
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EXTRACTION OF FOREST 
STRUCTURAL ATTRIBUTES AS 
INDICATORS OF LANDSLIDE-
INDUCED DISTURBANCE USING 
LIDAR DATA  

AMEYA GODE  
FEBRUARY, 2012 

SUPERVISORS: 
Dr. H.A.M.J. van Gils 
Dr. M.W. Straatsma 



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thesis submitted to the Faculty of Geo-Information Science and Earth 
Observation of the University of Twente in partial fulfilment of the 
requirements for the degree of Master of Science in Geo-information Science 
and Earth Observation. 
Specialization: [Natural Resources Management] 
 
 
 
SUPERVISORS: 
Dr. H.A.M.J. van Gils 
Dr. M.W. Straatsma 
 
 
THESIS ASSESSMENT BOARD: 
Dr. Y. A.  Hussin (chair) 
Dr. M. Gerke (external examiner, ITC) 
 
 
 
  

EXTRACTION OF FOREST 
STRUCTURAL ATTRIBUTES AS 
INDICATORS OF LANDSLIDE-
INDUCED DISTURBANCE USING 
LIDAR DATA  

AMEYA GODE 

Enschede, The Netherlands, February 2012 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCLAIMER 
This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and 
Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the 
author, and do not necessarily represent those of the Faculty. 
 



i 

ABSTRACT 

Europe’s forests were hit hard by storms in 1990 and 1999, which caused 120 and 180 million m3 of 
damage respectively .Since forests are important in the context of carbon sequestration and biodiversity 
conservation, this triggered off a series of studies of forest disturbances/damage. Natural Resource 
scientists are researching many of these disturbance factors in order to understand them better and to 
develop control or mitigation methods. One of these natural disturbance factors is landslide activity. This 
study focuses on the effect of such slow moving translational, rotational and earth flow processes on 
forest in the Bois Noir landslide in the Alpes de Haute province of France.  Previous researches in this 
area to study landslides under forests have been done with different methods like dendrogeomorphology 
and climate data analysis. This study makes use of high resolution airborne LiDAR data (with a mean 
point density of 180 points per m2.). Since LiDAR has long proven to be the best known remote sensing 
application for studying forest structure, this study was also aimed at assessing the applicability and 
accuracy of using LiDAR data. 
 
The prime focus of this study was to extract various forest structural attributes from the LiDAR point 
cloud and compare these attributes between ‘stable’ and ‘unstable ‘zones. From previous research and 
ecological knowledge, it was decided that the following structural attributes are to be taken into 
consideration while doing analysis: Tree Height, Diameter at Breast Height (DBH), tree inclination and 
orientation and canopy gaps.  
 
The LiDAR point cloud was subjected to normalisation and gridding to form a canopy height model 
(CHM), which was used for most of the analysis. A region growing approach in ECognition was then used 
to segment tree crowns and canopy gaps. Also, any human induced features, edaphic features and 
‘obvious’ areas where landslide had caused massive tree fall were excluded from analysis. This approach 
gave a ‘gap map’ of the area and also information about tree heights and tree density, which was then 
subjected to statistical analysis. 
 
To validate the LiDAR data and assess its accuracy, field data was collected in the month of September 
2011. From the analysis, it was found that tree heights can be estimated with an R2 value of 0.72. The gap 
detection accuracy was 81%, in a canopy height model of 15cm grid size. Furthermore, it was proven that 
statistically there is a significant difference in the distributions of canopy gap area, gap shape and tree 
heights between stable and unstable zones. Thus, these can be considered as indicators of landslide 
activity, but it also needs some multi-temporal analysis to study the dynamics of these structural attributes. 
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1. INTRODUCTION 

1.1. Forests in today’s world: 
On the world environment day (5th of June) 2011, the head of the United Nations Environment Program 
(UNEP), Achim Steiner stated that “In fact we have learned through the understanding of the impacts of climate 
change, the loss of eco-system services, the prospects of water shortages, the impact of environmental disasters that our 
dependence on nature, on a healthy and functioning set of eco-systems remains critical to human well being, to the well being of 
our economy and indeed to the prospects of being able to sustain and feed and provide with the basic needs an ever growing 
population.” 
 
At about the time humankind discovered agriculture, there were approximately 6.2 billion hectares of 
forests covering the earth. Presently, approximately 4.0 billion hectares remain. Thus one third of the 
world’s forests have already been lost. Much has been said about the advantages of forests and their 
vitality in maintaining the world climate stability.  
 
Although most of the forest damage is anthropological, the damages caused to forests by natural hazards 
cannot be overlooked. Also, many of the causal agents of natural disasters are due to a direct or indirect 
effect of human beings. 
 
Europe’s forests were hit hard by storms in 1990 and 1999, which caused 120 and 180 million m3 of 
damage respectively (UNECE/FAO2000b). Since forests are important in the context of carbon 
sequestration and biodiversity conservation, this triggered off a series of studies of forest 
disturbances/damage. Storms, wild fires, insects, biological invasions and landslides were established to be 
some of the major factors causing forest damage. These can be on a continental scale or a regional to local 
scale. Also the total forest area and total stand volume in Europe has increased during the last century 
(Holmsgard 1982, UN-ECE/ FAO 2000c), which can also be perceived as a greater resource vulnerable to 
damage. 
 
