization
and opinion summarization that it is nevertheless shown
here.

An example summary for each dataset and for each
model is given in Appendix A.

6.3 Survey Results

For the human evaluation, 13 participants were used, 7 of
which were from personally contacted, and 6 of which were
gathered from SurveySwap. The results of the survey are
shown in Figure 10.

The results are presented as a bar chart, where each
bar represents the performance of one model on one of
the datasets. Each bar is divided into two parts, where
the bottom darkly-colored part shows the results from the
personal contacts, and the top lightly-colored part shows
the results from the SurveySwap participants. To illustrate
the performance of each model, a score has been calculated
for each bar, and is shown on the y-axis. The exact score
of each case is shown in the separate bars as well, with the
total score of each model on each dataset being shown on

16

Fig. 8: Sentiment deviation of sentences of 200 Amazon reviews

Fig. 9: Correlation of frequency of top 2000 most common words of COCA [46] and L2-norm

Summarization Model Predictability Relevance Word Frequency Sentiment Deviation

TopSum 0.184 3.458 4.363 ·10
6 0.432

PEGASUS [2] 0.180 3.420 4.634 ·10
6 0.547

COOP [1] 0.314 3.323 6.557 ·10
6 0.477

(a) Amazon

Summarization Model Predictability Relevance Word Frequency Sentiment Deviation

TopSum 0.177 3.481 4.128 ·10
6 0.372

PEGASUS [2] 0.184 3.422 4.744 ·10
6 0.536

COOP [1] 0.297 3.366 6.768 ·10
6 0.457

(b) Yelp

TABLE 1: Automatic evaluation of summarization models by proposed metrics

top of the bars. Because each model has a score between 0
and 12 per dataset per participant (see Section 5.3), in total
each model has a score between 0 and 84 points per dataset
for the personally gathered participants and between 0 and
72 per dataset for the SurveySwap participants.

As shown in Figure 10, the perceived informativeness
of TopSum on the Amazon is close to the perceived in-
formativeness of PEGASUS, with the regular respondents
rating the informativeness of TopSum even higher. COOP
performs worst on the Amazon dataset on every aspect,
although the difference becomes small when looking at the
regular respondents.

Overall, the results from the regular respondents roughly
correspond with the results from the respondents from
SurveySwap. One noticeable outlier would be the perceived
informativeness of the COOP model on Amazon, which
the regular respondents perceive as much more informative
than the respondents from SurveySwap.

Although the COOP and PEGASUS model perform sim-
ilar on Yelp as their Amazon counterpart, the perceived
informativeness of the TopSum model on the Yelp dataset is
considerably worse, both when considering the respondents
from regular sources as well as those from SurveySwap. This
trend is similar to that of the relevance score considered in

17

Fig. 10: Human evaluation of perceived informativeness of
different summarization models on two datasets, as mea-
sured by surveys

Section 6.2.

7 DISCUSSION

In this section, the results are interpreted in terms of the
implicit hypothesis, the research questions are answered,
some limitations are highlighted and suggestions for future
work are suggested.

7.1 Hypothesis

The results of the experiments do not fully support the
hypothesis that by ranking and filtering the most impor-
tant sentences before using text summarization, the gap
in text quality between text summarization and opinion
summarization can be reduced. Especially in the case of our
measure of relevance, the model underperforms. This could
be because of the topic modeling part of the model, which is
dependent on external libraries (BERTopic [31] in this case).
Producing an accurate number of topics that reflect aspects
of a product/service given a large number of documents is a
hard problem. Inaccurate topics may well be produced with
low-quality of input text even with BERTopic, which is the
state-of-the-art in the field. Another possible reason for the
reduction in relevance is the broadness of the dataset. With
the Amazon dataset, reviews were taken from the product
category "Electronics", and that category includes a wide
range of products such as cables, TV’s and headphones.
Since the category is so broad, it seems likely that many
topics of the resulting topic model are specific to a type of
product within the category "Electronics". This would mean
that when ranking the sentences based on association with
a product aspect, all aspects are taken into account equally,
although only a small subset of the aspects are relevant.
This would result in sentences with low topic associations
still being selected as the most important sentences for
a product, and therefore resulting in a lower relevance
score. The significant difference between the Yelp dataset
and the Amazon dataset supports this analysis. With Yelp,

