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Abstract

This document investigates immersive boundary conditions used in immersive wave propa-
gation, a method where one creates a virtual representation of a measured acoustic wave
to remove, in real-time, undesired interactions with active boundaries. Desired interactions
with virtual boundaries can be added, also in real-time. The ability to remove reflections
caused by rigid boundaries using analytical physics-based extrapolation equations is in-
vestigated. In addition, the applicability of immersive wave propagation to low frequency
vector-sensor calibration in enclosed spaces is investigated, where analytical physics-based
immersive wave propagation is used for the removal of undesired reflections caused by
the boundaries of the limited calibration environment. Derivations are given for one-, two-
and three-dimensional problems. A one-dimensional numerical simulation shows that an
analytical physics-based implementation exists that significantly reduces reflections during
continuous operation. Physical experiments on a one-dimensional system require accurate
filters to compensate transducer dynamics. A two-dimensional numerical simulation shows
that there are differences between the analytical extrapolated velocity and the actual ve-
locity. However, if velocity extrapolation is successful, relatively few monopole sources are
required to significantly reduce the reflected waves at low frequencies. A three-dimensional
simulation shows that for immersive boundary conditions in idealized circumstances the an-
alytical physics base extrapolation equations are able to successfully extrapolate the particle
velocity during continuous operation.
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Chapter 1

Introduction

An acoustic vector sensor is a device capable of measuring vector components of a sound
field, such as sound particle velocity or acoustic intensity [1]. Sound intensity measurements
allow for the measurement of sound generated by devices outside of carefully controlled test
environments, as indicated in ISO 3740 [2] guidelines. Current standards regarding the use
of intensity measurements, e.g. ISO 9614-1 [3], stipulate that the standard is only valid for
a limited frequency range above 50 Hertz. This leaves frequencies below 50 Hertz out of
scope for standardised measurements. The exclusion of frequencies outside this frequency
range is attributed to limitations of intensity measurement equipment [3], i.e. acoustic vector
sensors and their instrumentation.

For an acoustic vector-sensor to correctly measure aspects of a wave field, such as the
acoustic intensity, it is important that such a sensor is properly calibrated. Small discrepan-
cies can lead to significant errors, especially at low frequencies in vector sensors using a
microphone array [4]. Calibration at low frequencies in enclosed spaces is challenging due
to the presence of undesired sound reflection, or echo, that interferes with the calibration
process. A sufficiently large calibration environment where the reflection travel time exceeds
the duration of the calibration process may not be available. Alternatively one could perform
the calibration inside an anechoic chamber [5]. The lower cutoff frequency of an anechoic
chamber, the lower frequency limit above which the anechoic chamber shows anechoic be-
havior, may not be sufficient. Other passive methods, such as those published in [6], [7],
tend to only work in a limited frequency range. A solution to the low frequency broadband
reflection problem may be found in the application of active control systems.

Immersive wave propagation is an active control method that removes undesired reflections
caused by reflective boundaries in real time using immersive boundary conditions (IBCs)
and wavefield extrapolation functions. It also allows for the introduction of reflections caused
by virtual objects inside a virtual environment in real time. It is the ability of immersive wave
propagation to remove undesired reflections that is of interest in regards to creating an active
anechoic environment for vector sensor calibration.
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1.1 Literature review

The calibration can be performed using a number of methods. A relatively straightforward
method is to perform a series of measurements with the vector sensor and compare the
results to those obtained with a separate calibrated vector sensor [1]. Any inaccuracies of
the already calibrated sensor will negatively affect the accuracy of the calibration of the other
sensor [8].

Calibration can also be performed using free field reciprocity, however this has a lower limit
of 800 Hertz [9]. Infrasound calibration can be performed in the 0.1 ´ 250 Hertz range using
specialised techniques and equipment [9], [10]. Pressure reciprocity calibration is a calibra-
tion method that is widely used in commercial devices [9], such as the type 4297 calibrator
by B&K and the GRAS 51AC calibration kit, that performs well at low frequencies, however
these devices are only compatible with specific types of vector sensors and not compatible
with vector sensors with multiple sensing directions.

A alternative approach that is compatible with a wider range of vector sensors is to per-
form the calibration in an anechoic chamber as demonstrated by Kotus et. al. [5], which is
described further in Chapter 2. This does require the anechoic chamber to be anechoic at
the frequencies of interest, which is can be problematic when passive methods are used.

The development of active control methods to make a physical chamber anechoic are a rel-
atively recent development in part due to the vast amount of computational power required,
as illustrated by Becker et. al. [11]. One such method is immersive wave propagation by
means of immersive boundary conditions. Immersive boundary conditions (IBCs) are exact
boundary conditions that allow one to immerse a bounded domain, either physical or nu-
merical, into a larger virtual domain. These boundary conditions were first proposed by van
Manen et al. [12] and are based on the exact boundary conditions for unbounded scattering
problems proposed by Ting and Miksis [13]. A physical implementation of these boundary
conditions as a means to extend a physical experimental environment beyond its physical
bounds was proposed by Vasmel et al. [14] as well as its name [15].

At the time of writing a number of articles have been published investigating and utilising
these boundary conditions in both numerical and physical environments. Topics treated in-
clude: active reflection cancellation and immersion in a virtual domain for one-dimensional
and two-dimensional physical waveguides [11], [16], broadband acoustic holography and
cloaking [17], [18], modelling of sub domains [19] and the effects of boundary transducer
directivity [20]. These publications show that the boundary conditions are versatile and can
be implemented in real time. One may note that all these papers implement the immersive
boundary conditions by using impulse responses obtained from either numerical simulations
or experiments for the entire duration of the experiment. There is no research regarding a
physics-based analytical implementation of immersive boundary conditions.
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1.2 Motivation

This research aims to apply immersive boundary conditions to remove reflections in a con-
fined calibration environment. The goal is to investigate whether the use of immersive wave
propagation can be extended to the practical case of vector sensor calibration. To further
current understanding of the physics and calculations involved in IBCs, as well as investi-
gate options regarding implementation methods, it is of interest to develop physics based
analytical extrapolation equations.

The application to low frequency vector calibration necessitates the evaluation of low fre-
quency performance of the implementation of immersive boundary conditions in the sub
kiloHertz frequency range. Currently physical experiments in air have been performed at the
one to five kiloHertz range [11].

1.3 Framework

The research is carried out at the University of Twente for the Applied Mechanics and Data
Analysis research group at the faculty of Engineering Technology as a Master thesis.

1.4 Research objectives

The objective of this research is to develop an physics-based implementation of immersive
boundary conditions and asses whether it can adequately reduce reflections for use in low
frequency vector sensor calibration applications. This thesis focuses on the development of
a physics-based implementation with the aim to expand the knowledge base at the University
of Twente and obtain a less computationally expensive implementation. In order to reduce
computational costs further in two-dimensional setups, the performance dependency on
transducer amount at low frequencies is investigated.

1.5 Report organization

The remainder of this report is organized as follows. Chapter 2 briefly treats vector sensors
and their calibration. In Chapter 3 the assumptions and fundamental wavefield equations
are presented, theory of immersive boundary conditions is presented and its general imple-
mentation is presented. The implementation and evaluation in one dimensional waveguides,
two dimensional waveguides and three dimensional space are explored in Chapters 4 to 6
respectively. Finally Chapter 7 presents the overall conclusion and recommendations.
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Chapter 2

Vector sensor calibration

2.1 Vector sensor

Before discussing how an acoustic vector sensor may be calibrated it is important to first
establish what is meant by an acoustic vector sensor. An acoustic vector sensor in the most
general sense is a passive device that measures a vector component of a sound field such
as sound particle displacement, velocity or acceleration [1]. The term is also used to refer
to a device that specifically measures the sound intensity I through the measurement of the
acoustic pressure p and acoustic particle velocity v [1], [5]. Going forward the term acoustic
vector-sensor refers to an acoustic intensity measurement device.

The sound intensity is defined as the time average of the instantaneous acoustic intensity,
i.e.

Ipx, tq “
1

tavg

ż tavg

0
ipx, tq dt, (2.1)

where tavg is the averaging time and ipx, tq is the instantaneous acoustic intensity. The
instantaneous acoustic intensity is defined as the acoustic energy flow, or power, through an
unit area and can be derived given the mechanical power P “ f ¨ v [21], [22], i.e.

i ¨ δS “f ¨ v,

ipx, tq “ppx, tqvpx, tq (2.2)

where δS is the increment of an area, f is the force exerted on a fluid particle, p is the acous-
tic pressure and v is the acoustic particle velocity.

Acoustic vector sensors can be categorized by the method they use to obtain the acoustic
pressure ppx, tq and particle velocity vpx, tq required to evaluate the intensity. The first cate-
gory of acoustic vector sensor uses a p-v measurement principle, where two different types
of transducers are used to directly measure both ppx, tq and vpx, tq at the measurement lo-
cation. The measurement of ppx, tq can be done with a microphone. The measurement of
vpx, tq can be done using a variety of methods. In air a Microflown sensors [4], [23], ribbon
microphones or Doppler anemometry [1] can be used. In water one can utilize a neutrally
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buoyant sphere containing a velocity sensitive sensor, apply laser interferometry combined
with an acoustically compliant reflective membrane or apply the methods used in air [1].

The subject of this report is the more standard and established second category, which
utilizes the p-p measurement principle. This measurement principle employs two pressure
microphones, located at x1 and x2 respectively, to evaluate the intensity in the i direction
at location x, as shown in fig. 2.1. The pressure at position x can be estimated by linear
interpolation of the recorded pressures [22], i.e.

ppx, tq «
ppx1, tq ` ppx2, tq

2
, (2.3)

or it can be obtained directly by introducing a third microphone at x. In order to obtain the
velocity at x, the equation of motion for an acoustic fluid particle is required. The derivation
of this equation is presented in Chapter 3 and results in

ρ0pxq
Bvpx, tq

Bt
` ∇ppx, tq “ 0.

By rearranging the equation of motion and applying a finite difference approximation of the
spatial derivative in the i-direction one may obtain the velocity at x in the i-direction [4], [24],
[25] using

vipx
rec, tq « ´

1

ρd

ż t

0
rppxrec

2 , tq ´ ppxrec
1 , tqs dt. (2.4)

Here the separation distance d, the distance between xrec
1 and xrec

2 in the i-direction, should
be small compared to the signal wavelength for these equations to hold. This places an
upper limit on the frequency at which the intensity can be accurately evaluated. The upper
frequency limit used by Kotus et al. [5] for their vector sensor can be approximated by

fmax “

1
4c

d
, (2.5)

Fahy [22] notes that for intensity measurements of plane waves one must ensure that
f d ă 30 in order to obtain a relative error of less than 5%.

Using the p-p measurement method does require careful calibration as a phase difference
between the two microphones results in a bias error in the intensity I [4]:

Iestimate “ Itruep1 ´
φerror

kd

prms
2

Itrue
q, (2.6)

where Itrue is the actual intensity, φerror is the phase error and prms is the root mean square
pressure. Equation (2.6) shows that the error is inversely proportional to the wave number,
and therefore inversely proportional to the frequency. This illustrates the importance of low
frequency calibration when evaluating the sound intensity I at low frequencies.
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ppx1, tq ppx2, tq

ppx, tq

vrpx, tq

r

1
2d

1
2d

d

Figure 2.1: Schematic of an acoustic vector sensor using the p-p measurement principle to
measure the acoustic intensity ipx1, tq in the i direction.

2.2 Calibration

As mentiond in Chapter 1, calibration can be performed using variaty of methods. Here the
method used by Kotus et. al. [5], i.e. calibration in an anechoic chamber, is presented as it
may benefit from the applition of active reflection removal. The method used by Kotus et. al.
is described here for completeness.

First the pressure microphones should be checked for proper operation by means of stan-
dard single microphone calibration procedures. Once this has been done, a two step calibra-
tion procedure can be performed. The first calibration step of the vector sensor is performed
using the configuration shown in fig. 2.2. The microphones are placed perpendicular to the
propagation direction of the plane wave generated at the source. The goal of this step is
to obtain discrete time calibration filters qx1pnq and qx2pnq that ensure the amplitude of both
recorded signals is identical, i.e.

hx1pnqqx1pnq “ hx2pnqqx2pnq, (2.7)

where hpnq is the impulse response of a microphone. The impulse responses can be ob-
tained by generating a linear swept sine signal and applying the cross-correlation tech-
nique [26]. The impulse responses can be converted to their spectral forms Hx1pfq and
Hx2pfq and the difference Expfq can be calculated using

Expfq “ log10|Hx2pfq| ´ log10|Hx1pfq| (2.8)

In the absence of a reference microphone, the error has to be distributed over both micro-
phones [5]. The correction functions in the frequency domain can then be calculated using

Qx1pfq “ 10Expfq{2 Qx2pfq “ 10Expfq{2 (2.9)

The final correction functions qx1pnq and qx2pnq are obtained by transforming these spectral
filters to the time domain.
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ppx1, tq

ppx2, tq

wave propagation direction

Figure 2.2: Schematic of the first step for calibrating an acoustic vector sensor using the p-p
measurement principle.

In the second calibration step calibration filters are obtained that aim to remove any phase
difference between the estimated velocity and estimated pressure such that the following
condition holds:

pptq

v1px, tq
“

1
2 ppx1ptq ` px2ptqq

px1ptq ´ px2ptq
“ C, (2.10)

where C is a constant. For calibration purposes C can be set to C “ 0.5.

In order to perform this calibrations step, the vector sensor must be oriented in the direc-
tion in which it would be used to obtain the sound intensity as shown in fig. 2.3. In order to
obtain the phase calibration filter Qux, the impulse responses hpptq and huxptq are obtained
from the earlier obtained amplitude corrected impulse responses

hpptq “0.5 phx2ptq ` hx1ptqq , (2.11)

huxptq “ phx2ptq ´ hx1ptqq . (2.12)

Signals hpptq and huxptq are aligned such that for both impulse responses hp0q “ maxphpnqq.
The phase correction is applied to huxptq such that

arg pHuxpfqQuxpfqq “ arg pHppfqq , (2.13)

where |Quxpfq| “ 1, arg pQuxpfqq “ arg pHppfq ´ Huxpfqq and arg pHpfqq is the unwrapped
phase of Hpfq. The phase correction function quxpnq is obtained by transforming Quxpfq to
the time domain.

ppx1, tq ppx2, tq

wave propagation direction

Figure 2.3: Schematic of the second step for calibrating an acoustic vector sensor using the
p-p measurement principle.
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With the calibration filters applied, the instantaneous intensity can be obtained by imple-
menting the schematic shown in fig. 2.4. The calibration process can be repeated for two
additional orthogonal microphone pairs in order to calibrate a three dimensional acoustic
vector sensor. When these sensors are placed on the center of the faces of a cube, one
may obtain the pressure ppx, tq at the center of the cube by averaging all six microphones [5],
which is equivalent to averaging the pressure at ppx, tq obtained from each pair of pressure
microphones.

px1

px2

qx1

qx2

qvx
ř

average

X ix

-

+

Figure 2.4: Schematic of the acoustic intensity calculation with filters applied.