Thus, it becomes quintessential to detect disturbances in forest ecosystem, especially in areas which are 
prone to natural hazards. However, accessibility and costs of fieldwork also remain an issue of concern. 
Remote sensing techniques have been applied by many researchers to analyze these disturbances(Thomas 
et al., 2011) However, the applicability of using low to medium resolution satellite data is limited, 
especially for detecting growth anomalies and understory vegetation. (Hais, Jonásová, Langhammer, & 
Kucera, 2009) 
 
Management of forest ecosystems to sustain desired benefits requires knowledge of how forests change 
over time in response to natural disturbances and management activities. Disturbances include both 
stresses and destructive agents; these include invasive species (diseases as well as plant and animal pests); 
fire; changes in climate and serious weather events such as hurricanes and ice storms; pollution of the air, 
water, and soil; real estate development of forest lands; and timber harvest. Some of these are caused by 
humans, in part or entirely, others are not. Some problems may not be obvious, others are painfully so—
such as when gypsy moth populations are so large that when GM frass (excrement) falls, it can be heard. 
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Many of these changes can seriously affect the ability of particular fish and wildlife to inhabit wildland 
ecosystems. Natural Resource scientists are researching many of these disturbance factors in order to 
understand them better and to develop control or mitigation methods. 

1.2. Landslides and forest disturbances: 
 
The term “landslide” describes many types of downhill earth movements ranging from rapidly moving 
catastrophic rock avalanches and debris flows in mountainous regions to more slowly moving earth slides 
(www.redcross.org). Landslides can be slowly moving, or can be a sudden event, rapidly destroying the 
features in its path. Gravity is the prime driving force for the landslide once the initiation is done. The 
factors that can cause this initiation are heavy rainfall, erosion, poor construction practices, freezing and 
thawing, earthquake, and volcanic eruptions. Landslides are typically associated with periods of heavy 
rainfall or rapid snowmelt and tend to worsen the effects of flooding. Areas burned by forest and brush 
fires are particularly susceptible to landslides. (Flageollet, Maquaire, Martin, & Weber, 1999) 
 
Another geomorphological process which is prominently seen in mountainous regions is debris flow. 
Debris flows—sometimes referred to as mudslides, mudflows, lahars, or debris avalanches—are common 
types of fast-moving landslides. These flows generally occur during periods of heavy rainfall or rapid 
snowmelt. They usually start on steep hillsides  as shallow landslides that liquefy and accelerate to speeds 
that are typically about 10  miles (16 kilometres) per hour, but can exceed 35 miles (56 kilometres) per 
hour.   
 
Landslides constitute a common mass movement process and a widespread hazard in mountain and hill 
slope environments where they repeatedly cause damage and destruction to settlements, transportation 
corridors, or even lead to the loss of life (John F, 1978). To avoid damage or fatalities, data are needed on 
the frequency and magnitude of past events to perform an appropriate hazard assessment. The damages 
that landslides cause to life and property are well known, and have been studied extensively for disaster 
management. Much has been written on the impacts of landslides on the total environment, including 
effects on people, their homes and possessions, farms and livestock, industrial establishments and other 
structures, and lifelines. However, few authors have discussed the effects of landslides on the natural 
environment, i.e., on (1) the morphology of the Earth’s surface, particularly that of mountain and valley 
systems, both on the continents and beneath the oceans; (2) the forests and grasslands that cover much of 
the continents, and (3) the native wildlife that exist on the Earth’s surface and in its rivers, lakes, and 
seas.(Schuster & Highland, 2003). In this study, we will deal with the effect of landslides on forest 
structure, namely tree structural parameters which are affected by the process. The word ‘effect’ has been 
used here instead of ‘damage’ because the effect of landslides on forest ecosystem is not necessarily 
negative. 
 
Landslides or other natural disturbances are some of the key factors which lead to regeneration in a forest, 
and also help maintain the health of the ecosystem. This process could be even compared to a human 
body, where a disease is supposed to “cleanse” the insides and produce more immune cells. Moreover, 
recent studies indicate that natural disturbances are important for forest regeneration and the maintenance 
of species diversity in riparian vegetation (Baker, 1990). Morphological alterations that landslides cause on 
forests, like creating gaps in canopies, transporting layers of soil, water to low-lying regions have a great 
impact on the ecological balance of forests. The heterogeneous topography of riparian forests caused by 
these disturbances has a great influence on the distribution and regeneration of trees (River, 2005). 
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1.3. LiDAR (Light Detection and Ranging): 
LiDAR (Light Detection and Ranging, also LADAR) is an optical remote sensing technology that can 
measure the distance to, or other properties of a target by illuminating the target with light, often using 
pulses from a laser. Lidar systems are active remote sensing devices that measure the time of travel needed 
for a pulse of laser energy sent from the airborne system to reach the ground and reflect back to the 
sensor. The time measurement is converted into a distance measurement that is used to derive a precise 
three dimensional characterization of reflecting ground surfaces, including forest vegetation. In areas with 
dense vegetation cover, lidar pulses will mainly reflect from the top and from within the vegetation 
canopy, with some laser pulses penetrating to the ground and therefore providing an accurate ground 
elevation (Sorin C. Popescu, Wynne, & Nelson, 2002).  
 