businesses do not belong to one category. Yelp uses the cat-
egories more as tags, where they attach multiple categories
to one business, so that there is potentially partial overlap
between the categories of two businesses. This makes it
more complex to train a topic model on one category, and
therefore the topic model used here is trained on the entire
Yelp dataset. It is likely that this has lead to even more
distinct topics, where most reviews have little to do with
most topics. Therefore, the relevance score of TopSum is
significantly worse on the Yelp dataset (3.481) than on the
Amazon dataset (3.458).

The small-scale human evaluation further supports the
notion that the topic model could be partly responsible
for the suboptimal performance. On the Amazon dataset,
the TopSum model performs around as good as PEGASUS,
while on Yelp it is the worst performing model. Although
this is reminiscent of the difference in relevance scores
mentioned above, the Amazon and Yelp datasets differ in a
number of ways, and many other reasons for the difference
in performance are imaginable.

If the suboptimal performance is due to the topic model,
it would be one of the accepted risks of depending on an ex-
ternal topic modeling framework. The problem might partly
be addressed by tweaking the topic model and adding some
preprocessing steps to the TopSum model. For instance, the
topic model could be trained only on one product, so as to
make sure that all the aspects are specific to that product.
This was already explored during experimentation, and it
was rejected for this project, primarily for computational
and pragmatic reasons. Since BERTopic needs to fine-tune
BERT, a relatively large number of documents are needed in
order to produce a stable topic model. In the Amazon prod-
uct category "Electronics", the largest amount of reviews for
one product was around 8000 reviews, and that seemed to
be enough for a good topic model. However, the rest of the
model proved to be so complex that these large volumes of
text per summary would be too computationally expensive.
Also, more pragmatically, the amount of products with this
number of reviews is so small, that a summarization model
that would only work under these specific circumstances
would not be useful.

Another way to improve the topic model could be to
filter out some type of words, such as stop words, pronouns
or words with a strong sentiment value (since producing
text with the correct sentiment value is already controlled
for by other parts of the model). Also, the semantic simi-
larity between a topic and the category could be taken into
account, so that topics that are more semantically similar
to the category are preferred. All this could produce more
reliable topic models, and therefore higher relevance scores.

7.2 Research Questions

Considering the first research question, "How can the in-
formativeness be measured", this paper has offered some
tentative metrics by which an indication of informativeness
could be given. Significant differences between the perfor-
mance of the summarization models with these new metrics
conform to intuitions regarding the text quality differences,
supporting the claim that these metrics give an indication of
informativeness.

18

An attempt to answer the second research question,
"How can the informativeness of existing opinion sum-
marization methods be improved?", has resulted in a new
model proposal which ranks and filters review sentences,
before performing text summarization on them. The third
research question, "How can the sentiment value be main-
tained when focusing on informativeness?", is answered im-
plicitly in this model, as the sentiment value of the sentences
is taken into account during the ranking. This approach
can also be considered as a combination of extractive and
abstractive summarization, where all the sentences are taken
into account for the correct sentiment orientation, however
only a subset of the input text is used for the production
of high-quality text. Although this has not improved opin-
ion summarization on all fronts, the significant differences
between it and the baseline models suggest a meaningful
distinction between the proposed architecture and state-
of-the-art text/opinion summarization models. Therefore,
this new model could be a viable starting point for further
research.

7.3 Limitations

In addition to the limitations of the topic model mentioned
above, a number of other limitations on this research should
be considered. The main limitation of this research is the
arbitrariness of the proposed metrics. Although partially in-
spired and substantiated by previous research, the choice of
these metrics is also based on subjective intuition regarding
the quality of the output of existing opinion summarization
models. This was considered necessary, as the perceived
performance of existing opinion summarization models and
their ROUGE measurements seemed to correspond poorly.
Due to the simplicity, popularity and longevity of the usage
of ROUGE, it could be considered a more objective measure
of summarization performance, although this paper poses
that an alternative could be useful. Therefore, this limitation
is inherent in the conceptualization of this research.