This calibration procedure assumes the following. Firstly it assumes that the relation pptq
vxptq “

constant actually yields a constant. When the sound source generates a spherical wave,
such as when an omnidirectionally radiating sound source is used inside an anechoic cham-
ber, the impedance experienced by the generated wave follows the frequency domain rela-
tion

Z0psq “ ρ0c0
rs

rs ` c0
. (2.14)

The derivation of this equation is presented in appendix A.3, and shows that this impedance
does not equal a constant value for spherical waves. One may consider performing the cal-
ibration in a one dimensional waveguide. This would ensure the presence of plane waves,
which do follow the pptq

vxptq “ constant relation.

The second assumption is that no reflections are recorded. This is done by performing
the measurements inside an anechoic chamber [5], however this assumption may be erro-
neous for frequencies below the lower cutoff frequency of the anechoic chamber. A one
dimensional waveguide of finite length generates reflections due to the termination of the
tube, either a rigid boundary in case of a closed waveguide or a pressure release bound-
ary at low frequencies in case of an open tube [21]. In case of a closed tube this may
be mitigated by applying passive acoustic dampening similar to an anechoic chamber. Al-
ternatively these reflections may be cancelled by means of active control using immersive
boundary conditions.

9



10



Chapter 3

Immersive Boundary Conditions

As stated in Chapter 1 the immersive boundary conditions (IBCs) are exact boundary con-
ditions that can be applied to a finite truncated domain in order to immerse said domain into
a different virtual domain. In this chapter first the general assumptions are stated and the
linearized wavefield equations are derived. Next the immersive boundary conditions are de-
rived in a general sense. Finally the required wavefield extrapolation is treated together with
a discretized implementation. Specifics regarding the one dimensional, two dimensional and
three dimensional implementation are treated in Chapters 4 to 6 respectively.

3.1 Wavefield equations

Before starting with the derivation of the wavefield equations and boundary conditions the
following assumptions are made:

1. The control volume that is used for the equations is fixed in space, i.e. an Eulerian
coordinate system is used.

2. The fluid is assumed to be inviscid, or nonviscous.

3. Body forces such as gravity are neglected.

4. The flow of fluid is assumed to be lossless.

With these assumptions in place, the starting point for this derivation are the continuity equa-
tion, based on the conservation of mass on a finite volume element, and the momentum
equation, based on conservation of momentum on a finite volume element. This deriva-
tion follows the approach of [21] and is included for completeness. For an inhomogeneous
acoustic medium the continuity equation and momentum equation are respectively [21]:

Dρpx, tq

Dt
` ρpx, tq∇ ¨ vpx, tq “0, (3.1)

ρpx, tq
Dvpx, tq

Dt
` ∇P px, tq “0. (3.2)
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Here the D{Dt operator is the material derivative, which corresponds to:

Dq

Dt
“

Bq

Bt
` v ¨ ∇q. (3.3)

In addition to these equations, an equation of state relating thermodynamic properties is
also required. As the losses are assumed to be negligible the isentropic equation of state
for an arbitrary fluid can be used [21], which for inhomogenious fluids can be written as

ppx, tq “ c0
2pxqδρpx, tq

«

1 `
B

2!A

δρpx, tq

ρ0pxq
`

C

3!A

ˆ

δρpx, tq

ρ0pxq

˙2

` . . .

ff

. (3.4)

Here A, B and C are coefficients that can be determined from experiments. For most
acoustic signals the pressure variations are small compared to the static pressure of the
medium. As this is also the case here eqs. (3.1), (3.2) and (3.4), can be simplified using the
small signal approximation [21], i.e.:

|δρ| ! |ρ0| |p| ! |ρ0c0
2| |v| ! |c0|. (3.5)

Applying the small signal approximation of eq. (3.5) to eqs. (3.1) and (3.2) reduces the
material derivative to a partial derivative with respect to time, i.e.:

Bδρpx, tq

Bt
` ρ0pxq∇ ¨ vpx, tq “0, (3.6)

ρ0pxq
Bvpx, tq

Bt
` ∇ppx, tq “0, (3.7)

where eq. (3.7) is the local equation of motion. Applying eq. (3.5) to eq. (3.4) yields

p “ c0
2δρ. (3.8)

Replacing the excess density δρ in eq. (3.6) using eq. (3.8) and rearranging terms yields the
deformation equation

1

ρ0pxqc02pxq

Bp

Bt
` ∇ ¨ vpx, tq “ 0, (3.9)

where 1
ρ0pxqc02pxq

can be replaced by the compressibility of the fluid

κ0pxq “
1

ρ0pxqc02pxq
. (3.10)

The standard second order linearized acoustic equation is obtained by applying the partial
derivative with respect to time to eq. (3.9) and substituting in eq. (3.7):

B2ppx, tq

Bt2
´ c0

2pxq∇2ppx, tq “ 0. (3.11)

Adding sources to eqs. (3.7) and (3.9) results in the acoustic wave equations that form the
starting point in the works of Vasmel [15] and Broggini et al. [19]:

κ0pxq
Bppx, tq

Bt
` ∇ ¨ vpx, tq “qpx, tq, (3.12)

ρ0pxq
Bvpx, tq

Bt
` ∇ppx, tq “fpx, tq. (3.13)
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Alternatively one can obtain eqs. (3.12) and (3.13) by starting with the equation of motion and
the deformation equation, including source terms, and applying the constitutive relations and
using a low-velocity approximation of the result, as outlined by Fokkema and van den Berg
[27]. The low-velocity approximation used is analogous to the small-signal approximation
used here and both methods yield equations that allow for inhomogeneous fluids.

3.2 Boundary conditions

Now that the equations governing the pressure and particle velocity wavefields have been
established the actual boundary conditions can be derived. This largely follows the approach
of Vasmel [15] and Broggini et al. [19] and is included for completeness and clarity. Suppose
there is a configuration as shown in figure 3.1, where Vlocal is the domain enclosed by Semt

and Vexternal is the complement of Vlocal.

Figure 3.1: Domains for derivation of immersive boundary conditions.

The wavefield inside a domain V can be described using Rayleigh’s reciprocity theorem of
the convolution type [28]. When this version of Rayleigh’s reciprocity theorem is applied to
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the domain Vlocal shown in fig. 3.1, it relates two acoustic states as follows [15], [27]:
¿

Semt

tpApx, tq ˚ vi,Bpx, tq ´ vi,Apx, tq ˚ pBpx, tqunidS “

B

Bt

ż

Vlocal

trκApxq ´ κBpxqsrpApx, tq ˚ pBpx, tqs ´ rρApxq ´ ρBpxqsrvi,Apx, tq ˚ vi,Bpx, tqsu dV

`

ż

Vlocal

tpApx, tq ˚ qBpx, tq ´ vi,Apx, tq ˚ fi,Bpx, tq ´ qApx, tq ˚ pBpx, tq ` fi,A ˚ vi,Bpx, tqu dV.

(3.14)

Here the ˚ denotes temporal convolution and the subscripts A and B denote which acoustic
state the wavefield and medium parameters belong to.

At this point one can define three states: A, A and B. State A is an acoustic state where
a source distribution described by tq, 0upx, tq generates a wavefield described by tp, viupxq.
The medium parameters are described by tρ, κupx, tq. No boundary conditions are applied
meaning that the waves freely radiate through the boundary Semt and no reflections occur
due to Semt. This would be the desired state.

State A is the same as state A however, and without loss of generality, Neumann boundary
conditions are assumed on the boundary Semt, i.e. the velocity normal to Semt is zero or
vi|Semtni “ 0. This corresponds to the situation where there is a rigid reflecting boundary at
Semt such as a perfectly rigid wall, floor or ceiling.

Finally state B is an auxiliary state. This auxiliary state can be chosen such that when it
is applied to eq. (3.14) together with either state A or state A, one obtains a relation for the
pressure ppx, tq or ppx, tq respectively. This is the case if the source distribution is chosen
to be a point source of volume injection rate described by qBptqδpx ´ xRq, where δ is the
spatial Dirac distribution. The wavefield is described by the pressure and velocity radiating
from that point source, i.e. tpq,vq

i upx,xR, tq and the medium parameters are the same as
those of states A and A.

When state B is converted to the frequency domain one can apply the following linear rela-
tion to relate pq and vq

i to qBpsq:

p̂qpx,xR, sq “Ĝp,qpx,xR, sqqBpsq, (3.15)

v̂q
i px,xR, sq “Ĝv,q

i px,xR, sqqBpsq. (3.16)

Ĝp,q and Ĝv,q
i are the frequency domain pressure and velocity response respectively due

to an impulse point source of volume injection rate at the source location xR. By replacing
the wavefield with eqs. (3.15) and (3.16) one can omit qpsq from the source description
as this is already included in the Green’s states. The wavefield of state B becomes by
tĜp,q, Ĝv,q

i upx,xR, sq and the source distribution becomes δpx´xRq. The boundary condition
of state A is also applied, although for state B this would be expressed as Ĝv,q

i |Semtni “ 0.
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Converting everything back to the time domain yields the state time domain state B shown
in table 3.1, shown together with states A and A.

State A A B

Wavefield tp, viupx, tq tp, viupx, tq tGp,q, Gv,q
i upx,xR, tq

Medium parameters tρ, κupxq tρ, κupxq tρ, κupxq

Source functions tq, 0upx, tq tq, 0upx, tq tδpx ´ xRq, 0u

BC’s on Semt none vi|Semtni “ 0 Gv,q
i |Semtni “ 0

Table 3.1: Parameters of states A, A and B. State A corresponds to a wavefield propagat-
ing unhindered through Semt and states A and B correspond to states in which
the wavefield only propagates in the truncated domain with Neumann boundary
conditions on Semt.

Now that the three states have been introduced, eq. (3.14) can be used. Substituting the
parameters of states A and B into eq. (3.14) yields

¿

Semt

␣

ppx, tq ˚ Gv,q
i px,xR, tq ´ vipx, tq ˚ Gp,qpx,xR, tq

(

nidS

“
B

Bt

ż

V
t0udV `

ż

V

␣

ppx, tq ˚ δpx ´ xRq ´ 0 ` qpx, tq ˚ Gp,qpx,xR, tq ´ 0
(

dV. (3.17)

Splitting the integrals and applying the BC’s of state B reduces eq. (3.17) to

´

¿

Semt

␣

vipx, tq ˚ Gp,qpx,xR, tq
(

nidS

“

ż

V

␣

ppx, tq ˚ δpx ´ xRq
(

dV `

ż

V

␣

qpx, tq ˚ Gp,qpx,xR, tq
(

dV. (3.18)

By rearranging terms, resolving the first volume integral and applying source-receiver reci-
procity, i.e.

Gp,qpx,xR, tq “ Gp,qpxR,x, tq, (3.19)

one can rewrite eq. (3.18) to obtain the following equation for the desired pressure field:

ppxR, tq “

ż

V
Gp,qpxR,x, tq ˚ qpx, tqdV ´

¿

Semt

Gp,qpxR,x, tq ˚ vipx, tqnidS for xR P V .

(3.20)

This process can be repeated by substituting state A instead of state A into eq. (3.14). Doing
so yields the following equation:

ppxR, tq “

ż

V
Gp,qpxR,x, tq ˚ qpx, tqdV for xR P V . (3.21)

Substituting eq. (3.21) into eq. (3.20) gives an expression for the desired wavefield pressure
in terms of the actual wavefield pressure and an additional term:

ppxR, tq “ppxR, tq ´

¿

Semt

Gp,qpxR,x, tq ˚ vipx, tqnidS for xR P V . (3.22)
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This additional term would be the pressure field that needs to be introduced to obtain the
desired pressure field and should be the pressure field generated by the immersive boundary
conditions, i.e.:

pIBCpxR, tq “ ´

¿

Semt

Gp,qpxR,x, tq ˚ vipx, tqnidS for xR P V . (3.23)

Note that this pressure field is the pressure impulse response inside domain V due to im-
pulse points sources of volume injection rate on the boundary Semt that are scaled with the
desired velocity vipx, tq at Semt.

3.3 Wavefield extrapolation

In order to implement these boundary conditions one must obtain the desired velocity vi on
Semt. This can be done by recording the incoming wavefield at the recording surface Srec,
shown in fig. 3.2, and extrapolating it to Semt.

Figure 3.2: Domains for the velocity extrapolation.

This extrapolation can be done using eq. (3.24) [15],

vipx
emt, τq “

ż τ

0

¿

Srec

!

Gv,q
i pxemt,x, τ ´ tqvmpx, tq

` Gv,f
i,mpxemt,x, τ ´ tqppx, tq

)

nmdSdt, (3.24)
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where nm is the outward normal of Srec and xemt is a point on Semt. The extrapolation
Green’s functions required here need to be of the virtual domain and can include the effects
of scatterers present in Vvirtual [15] [19]. In other words these Green’s functions allow one
to immerse domain Vlocal in domain Vvirtual, where domain Vvirtual can contain any number
of scattering objects. This is what makes these boundary conditions immersive.

One may note that Vvirtual overlaps Vlocal between Srec and Semt. This means that any
scatterers inside the physical domain Vlocal in this region must also be included in the ex-
trapolation Green’s functions, i.e. in the virtual domain Vvirtual.
For the actual implementation in discrete time simulations and digitally controlled hardware
eq. (3.24) can be discretized in time according to [11] as

v̂ipx
emt, l, kq “

NT ´1
ÿ

l“k

¿

Srec

!

Ĝv,qpxemt,x, l ´ kqv̂mpx, kq

` Ĝv,f pxemt,x, l ´ kqp̂px, kq

)

nmdS. (3.25)

Here the ˆ denotes discrete parameters and τ and t have been replaced by l and k respec-
tively. The parameter NT corresponds to the total number of time steps of a simulation or
experiment of finite duration. By selecting the upper limit of the sum in this manner one
ensures that any wave, reflection and attenuation behavior included in the extrapolation
Green’s functions that should arrive at Semt during this time period do so. This does limit the
use of this implementation to cases where it only needs to operate for a limited duration and
requires extrapolation for the entire duration.

Alternatively one can modify eq. (3.25) to reduce the number of computations and allow
for continuous operation by adjusting the upper limit of the summation, i.e.

v̂ipx
emt, l, kq “

Nt`k
ÿ

l“k

¿

Srec

!

Ĝv,qpxemt,x, l ´ kqv̂mpx, kq

` Ĝv,f pxemt,x, l ´ kqp̂px, kq

)

nmdS. (3.26)

Here Nt is a fixed number of discrete time steps that are used for extrapolation. For any fi-
nite value of Nt one limits the wave, reflection and attenuation behaviour to that with a travel
time less than Nt ¨ dt. In order to include the relevant behavior of waves and reflections,
one should ensure that the number of time steps exceeds the travel time of the behavior of
these waves and reflections. This does mean that in specific cases, such as those described
in Chapters 4 and 6, one can significantly limit the number of extrapolation steps required,
reducing computation time.
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Both eqs. (3.25) and (3.26) can be written recursively [11] using

v̂ipx
emt, l, kq “v̂ipx

emt, l, k ´ 1q

`

¿

Srec

!