Research on LiDAR change detection has only begun with a few studies using topographic change 
mapping to monitor coastal erosion(Flageollet, et al., 1999; http://www.csc.noaa.gov/crs/tcm) . Airborne 
LiDAR has demonstrated its capability to measure useful canopy properties, such as height and cover, 
using commercial airborne laser scanning systems(Næsset, 2002). Unlike two-dimensional imagery, the 
vertical component of three-dimensional LiDAR data allows the analyst/user to separate ground vs. 
vegetation information, which is a prerequisite to most LiDAR applications, many of which focus 
exclusively on one or the other component(Hudak, Evans, & Stuart Smith, 2009) 
 
The most common use of LiDAR is to build a Digital Elevation Model (DEM), which is the primary 
product of LiDAR survey, and used for various applications (namely geomorphological, hydrological).The 
DEM is essentially an interpolated surface that represents topographic variation in three dimensions. The 
‘object’ above the ground in a DEM might be buildings in developed areas or vegetation in forested areas.  
Majority of LiDAR data users however look no further beyond the DEM, ignoring the residual variation 
which represents the features above the earth’s surface. The ground vs non ground features are not 
independent of each other, which can be easily proven by studying a LiDAR derived DEM in a vegetated 
and a non vegetated area. The DEM of a non vegetated area is much ‘smoother’, as compared to that of a 
forested environment, where the DEM appears much ‘rougher’, which is because lesser points penetrate 
through the canopy of trees to hit the ground. The points hitting the canopy (or above ground features) 
which are considered ‘noise’ by LiDAR users dealing with the geomorphological features, are in fact an 
ace for natural resource managers or wildlife ecologists. Most obvious is the canopy height information, 
while another measure having a direct physical basis is percent canopy cover, calculated as the percentage 
of LiDAR returns intercepted by the vegetation canopy, within a bin size (cell resolution) specified by the 
user(Hudak, et al., 2009). 
 
Thus, Nelson (Nelson, Krabill, & Tonelli, 1988)  recommended the use of the laser-derived stand profiles 
for the retrieval of stand characteristics of a forest. Various studies have shown that height, volume, 
biomass, crown diameter, stem density, or diameter at breast height estimates can be produced using 
LiDAR data (Næsset, 2002). Moreover, LiDAR can also be used to detect forest disturbances, either 
evident from data (such as treefall) or derived from tree structural attributes. Mackey (Mackey, Roering, & 
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McKean, 2009) manually recognized trees on the single LiDAR-derived image and five historical aerial 
photos and tracked tree displacement over 42 years in order to quantify decadal-scale slide deformation 
and observed the long-term sediment flux in earth flow-prone terrain. The LiDAR processing techniques 
are becoming so advanced that a study in 2004 reliably delineated canopy gaps less than 1 m2 
(Vepakomma, St-Onge, & Kneeshaw, 2011).  
 

1.4. Problem Statement: 
Hudak (2009) groups LiDAR applications for forestry into 3 categories:  
 
(1) Characterization of forest structure which includes canopy surface, canopy interior and individual trees;  
(2) Natural resource applications which encompass forest inventory, fire and fuels, ecology and wildlife, 
geology, geomorphology, and surface hydrology; and 
(3) Sensor integration. 
 
A lot of study has been done with LiDAR to characterize forest structure and make a forest inventory for 
calculating biomass with high accuracy, because carbon is currently the ‘hot topic’ in the world (S.C. 
Popescu, Wynne, & Nelson, 2003). 
 
Also, LiDAR has been used for change detection, because it can facilitate the process at a very minute 
level. Change detection for individual trees was indeed a huge breakthrough in forest management, when 
Persson (2001) concluded that individual trees can be detected with up to 70% accuracy and tree height 
can be measured with an accuracy better than 1 m. Laser based crown delineation is a better technique in 
comparison to single tree-based estimation with orthoimages, since it measures the geometrical properties 
of trees directly(Hyyppä & Hyyppä, 1999). 
 
So far, many researchers have attempted to characterize forest stand/ tree structural parameters as 
indicators of forest disturbance (J.R. Runkle, 1982). Comparisons also have been made between forest 
responses to natural versus human induced disturbances.  
 
An alternative method of studying forest disturbances induced by landslides has been 
dendrogeomorphology. The study of tree rings tell us about the age of trees and the time when the 
landslide occurred. The type of deformation in trees tells us about the type of landslide affecting the tree. 
A study done in 2011 concludes that “comparison of tree ring data with historical records and aerial 
photographs clearly demonstrates the spatiotemporal accuracy of the reconstruction of landslides”(Lopez 
Saez et al., 2011). However, these studies have been more for reconstructing past landslides. 
 