Another limitation is that more computational resources
would have been desirable. Due to the usage of the large
topic model, the state-of-the-art abstractive text summa-
rization model and the complex per-sentence ranking cal-
culations, running the full TopSum model was relatively
expensive. This prohibited extensive experimentation with
hyperparameters such as those mentioned in Section 4.2.2
and 4.2.3, with different amounts of reviews per summary
(only the case of 8 reviews per summary is considered in
this research, in line with the experimental setup of similar
papers), or more types of text summarization models. The
scarcity of computational resources seems to be a common
limitation in NLP research. Starting with the introduction of
BERT by Google [4], the largest advances in NLP research
have been made by large companies, having the resources
available to train very complex models with vast amounts
of data. To fine-tune a model for more specific tasks often
entails using the pre-trained language models and training
some extra layers with task-specific labeled data, making
the model even more complex and making computational
resources scarce. The more consumer-centric approach of
this paper does not include fine-tuning with labeled data,
instead it combines a number of language models and NLP

techniques to produce better summaries, and its complexity
is therefore a sum of the complexity of the different lan-
guage models and techniques. In this case, the state-of-the-
art is used as components of the TopSum model, and there-
fore the extend of this limitation could have been reduced
by choosing simpler components. Some experimentation in
this direction has shown worse intermediate results, and
therefore has not been explored further.

Since the design of TopSum is based partly on intuitive
choices, these choices could have been founded with more
research as well. For instance, in section 6.1.1, the choice of
cutting text into sentences before processing is substantiated
by showing the sentiment deviation of individual sentences
with respect to whole reviews. This could be expanded by
showing the deviation of topic associations of sentences,
or the differences in L2-norms per sentence. Additionally,
to support the design choice of using topic modeling to
improve relevance, some experimentation regarding the
relevance of those topics could be instructive as well.

7.4 Future Work

The limitations mentioned above naturally lead to a num-
ber of opportunities for future work. For instance, more
experimentation could be done with more computational
resources, or by making the model more efficient. These
experiments could entail tweaking parts of the model, or
could address certain design choices. Also, the arbitrariness
of the metrics could be addressed by looking for other
metrics, so that a fuller picture of informativeness can be
given to verify whether the metrics correspond to perceived
informativeness in text.

In addition to simply addressing the limitations men-
tioned above, some more opportunities for future work
could be mentioned. One important direction could be
adding the option to generate aspect-specific summaries.
This option seemed to be a priority in opinion summariza-
tion studies at some point in the past, however since the
introduction of transformers [3] and MeanSum [9], aspect-
based summarization is somewhat neglected. This model
has been designed with aspect-based summarization in
mind, the effectiveness of which largely depends on the
effectiveness of the topic modeling part of the TopSum
model. Therefore, any future work in this direction should
consider improving the use of topic modeling in TopSum, if
it is shown to be necessary.

8 CONCLUSION

In this paper, a new approach to opinion summarization has
been proposed, addressing the apparent gap in text quality
between the output of state-of-the-art text summarization
models and opinion summarization models. It starts with
the proposal of a number of new metrics, which attempt
to gauge the performance of opinion summarization in a
more consumer-centric manner, namely by measuring the
informativeness of text. These metrics are predictability,
relevance and common word frequency, and this paper
shows how a new opinion summarization framework Top-
Sum could improve performance on these metrics. This new
framework could be considered a combination of extractive

19

and abstractive summarization, since it selects a fraction of
the input text it considers most important, and performs
abstractive summarization on it. It is shown that the Top-
Sum model partly bridges the gap between text and opinion
summarization, although not on the relevance metric. This
could be attributed to the nature of the available datasets,
and the resulting topic modeling performance. To conclude,
although the TopSum model is not successful on all fronts,
it could be considered a viable starting points for research
into more useful opinion summarization models.