Ĝv,q
i pxemt,x, l ´ kqv̂mpx, kq

`
ˆ

Gv,f
i,mpxemt,x, l ´ kqp̂px, kq

)

nmdS (3.27)

with different value ranges for l for easier implementation. Equation (3.27) extrapolates the
values recorded on Srec at time step k to obtain the values for v̂ipxemt, l ě k, kq. When using
this scheme one would apply the value of v̂ipxemt, l “ k, kq to the boundary and the values
v̂ipx

emt, l ą k, kq are stored for subsequent time steps.

The numerical implementation of eq. (3.27) can be schematically represented in the fol-
lowing figures. Figure 3.3 shows the numerical implementation of the surface integral cal-
culation for Nt time steps. These Green’s states are scaled with the surface area segment
∆S, which is obtained by dividing the total recording surface area by the number of record-
ing points. While not neccesary for the finite duration implementation, it is advantageous to
extrapolate a constant number of time steps, as this will ensure a constant calculation time.
Figure 3.4 shows the iterative component of eq. (3.27) when the finite duration implementa-
tion is applied. The integral is reshaped such that each output is assigned to a row and any
extrapolated time steps that would exceed Nt are discarded. The first column highlighted in
green is the value that will be applied to the sources on Semt, although one can also select
the values in one of the columns in the blue highlighted area. Doing so advances the output
in time, which can be used to compensate various delays that are introduced by calculations,
discrete filters and other phenomena.

∆S ˆGv,q
i ∆S

ˆ
Gv,f

i,m
v̂mpx,kq

p̂px,kq
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Figure 3.3: Schematic of integral calculation of Equation (3.27). Here NAI is the number
of points on Srec where the position and velocity are recorded. NAO is the
number of IBC sources on Semt and Nt is the number of timesteps used for the
extrapolation.
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Srec v̂mpx, k ´ 1; lq
¨

˚

˚

˝

1, 1 . . . 1, Nt ´ k ` 1
...

. . .
...

NAO, 1 . . . NAO, Nt ´ k ` 1

˛

‹

‹

‚

`

¨

˚

˚

˝

1, l “ k . . . 1, l “ Nt

...
. . .

...
NAO, l “ k . . . NAO, l “ Nt

˛

‹

‹

‚

“

v̂mpx, k; lq
¨

˚

˚

˝

1, l “ k . . . 1, l “ Nt

...
. . .

...
NAO, l “ k . . . NAO, l “ Nt

˛

‹

‹

‚

Figure 3.4: Schematic of iterative component of Equation (3.27) applying the finite duration
implementation. The integral is reshaped such all the timesteps corresponding
to a single output are assigned to a row and any time steps that exceed NT are
discarded.
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Srec v̂mpx, k ´ 1; lq v̂mpx, k; lq
¨

˚

˚

˝

1, 1 . . . 1, Nt

...
. . .

...
NAO, 1 . . . NAO, Nt

˛

‹

‹

‚

`

¨

˚

˚

˝
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...

. . .
...

...
NAO, l “ k . . . NAO, l “ Nt 0

˛

‹

‹

‚

“

¨

˚

˚

˝

1, l “ k . . . 1, l “ Nt
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˛

‹

‹

‚

Figure 3.5: Schematic of iterative component of Equation (3.27) applying the continuous
operation implementation.

Finally fig. 3.5 shows the same step as fig. 3.4 for the continuous operation implementation.
This implementation for continuous operation is only valid when the matrix of Green’s states
can be written such that for every receiver-emitter combination the impulse response repre-
sentation inside the Green’s state matrix includes all nonzero terms.

The functioning of and difference between the implementation of eq. (3.25) and eq. (3.26)
can best be illustrated with an example. Suppose the extrapolation integral, the surface in-
tegral of eq. (3.27), for a number of time steps k is given in table 3.2 where the simulation
has a duration of k “ 5 time steps. The values at l “ k ` 1 correspond to a direct travelling
wave and the values at l “ k ` 3 correspond to some reflection of that same wave.

ű

Srec l=k l=k+1 l=k+2 l=k+3 l=k+4
k “ 1 0 0 0 0 0
k “ 2 0 3 0 1.5 0
k “ 3 0 2 0 1 0
k “ 4 0 1 0 0.5 0
k “ 5 0 0 0 0 0

Table 3.2: Interpolation integral example for an number of time steps.

The extrapolated velocity that would be obtained by applying eq. (3.25) using eq. (3.27) is
shown in table 3.3. If however eq. (3.26) is used and Nt “ 2 is chosen, one would obtain
the extrapolated velocity that is shown in table 3.4. In both cases the value v̂ipx

emt, l “ k, kq

in table 3.3 and table 3.4 respectively is applied to the boundary at each time step and the
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values for v̂ipxemt, l ą k, kq are stored for later use. Advancing k shifts the stored values and
adds the new values of the integral in table 3.2 for the appropriate values of l.

v̂ipx
emt, l, kq l=k l=k+1 l=k+2 l=k+3 l=k+4
k “ 1 0 0 0 0 0
k “ 2 0 3 0 1.5
k “ 3 3 2 1.5
k “ 4 2 1.5+1
k “ 5 1.5+1

Table 3.3: Extrapolated velocity at xemt in the i direction for a limited number of time steps
using eq. (3.25).

v̂ipx
emt, l, kq l=k l=k+1 l=k+2 l=k+3 l=k+4
k “ 1 0 0 0
k “ 2 0 3 0
k “ 3 3 2 0
k “ 4 2 1 0
k “ 5 1 0 0

Table 3.4: Extrapolated velocity at xemt in the i direction for a number of time steps using
eq. (3.26).

Table 3.3 illustrates the finite nature of eq. (3.25) and its implementation as it is not possible
to continue extrapolation after k “ Nt ´ 1 has been reached. Table 3.4 on the other hand
shows how eq. (3.26) can operate for an arbitrary duration, however it also illustrates the
importance of choosing a sufficiently large value Nstep as the reflections that are present in
the extrapolation integral are excluded and only the direct traveling wave is extrapolated.

As stated earlier, one can choose to apply v̂ipx
emt, l, kq for any single value of l ě k that is

included in the extrapolation integral. This can be used to compensate for delays introduced
by hardware sampling, calculation times and discrete filters. This is subject to limitations
as choosing too high a value for l can result in omitting nonzero parts of the extrapolation
integral. If one were to apply the values at l “ k ` 2 in the example, one would compensate
for 2 samples of delay but also omit the direct travelling wave from the extrapolated velocity.
This also puts a limit on the minimum distance between Srec and Semt. This distance should
be such that any delay compensation as described above does not omit any nonzero values
of the extrapolation integral.

Now that the extrapolation scheme is in place, one only needs to obtain the pressure and ve-
locity of the outward going wave at Srec. If the acoustic pressure and velocity are measured
directly at the same location one can obtain an estimate of the outward going pressure wave

20



by using
p`pxR, tq « 0.5

“

ppxR, tq ` ρc vipx
R, tq

‰

(3.28)

and an estimate of the inward travelling wave by using

p´pxR, tq « 0.5
“

ppxR, tq ´ ρc vipx
R, tq

‰

. (3.29)

If two pressure sensors are used one must also apply eq. (2.4), which can be discretized in
time to get

vipx
rec, kq « ´

∆ts
ρd

k
ÿ

j“1

rppxrec
2 , jq ´ ppxrec

1 , jqs . (3.30)

At this point all the required parameters can be obtained and one can switch to implemen-
tation and evaluation evaluation in one dimensional, two dimensional and three dimensional
space.
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Chapter 4

One-dimensional immersive
boundary condition application

4.1 Analytical evaluation

Following the assumptions made in Chapter 3, suppose a pressure signal is generated at
the source speaker position xsrc described by inputppxsrc, tq which results in a plane wave
propagating in the direction n “ r1 0 0s. It is assumed that the acoustic pressure and ve-
locity of a generated plane wave are perfectly recorded at point xrec on the recording surface
Srec with outward normal n. The boundary source is located at point xemt on emitting sur-
face Semt with outward normal n. In this case the following assumptions are made regarding
the positions of xsrc, xrec and xemt:

xsrc1 ăxrec1 ă xemt
1

xsrc2 “xrec2 “ xemt
2 “ 0

xsrc3 “xrec3 “ xemt
3 “ 0

Starting with the wavefield extrapolation, one may note that eq. (3.24) can be simplified by
omitting the integral over the recording surface in the one dimensional case. Secondly due
to the direction of the plane wave propagation and the position of xsrc, xrec and xemt, one
can set the indices i and m to 1. The outward normal nm can also be omitted as n1 “ 1.
Finally one can replace the position vectors xsrc, xrec and xemt by their components in the 1

direction. Applying these simplifications to eq. (3.24) yields:

vipx
emt
1 , tq “

ż t

0

!

Gv,q
1 pxemt

1 , xrec1 , t ´ τqv1pxrec1 , τq ` Gv,f
1,1 pxemt

1 , xrec1 , t ´ τqppxrec1 , τq

)

dt.

(4.1)

The one dimensional Green’s states that are used here are the free-field Green’s states, as
the medium is assumed to be homogeneous and infinite in the virtual domain. These are
derived from the one dimensional free-field Green’s function [29],

Ĝpx, sq “
c0
2s

expp´s
|x|

c0
q, (4.2)
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by substituting eq. (4.2) into the following equations [27],

Ĝv,q
k pxR,x, sq “ ´ BR

k ĜpxR ´ x, sq, (4.3)

Ĝv,f
l,k pxR,x, sq “

1

sρ0

”

BR
l BR

k ĜpxR ´ x, sq ` δpxR ´ xqδl,k

ı

, (4.4)

while applying the same simplifications. The full derivation is presented in Appendix B.1 and
the resulting equations are

Ĝv,q
1 pxR1 , x1, tq “

1

2

xR1 ´ x1

|xR1 ´ x1|
δ

ˆ

t ´
|xR1 ´ x1|

c0

˙

, (4.5)

Gv,f
1,1 pxR1 , x1, sq “

1

2

1

ρ0c0
δ

ˆ

t ´
|xR1 ´ x1|

c0

˙

. (4.6)

Applying eqs. (4.5) and (4.6) to eq. (4.1) yields

v1pxemt
1 , tq “

ż t

0

!1

2

xemt
1 ´ xrec1

|xemt
1 ´ xrec1 |

δ

ˆ

pt ´ τq ´
|xemt

1 ´ xrec1 |

c0

˙

v1pxrec1 , τq

`
1

2

1

ρ0c0
δ

ˆ

pt ´ τq ´
|xemt

1 ´ xrec1 |

c0

˙

ppx, τq

)

dτ. (4.7)

By noting that xemt
1 ą xrec1 and resolving the convolution integral one obtains

v1pxemt
1 , tq “

1

2
v1

ˆ

xrec1 , t ´
|xemt

1 ´ xrec1 |

c0

˙

`
1

2

1

ρ0c0
p

ˆ

xrec1 , t ´
|xemt

1 ´ xrec1 |

c0

˙

, (4.8)

which is analogous to eq. (3.28) shifted in time. Conversely xemt
1 ă xrec1 yields

v1pxemt
1 , tq “ ´

1

2
v1

ˆ

xrec1 , t ´
|xemt

1 ´ xrec1 |

c0

˙

`
1

2

1

ρ0c0
p

ˆ

xrec1 , t ´
|xemt

1 ´ xrec1 |

c0

˙

, (4.9)

which is analogous to eq. (3.29) shifted in time.

Moving on to pressure field, i.e. eq. (3.22), the ideal desired pressure and velocity field
of an outward propagating wave caused by an arbitrary pressure source can be obtained
from the linearized wave equation in velocity potential. The full derivation is presented in
Appendix A.1 and the resulting one dimensional equations with xsrc1 and x1 substituted in
are respectively

ppx1, tq “inputppt ´
x1 ´ xsrc1

c0
q x1 ą xsrc1 , (4.10)

vpx1, tq “
1

ρ0c0
inputppt ´

x1 ´ xsrc1

c0
q x1 ą xsrc1 . (4.11)

The analytical wavefield with rigid boundary reflection at xemt
1 can be calculated by mirroring

the source across the rigid boundary, i.e.

ppx1, tq “inputp

ˆ

t ´
x1 ´ xsrc1

c0

˙

` inputp

ˆ

t `
x1 ´ xsrc1

c0
´ 2

xemt
1 ´ xsrc1

c0

˙

xemt
1 ą x1 ą xsrc1

(4.12)
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The pressure field resulting from the point source at xemt
1 on Semt is obtained from eq. (3.23).

Again the same simplifications that were applied to eq. (3.24) can be applied here. Doing so
yields

pIBCpx1, tq “ ´

ż t

0
Gp,qpx1, x

emt
1 , t ´ τqvpxemt

1 , τqdτ for xemt
1 ą x1 ą xsrc1 . (4.13)

It is important to note that here Gp,q is not the free-field Green’s function

Gp,q
free´fieldpxR,x, tq “

1

2
ρc δ

ˆ

t ´
|xR ´ x|

c0

˙

. (4.14)

as the reflection caused by the rigid surface must be included as well. This can be done
as follows. Suppose the emitting source is spaced a distance dx from the rigid boundary
at xemt

1 . Doing so allows one to write Gp,q as the combination of the free-field impulse
responses of the emitting source and an additional source mirrored about xemt

1 equal to the
emitting source, i.e.

Gp,qpx1, x
emt
1 , tq “

1

2
ρc0 δ

ˆ

t ´
|x1 ´ pxemt

1 ´ dxq|

c0

˙

`
1

2
ρc0 δ

ˆ

t ´
|x1 ´ pxemt

1 ` dxq|

c0

˙

. (4.15)

As dx approaches zero, this simplifies to

Gp,qpx1, x
emt
1 , tq “ ρc0 δ

ˆ

t ´
|x1 ´ xemt

1 |

c0

˙

. (4.16)

Applying eq. (4.16) to eq. (4.13) and resolving the time convolution yields

pIBCpx1, tq “ ´ρc0 v

ˆ

xemt
1 , t ´

|x1 ´ xemt
1 |

c0

˙

for xemt
1 ą x1 ą xsrc1 . (4.17)

Substituting eq. (4.8) into eq. (4.17) and rearranging terms yields

pIBCpx1, tq “ ´inputp

ˆ

t `
x1 ´ xsrc1

c0
´ 2

xemt
1 ´ xsrc1

c0

˙

for xemt
1 ą x1 ą xsrc1 . (4.18)

which perfectly cancels out the reflection caused by the rigid boundary in eq. (4.12). This
also means that the pressure signal recorded at xrec1 only contains the forward propagating
pressure wave.