Thus, for researchers attempting to study forest disturbances induced by landslides, the two biggest 
problems were: 
       1) Resolution of data being low 
       2) Lack of enough field data for validation. 
 
The researches that have been done to study forest disturbances mostly focus on canopy gaps as 
indicators of disturbance. In 1770 Finnish botanist Pehr Kalm, in his book Travels in North America, was 
probably the first researcher to describe the general occurrence and important ecological role of tree-fall 
disturbance in primeval temperate forests. Since then, canopy gaps have been of prime importance when it 
came to studying forest disturbances. Koukoulas and Blackburn (2004) combined LiDAR imagery and 
GIS to quantify the spatial properties of canopy gaps. Most of the studies have been dealing with gap 
dynamics, as a function of the regeneration capacity of the forest stand. A study concludes that multi-



TITLE OF THESIS 

11 

temporal medium density LiDAR enables the detection of new gaps with a very high accuracy, and can 
potentially be used to measure growth on an individual crown, or window basis(St-Onge & Vepakomma, 
2004). 
 
Thus, large-area forest inventories using sample plots are perhaps the best applications for laser scanning 
at the individual tree level, concludes a study(Yu, Hyyppa, Kaartinen, & Maltamo, 2004). 
 
So, we see that forest stand characteristics have been studied for biomass and ecological study purposes. 
Very few studies have been done to characterize them as indicators of forest disturbance. In fact, a 
research paper states its follow up as “By exploring long-term and large-scale mortality and recruitment 
processes, we should be able to validate or improve our understanding of forest succession processes 
developed from earlier small spatial and temporal studies. Such new insights may have direct implications 
for forest managers who seek silvicultural and management strategies with a natural disturbance based 
underpinning”(Vepakomma, St-Onge, & Kneeshaw, 2008). 
 

1.5. Objectives: 
There is a serious lacking of studies which use LiDAR data to extract tree structural parameters as 
indicators of disturbance. The latest effort to do so was by Razak (2011), who characterized tree 
inclination and tree height dissimilarities as indicators of landslide activity.  
Thus, the aim of this study is to come up with more indicators of landslide activity. The main objective of 
the study can be phrased as “to extract tree structure anomalies from high point density LiDAR data and 
establish them as indicators of landslide-induced forest disturbances”. 
Since this single objective is too broad, and unspecific about which tree structure anomalies are to be 
studied, some research specific objectives were also framed, which are as follows: 
 
1. To collect tree structure data from the field, namely tree height, diameter at breast height, inclination 
angle, type of deformation, canopy area, tree orientation, tree density and canopy gaps from both 
disturbed and undisturbed forest for validation and comparison.  
2. To extract canopy gap area, shape and location. 
3. To extract other tree structural parameters (tree height, DBH, canopy area, inclination angle) from the 
high density LiDAR data and classify them by tree species, tree age and type of landslide.  
4. To compare these parameters of a landslide affected forest to those of a forest unaffected by landslides 
to study which parameters show maximum variability.  
 
These research objectives lead to research questions, namely: 
1.1. Which tree structural parameters differ significantly in affected and unaffected forests?  

 
1.2. What is the relation between structural anomaly and the type of the landslide affecting the tree?  

 
2.1. To what extent can we derive tree parameters from the high density LiDAR data?  

 
2.2. How reliable is the LiDAR data for analysing the tree structure? 
 
So, to proceed with answering these research questions, some research hypotheses had to be put forward.  
 
Research Hypotheses: 
1. Parameters like tree height, DBH and Canopy Gaps differ highly in ‘stable’ and ‘unstable’ forest.  
 
2. There is a strong relationship between the type of landslide (rotational, transitional, rock fall) and the 
type of deformation observed.  
 
3. Tree parameters can be derived from LiDAR data with (more than) 70% accuracy.  
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 Thus, the main tree structural parameters which will be focussed on are tree height, DBH, crown 
projection area, inclination and orientation of tree, and gaps in the canopy. These were chosen because of 
two reasons: 

i) Damage to a forest can be of two types: ecological and mechanical. Ecological damages 
should be studied over a certain period of time, which involves extensive field work, which 
requires a lot of time and money. Thus the mechanical damages can be studied from the most 
obvious of tree structural attributes, as above. 

ii) Previous researches (irrespective of which method was used to study disturbances) indicate 
that the above listed parameters were the best indicators of forest disturbance. As an 
example, in 1982, James Runkle studied canopy gaps for the geography of forest 
disturbance(J.R. Runkle, 1982). Extensive field work was done in this study, and the author 
also wrote a manual with guideline protocols for sampling canopy gaps, which was followed 
while sampling in field for this study too. 
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2. MATERIALS AND METHODS 