REFERENCES

[1] H. Iso, X. Wang, Y. Suhara, S. Angelidis, and W.-C. Tan,
ªConvex aggregation for opinion summarization,º arXiv preprint
arXiv:2104.01371, 2021.

[2] J. Zhang, Y. Zhao, M. Saleh, and P. Liu, ªPegasus: Pre-training
with extracted gap-sentences for abstractive summarization,º in
International Conference on Machine Learning. PMLR, 2020, pp.
11 328±11 339.

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, è. Kaiser, and I. Polosukhin, ªAttention is all you need,º
Advances in neural information processing systems, vol. 30, 2017.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ªBert: Pre-
training of deep bidirectional transformers for language under-
standing,º arXiv preprint arXiv:1810.04805, 2018.

[5] S. Narayan, S. B. Cohen, and M. Lapata, ªDon’t give me the details,
just the summary! topic-aware convolutional neural networks for
extreme summarization,º ArXiv, vol. abs/1808.08745, 2018.

[6] A. Cohan, F. Dernoncourt, D. S. Kim, T. Bui, S. Kim, W. Chang,
and N. Goharian, ªA discourse-aware attention model for
abstractive summarization of long documents,º in Proceedings of
the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume
2 (Short Papers). New Orleans, Louisiana: Association for
Computational Linguistics, Jun. 2018, pp. 615±621. [Online].
Available: https://aclanthology.org/N18-2097

[7] R. He and J. McAuley, ªUps and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering,º
in proceedings of the 25th international conference on world wide web,
2016, pp. 507±517.

[8] Y. Cui, ªAn evaluation of yelp dataset,º 2015. [Online]. Available:
https://arxiv.org/abs/1512.06915

[9] E. Chu and P. Liu, ªMeansum: a neural model for unsupervised
multi-document abstractive summarization,º in International Con-
ference on Machine Learning. PMLR, 2019, pp. 1223±1232.

[10] J. Liu, Y. Cao, C.-Y. Lin, Y. Huang, and M. Zhou, ªLow-quality
product review detection in opinion summarization,º in Pro-
ceedings of the 2007 joint conference on empirical methods in natu-
ral language processing and computational natural language learning
(EMNLP-CoNLL), 2007, pp. 334±342.

[11] A. See, P. J. Liu, and C. D. Manning, ªGet to the
point: Summarization with pointer-generator networks,º in
Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Vancouver,
Canada: Association for Computational Linguistics, Jul. 2017,
pp. 1073±1083. [Online]. Available: https://www.aclweb.org/
anthology/P17-1099

[12] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., ªTransformers:
State-of-the-art natural language processing,º in Proceedings of the
2020 conference on empirical methods in natural language processing:
system demonstrations, 2020, pp. 38±45.

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ªLearning
representations by back-propagating errors,º nature, vol. 323, no.
6088, pp. 533±536, 1986.

[14] S. Hochreiter and J. Schmidhuber, ªLong short-term memory,º
Neural computation, vol. 9, no. 8, pp. 1735±1780, 1997.

[15] Wikipedia, ªArtificial neural network Ð Wikipedia, the
free encyclopedia,º http://en.wikipedia.org/w/index.php?title=
Artificial%20neural%20network&oldid=1109022706, 2022, [On-
line; accessed 09-September-2022].

[16] A. Brahme, Comprehensive biomedical physics. Newnes, 2014.

[17] P. J. Bickel and K. A. Doksum, Mathematical statistics: basic ideas
and selected topics, volumes I-II package. Chapman and Hall/CRC,
2015.

[18] Wikipedia, ªRecurrent neural network Ð Wikipedia, the
free encyclopedia,º http://en.wikipedia.org/w/index.php?title=
Recurrent%20neural%20network&oldid=1109264340, 2022, [On-
line; accessed 09-September-2022].

[19] R. Pascanu, T. Mikolov, and Y. Bengio, ªOn the difficulty of
training recurrent neural networks,º in International conference on
machine learning. PMLR, 2013, pp. 1310±1318.