When implementing this algorithm, errors may be introduced at various points depending
on the specific hardware implementation. The physical one dimensional waveguide is dis-
cussed in the next section.
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4.2 Physical one-dimensional waveguide setup

A schematic of the physical waveguide setup is shown in fig. 4.1. The physical setup con-
sists of a cylindrical waveguide constructed out of Spirobuis air duct sections connected
with couplers and closed with end caps. Both end caps have a plastic speaker enclosure
attached to it in which a TB-Speaker W2-2040S 2” subwoofer is mounted, shown in fig. 4.3.
Metal plates of 1 mm thickness are attached to the speakers in order ensure that the speaker
cone is flush with a rigid reflective boundary, as shown in fig. 4.4. Any gaps between the
metal plate and the inside wall of the duct are filled using hot glue.

Source speaker
Duct

650

Connector

7

Duct

Mics

Connector
IBC speaker

1106

830

3

10

24

39

40

I118 I118I125 I125

80

40

Figure 4.1: Schematic of the waveguide setup.

Figure 4.2: Cylindrical waveguide hardware setup used for experimental evaluation. The
setup is inside the anechoic chamber in room NH127 in the Horst building of the
University of Twente.
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Figure 4.3: End cap with the source speaker mounted in a plastic speaker enclosure. The
speaker is a TB-Speaker W2-2040S 2” sub-woofer.

Figure 4.4: End cap containing the IBC source shown in fig. 4.3 with the metal plate and
connector piece attached.
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The microphones are powered by two 1.5 Volt batteries and are connected to a microphone
amplifier. The speakers are powered by XA 12.2 amplifier with an amplification factor of
100 powered by a solid state regulated DC power supply. Both the speaker amplifier and
the microphone amplifier are connected to a DSpace MicroLabBox which is connected to
a Dell PC. The DSpace MicroLabBox is controlled using dSPACE Controldesk 6.0, the im-
plementation of the control scheme is done in Simulink and further processing is done in
Matlab.

4.3 Numerical implementation

In order to evaluate the performance of the immersive boundary conditions a simplified nu-
merical model of the setup shown in fig. 4.1 is created using a finite difference time domain
(FDTD) model.

Here the FDTD method is used to discretize eqs. (3.7) and (3.9) using two separate grids
staggered in space and time. This is an adaptation of the numerical Yee grid used for elec-
trodynamics [30]–[32]. The two grids are shown in fig. 4.5, where k is the spatial index and
n is the temporal index. The velocity nodes are defined at integer spatial grid points and
the pressure nodes are offset by ´1

2∆x, where ∆x is the spatial grid spacing. The pressure
nodes are defined at integer time steps and the velocity nodes are offset by `1

2∆t, where
∆t is the temporal grid spacing, making the grids staggered in both space and time.

vnk´2 vnk´1 vnk vnk`1 vnk`2

pnk´1 pnk pnk`1 pnk`2

Figure 4.5: Schematic of the staggered grid used in the FDTD simulation.

By staggering the grids in this way one can define boundary conditions in the velocity grid
at the exact integer spatial nodes while obtaining the pressure values at integer time steps.
Using these grids to discretize eqs. (3.7) and (3.9) results in the following update equations:

vn`1
k “vnk ´

∆t

ρ0∆x

`

pnk`1 ´ pnk
˘

,

pn`1
k “pnk ´

∆t

κ0∆x

`

vnk ´ vnk´1

˘

.

The difference in magnitude between the pressure and velocity may lead to numerical inac-
curacies. In order to mitigate this the velocity is regularized by multiplying with the charac-
teristic impedance Z0. Doing so results in the regularized update equations:

ṽn`1
k “ṽnk ´

c0∆t

∆x

`

pnk`1 ´ pnk
˘

,

pn`1
k “pnk ´

c0∆t

∆x

`

ṽnk ´ ṽnk´1

˘

,
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where ṽnk “ Z0v
n
k . The actual velocity at integer time steps can be obtained by linear interpo-

lation of the regularized velocity divided by Z0. A simplified numerical model of the hardware
setup is created for the evaluation of the performance of the IBCs. The spatial grid spacing
of the FDTD grid is set to be 1 [mm]. For stability reasons the temporal grid spacing must
be chosen such that the Courant stability factor C “ c0

∆t
∆x ď 1. Here C “ 1

2 is chosen which
means that any pulses propagate to the next spatial node in two time steps. The speakers
are modeled as soft pressure sources in the FDTD pressure grid, adding their pressure out-
put to the already existing pressure at that node. The microphones are assumed to perfectly
record the pressure at their locations. The reflections caused by the coupler joining the two
long tube sections is omitted as the IBC system will only record and extrapolate the wave-
field after the coupler. The change in crossection at the IBC speaker results in a reflection
coefficient that can be calculated using

R “
S1 ´ S2

S1 ` S2
, (4.19)

where S1 is the crossectional area inside of the tube and S2 is the crossectional area inside
of the coupler [21]. Calculating the crossectional areas and filling in eq. (4.19) yields a re-
flection coefficient of R “ 0.0576. This would result in an reflected wave with an amplitude
of six percent of that of the incident wave that would not be removed when the boundary
conditions function perfectly. One may be able to remove this reflection using the immersive
boundary conditions as the extrapolation integral can have additional extrapolation terms
included to generate a sound field that could remove that reflection. In this numerical model
the reflection is omitted entirely in order to better observe the cancellation of the reflection
at the emitting boundary.

In order to evaluate the performance of the immersive boundary conditions, first a numerical
simulation is performed with perfectly absorbing boundary conditions (PABCs) applied to the
IBC boundary. The PABCs are implemented by setting the pressure value at the boundary
to the pressure value recorded at its neighbouring node two time steps ago, using the fact
that an impulse takes two time steps to travel to the next node due to the chosen temporal
grid spacing. This simulation is compared to the analytical evaluation of eq. (4.10). The
source pressure signal used is a Ricker wavelet defined by

Rickerptq “
`

1 ´ 2π2f2t2
˘

e´π2f2t2 , (4.20)

where f is the center frequency of the wavelet [33]. Here the center frequency is chosen to
be f “ 500 Hertz and a delay of 0.005 seconds is applied.

Subsequently a simulation is performed using the IBCs and the results are compared to
the numerical simulation with PABCs. The IBC is implemented using the scheme shown in
figs. 3.3 and 3.5, which reduces to the schematics shown in figs. 4.6 and 4.7 when there
is only one recording and one emitting point respectively. The schematic for the continuous
implementation is used in order to reduce computational costs as one needs to extrapolate
for fewer time steps.
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Figure 4.6: One dimensional simplified version of fig. 3.3.
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Figure 4.7: One dimensional simplified version of fig. 3.5.

The one dimensional free-field Green’s states in fig. 4.6 are evaluated for 3500 time steps
using eqs. (4.5) and (4.6). The effect of the Dirac delta function is approximated numerically
by δptq « t1, 0u for t|t| ď 1

2∆t, |t| ą 1
2∆tu. The velocity is obtained using eq. (3.30), the

desired pressure is obtained using eq. (3.28) and the desired velocity is obtained by divid-
ing the desired pressure by the characteristic impedance Z0. The extrapolated velocity is
multiplied by the characteristic impedance and applied as a soft pressure source at the IBC
speaker location.

The IBC simulation is repeated with Gaussian white noise added to the pressure values
recorded by the simulated microphones. The amplitude of the noise signal is three percent
that of the wavelet amplitude. In order to mitigate the buildup of low frequency errors in the
extrapolation due to the noise, the numerical integration used in eq. (3.30) is replaced with
a first order low pass Butterworth filter with a cutoff frequency of 20 Hertz and a gain such
that the high frequency response equals that of an integrator.

Finally a simulation is performed where the sample frequency of the hardware and the
speaker dynamics are included. The sample frequency of the hardware is 20, 000 Hertz
and this is implemented by applying zero order hold to the values obtained from and intro-
duced into the finite difference grid. It is not possible to simply reduce the temporal grid
size as this will lead to numerical instability. The speaker dynamics are modeled using a
lumped parameter model of the W2-2040S 2” subwoofer using the parameters provided by
the manufacturer [34]. The frequency response of this continuous lumped parameter model
is shown in fig. 4.8 and is discretized using the temporal grid spacing of the FDTD simula-
tion. The velocity output of this speaker is multiplied by the impedance and applied as a soft
pressure source to the pressure grid. This is only done for the IBC speaker. The gain is
corrected by multiplication with a constant factor of 14 of the IBC speaker input signal and
the delay is compensated by selecting the ninth element in the vector obtained from the step
shown in fig. 4.7, rather than the first element highlighted in green. This compensates eight
samples worth of delay. These samples are linked to the hardware sampling frequency, not
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the FDTD temporal grid spacing.
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Figure 4.8: Frequency response of the continuous lumped parameter model of a W2-2040S
2” subwoofer. The input is the driving voltage and the output is the cone velocity.

4.3.1 Results

The results of the FDTD simulation with PABCs are shown in fig. 4.9. The pressure field in-
side the FDTD grid is shown in fig. 4.10 for the specific time instances highlighted in fig. 4.9.
Figure 4.11 shows the difference between the FDTD simulation and the analytical evaluation
of eq. (4.10) and fig. 4.12 shows fig. 4.11 with adjusted limits to highlight any reflections.

Figure 4.11 shows the error in the pressure distribution found in the FDTD model when
compared to the analytical model. Two areas of inaccuracy can be observed. The first is the
error in the forward propagating wavelet generated at x “ 0. This error may be a result of
the soft pressure source implementation. The pressure pressure introduced at the source
location spreads both forward and backwards, however the rigid barrier at x “ 0 reflects the
backward travelling wave, redirecting it forward. For a nonzero distance between the source
and reflector this results in a combination of two time staggered wavelets rather than a single
wavelet with increased amplitude. The second area of inaccuracy can be observed in figure
fig. 4.12, which shows that the perfect absorbing boundary condition does not fully eliminate
the reflection. The reflection is reduced in amplitude by 128 decibels, i.e. 20 log10p5 ¨ 10´7q.
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Figure 4.9: FDTD simulation of a Ricker wavelet with center frequency of 500 [Hz] propa-
gating through the simplified waveguide with PABCs applied at the location of
the IBC speaker.
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Figure 4.10: FDTD time domain pressure field inside the one-dimensional grid at the time
steps highlighted in fig. 4.9.
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Figure 4.11: Difference between the FDTD simulation with PABCs and the analytical evalu-
ation of eq. (4.10).

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

distance [m]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

ti
m

e
 [
s
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

p
F

D
T

D
-p

a
n
a
ly

ti
c
a
l [

P
a

]

10-7

Figure 4.12: Figure 4.11 with adjusted limits to highlight any reflections.
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For the purpose of evaluating the effectiveness of the immersive boundary conditions, the
result obtained with the perfectly absorbing boundary conditions is used as the desired result
in subsequent tests. Moving on to the first immersive boundary condition simulation, fig. 4.13
shows the result of the time domain simulation and fig. 4.14 shows the error compared to
the perfectly absorbing boundary condition results. One may note that the amplitude of the
reflection has only decreased by 50 decibel.

The error of the IBC simulation with noise is shown in fig. 4.15. This indicates that the
presence of noise severely influences the performance of the IBCs as this results in the
identification of nonexistent forward propagating waves and the subsequent generation of
cancelling waves at the IBC source.

The error for the simulation with noise, hardware sampling frequency and speaker dynam-
ics is shown in fig. 4.16. Although the operating frequency of the speaker should cover the
frequencies present in the wavelet, the amplitude and phase variations in the lumped param-
eter model appear to severely reduce the performance of the IBCs. This may be corrected
for by applying a filter that combined with the speaker dynamics yields a level amplitude and
phase response in an appropriate frequency range.
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Figure 4.13: FDTD simulation of a Ricker wavelet with center frequency of 500 [Hz] prop-
agating through the simplified waveguide with immersive boundary conditions
applied.
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Figure 4.14: Difference between the FDTD IBC simulation and the FDTD simulation with
PABCs applied.
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Figure 4.15: Difference between the FDTD IBC simulation with 3% white noise applied to
the recorded speaker pressure signals and the FDTD simulation with PABCs
applied.
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Figure 4.16: Difference between the FDTD IBC simulation, with noise and speaker dynam-
ics and hardware sampling rate applied, and the FDTD simulation with PABCs
applied.

4.4 Experimental test

In order to evaluate the performance of immersive boundary conditions using the hardware
setup a continuous sine wave signal is applied to the source speaker. Both the forward and
backward travelling wave are estimated at the center microphone location from the recorded
signals of the three microphones using eqs. (3.28) and (3.29). The integration of eq. (3.30) is
replaced with the same low pass filters used in the simulation. In order to account for gains
introduced by various stages as well as delays two sliders are added in the ControlDesk
environment. The first slider controls the amplitude of the signal going to the IBC speaker,
the other slider control the number of time steps of delay compensation that is applied. This
should account for any constant gains and delays present in the system. These sliders are
adjusted until a combination is found where the estimated backward propagating wave is
minimized.
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4.4.1 Results

No combination of gain and delay compensation was found that resulted in a reduction of
the estimated backward travelling wave without an equal reduction of the forward travelling
wave. This may be the result of nonlinear dynamics of the speaker, insufficiently rigid walls of
the waveguide or the wave not propagating as a plane wave due to limited distance between
the speaker and the microphone array. This may be due to the speaker not covering the
entire crossection of the waveguide. It was also assumed that the microphone array was
sufficiently calibrated for pressure and velocity estimation, which may not be the case. These
issues may be resolve by implementing filters to calibrate the speaker response, calibrating
the microphone array and performing the measurement in an impedance tube.
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Chapter 5

Two-dimensional immersive
boundary condition application

5.1 Setup

The two dimensional numerical setup is a rectangular enclosure with rigid reflecting bound-
aries at its walls. The enclosure is 0.82x0.82 meter in dimension. The spatial grid spacing
is set to 5 millimeter in both x and y direction in order to reduce computation time and the
temporal grid spacing is calculated using

∆t “

?
0.5

c0
b

1
∆x2 ` 1

∆y2

. (5.1)

The sound source is placed in the center of the enclosure and has a radius of 2.5 centimeter.
The source is surrounded by a circular recording surface. On the recording surface is a
series points, recording the pressure and velocity using the p-p principle, with their recording
direction aligned with the outward normal of the recording surface. There are 48 recording
points equally spaced in the radial sense and each point consists of three microphones
of which the outer two have a separation distance in the outward normal direction of 2.5
centimeter. The configuration is shown in fig. 5.1.
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Figure 5.1: Positioning of emitting sources and recording points.

5.2 Numerical evaluation

For the two dimensional simulation one can expand the FDTD scheme used for one dimen-
sion to 2 dimensions. The derivation of the extrapolation Green’s functions is presented in
appendix B.2 and the resulting relevant time domain Green’s state equations are

Gv,q
k pxR,x, tq “

1

2π

xRk ´ xk
|xR ´ x|2

¨

˚

˚

˚

˝

δ
´

t ´
|xR´x|

c

¯

t
c

t2 ´

´

|xR´x|

c

¯2
`

H
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2
´

H
´

t ´
|xR´x|

c

¯

t2

c

t2 ´

´

|xR´x|

c

¯2
3

˛

‹

‹

‹

‚

,

(5.2)
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σ1 “cosh
ˆ

2 cosh´1

ˆ

t

T0

˙˙

, σ2 “

b

t2 ´ T 2
0 , T0 “

|xR ´ x|

c
.