2.1. Study area: 
The Bois Noir landslide(44°23′27 N, 6°45′27 E; is situated in Barcelonnette basin in the South-western 
French Alps, a tributary of the Ubaye river, Aples de Haute Provence, France. The landslide body is 300 
m long, 500 m wide, and ranges from 1,600 to 1,680 m a.s.l. in elevation. The Bois Noir slope segment is 
characterized by an irregular topography with slope gradients ranging between 10° and 35°(Thiery, Malet, 
Sterlacchini, Puissant, & Maquaire, 2007), and the site is covered by Pinus uncinata and grasslands(K. A. 
Razak, et al., 2011). Lying on an East West axis, the broad Barcelonnette basin slopes up from 1100 to 
3000 m altitude(Flageollet, et al., 1999). The Bois Noir catchment is characterized by a dry and 
mountainous climate with strong inter-annual rainfall variability (e.g. annual rainfall may vary between 400 
and 1400 mm). These prime geomorphic and climatic factors explain the development of the slope by 
rotational or translational shallow landslides which usually affect the uppermost 2 to 6 m (Thiery, et al., 
2007). Forest covers 92% of the total surface area and consists mainly of black pine with some deciduous 
trees (Thiery et al., 2004). All the landslides composing the landslide complex are typically shallow and 
occur at the interface between the bedrock and the surface deposits. In a study, this area has been 
identified as highly susceptible to landslides although most of the area is covered by vegetation(Thiery, et 
al., 2007).A landslide inventory map at 1:10,000 scales, based on aerial-photo interpretation, field surveys 
and historical records was created. Tilted and deformed trees, as well as recent scarps and open cracks, 
clearly indicate that the Bois Noir landslide has been subject to multiple reactivation in the recent past. All 
the landslides composing the landslide complex are typically shallow and occur at the interface between 
the bedrock and the surface deposits. These deformed trees, or drunken trees as they are more popularly 
called, will be the main interest in this study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2.1. A field photograph showing ‘drunken trees’ in a landslide affected zone in the study area. 
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c)                                                                                                         a) 
                           
                                             
                            

                                                    
                                                                                    b) 
                                 
                           a) Bois Noir landslide 
                           b) Study area: Barcellonnette basin.  
                           c) France map: Google maps 
 
                                      Fig2.2. Study area location. 
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2.2. Materials: 

2.2.1. Data: 
 
a) Landslide map:  
A map showing the whole study area delineated into stable and unstable zones was prepared by 

Khamarrul.A.Razak (2011). This was to be the basis of comparison. 
b) Ortho photo:  
An aerial photograph of the study area captured at the same time as the LiDAR data acquisition was 

available for use, especially for guidance in field. Resolution of the photograph was 30cm. 
c) LiDAR data: 
An HDAL dataset was acquired in July 2009 using a hand-held laser scanning system. This system consists 
of a RIEGL VQ-480 laser scanner, a Topcon Legacy GGD GPS and an iMAR FSAS inertial 
measurement unit (IMU). Specifications are given in Tab. 1. An airborne LiDAR campaign was carried out 
under snow-free conditions using a helicopter flying about 300 m above the ground. Several flight lines 
were acquired over the same area to increase the point density over the forested terrain. Here we used 
about eight million points with a mean point density of 180 points m-2. 

Acquisition (month/year) July 2009 

Laser scanner RIEGL VQ480i 

IMU system IMAR FSAS (record up to 500 Hz) 

Positional system Topcon legacy (record up to 5Hz) 

Laser pulse repetition rate 300 kHz 

Beam divergence 0.3 mrad 

Laser beam footprint 75 mm at 250 m 

  60o 

Scanning method Rotating multi-facet mirror 

   
                                          Table 2.1: Metadata for the Airborne LiDAR data acquisition 
2.2.2. Fieldwork Materials: 

Measurement of tree structural attributes was a task which had to be completed with the highest level of 
accuracy possible, as the field data was to be used for validation of attributes extracted from LiDAR data. 
The following instruments/materials were used for fieldwork:  

1. Caliper (60cm): For measuring Diameter at Breast Height (DBH) of trees. 
2. Nikon laser rangefinder: For measuring height of trees. 
3. Suunto clinometer PM5 : For measuring orientation of trees. 
4. Compass: For measuring orientation of trees. 
5. Diameter tape: For measuring canopy width and axes of canopy gaps. 
6. Leica differential GPS system 1200: For getting coordinates of the observed points with 

millimeter level accuracy. 

       2.2.3. Software used: 
1. LAStools. 
2. ECognition. 
3. ArcGis 10. 
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4. Quick Terrain Modeler (trial version) 
5. SPSS 16.  