[20] M. O. Topal, A. Bas, and I. van Heerden, ªExploring transform-
ers in natural language generation: Gpt, bert, and xlnet,º arXiv
preprint arXiv:2102.08036, 2021.

[21] E. Filatova and V. Hatzivassiloglou, ªEvent-based extractive sum-
marization,º 2004.

[22] ªText summarization,º https://devopedia.org/
text-summarization, Feb. 2020, accessed: 2022-9-12.

[23] M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B.
Gutierrez, and K. Kochut, ªText summarization techniques: a brief
survey,º arXiv preprint arXiv:1707.02268, 2017.

[24] E. Sharma, C. Li, and L. Wang, ªBIGPATENT: A large-
scale dataset for abstractive and coherent summarization,º
CoRR, vol. abs/1906.03741, 2019. [Online]. Available: http:
//arxiv.org/abs/1906.03741

[25] A. Kornilova and V. Eidelman, ªBillsum: A corpus for automatic
summarization of us legislation,º 2019.

[26] C.-Y. Lin, ªRouge: A package for automatic evaluation of sum-
maries,º in Text summarization branches out, 2004, pp. 74±81.

[27] H. D. Kim, K. Ganesan, P. Sondhi, and C. Zhai, ªComprehensive
review of opinion summarization,º 2011.

[28] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ªEfficient esti-
mation of word representations in vector space,º arXiv preprint
arXiv:1301.3781, 2013.

[29] J. Pennington, R. Socher, and C. D. Manning, ªGlove: Global vec-
tors for word representation,º in Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), 2014,
pp. 1532±1543.

[30] D. M. Blei, A. Y. Ng, and M. I. Jordan, ªLatent dirichlet allocation,º
Journal of machine Learning research, vol. 3, no. Jan, pp. 993±1022,
2003.

[31] M. Grootendorst, ªBertopic: Neural topic modeling with a class-
based tf-idf procedure,º arXiv preprint arXiv:2203.05794, 2022.

[32] N. Reimers and I. Gurevych, ªSentence-bert: Sentence embeddings
using siamese bert-networks,º in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019. [Online]. Available:
https://arxiv.org/abs/1908.10084

[33] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, ªMinilm:
Deep self-attention distillation for task-agnostic compression of
pre-trained transformers,º 2020.

[34] L. McInnes, J. Healy, and J. Melville, ªUmap: Uniform manifold
approximation and projection for dimension reduction,º 2018.
[Online]. Available: https://arxiv.org/abs/1802.03426

[35] L. McInnes, J. Healy, and S. Astels, ªhdbscan: Hierarchical density
based clustering,º The Journal of Open Source Software, vol. 2,
no. 11, mar 2017. [Online]. Available: https://doi.org/10.21105%
2Fjoss.00205

[36] C. Hutto and E. Gilbert, ªVader: A parsimonious rule-based model
for sentiment analysis of social media text,º in Proceedings of the
international AAAI conference on web and social media, vol. 8, no. 1,
2014, pp. 216±225.

[37] Y. Suhara, X. Wang, S. Angelidis, and W.-C. Tan, ªOpiniondigest:
A simple framework for opinion summarization,º arXiv preprint
arXiv:2005.01901, 2020.

[38] Z. Miao, Y. Li, X. Wang, and W.-C. Tan, ªSnippext: Semi-
supervised opinion mining with augmented data,º in Proceedings
of The Web Conference 2020, 2020, pp. 617±628.

[39] R. K. Amplayo, S. Angelidis, and M. Lapata, ªUnsupervised
opinion summarization with content planning,º in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 35, no. 14, 2021,
pp. 12 489±12 497.

[40] Z. Wu and C. L. Giles, ªMeasuring term informativeness in
context,º in Proceedings of the 2013 conference of the north american
chapter of the association for computational linguistics: human language
technologies, 2013, pp. 259±269.