In order to verify the accuracy of these extrapolation functions a free-space simulation is per-
formed using perfectly matched layers (PML). These PMLs are additional layers outside the
original grid where a loss term is introduced whilst maintaining the same impedance, hence
perfectly matched. These can be introduced in the 2D acoustic simulation by adapting the
approach described by Turkel and Yefet [35]. The essence of this approach, when translated
to acoustics, is that by splitting the acoustic pressure according to

p “ px ` py, (5.4)

one can arrive at the following regularized differential equations

Bṽx
Bt

` σxṽx “ ´
c0
ρr

Bpx
Bx

, (5.5)

Bṽy
Bt

` σyṽy “ ´
c0
ρr

Bpy
By

, (5.6)

Bpx
Bt

` σxpx “ ´
c0
κr

Bṽx
Bx

, (5.7)

Bpy
Bt

` σypy “ ´
c0
κr

Bṽy
By

, (5.8)

where κr and ρr are the relative compressability and density defined as κr=κ/κ0 and ρr “

ρ{ρ0 respectively. In this model it is assumed that the κr “ 1 and ρr “ 1. Rearranging terms
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and converting to the frequency domain yields the following set of equations:

ṽx “ ´
c0

jω ` σx

Bpx
Bx

, (5.9)

ṽy “ ´
c0

jω ` σy

Bpy
By

, (5.10)

px “ ´
c0

jω ` σx

Bṽx
Bx

, (5.11)

py “ ´
c0

jω ` σy

Bṽy
By

, (5.12)

The following expressions are used for σx and σy:

σxpxq “
1

2∆t

ˆ

x

Lx

˙3

, σypyq “
1

2∆t

ˆ

y

Ly

˙3

, (5.13)

where Lx and Ly are the thickness of the perfectly matched layers and x and y are the
position inside these layers. These are used to construct the following set of equations,
which can be used to create update equations similar to the one dimensional case:

B

Bx
vx “

´jω

c0
S´1
x Sypx, (5.14)

B

By
vy “

´jω

c0
SxS

´1
y py, (5.15)

B

Bx
px “

´jω

c0
S´1
x Syvx, (5.16)

B

By
py “

´jω

c0
SxS

´1
y vy, (5.17)

Sxpxq “1 `
σpxq

jω
, (5.18)

Sypyq “1 `
σpyq

jω
(5.19)

The verification is of the Green’s functions is performed by injecting a Ricker wavelet with a
center frequency of 500 Hertz into the source region using soft pressure source nodes inside
the area of the source. The estimation of the outward is performed using the same method
as used in the one dimensional case, however the constant impedance is replaced with

Z0 “ ρ0c0

„

2rs

2rs ` c0

ȷ

, (5.20)

where r is the radial distance from the origin of the cylindrical wave. This is implemented
numerically by treating this impedance term as a transfer function. It and its inverse are
discretized using Matlab’s ”c2d” function and the relevant parameters are filtered using
these discretized filters. The multiplication of the Green’s extrapolation functions and ve-
locities with the outward normal vectors indicated in fig. 3.3 and fig. 3.5 are applied to the
extrapolation integral in advance. The Dirac delta function implementation is modified to
eliminate the presence of imaginary numbers in the signal due to the denominators in the
extrapolation Green’s functions. This is done by implementing the Dirac delta function as

42



δptq « t1, 0, 0u for t0 ď t ď 1
2∆t , t ą 1

2∆t , t ă 0u. To account for the integration over the
recording surface, the Green’s extrapolation functions are multiplied by the circumference of
the recording surface divided by the number of recording points.

The results of the extrapolation simulation are shown in figs. 5.2 to 5.4 for the left three
emitting points on the bottom edge. The other emitting points exhibit similar behaviour due
to symmetry. In these figures the extrapolated velocity is divided by 10.
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Figure 5.2: Velocity extrapolation simulation where the velocity is extrapolated to the emit-
ting node closed to the corner on the bottom edge.
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Figure 5.3: Velocity extrapolation simulation to the node between the outer and central node
on the bottom edge.
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Figure 5.4: Velocity extrapolation to the central emitting node on the bottom edge.
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There are significant errors in both the shape and magnitude of the extrapolated waves. The
difference in magnitude and shape may be a result of the implementation of the Dirac delta
function and its interaction with the temporal terms in the denominator of elements of the
extrapolation Green’s functions.

In order to be able to investigate the effect of limiting the number of soft sources used on
the emitting boundary, the magnitude of the velocity is recorded in a separate simulation
using perfectly matched layers to cancel the reflection. Then the recorded velocity signals
are multiplied by the impedance and applied to the appropriate pressure nodes as soft pres-
sure sources. The amplitudes of the soft pressure sources are scaled with the ratio of edge
nodes covered.

When all 656 nodes at the boundary are populated by emitting nodes, the resulting sim-
ulation is shown in figs. 5.5 to 5.7. When only one 20 nodes have IBC pressure sources
applied, the results are shown in figs. 5.8 to 5.10.
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Figure 5.5: Single frame of the simulation of immersive boundary conditions with pressure
sources at all nodes on the edge of the grid.
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Figure 5.6: Single frame of the simulation of immersive boundary conditions with pressure
sources at all nodes on the edge of the grid.

t=0.0043659

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

x [m]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

y
 [
m

]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
c
o
u
s
ti
c
 P

re
s
s
u
re

 [
P

a
]

Figure 5.7: Single frame of the simulation of immersive boundary conditions with pressure
sources at all nodes on the edge of the grid.
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Figure 5.8: Single frame of the simulation of immersive boundary conditions with 5 emitting
pressure sources per edge.
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Figure 5.9: Single frame of the simulation of immersive boundary conditions with 5 emitting
pressure sources per edge.
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Figure 5.10: Single frame of the simulation of immersive boundary conditions with 5 emitting
pressure sources per edge.

This suggests that a significant reduction in reflected wave may be achieved with a signifi-
cantly reduced number of IBC sources, provided one can accurately extrapolate the wave-
field velocity. This does not account for source directivity or near field radiation patterns of
acoustic transducers that would be used in a hardware setup. In addition the issues iden-
tified in the one dimensional setup need to be addressed as well as the possibility that the
assumed rigid boundary where no speakers are present may exhibit frequency dependent
reflective behaviour in the frequency range of interest.
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Chapter 6

Three-dimensional immersive
boundary condition application

6.1 Setup

In order to evaluate the three dimensional implementation a Ricker wavelet with a center
frequency of 500 Hertz is generated at a spherical pressure source with a radius of 5 cen-
timeter. The recording surface has a radius of 24 centimeter and is populated by 200 points
where the pressure and velocity are obtained. The distribution of nodes is generated using
the algorithm developed by Deserno [36] and is shown in fig. 6.1. The pressure and veloc-
ity are obtained analytically from velocity potential relations, which results in the following
equations for pressure and velocity:

ppr, tq “
r0
r
inputp

ˆ

t ´
r ´ r0
c0

˙

., (6.1)

vrpr, tq “
1

ρ0c0

r0
r

„

inputp

ˆ

t ´
r ´ r0
c0

˙

`
c0
r
Inputp

ˆ

t ´
r ´ r0
c0

˙ȷ

.. (6.2)

The full derivation of eqs. (6.1) and (6.2) is presented in appendix A.3. The emitting surface
is constructed from a similar sphere with a radius of 1 meter with 800 points populating the
surface. The wavefield velocity amplitude will be extrapolated to the nodes on the emitting
sphere for one quadrant. This is done using the extrapolation scheme of figs. 3.3 to 3.5 with
the following Green’s states:

Gv,q
k pxR,x, tq “

1

4πc

xRk ´ xk
|xR ´ x|2

B

Bt
δpt ´

|xR ´ x|

c
q `

1

4π

xRk ´ xk
|xR ´ x|3

δpt ´
|xR ´ x|

c
q, (6.3)

Gv,f
l,k pxR,x, tq “

ˆ

1

4πρc2
pxRk ´ xkqpxRl ´ xlq

|xR ´ x|3

˙

B

Bt
δpt ´

|xR ´ x|

c
q

`

ˆ

´
1

4πρc|xR ´ x|2
` 3

pxRk ´ xkqpxRl ´ xlq

4πρc|xR ´ x|4

˙

δpt ´
|xR ´ x|

c
q

`

ˆ

´
1

4πρ|xR ´ x|3
` 3

pxRk ´ xkqpxRl ´ xlq

4πρ|xR ´ x|5

˙
ż

δpt ´
|xR ´ x|

c
qdt. (6.4)
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The full derivation of these Green’s states is presented in appendix B.3. In order to account
for the surface integral over the surface of a sphere, the Green’s functions are scaled by the
surface area of the sphere divided by the number of recording points.

Figure 6.1: Node distribution of the recording sphere with normalized coordinates.
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6.2 Numerical extrapolation implementation

The derivative and integral terms of the Dirac delta functions in the convolution context
complicate the implementation of the iterative scheme, however this can be mitigated by
applying the following property of the Dirac delta distribution:

9δ ˚ f “ δ ˚ 9f, (6.5)

where ˚ corresponds to the convolution and 9a corresponds to the time derivative of a. This
same operation is extended to the time integral of the Dirac delta function. This means
that the Green’s state matrix in fig. 3.3 can be split into components that interact with the
desired velocity and its derivative and the desired pressure, its derivative and its integral.
The Green’s state matrix is split up into five sections instead of the two it had previously and
is multiplied by all the relevant signals and their integrals and derivatives. This results in the
Greens state matrix only containing Dirac delta functions for the direct travelling wave, which
means that it can be implemented using the continuous implementation of the extrapolation
scheme, i.e. fig. 3.5. The derivative is obtained by central difference of the current time step
and the value two time steps earlier. The integral and the unmodified values of the previous
time step are used. This introduces a sample of delay that is compensated by selecting the
values from the first column of the blue highlighted section of fig. 3.5 instead of the green
highlighted column.
The Green’s states are pre-multiplied with the appropriate outward normal vectors in order
to extrapolate the magnitude of the velocity instead of the velocity components, in order
to further reduce computation time as the magnitude of the velocity in the outward normal
direction is the input signal for the IBC speaker.

6.3 Results

The root mean square error of the extrapolated velocities for points on the emitting surface
are shown in figure fig. 6.2. The extrapolated velocity of the point with the greatest error is
shown in fig. 6.3, together with the expected velocity.
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Figure 6.2: Root mean square error of the extrapolated velocity relative to the analytical
velocity obtained from eq. (6.2) with additional correction applied.
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Figure 6.3: Extrapolated velocity of the node with the greatest root mean square error plot-
ted with the expected velocity obtained from eq. (6.2).
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The results indicate that the continuous implementation of the extrapolation algorithm with
analytical physics-based functions can be used to obtain the desired velocity at the source lo-
cations on the emitting boundary in idealized circumstances. This assumes that the desired
velocity and pressure on the recording surface do not contain any errors. The effect of the
measurement method of the velocity and pressure, specifically eq. (3.28) for obtaining the
outward propagating wave will introduce errors due to the impedance being frequency and
position dependent, as previously mentioned in chapter 2. Additional tests can be performed
to investigate the performance of the extrapolation integral for arbitrary source distributions
enclosed by the recording surface.
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Chapter 7

Conclusions and recommendations

7.1 Conclusions

Regarding it’s suitability for low frequency vector sensor calibration, while the idea of cal-
ibrating an acoustic vector sensor inside a one dimensional waveguide may yield benefits
regarding its calibration, the implementation of immersive boundary conditions to remove
reflections presented in this document requires significant improvements before it can be
deemed suitable for this use case. A major issue being the implementation in physical
hardware. It may require significant tailoring of the hardware setup and the application of
calibration filters for both the microphones and the sound sources before immersive bound-
ary conditions can be feasibly used to actively remove reflections in real life hardware setups
aimed at low frequency vector calibration.

With respect to the more general implementation of immersive boundary conditions, in heav-
ily simplified one dimensional and three dimensional simulations it is possible to use analyt-
ical physics based extrapolation Green’s functions to extrapolate the wavefield parameters
required for the implementation of immersive boundary conditions to remove reflections. In
these specific cases it is possible to modify the implementation such that continuous opera-
tion is possible. The two dimensional extrapolation there appear to exist large discrepancies
between the extrapolated acoustic velocities and simulated free-field acoustic velocities. It is
shown in a heavily simplified simulation that if the extrapolation is accurately performed, one
may significantly reduce reflections with as few as twenty sound sources in a rectangular
two dimensional enclosure at low frequencies.
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7.2 Recommendations

Regarding future research in hardware implementation of immersive boundary conditions it
will be critical to minimize undesirable behaviour of the hardware and its components, either
through careful selection of hardware or the application of calibration filters or a combination
thereof. This is especially true for use in calibration environment, as any errors introduced
by the immersive boundary conditions implementation will hinder the calibration process.

Concerning further research of analytical immersive boundary conditions, simulations bet-
ter matching real world hardware configurations can be investigated. Additional simulations
can be performed to incorporate frequency dependent reflective behaviour at the boundary
of the enclosure. Alternatively the continuous implementation of immersive boundary condi-
tions can be investigated in holography and cloaking applications as well as its application
in moving media.
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Appendix A

Derivation of analytical equations for
outward propagating waves

In order to evaluate the estimated and extrapolated velocities obtained for the immersive
boundary conditions, exact equations are derived for the one-dimensional plane, cylindrical
and spherical wave for the pressure and velocity.

These equations can be derived from the velocity potential ϕ, which is related to acous-
tic particle velocity v and acoustic pressure p by

v “∇ϕ, (A.1)

p “ ´ ρ0
B

Bt
ϕ. (A.2)

A.1 Plane wave

For one-dimensional plane waves propagating along the x axis of a coordinate system the
second order linearized wave equation in velocity potential can be written as

B2

Bx2
ϕ ´

1

c20

B2

Bt2
ϕ “ 0, (A.3)

which has the following general solution:

ϕpx, tq “ f

ˆ

t ´
x

c0

˙

` g

ˆ

t `
x

c0

˙

. (A.4)

When the positive x direction is assumed to be the forward or outward direction and the
backward or inward propagating wave is excluded, eq. (A.4) reduces to

ϕpx, tq “ f

ˆ

t ´
x

c0

˙

. (A.5)

Suppose there is a velocity potential described by inputϕptq at x0, i.e.