2.3. Methodology: 

2.3.1. Fieldwork:  
A field campaign was carried out from in September 2011. 
Sampling was carried out on a purely purposive basis, because of the following reasons: 

1)Accessibility: Since the area has been subjected to landslides and earth/debris flows over the last 
few centuries, the whole landscape has a very rugged topography, with slopes having an uneven 
gradient and ridges and cracks running through the area. Thus, plots and transects had to be chosen 
in areas which are accessible, and make it possible for the researcher to stand near the tree for 
measurement! 
2). Objectives: Three different researchers, three different objectives (namely, gap analysis, carbon 
estimation and forest inventory). Thus, sampling had to be done in: 

i) Unstable areas with drunken trees. 
ii) Stable areas with straight trees(with uniform species) 

3) GPS: A Leica differential GPS system 1200 combined with a total station was used to get 
millimeter level   accuracy for tree position. Thus, from the previously established GPS stations a 
transfer had to be done to establish the ‘center’ of the plot. This was a fairly time-consuming job, 
and thus the stable and unstable plots had to be within visible range of each other to facilitate the 
positioning of the GPS. 
The sampling was carried out in two phases, transects and plots. 
1. Transect based sampling: This sampling was done in form of a line transect of 25 m, to 

sample for canopy gaps. The length of transect was first measured using a Nikon laser 
rangefinder, and gaps were located and their coordinates taken with the Leica GPS. The 
thresholds set for an area to be defined as a ‘gap’ were: 

i) The understory vegetation should be no more than 5 meters in height. 
ii) The surrounding vegetation should be a minimum 7 meters in height. 

 The serial numbers of surrounding trees, the length of major and minor axis of gap (measured 
using diameter tape) were noted down and 2 photographs of each gap were taken using a Nikon 
camera combined with an SLR lens, keeping the camera on a flat surface at 1 meter height from 
the ground. Transects were sampled in both stable and unstable areas, and one in a rockfall 
affected area, making the total number of transects 10, and the number of gaps 43. The trees in 
transects were exclusively coniferous. 
2. Plot based sampling: 

This sampling was done to measure tree structural attributes, namely height, diameter at 
breast height (DBH), canopy width, inclination, orientation and type of deformation if 
any. Plots were selected on a purposive basis, and in both stable and unstable areas. 
Based on the range of visibility from the total station, trees were selected in the plots 
and the attributes were measured. Canopy width was measured in North – South 
direction and East to West direction with a measuring tape. Tree height was measured 
with a Nikon laser rangefinder. A caliper was used to measure DBH. For the inclination 
and orientation, a Suunto PM5 and      were used respectively. A total of 13 plots were 
sampled, 6 in the unstable areas, 7 in stable areas. The plots were spread out throughout 
the study area as evenly as possible.  
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             3. Age sampling: 
As an additional approach, increment boring was done on 6 trees in every plot to get 
the age of the respective trees. 

             4. Additional information: 
The slope of the area where a plot or transect was located was noted down. Also, some 
other disturbances in the forest like disease, wind throw were detected. Moreover, 
across all the plots in the south, the main problem detected was that of lack of thinning, 
which could be a management flaw; and the presence of mistletoe parasite on most of 
the trees. 
   

 
 
A) An overview of the Bois Noir catchment; B) Study area delineated into stable and unstable zones showing the locations of 
sampling, prepared by Khamarrul Razak ; I to VI) fieldwork photos 
                                      Fig.2.3. Overview of field work. 
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2.3.2. Primary Steps using LAStools: 
 
Primarily, the dense LiDAR point cloud had to be filtered as a part of steps towards building a Canopy 

Height Model, or any other kind of analysis. Different filtering algorithms are available in the 
literature. Methods include TIN densification, iterative residual analysis, region growing, 
multiscale curvature analysis, or segment based classification. A comparison can be found in 
Sithole and Vosselman (Sithole & Vosselman, 2004).The first very step towards filtering the data 
was to extract ground points from the data, as the ground points come in use while calculating 
height, or inclination and orientation. For this purpose the software LAStools was used.  

LAStools is a freeware which provides an easy-to-use platform that implements reading and writing of 
LIDAR points from and to the ASPRS LAS format (version 1.0-1.3). It comes with various other 
utilities, like LASGround, LASHeight, LASBoundary and many more, which can be run from 
LAStools, which is a simple GUI for running the utilities, or from command prompt, whichever 
convenient to the user. This software was used because of two major reasons: 

i) It is a freeware, thus reducing the total costs of the research. 
ii) It can deal with a very large number of points, at high densities, quiet efficiently. 

 
1. Bare Earth Extraction:  
Thus, for the ground-non ground classification of LiDAR points, the LASGround utility of LAStools 
was used. This tool is purely for bare-earth extraction, and classifies the LiDAR points into ground 
(class 2) and non-ground (class 1). By default, the tool has a setting called “forests and hills” , which 
uses a step size of 5 metres. The step size determines the search radius in which low points are 
selected. The tool considers only the last returns of LiDAR, which can be also changed to all returns. 
However, since the study area is hilly, forested and not extremely steep slope, the default settings were 
used to run LASGround on the LiDAR data of the whole study area (which was merged 17 files into 
one for convenience). The result was a LAS file (default format of LiDAR data) with ground-non 
ground classification of points. (for command line, see Appendix  2) 
 