[41] C. Horn, A. Zhila, A. Gelbukh, R. Kern, and E. Lex, ªUsing
factual density to measure informativeness of web documents,º in

https://aclanthology.org/N18-2097
https://arxiv.org/abs/1512.06915
https://www.aclweb.org/anthology/P17-1099
https://www.aclweb.org/anthology/P17-1099
http://en.wikipedia.org/w/index.php?title=Artificial%20neural%20network&oldid=1109022706
http://en.wikipedia.org/w/index.php?title=Artificial%20neural%20network&oldid=1109022706
http://en.wikipedia.org/w/index.php?title=Recurrent%20neural%20network&oldid=1109264340
http://en.wikipedia.org/w/index.php?title=Recurrent%20neural%20network&oldid=1109264340
https://devopedia.org/text-summarization
https://devopedia.org/text-summarization
http://arxiv.org/abs/1906.03741
http://arxiv.org/abs/1906.03741
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1802.03426
https://doi.org/10.21105%2Fjoss.00205
https://doi.org/10.21105%2Fjoss.00205

20

Proceedings of the 19th Nordic Conference of Computational Linguistics
(NODALIDA 2013), 2013, pp. 227±238.

[42] C. E. Shannon, ªA mathematical theory of communication,º The
Bell system technical journal, vol. 27, no. 3, pp. 379±423, 1948.

[43] L. Antiqueira, M. d. G. V. Nunes, O. Oliveira Jr, and L. d. F. Costa,
ªStrong correlations between text quality and complex networks
features,º Physica A: Statistical Mechanics and its Applications, vol.
373, pp. 811±820, 2007.

[44] M. Mesgar and M. Strube, ªA neural local coherence model for
text quality assessment,º in Proceedings of the 2018 conference on
empirical methods in natural language processing, 2018, pp. 4328±4339.

[45] R. Řehůřek and P. Sojka, ªSoftware Framework for Topic Mod-
elling with Large Corpora,º in Proceedings of the LREC 2010 Work-
shop on New Challenges for NLP Frameworks. Valletta, Malta: ELRA,
May 2010, pp. 45±50, http://is.muni.cz/publication/884893/en.

[46] M. Davies, ªCorpus of Contemporary American English
(COCA),º 2015. [Online]. Available: https://doi.org/10.7910/
DVN/AMUDUW

[47] T. Schopf, S. Klimek, and F. Matthes, ªPatternRank: Leveraging
pretrained language models and part of speech for unsupervised
keyphrase extraction,º in Proceedings of the 14th International
Joint Conference on Knowledge Discovery, Knowledge Engineering and
Knowledge Management. SCITEPRESS - Science and Technology
Publications, 2022. [Online]. Available: https://doi.org/10.5220%
2F0011546600003335

[48] R. Meng, S. Zhao, S. Han, D. He, P. Brusilovsky, and Y. Chi, ªDeep
keyphrase generation,º arXiv preprint arXiv:1704.06879, 2017.

[49] K. Bennani-Smires, C. Musat, A. Hossmann, M. Baeriswyl, and
M. Jaggi, ªSimple unsupervised keyphrase extraction using sen-
tence embeddings,º arXiv preprint arXiv:1801.04470, 2018.

[50] R. K. Amplayo and M. Lapata, ªUnsupervised opinion summa-
rization with noising and denoising,º 01 2020, pp. 1934±1945.

[51] R. K. Amplayo, S. Angelidis, and M. Lapata, ªAspect-controllable
opinion summarization,º arXiv preprint arXiv:2109.03171, 2021.

[52] A. Bražinskas, M. Lapata, and I. Titov, ªUnsupervised opin-
ion summarization as copycat-review generation,º arXiv preprint
arXiv:1911.02247, 2019.

[53] ÐÐ, ªFew-shot learning for opinion summarization,º arXiv
preprint arXiv:2004.14884, 2020.