ϕpx0, tq “ inputϕptq. (A.6)
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Then one can obtain an expression for function fptq by applying eq. (A.6) to eq. (A.5) as
follows:

ϕpx0, tq “f

ˆ

t ´
x0
c0

˙

,

inputϕptq “f

ˆ

t ´
x0
c0

˙

,

f ptq “inputϕ

ˆ

t `
x0
c0

˙

. (A.7)

By substituting eq. (A.7) into eq. (A.5), where x is the location where one wants to know the
pressure and velocity, one obtains

ϕpx, tq “ inputϕ

ˆ

t ´
x ´ x0
c0

˙

@x ą x0. (A.8)

In case the input is a pressure inputpptq instead, one can rewrite eq. (A.2) as

ϕ “
1

´ρ0

ż

8

p dt (A.9)

and use it to replace the velocity potential inputϕptq in eq. (A.8), yielding

ϕpx, tq “
1

´ρ0

ż

8

"

inputp

ˆ

t ´
x ´ x0
c0

˙*

dt @x ą x0. (A.10)

Suppose Inputp

´

t ´ x´x0
c0

¯

is a differentiable function that is defined as Inputp

´

t ´ x´x0
c0

¯

“

ş

8

!

inputp

´

t ´ x´x0
c0

¯)

dt. The following partial derivatives can be found for this function:

B

Bt
Inputp

ˆ

t ´
x ´ x0
c0

˙

“inputp

ˆ

t ´
x ´ x0
c0

˙

, (A.11)

B

Bx
Inputp

ˆ

t ´
x ´ x0
c0

˙

“
´1

c0
inputp

ˆ

t ´
x ´ x0
c0

˙

. (A.12)

By applying eqs. (A.2) and (A.11) to eq. (A.10) one can obtain the pressure

ppx, tq “ ´ ρ0
B

Bt
ϕpx, tq

“ ´ ρ0
B

Bt

1

´ρ0

ż

8

"

inputp

ˆ

t ´
x ´ x0
c0

˙*

dt

“
´ρ0
´ρ0

B

Bt

ż

8

"

inputp

ˆ

t ´
x ´ x0
c0

˙*

dt,

ppx, tq “inputp

ˆ

t ´
x ´ x0
c0

˙

. (A.13)

To obtain the velocity one would apply eq. (A.1) to eq. (A.10) but because this is 1 dimen-
sional eq. (A.1) reduces to

vx “
B

Bx
ϕ
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which can then be applied to eq. (A.10) together with eq. (A.12) to obtain the velocity

vxpx, tq “
B

Bx

1

´ρ0

ż

8

"

inputp

ˆ

t ´
x ´ x0
c0

˙*

dt

“
1

´ρ0

B

Bx

ż

8

"

inputp

ˆ

t ´
x ´ x0
c0

˙*

dt

“
1

´ρ0

B

Bx
Inputp

ˆ

t ´
x ´ x0
c0

˙

“
1

´ρ0

´1

c0
inputp

ˆ

t ´
x ´ x0
c0

˙

,

vxpx, tq “
1

ρ0c0
inputp

ˆ

t ´
x ´ x0
c0

˙

. (A.14)

Equations (A.13) and (A.14) show the standard relation between particle velocity and pres-
sure for plane waves p “ Z0v where Z0 “ ρ0c0 [21], as expected.

A.2 Cylindrical wave

For the one dimensional cylindrical waves the second order differential equation is

B2

Br2
ϕ `

1

r

B

Br
ϕ ´

1

c20

B2

Bt2
ϕ “ 0 (A.15)

where r is the radial distance from the origin of the source [21]. This can be rewritten by
grouping terms such that it resembles eq. (A.3), however doing so yields

B2

Br2
p
?
rϕq ´

1

c20

B2

Bt2
p
?
rϕq `

p
?
rϕq

4r2
“ 0, (A.16)

which contains an additional term. If the radius r is sufficiently large, as is the case in the far
field, this additional p

?
rϕq

4r2
can be omitted. Without this additional term the general solution

becomes

?
rϕpr, tq “ f

ˆ

t ´
r

c0

˙

` g

ˆ

t `
r

c0

˙

,

ϕpr, tq “

f
´

t ´ r
c0

¯

?
r

`

g
´

t ` r
c0

¯

?
r

. (A.17)

By assuming the positive r direction as outward and omitting the inward travelling wave,
eq. (A.17) becomes

ϕpr, tq “

f
´

t ´ r
c0

¯

?
r

. (A.18)

Assuming that there is a velocity potential defined at r0 described by

ϕpr0, tq “ inputϕ ptq (A.19)
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one can obtain an expression for fptq as follows:

ϕpr0, tq “inputϕ ptq ,

ϕpr0, tq “
f
´

t ´ r0
c0

¯

?
r0

,

inputϕ ptq “
f
´

t ´ r0
c0

¯

?
r0

,

?
r0inputϕ ptq “f

ˆ

t ´
r0
c0

˙

,

f ptq “
?
r0 inputϕ

ˆ

t `
r0
c0

˙

. (A.20)

Substituting eq. (A.20) into eq. (A.18) results in

ϕpr, tq “

?
r0

?
r
inputϕ

ˆ

t ´
r ´ r0
c0

˙

. (A.21)

When the input is defined in pressure, i.e. inputpptq, one can apply eq. (A.9) which combined
with eq. (A.20) yields

ϕpr, tq “

?
r0

?
r

´1

ρ0

ż

8

inputp

ˆ

t ´
r ´ r0
c0

˙

dt. (A.22)

Again one can introduce a function Inputp which is defined as
Inputp

´

t ´ r´r0
c0

¯

“
ş

8

!

inputp

´

t ´ r´r0
c0

¯)

dt which has the following partial derivatives:

B

Bt
Inputp

ˆ

t ´
r ´ r0
c0

˙

“inputp

ˆ

t ´
r ´ r0
c0

˙

, (A.23)

B

Br
Inputp

ˆ

t ´
r ´ r0
c0

˙

“
´1

c0
inputp

ˆ

t ´
r ´ r0
c0

˙

. (A.24)

Applying eqs. (A.2) and (A.23) to eq. (A.22) yields the pressure

ppr, tq “ ´ ρ0
B

Bt
ϕpr, tq

“ ´ ρ0
B

Bt

„?
r0

?
r

´1

ρ0

ż

8

inputp

ˆ

t ´
r ´ r0
c0

˙

dt

ȷ

“
´ρ0
´ρ0

?
r0

?
r

B

Bt

„
ż

8

inputp

ˆ

t ´
r ´ r0
c0

˙

dt

ȷ

“

?
r0

?
r

B

Bt

„

Inputp

ˆ

t ´
r ´ r0
c0

˙ȷ

,

ppr, tq “

?
r0

?
r
inputp

ˆ

t ´
r ´ r0
c0

˙

. (A.25)

To obtain the velocity one can simplify eq. (A.1) to its one dimensional version

vr “
B

Br
ϕ (A.26)
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and apply it to eq. (A.22) as follows:

vrpr, tq “
B

Br
ϕ

“
B

Br

„?
r0

?
r

´1

ρ0

ż

8

inputp

ˆ

t ´
r ´ r0
c0

˙

dt

ȷ

“
´1

ρ0

B

Br

„?
r0

?
r

ż

8

inputp

ˆ

t ´
r ´ r0
c0

˙

dt

ȷ

“
´1

ρ0

?
r0

B

Br

»

–

Inputp

´

t ´ r´r0
c0

¯

?
r

fi

fl ,

B

Br

ˆ

N

D

˙

“

B
BrN

D
´

N B
BrD

D2
,

N “Inputp

ˆ

t ´
r ´ r0
c0

˙

,

D “
?
r,

vrpr, tq “
´1

ρ0

?
r0

»

–

B
BrInputp

´

t ´ r´r0
c0

¯

?
r

´

Inputp

´

t ´ r´r0
c0

¯

B
Br

?
r

?
r2

fi

fl .

By applying eq. (A.24) and rearranging terms one obtains

vrpr, tq “
´1

ρ0

?
r0

»

–

´1
c0
inputp

´

t ´ r´r0
c0

¯

?
r

´

Inputp

´

t ´ r´r0
c0

¯

1
2

?
r

?
r2

fi

fl

“
´1

ρ0

?
r0

»

–

´1

c0

inputp

´

t ´ r´r0
c0

¯

?
r

´
1

2
?
r

Inputp

´

t ´ r´r0
c0

¯

?
r2

´c0
´c0

fi

fl

“
´1

ρ0

?
r0

»

–

´1

c0

1
?
r
inputp

ˆ

t ´
r ´ r0
c0

˙

´
´1

c0

1
?
r

Inputp

´

t ´ r´r0
c0

¯

2r
p´c0q

fi

fl

“
´1

ρ0

´1

c0

1
?
r

?
r0

»

–inputp

ˆ

t ´
r ´ r0
c0

˙

´
Inputp

´

t ´ r´r0
c0

¯

2r
p´c0q

fi

fl ,

vrpr, tq “
1

ρ0c0

?
r0

?
r

„

inputp

ˆ

t ´
r ´ r0
c0

˙

`
c0
2r

Inputp

ˆ

t ´
r ´ r0
c0

˙ȷ

. (A.27)

By comparing eqs. (A.25) and (A.27) one may note that the impedance is no longer a con-
stant. This impedance is frequency dependent and can most easily be evaluated by con-
verting eqs. (A.25) and (A.27) to the frequency domain using the Laplace transform and
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calculating Z “
p
v . Doing so yields:

ppr, sq “

?
r0

?
r
e

´s
r´r0
c0 inputp psq ,

vrpr, sq “
1

ρ0c0

?
r0

?
r

„

e
´s

r´r0
c0 inputp psq `

c0
2r

e
´s

r´r0
c0

1

s
inputp psq

ȷ

“
1

ρ0c0

?
r0

?
r
e

´s
r´r0
c0 inputp psq

„

1 `
c0
2r

1

s

ȷ

“
1

ρ0c0

„

1 `
c0
2r

1

s

ȷ ?
r0

?
r
e

´s
r´r0
c0 inputp psq

“
1

ρ0c0

„

2rs ` c0
2rs

ȷ ?
r0

?
r
e

´s
r´r0
c0 inputp psq ,

ppr, sq

vrpr, sq
“

?
r0?
r
e

´s
r´r0
c0 inputp psq

1
ρ0c0

“

2rs`c0
2rs

‰

?
r0?
r
e

´s
r´r0
c0 inputp psq

“
1

1
ρ0c0

“

2rs`c0
2rs

‰ ,

Z “ρ0c0

„

2rs

2rs ` c0

ȷ

Z “Z0

„

2rs

2rs ` c0

ȷ

(A.28)

A description for periodic signals in the near field can be obtained using Bessel functions
[21], which results in the following expressions for the velocity potential, acoustic pressure,
acoustic particle velocity and impedance:

ϕ “
H

p2q

0 pkrq

kH
p2q

1 pkr0q
ejωt,

p “ ´ jωρ0ϕ “ ´jωρ0
H

p2q

0 pkrq

kH
p2q

1 pkr0q
ejωt,

vr “
B

Br
ϕ “

H
p2q

1 pkrq

H
p2q

1 pkr0q
ejωt,

Z “
p

vr
“ jρ0c0

H
p2q

0 pkrq

kH
p2q

1 pkrq
,

where k is the wavenumber, j is the imaginary unit and H
p2q

1 and H
p2q

0 are Hankel functions of
the second kind of orders one and zero respectively. In the far field formulation of equation
eq. (A.28) one can clearly see that if r is assumed to be very large, the relation between
acoustic pressure and acoustic particle velocity approaches that of the one-dimensional
plane wave. This is also true for the near field formulation [21].
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A.3 Spherical wave

Finally for the 1 dimensional spherical wave the second order differential equation is [21]

B2

Br2
ϕ `

2

r

B

Br
ϕ ´

1

c20

B2

Bt2
ϕ “ 0, (A.29)

which can conveniently be rewritten to

B2

Br2
prϕq ´

1

c20

B2

Bt2
prϕq “ 0. (A.30)

This has the general solution

?
rϕpr, tq “ f

ˆ

t ´
r

c0

˙

` g

ˆ

t `
r

c0

˙

,

ϕpr, tq “

f
´

t ´ r
c0

¯

r
`

g
´

t ` r
c0

¯

r
. (A.31)

Again the positive r direction is assumed to be the outward direction and the inward travelling
wave is omitted yielding:

ϕpr, tq “

f
´

t ´ r
c0

¯

r
. (A.32)

One can obtain an expression for using the same method as was used for the plane and
cylindrical waves, i.e.:

ϕpr0, tq “inputϕ ptq ,

ϕpr0, tq “

f
´

t ´ r0
c0

¯

r0
,

inputϕ ptq “

f
´

t ´ r0
c0

¯

r0
,

r0inputϕ ptq “f

ˆ

t ´
r0
c0

˙

,

f ptq “r0 inputϕ

ˆ

t `
r0
c0

˙

. (A.33)

Substituting eq. (A.33) into eq. (A.32) yields

ϕpr, tq “
r0inputϕ

´

t ´ r
c0

` r0
c0

¯

r
,

ϕpr, tq “
r0
r
inputϕ

ˆ

t ´
r ´ r0
c0

˙

. (A.34)

Assuming the provided signal is inputpptq and applying eq. (A.2) yields

ϕpr, tq “
r0
r

´1

ρ0

ż

8

inputp

ˆ

t ´
r ´ r0
c0

˙

dt. (A.35)
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By defining a function Inputp in the same manner as for the cylindrical wave one obtains
the same partial derivatives as those found in eqs. (A.23) and (A.24). The pressure can be
obtained by applying eqs. (A.23) and (A.26) to eq. (A.34) as follows:

ppr, tq “ ´ ρ0
B

Bt
ϕpr, tq

“ ´ ρ0
B

Bt

„

r0
r

´1

ρ0

ż

8

inputp

ˆ

t ´
r ´ r0
c0

˙

dt

ȷ

“
´ρ0
´ρ0

r0
r

B

Bt

„
ż

8

inputp

ˆ

t ´
r ´ r0
c0

˙

dt

ȷ

“
r0
r

B

Bt

„

Inputp

ˆ

t ´
r ´ r0
c0

˙ȷ

,

ppr, tq “
r0
r
inputp

ˆ

t ´
r ´ r0
c0

˙

. (A.36)
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The velocity can be obtained by applying eqs. (A.24) and (A.26) to eq. (A.34) as follows:

vrpr, tq “
B

Br
ϕ

“
B

Br

„

r0
r

´1

ρ0

ż

8

inputp

ˆ

t ´
r ´ r0
c0

˙

dt

ȷ

“
´1

ρ0

B

Br

„

r0
r

ż

8

inputp

ˆ

t ´
r ´ r0
c0

˙

dt

ȷ

“
´1

ρ0
r0

B

Br

»

–

Inputp

´

t ´ r´r0
c0

¯

r

fi

fl ,

B

Br

ˆ

N

D

˙

“

B
BrN

D
´

N B
BrD

D2
,

N “Inputp

ˆ

t ´
r ´ r0
c0

˙

,

D “r,

vrpr, tq “
´1

ρ0
r0

»

–

B
BrInputp

´

t ´ r´r0
c0

¯

r
´

Inputp

´

t ´ r´r0
c0

¯

B
Brr

r2

fi

fl ,

vrpr, tq “
´1

ρ0
r0

»