2. Normalisation of point cloud: 
Next, it was important to find the precise height of each non-ground point above the ground, as the 
height was to be used in several operations (like classification, tree height calculation, canopy gap 
delineation) later on in the study. For this purpose, LASHeight is the most elligible utility in LAStools. 
This tool computes the height of each LAS point above the 
  ground. This assumes that grounds points have already been classified (classification == 2) so they 
can be identified  and used to construct a ground TIN. The tool “reads LIDAR in LAS/LAZ/ASCII 
format, triangulates the ground points into a TIN (or whatever other point class was selected with '-
class 4' or '-classification 3'), and then calculates the elevation of each point with respect to this TIN” 
(http://www.cs.unc.edu/~isenburg/lastools/download/lasheight_README.txt). By default the 
resulting heights are quantized, scaled  with a factor of 10, clamped into an unsigned character 
between 0 and 255, and stored in the "user data" field of each point. 
This tool also has an option to ‘drop below’, which excludes all points below a specified height. This 
option ideally, would have facilitated the identification of canopy gaps. However, this option led to a 
data loss when gridded into a raster, and was not used for the final analysis.  
Also, to avoid quantizing and clamping,the ‘replace z’ option in LASHeight was used. This option 
‘replaces z’, or the  elevation value of each point with the computed height. That means that 
afterwards all ground points will have an elevation of zero and all other points will have an elevation   
that equals their height above (or below) the ground TIN at their   x and y location. In a sense this 
would "normalize" the elevations  of all points in respect to their surrounding ground truth. This step 
was important because it was the height aspects of trees that were the prime focus, thus the height of 
each point above the ground with the height of ground points being zero were essentially required. 
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The output of this procedure was a LAS file with points classified as ground and non-ground, with 
each non-ground point having a height value above zero (ground level).(For command line, see 
appendix 2  ). 
 

      3. Gridding: 
A Canopy Height Model is the representation of the difference between the top of the canopy surface and 

the underlying ground topography. It is derived by filtering LiDAR point clouds to separate 
ground and canopy hits. 

The most established method to derive a canopy height model is to generate a Digital Terrain Model 
(DTM) by considering only last returns of LiDAR, and a Digital Surface Model (DSM) 
considering only first returns (Corresponding & Blackburn, 2004; St-Onge & Vepakomma, 2004). 
However, an accuracy assessment of the DTM is required, using ground points collected in field. 
Since no such ground points were used in field, an alternative approach towards building a canopy 
height model was used.  

Since there already existed a LAS file which was filtered, classified into ground and non-ground, and the 
heights of each point calculated, that was in itself a 3D version of a canopy height model. 
However, to analyse tree heights and gaps, and also to visualise the whole study area without 
confusion, a 2D representation was required. The LAS file resulting from the above methods 
(LASGround and LASHeight) was then subjected to the LASGrid operation. 

The option chosen to grid in this study was ‘elevation’ and the ‘highest’ of elevation was selected for 
gridding.  

The other things needed to specify is the grid size. The grid size depends on what purpose will the Canopy 
Height Model be used for. In this study, grid sizes of 1m, 70 cm, 60cm, 50cm and 15cm were 
used, out of which size 50cm and 15cm were used in two different canopy height models.  

Furthermore, this tool can efficiently deal with billions of LiDAR points. The default usage of memory 
(500 MB) was changed to 1500 mb while gridding because of the high density point cloud, which 
occupies a lot of memory.  

The output was specified as .tif format and the LAS file of the whole study area was gridded to generate a 
Canopy Height Model. (For command line, see appendix 2  ) 

 

2.3.3. Gap Detection and Delineation: 
One important aspect of the study was to delineate gaps from the LiDAR data. This attempt has been 

done in a few previous studies, and different methods were used to delineate gaps in 2D and 
3D(Vehmas, Packalén, Maltamo, & Eerikäinen, 2011).  However, to begin with, it was necessary 
to visualize the Canopy Height Model for detecting gaps sampled in field. Firstly, raster calculator 
of the Map Algebra toolset of ArcGis was used to assign a ‘nodata value’ to everything below 5 
metres of height, as the threshold specified, so that made the view more clear about which pixels 
should be considered a gap pixels. Another approach was to produce a binary raster, with a 
‘0’value to all pixels with a highest pixel value below 5 metres, and a ‘1’value to all those above 
metres. Both the methods proved equally effective, however the binary raster method was more 
useful when it came to make a separate layer involving only gaps.  The projection of the Canopy 
Height Model was set to Lambert Conformal Conic, in the system of NTF Lambert Zone III, and 
the field observation points were added to the Canopy Height Model.  Visually it was assessed 
whether or not the gap coordinates were falling within the ‘nodata’or the ‘0’zone, and that 
particular gap was marked as ‘correctly detected’. In some cases, the field observation point fell at 
the edge of a gap and canopy. For such cases, a threshold of one metre was set. Any point which 
was within one metre of a ‘non-vegetation’ zone was to be considered as a correctly detected gap. 
The detected gap was then added as a feature class, and delineated by editing with a polygon tool 
with the maximum accuracy possible. It was also taken into consideration that the gap should be 
delineated as it was measured in the field. This factor had to be considered because at some places the 
gap was not closed, it followed a narrow passage of pixels of ‘non-vegetation’ into another gap, or 
a zone of earthflow where the vegetation had completely disappeared. There were two major 
motives behind this manual delineation: 
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i) To assess the accuracy with which gaps can be detected and their area calculated as compared 
to the values sampled in field. This was, by no way to be taken into consideration in the final 
gap analysis. However, several different methods have been tried to delineate gaps perfectly, 
but since no universally accepted definition of canopy gaps exists, manual delineation was 
done as an alternative analysis. 
 

ii) Although studying gap dynamics was not an objective in this study, it was an interesting issue 
that why a gap was not detected, or in delineation, the area turned out to be more/less than 
the value sampled in the field.  