[54] ªFind survey participants today.º [Online]. Available: https:
//surveyswap.io/students

APPENDIX A

EXAMPLE SUMMARIES

A.1 Amazon

Fig. 11: Amazon Product B00005I9S3 Summaries

A.2 Yelp

Fig. 12: Yelp Business ’Benefit Brow Bar at Ulta’ Summaries

http://is.muni.cz/publication/884893/en
https://doi.org/10.7910/DVN/AMUDUW
https://doi.org/10.7910/DVN/AMUDUW
https://doi.org/10.5220%2F0011546600003335
https://doi.org/10.5220%2F0011546600003335
https://surveyswap.io/students
https://surveyswap.io/students

21

APPENDIX B

EXAMPLE SURVEY QUESTION

APC UPS Battery Replacement

Review 1: ’Like others who reviewed this item. I purchased
this item for a client thinking I was getting a Genuine APC
Replacement Cartridge but received a Generic Version of it
instead. I was halfway expecting this anyway but with the
description and picture indicating APC product so I kept my
fingers crossed. Unit arrived in good condition although the
shipping was a little slow. I was able to hot-swap the unit
and only time will tell if the unit will hold up. Seems to be
working ok for now.. I think there should be a indication
on the product description that this is NOT a genuine APC
Product.’

Review 2: ’good deeal’
Review 3: ’Shipped in a timely fashion, arrived in great

shape and works. What more could I ask for? It was a great
purchase experience, love it!’

Review 4: ’Easiest UPS fix I have ever experienced.’
Review 5: "As other reviews have said, this is not an APC

manufactured product. Also, I had a power failure today
and my UPS shut down immediately. When the power
returned, the "Replace Battery" light was on. That means
the battery lasted 2 1/2 years. That’s less than the claimed
3-5 years. I’ve only had about 2 other power outages during
that time so that’s poor performance."

Review 6: "We have 11 of the APC 1500’s that use
the RBC-7 battery pack and when buying from Amazon
we always get the same good and reliable service as if
buying directly from APC at a more expensive cost. I highly
recommend Amazon.Com for this purchase."

Review 7: "Fast delivery (two days to Bay Area) This
rehabbed by APC 1500, which is now my son’s"

Review 8: ’Vendor sent off-brand product instead of
branded product shown - but did make full refund after I
complained and made product return easy.’

Summary 1: "You have to use the battery that you would
get at the same time. It’s good for the price and the Amazon
service from Amazon is very good as well.I highly recom-
mend buying from this seller."

Summary 2: ’I purchased this item for a client thinking
I was getting a Genuine APC Replacement Cartridge but
received a Generic Version of it instead. I was halfway
expecting this anyway but with the description and picture
indicating APC product so I kept my fingers crossed. Unit
arrived in good condition although the shipping was a little
slow. I was able to hot-swap the unit and only time will tell
if the unit will hold up. Seems to be working ok for now..’

Summary 3: "I highly recommend Amazon Easiest UPS
fix I have ever experienced Fast delivery (two days to Bay
Area) This rehabbed by APC 1500, which is now my son’s
I highly recommend Amazon Easiest UPS fix I have ever
experienced Fast delivery (two days to Bay Area)"

Which order would you choose when ranking the sum-

maries from most to least informative?

• Summary 1, Summary 2, Summary 3
• Summary 1, Summary 3, Summary 2

• Summary 2, Summary 1, Summary 3
• Summary 2, Summary 3, Summary 1
• Summary 3, Summary 1, Summary 2
• Summary 3, Summary 2, Summary 1

	Introduction
	Brief Overview
	Problem Description
	Research Questions

	Scientific Background
	Problem Background
	Recurrent Neural Networks
	Transformers
	Text Summarization
	Opinion Summarization

	Technologies
	Word Vectors
	Topic Modeling
	Sentiment Analysis

	Related Work
	Text Summarization
	Opinion Summarization
	Text Quality

	Methodology
	Metrics
	Information Amount
	Relevance
	Word Frequency

	Model Proposal
	Sentence Extraction and Topic Discovery
	Ranking per Topic
	Text Summarization

	Experimental Setup
	Datasets
	Baseline Models
	Human Evaluation

	Results
	Intermediate Experiments
	Sentiment Deviation per Sentence
	Information in Most Common Words

	Performance of Model
	Survey Results

	Discussion
	Hypothesis
	Research Questions
	Limitations
	Future Work

	Conclusion
	References
	Appendix A: Example Summaries
	Amazon
	Yelp

	Appendix B: Example Survey Question