–

´1
c0
inputp

´

t ´ r´r0
c0

¯

r
´

Inputp

´

t ´ r´r0
c0

¯

r2

fi

fl

“
´1

ρ0
r0

»

–

´1

c0

inputp

´

t ´ r´r0
c0

¯

r
´

Inputp

´

t ´ r´r0
c0

¯

r2
´c0
´c0

fi

fl

“
´1

ρ0
r0

»

–

´1

c0

1

r
inputp

ˆ

t ´
r ´ r0
c0

˙

´
1

r

´1

c0

Inputp

´

t ´ r´r0
c0

¯

r
p´c0q

fi

fl

“
´1

ρ0
r0

´1

c0

1

r

»

–inputp

ˆ

t ´
r ´ r0
c0

˙

´

Inputp

´

t ´ r´r0
c0

¯

r
p´c0q

fi

fl ,

vrpr, tq “
1

ρ0c0

r0
r

„

inputp

ˆ

t ´
r ´ r0
c0

˙

`
c0
r
Inputp

ˆ

t ´
r ´ r0
c0

˙ȷ

. (A.37)

One may observe similar behavior for the spherical wave as was observed for the cylindrical
wave. A frequency description of the impedance for spherical waves can be obtained in the
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same manner as was done for the two dimensional case, i.e.:

ppr, sq “
r0
r
e

´s
r´r0
c0 inputp psq ,

vrpr, sq “
1

ρ0c0

r0
r

„

e
´s

r´r0
c0 inputp psq `

c0
r
e

´s
r´r0
c0

1

s
inputp psq

ȷ

“
1

ρ0c0

r0
r
e

´s
r´r0
c0 inputp psq

„

1 `
c0
r

1

s

ȷ

“
1

ρ0c0

„

1 `
c0
r

1

s

ȷ

r0
r
e

´s
r´r0
c0 inputp psq

“
1

ρ0c0

„

rs ` c0
rs

ȷ

r0
r
e

´s
r´r0
c0 inputp psq ,

ppr, sq

vrpr, sq
“

r0
r e

´s
r´r0
c0 inputp psq

1
ρ0c0

“

rs`c0
rs

‰

r0
r e

´s
r´r0
c0 inputp psq

“
1

1
ρ0c0

“

rs`c0
rs

‰ ,

Z0 “ρ0c0

„

rs

rs ` c0

ȷ
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Appendix B

Green’s state time domain
representation derivations

In order to implement the IBCs one must extrapolate the velocity at the boundary on Semt

from a recording surface at Srec. This can be done using equation eq. (3.24), although it can
also be written in its time convolution form as

vfull ipx
emt, tq “

¿

Srec

rGv,q
i pxR,x, tqs ˚ vfull,mpx, tq ` Gv,f

i,mpxR,x, tqs ˚ pfullpx, tqsnmdS. (B.1)

In order to implement eq. (3.24) or eq. (B.1) one requires the time domain representations
of the Green’s states, where the frequency domain Green’s states in an unbounded homo-
geneous medium are, according to Fokkema and van den Berg [27],

Ĝp,qpxR,x, sq “sρĜpxR ´ x, sq, (B.2)

Ĝv,q
k pxR,x, sq “ ´ BR

k ĜpxR ´ x, sq, (B.3)

Ĝp,f
l pxR,x, sq “ ´ BR

l ĜpxR ´ x, sq, (B.4)

Ĝv,f
l,k pxR,x, sq “

1

sρ

”

BR
l BR

k ĜpxR ´ x, sq ` δpxR ´ xqδl,k

ı

. (B.5)

Here BR
l is the spatial partial derivative with respect to position xR in the l direction, δl,k is

the Kronecker delta, δpxR ´ xq is the dirac delta function and Ĝpx, sq is the frequency do-
main Green’s function corresponding to the specific domain, ie. one dimensional space, two
dimensional space or three dimesnional space. Do note that for consistency the notation of
de Hoop [28] is used for the Green’s states.

The full derivation of the time domain representation of eqs. (B.2), (B.3) and (B.5) will be
presented here. Time domain representation of eq. (B.4) is not presented here as it is not
used in any of the calculations and can be obtained from the time domain representation of
eq. (B.3).
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Before the specific derivations are treated it is useful to first treat the spatial derivative
BR
k |xR ´ x|, as this term will feature prominently. First one may note that |xR ´ x| can

be written as
|xR ´ x| “

b

pxRi ´ xiqpxRi ´ xiq.

Following the work of Berkhoff [37], one can write its spatial derivative in the k direction w.r.t.
xR as

BR
k |xR ´ x| “BR

k

b

pxRi ´ xiqpxRi ´ xiq

“BR
k

`

xRi x
R
i ´ 2xRi xi ` xixi

˘

1
2

“
1

2

`

xRi x
R
i ´ 2xRi xi ` xixi

˘´ 1
2

` BR
k

`

xRi x
R
i ´ 2xRi xi ` xixi

˘

“
1

2

`

xRi x
R
i ´ 2xRi xi ` xixi

˘´ 1
2

`
`

2xRk ´ 2xk
˘

“
2xRk ´ 2xk

2
`

xRi x
R
i ´ 2xRi xi ` xixi

˘
1
2

“
xRk ´ xk

b

pxRi ´ xiqpxRi ´ xiq
,

BR
k |xR ´ x| “

xRk ´ xk
|xR ´ x|

. (B.6)

B.1 One-dimensional Green’s states

For the one dimensional derivations the frequency domain Green’s function for one dimen-
sional waves from an impulsive source [29] is the starting point:

Ĝpx, sq “
c

2

1

s
expp´s

|x|

c
q. (B.7)

Here it is assumed that wave propagates along the x or x1 direction, i.e. x{|x| “ r1 0 0sT .
Starting with Ĝp,qpxR,x, sq:

Ĝp,qpxR,x, sq “sρĜpxR ´ x, sq

“sρ
c

2s
expp´s

|xR ´ x|

c
q

“
1

2
ρc

s

s
expp´s

|xR ´ x|

c
q,

Ĝp,qpxR,x, sq “
1

2
ρc expp´s

|xR ´ x|

c
q. (B.8)

The time domain equation can be obtained by applying the inverse Laplace transform

Gp,qpxR,x, tq “ L´1

"

1

2
ρc expp´s

|xR ´ x|

c
q ˚ 1

*

(B.9)
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Although this equation can be converted to the time domain by taking the inverse Laplace
transform directly, one can also obtain the inverse by means of inspection. The relevant
terms that need to be converted are:

• The exponential term that corresponds to a time shift of a function according to L tfpt ´ τqu “

expp´τsqfpsq, i.e. fpt ´ τq “ L´1 texpp´τsqfpsqu.

• The constant that takes the place of fpsq corresponds to L tδptqu “ 1 where δptq is the
Dirac delta, i.e. δptq “ L´1 t1u.

Combining these two observations and applying them results in the time domain Green’s
state

Gp,qpxR,x, tq “
1

2
ρc δ

ˆ

t ´
|xR ´ x|

c

˙

. (B.10)

Moving on to Ĝv,q
k pxR,x, sq:

Ĝv,q
k pxR,x, sq “ ´ BR

k ĜpxR ´ x, sq

“ ´ BR
k

c

2s
expp´s

|xR ´ x|

c
q

“ ´
c

2s
BR
k expp´s

|xR ´ x|

c
q

“ ´
c

2s
expp´s

|xR ´ x|

c
qBR

k

´s

c
|xR ´ x|

“ ´
c

2s
expp´s

|xR ´ x|

c
q
´s

c
BR
k |xR ´ x|,

Ĝv,q
k pxR,x, sq “

1

2
expp´s

|xR ´ x|

c
qBR

k |xR ´ x|. (B.11)

The remaining partial derivative has been derived earlier, however a further simplification
can be made for the entire equation. As the wave only propagates in the x1 direction, one
can either set k “ 1 or omit it altogether. Doing the latter results in the following equation:

Ĝv,qpxR,x, sq “
1

2
exp

ˆ

´s
|xR ´ x|

c

˙

xR ´ x

|xR ´ x|
,

Ĝv,qpxR,x, sq “
1

2

xR ´ x

|xR ´ x|
exp

ˆ

´s
|xR ´ x|

c

˙

. (B.12)

The time domain can again be converted either by directly applying the inverse Laplace
transform or by means of inspection. In either case the Laplace transform only affects the
temporal parameters so all the other terms can be moved:

L´1
!

Ĝv,qpxR,x, sq

)

“L´1

"

1

2

xR ´ x

|xR ´ x|
exp

ˆ

´s
|xR ´ x|

c

˙*

“
1

2
L´1

"

xR ´ x

|xR ´ x|
exp

ˆ

´s
|xR ´ x|

c

˙*

,

L´1
!

Ĝv,qpxR,x, sq

)

“
1

2

xR ´ x

|xR ´ x|
L´1

"

exp

ˆ

´s
|xR ´ x|

c

˙

˚ 1

*
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The remaining term that needs to be converted is the same as the one of previous Green’s
state and applying the results obtained for the previous Green’s state here yields

Ĝv,qpxR,x, tq “
1

2

xR ´ x

|xR ´ x|
δ

ˆ

t ´
|xR ´ x|

c

˙

. (B.13)

Finishing with the remaining Green’s state required for extrapolation, Gv,f
l,k pxR,x, tq, substi-

tuting eq. (4.2) into eq. (4.4) yields:

Ĝv,f
l,k pxR,x, sq “

1

sρ

”

BR
l BR

k ĜpxR ´ x, sq ` δpxR ´ xqδl,k

ı

This time it is more convenient to immediately simplify the equation by omitting k and l as
both will be 1. Additionally one can also omit the δpxR ´ xqδl,k term as it will be zero when
xR ‰ x, which is the case here. Doing so yields the much simpler equation

Ĝv,f pxR,x, sq “
1

sρ
BRBRĜpxR ´ x, sq.

The first partial derivative has been calculated for the previous Green’s state and can be
substituted into the previous equation, i.e.

Ĝv,f pxR,x, sq “
1

sρ
BR

„

´
1

2

xR ´ x

|xR ´ x|
exp

ˆ

´s
|xR ´ x|

c

˙ȷ

“
´1

2ρs
BR

„

xR ´ x

|xR ´ x|
exp

ˆ

´s
|xR ´ x|

c

˙ȷ

.

The remaining partial derivative can be derived as follows:

BRpF Sq “SBRF ` FBRS,

S “exp

ˆ

´s
|xR ´ x|

c

˙

,

F “
N

D
,

N “xR ´ x,

D “|xR ´ x| “

b

pxR ´ xq2,
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BRF “BRN

D
“

DBRN ´ NBRD

D2
“

BRN

D
´

NBRD

D2
,

BRF “
1

|xR ´ x|
´

pxR ´ xq

1

pxR ´ xq

|xR ´ x|

1

|xR ´ x|2

“
1

|xR ´ x|
´

pxR ´ xq2

|xR ´ x|3
,

pxR ´ xq2 “|xR ´ x|2,

BRF “
1

|xR ´ x|
´

|xR ´ x|2

|xR ´ x|3

“
1

|xR ´ x|
´

1

|xR ´ x|
“ 0,

BRpF Sq “0 ` FBRS

“
xR ´ x

|xR ´ x|
exp

ˆ

´s
|xR ´ x|

c

˙

´s

c

xR ´ x

|xR ´ x|

“
pxR ´ xq2

|xR ´ x|2

´s

c
exp

ˆ

´s
|xR ´ x|

c

˙

“
|xR ´ x|2

|xR ´ x|2

´s

c
exp

ˆ

´s
|xR ´ x|

c

˙

,

BRpF Sq “
´s

c
exp

ˆ

´s
|xR ´ x|

c

˙

.

Substituting into the remaining equation yields:

Ĝv,f pxR,x, tq “
´1

2ρs

„

´s

c
exp

ˆ

´s
|xR ´ x|

c

˙ȷ

“
1

2ρc
exp

ˆ

´s
|xR ´ x|

c

˙

.

This can be converted to the time domain by using the same steps as before due to the
linearity of the Laplace transform (and its inverse). Doing so yields:

Gv,f pxR,x, tq “
1

2

1

ρc
δ

ˆ

t ´
|xR ´ x|

c

˙

. (B.14)

One may note that the derived Green’s states can also be derived by first applying the
inverse Laplace transform to eq. (B.7) to obtain

Gpx, tq “ L´1
!

Ĝpx, sq

)

“
c

2
Hpt ´

|x|

c
q, (B.15)

where Hptq is the Heaviside step function defined as Hptq “ t0, 1u for tt ă 0, t ą 0u.
Applying the time domain equivalent operations of eqs. (B.2), (B.3) and (B.5) to eq. (B.15)
yields eqs. (B.10), (B.13) and (B.14) respectively.
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B.2 Two-dimensional Green’s states

Following the same procedure used for the one dimensional Green’s states, the starting point
for the two dimensional case is the Green’s function for cylindrical waves from an impulsive
source [29]:

Ĝpx, sq “ ´
1

2π
K0ps

|x|

c
q, (B.16)

where K0psq is the zeroth order modified Bessel function of the second kind.

Starting with the derivation of Gp,q, filling in eq. (B.16) into eq. (B.2) results in:

Ĝp,qpxR,x, sq “ ´ρsK0

ˆ

s
|xR ´ x|

c

˙

. (B.17)

The inverse Laplace transform would then be obtained from

L´1
!

Ĝp,qpxR,x, sq

)

“ ´ ρL´1

"

sK0

ˆ

s
|xR ´ x|

c

˙*

“ ´ ρ
B

Bt
L´1

"

K0

ˆ

s
|xR ´ x|

c

˙*

.

The inverse Laplace transform of K0

´

s |xR´x|

c

¯

can be found in Bateman’s Tables of Integral
Transforms [38] and is found to be

L´1

"

K0

ˆ

s
|xR ´ x|

c

˙*

“

H
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2
,

where Hptq is the Heaviside step function. The partial derivative with respect to time can be
calculated as follows:

B

Bt

H
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2
“

B

Bt

N

D

“

B
BtN

D
´

N B
BtD

D2
,

B

Bt
N “δ

ˆ

t ´
|xR ´ x|

c

˙

,

B

Bt
D “

t
c

t2 ´

´

|xR´x|

c

¯2
,

B

Bt

H
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2
“

δ
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2
´

H
´

t ´
|xR´x|

c

¯

t
c

t2 ´

´

|xR´x|

c

¯2
3 .

Combining these results yields the time domain Green’s state

Gp,qpxR,x, tq “ ´ρ
δ
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2
` ρ

H
´

t ´
|xR´x|

c

¯

t
c

t2 ´

´

|xR´x|

c

¯2
3 (B.18)
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Moving on to Gv,q
k , substitution of eq. (B.16) into eq. (B.3) yields

Ĝv,q
k pxR,x, sq “ ´ BR

k

ˆ

´
1

2π
K0ps

|xR ´ x|

c
q

˙

,

Ĝv,q
k pxR,x, sq “

1

2π
BR
k

ˆ

K0ps
|xR ´ x|

c
q

˙

. (B.19)

Regarding the derivatives of Bessel functions are obtained using the following equations:

d
dxJ0pxq “ ´J1pxq, d

dxJnpxq “ `1
2 pJn´1pxq ´ Jn`1pxqq ,

d
dxY0pxq “ ´Y1pxq, d

dxYnpxq “ `1
2 pYn´1pxq ´ Yn`1pxqq ,

d
dxI0pxq “ `I1pxq, d

dxInpxq “ `1
2 pIn´1pxq ` In`1pxqq ,

d
dxK0pxq “ ´K1pxq, d

dxKnpxq “ ´1
2 pKn´1pxq ` Kn`1pxqq ,

where Jn is the Bessel function of the first kind of order n, Yn is the Bessel function of the
second kind of order n and In is the modified Bessel function of the first kind of order n.

Applying the relevant differential equation and the chain rule to eq. (B.19) yields

Ĝv,q
k pxR,x, sq “

1

2π

ˆ

´K1

ˆ

s
|xR ´ x|

c

˙

s

c

xRk ´ xk
|xR ´ x|

˙

“ ´
1

2πc

xRk ´ xk
|xR ´ x|

sK1

ˆ

s
|xR ´ x|

c

˙

The inverse Laplace transform of K1

´

s |xR´x|

c

¯

is also found in Bateman’s Tables of Integral
Transforms [38] and is found to be

L´1

"

K1

ˆ

s
|xR ´ x|

c

˙*

“

H
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2

t
|xR´x|

c

.

The time domain representation of Ĝv,q
k pxR,x, sq will then become

Gv,q
k pxR,x, tq “ ´

1

2πc

xRk ´ xk
|xR ´ x|

B

Bt

¨

˚

˚

˝

H
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2

t
|xR´x|

c

˛

‹

‹

‚

“ ´
1

2π

xRk ´ xk
|xR ´ x|2

B

Bt

¨

˚

˚

˝

H
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2
t

˛

‹

‹

‚

.

Resolving the partial derivative with respect to time in the same manner as before yields

Gv,q
k pxR,x, tq “ ´

1

2π

xRk ´ xk
|xR ´ x|2

¨

˚

˚

˚

˝

δ
´

t ´
|xR´x|

c

¯

t
c

t2 ´

´

|xR´x|

c

¯2
`

H
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2
´

H
´

t ´
|xR´x|

c

¯

t2

c

t2 ´

´

|xR´x|

c

¯2
3

˛

‹

‹

‹

‚

(B.20)
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Moving on to the last remaining Green’s state, the previously obtained frequency domain
Green’s state is used as a starting point, similar to the one dimensional derivation. Doing so
gives the following starting point

Ĝv,f
l,k pxR,x, sq “

1

sρ
BR
l

„

1

2πc

xRk ´ xk
|xR ´ x|

sK1

ˆ

s
|xR ´ x|

c

˙ȷ

“
1

sρ

1

2πc
sBR

l

„

xRk ´ xk
|xR ´ x|

K1

ˆ

s
|xR ´ x|

c

˙ȷ

“
1

2πρc
BR
l

„

xRk ´ xk
|xR ´ x|

K1

ˆ

s
|xR ´ x|

c

˙ȷ

.

Using the relations for the derivatives of the modified Bessel functions combined with the
chain rule, quotient rule and product rule results in the frequency domain greens state

Ĝv,f
l,k pxR,x, sq “

1

2πρc

«

K1 psT0q

|xR ´ x|
´

pxRk ´ xkqpxRl ´ xlq

|xR ´ x|3
K1 psT0q

`
pxRk ´ xkqpxRl ´ xlq

|xR ´ x|2

s

c

ˆ

´
1

2
K0psT0q ´

1

2
K2psT0q

˙

ff

“
1

2πρc

K1 psT0q

|xR ´ x|

´
1

2πρc

pxRk ´ xkqpxRl ´ xlq

|xR ´ x|3
K1 psT0q

´
1

4πρc2
pxRk ´ xkqpxRl ´ xlq

|xR ´ x|2
sK0psT0q

´
1

4πρc2
pxRk ´ xkqpxRl ´ xlq

|xR ´ x|2
sK2psT0q,

where T0 “
|xR´x|

c . The time domain representation can then be obtained by resolving

L´1
!

Ĝv,f
l,k pxR,x, sq

)

“
1

2πρc

1

|xR ´ x|
L´1 tK1 psT0qu

´
1

2πρc

pxRk ´ xkqpxRl ´ xlq

|xR ´ x|3
L´1 tK1 psT0qu

´
1

4πρc2
pxRk ´ xkqpxRl ´ xlq

|xR ´ x|2
L´1 tsK0psT0qu

´
1

4πρc2
pxRk ´ xkqpxRl ´ xlq

|xR ´ x|2
L´1 tsK2psT0qu

The inverse Laplace transform of K1 psT0q and K0psT0q have already been presented earlier
and the inverse Laplace transform of K2psT0q can be obtained from Bateman’s Tables of
Integral Transforms [38]:

L´1

"

Kn

ˆ

s
|xR ´ x|

c

˙*

“
H

´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2
cosh

˜

n cosh´1

˜

t
|xR´x|

c

¸¸

.
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Applying these inverse Laplace transforms yields:

Gv,f
l,k “

1

2πρc

1

|xR ´ x|

$

’

’

&

’

’

%

H
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2

t
|xR´x|

c

,

/

/

.

/

/

-

´
1

2πρc

pxRk ´ xkqpxRl ´ xlq

|xR ´ x|3

$

’

’

&

’

’

%

H
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2

t
|xR´x|

c

,

/

/

.

/

/

-

´
1

4πρc2
pxRk ´ xkqpxRl ´ xlq

|xR ´ x|2

B

Bt

$

’

’

&

’

’

%

H
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2

,

/

/

.

/

/

-

´
1

4πρc2
pxRk ´ xkqpxRl ´ xlq

|xR ´ x|2

B

Bt

$

’

’

&

’

’

%

H
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2
cosh

˜

2 cosh´1

˜

t
|xR´x|

c

¸¸

,

/

/

.

/

/

-

Resolving the partial derivatives with respect to time yields:

Gv,f
l,k “

1

2πρc

1

|xR ´ x|

$

’

’

&

’

’

%

H
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2

t
|xR´x|

c

,

/

/

.

/

/

-

´
1

2πρc

pxRk ´ xkqpxRl ´ xlq

|xR ´ x|3

$

’

’

&

’

’

%

H
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2

t
|xR´x|

c

,

/

/

.

/

/

-

´
1

4πρc2
pxRk ´ xkqpxRl ´ xlq

|xR ´ x|2

$

’

’

’

&

’

’

’

%

δ
´

t ´
|xR´x|

c

¯

c

t2 ´

´

|xR´x|

c

¯2
´

H
´

t ´
|xR´x|

c

¯

t
c

t2 ´

´

|xR´x|

c

¯2
3

,

/

/

/

.

/

/

/

-

´
1

4πρc2
pxRk ´ xkqpxRl ´ xlq

|xR ´ x|2

$

’

’

&

’

’

%

σ1
σ2

δ pt ´ T0q ´
σ1t

σ3
2

H pt ´ T0q `
2 sinh

´

2 cosh´1
´

t
T0

¯¯

H pt ´ T0q

T0σ2

b

t
T0

´ 1
b

t
T0

` 1

,

.

-

, (B.21)

σ1 “cosh
ˆ

2 cosh´1

ˆ

t

T0

˙˙

, σ2 “

b

t2 ´ T 2
0 , T0 “

|xR ´ x|

c
.
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B.3 Three-dimensional Green’s states

For the 3D case the Green’s function is the following well known equation:

Ĝpx, sq “
expp´s |x|

c q

4π|x|
. (B.22)

Starting with eq. (B.2), filling in eq. (B.22) yields:

Ĝp,qpxR,x, sq “ρs

˜

expp´s |xR´x|

c q

4π|xR ´ x|

¸

. (B.23)

The time domain version of this equation obtained by means of inspection similar, which
yields

Gp,qpxR,x, tq “ ρ

B
Bt

”

δ
´

t ´
|xR´x|

c

¯ı

4π|xR ´ x|
. (B.24)

Moving on to derive Gv,q
k , substitution of eq. (B.22) into eq. (B.3) yields

Ĝv,q
k pxR,x, sq “ ´ BR

k

˜

expp´s |xR´x|

c q

4π|xR ´ x|

¸

. (B.25)

The spatial derivatives of the numerator and denominator are respectively

BR
k

ˆ

expp´s
|xR ´ x|

c
q

˙

“
´s

c

xRk ´ xk
|xR ´ x|

expp´s
|xR ´ x|

c
q,

BR
k

`

4π|xR ´ x|
˘

“4π
xRk ´ xk
|xR ´ x|

.

Using the quotient rule with these derivatives in eq. (B.25) yields the frequency domain
result:

Ĝv,q
k pxR,x, sq “ ´

ˆ ´s
c

xR
k ´xk

|xR´x|
expp´s |xR´x|

c q

4π|xR ´ x|
´ expp´s

|xR ´ x|

c
q
4πpxRk ´ xkq

|xR ´ x|

1

42π2|xR ´ x|2

˙

“ ´

ˆ

´s

4πc

xRk ´ xk
|xR ´ x|2

expp´s
|xR ´ x|

c
q ´

1

4π

xRk ´ xk
|xR ´ x|3

expp´s
|xR ´ x|

c
q

˙

,

Ĝv,q
k pxR,x, sq “

s

4πc

xRk ´ xk
|xR ´ x|2

expp´s
|xR ´ x|

c
q `

1

4π

xRk ´ xk
|xR ´ x|3

expp´s
|xR ´ x|

c
q. (B.26)

Converting to the time domain by means of inspection yields the following equation:

Gv,q
k pxR,x, tq “

1

4πc

xRk ´ xk
|xR ´ x|2

B

Bt
δpt ´

|xR ´ x|

c
q `

1

4π

xRk ´ xk
|xR ´ x|3

δpt ´
|xR ´ x|

c
q. (B.27)

The remaining Green’s state can also be derived using the same method, starting with

Ĝv,f
l,k pxR,x, sq “

1

sρ

«

BR
l BR

k

˜

expp´s |xR´x|

c q

4π|xR ´ x|

¸ff

.
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Filling in the partial spatial derivative BR
k calculated for eq. (B.27) yields

Ĝv,f
l,k pxR,x, sq “

1

sρ
BR
l

„

´s

4πc

xRk ´ xk
|xR ´ x|2

expp´s
|xR ´ x|

c
q ´

1

4π

xRk ´ xk
|xR ´ x|3

expp´s
|xR ´ x|

c
q

ȷ

.

Using the same approach that was used to obtain eq. (B.27) will result in the following
derivation:

Ĝv,f
l,k pxR,x, sq “

1

sρ

„

´s

4πc
BR
l

ˆ

xRk ´ xk
|xR ´ x|2

expp´s
|xR ´ x|

c
q

˙

´
1

4π
BR
l

ˆ

xRk ´ xk
|xR ´ x|3

expp´s
|xR ´ x|

c
q

˙ȷ

“
´1

4πρc
BR
l

ˆ

xRk ´ xk
|xR ´ x|2

expp´s
|xR ´ x|

c
q

˙

´
1

4πρs
BR
l

ˆ

xRk ´ xk
|xR ´ x|3

expp´s
|xR ´ x|

c
q

˙

.

The following spatial partial derivatives assist in writing out the required spatial partial deriva-
tives.

BR
l

`

xRk ´ xk
˘

“1,

BR
l |xR ´ x|2 “2|xR ´ x|

xRl ´ xl
|xR ´ x|

“ 2pxRl ´ xlq,

BR
l |xR ´ x|3 “3|xR ´ x|2

xRl ´ xl
|xR ´ x|

“ 3pxRl ´ xlq|xR ´ x|.

Applying the product and quotient rules yields the following:

BR
l

ˆ

xRk ´ xk
|xR ´ x|2

expp´s
|xR ´ x|

c
q

˙

“
expp´s |xR´x|

c q

|xR ´ x|2
´ 2

pxRk ´ xkqpxRl ´ xlq

|xR ´ x|4
expp´s

|xR ´ x|

c
q

´
s

c

pxRk ´ xkqpxRl ´ xlq

|xR ´ x|3
expp´s

|xR ´ x|

c
q

BR
l

ˆ

xRk ´ xk
|xR ´ x|3

expp´s
|xR ´ x|

c
q

˙

“
expp´s |xR´x|

c q

|xR ´ x|3
´ 3

pxRk ´ xkqpxRl ´ xlq

|xR ´ x|5
expp´s

|xR ´ x|

c
q

´
s

c

pxRk ´ xkqpxRl ´ xlq

|xR ´ x|4
expp´s

|xR ´ x|

c
q
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Substitution of these partial derivatives into Ĝv,f
l,k yields:

Ĝv,f
l,k pxR,x, sq “ ´

1

4πρc

˜

expp´s |xR´x|

c q

|xR ´ x|2
´ 2
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c
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c
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c q
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|xR ´ x|

c
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|xR ´ x|4
expp´s

|xR ´ x|

c
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4πρc|xR ´ x|2
` 2

pxRk ´ xkqpxRl ´ xlq

4πρc|xR ´ x|4
expp´s

|xR ´ x|

c
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c
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s
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c q
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1

s

pxRk ´ xkqpxRl ´ xlq
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|xR ´ x|

c
q

`
s

c

1

s

pxRk ´ xkqpxRl ´ xlq

4πρ|xR ´ x|4
expp´s

|xR ´ x|

c
q.

Rearranging terms yields the following expression for the frequency domain Green’s state:

Ĝv,f
l,k pxR,x, sq “

ˆ

1

4πρc2
pxRk ´ xkqpxRl ´ xlq

|xR ´ x|3

˙

s expp´s
|xR ´ x|

c
q
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ˆ

´
1

4πρc|xR ´ x|2
` 3

pxRk ´ xkqpxRl ´ xlq

4πρc|xR ´ x|4

˙

expp´s
|xR ´ x|

c
q

`

ˆ
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1

4πρ|xR ´ x|3
` 3

pxRk ´ xkqpxRl ´ xlq

4πρ|xR ´ x|5

˙

1

s
expp´s

|xR ´ x|

c
q

Conversion to the time domain is done by means of inspection and yields

Gv,f
l,k pxR,x, tq “

ˆ

1

4πρc2
pxRk ´ xkqpxRl ´ xlq

|xR ´ x|3

˙

B

Bt
δpt ´

|xR ´ x|

c
q

`

ˆ

´
1

4πρc|xR ´ x|2
` 3

pxRk ´ xkqpxRl ´ xlq

4πρc|xR ´ x|4

˙

δpt ´
|xR ´ x|

c
q

`

ˆ

´
1

4πρ|xR ´ x|3
` 3

pxRk ´ xkqpxRl ´ xlq

4πρ|xR ´ x|5

˙
ż

δpt ´
|xR ´ x|

c
qdt, (B.28)

where
ş

δpt ´
|xR´x|

c qdt can be replaced by the Heaviside step function.
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