2.3.4. Automatic Method for delineating gaps: 
Digitizing gaps was one way to delineate them and assess their area and distribution. However, the very 

basic flaw in this method was the bias due to manual work. An automatic method of delineating 
gaps had to be undertaken so as to get a zero bias set of values for gaps around the study area. 
Moreover, it was not possible to digitize each and every single gap in the study area.  

Researchers have tried many different methods to delineate gaps automatically from LiDAR or a LiDAR-
induced CHM. A successful attempt was made in 2010 to extract canopy gaps directly from 
LiDAR, avoiding any interpolation method(Gaulton & Malthus, 2010). However, this study was 
done over a continuous cover forest, assuming that the tree heights and ages were fairly uniform. 
However, the study area in this research was a landslide affected forest, so by no means could it 
be considered a continuous cover forest. Moreover, software which could efficiently handle such 
a large point cloud and locate local maximas was not available. Thus, this method was not tried 
out in this study. 

Another approach was carried out by Zhang (Zhang, 2008) to delineate gaps using a black top hat 
mathematical morphological function. However, this research was in a mangrove forest to detect 
large gaps created by lightning, so this method was not tested in this study either. 

Blackburn and Koukoulas (Corresponding & Blackburn, 2004) used a fixed height threshold method, 
followed by shrinking operations in ArcGis, to delineate gaps in a forest. This method was tried 
out in this study; a brief overview of this method is as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig  2.4.  Summary Procedure for gap delineation, (Corresponding & Blackburn, 2004). 
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Another approach which seemed most convincing was employed by Vepakomma (2008). This was 

basically a region growing algorithm, with a predefined threshold of 5 meters.  Since this kind of 
delineation would prove useful for other purposes like tree height extraction, a delineation 
procedure in ECognition was undertaken.  

Usually, a region-growing based approach starts with applying a Gaussian filter of appropriate size. 
However, in this case, no Gaussian filter was used because a CHM generated from LiDAR data of 
such a high point density, facilitates individual tree crown visualization quite efficiently. To be on 
the safe side, a Gaussian low pass filter of 3x3 was applied, but with an insignificant change in the 
final output. 

The delineation process started by applying chessboard segmentation. This is the most basic of 
segmentation processes, which divides the whole image into equal squares of a specified size. In 
this case, a size of 2 by 2 pixel-sized objects was selected. This would facilitate two processes later 
on: 

i) Identifying valleys, roads and non-vegetation areas efficiently. 
ii) Refining very small objects, which could be spurious gaps or intra canopy gaps (created due 

to penetration of laser beams through the canopy) 
Following the chessboard segmentation, it was necessary to identify gaps, or rather, areas of no or 
low-lying vegetation as a start. A shadow masking process is considered to be the most ideal for this 
purpose. Under the shadow masking parent process, an ‘assign class’ algorithm was applied to the 
unclassified layer, setting a threshold of 5 meters(Vepakomma, et al., 2008) for the mean pixel value. 
All the pixels having a value of less than 5 meters were subsequently classified as ‘gaps’. All the gaps 
were merged into one class using the merge region algorithm. 
Next process was that of distinguishing between gaps. Since, gaps caused due to natural disturbances 
were the prime focus of this study, the following type of objects classified as ‘gaps’ had to be 
eliminated: 
1) The mountainous area in the south-east of the study area, which was completely bare, thus 

classified as a gap. 
2) The open area right in the middle of the study area, which had been created due to farming 

practices centuries ago. (This was concluded from personal communication with Mr.Jean-
phillippe Malet, Ecole et Observatoire des Sciences de la Terre [EOST] and an old house 
uninhabited for decades in that area told the same story). 

3) Trails, roads, and huge patches of non-vegetation created by landslide processes. The huge 
patches had to be eliminated because firstly, such huge gaps are obviously due to a disturbance, so 
no detailed study of them is really required. 

For this, a ‘remove objects’ algorithm was applied, giving a threshold of 1000 pixels for area of gap 
object. Thus, every ‘gap’ having an area of more than 1000 pixels was removed (the value was 
determined solely by trial-and-error). This produced a class of gaps which were not to be considered 
in analysis. Furthermore, another morphological algorithm was applied to perform closing of canopy 
gaps, with an elliptic fit of greater than 0.2. Elliptic fit is the portion of area of the selected polygon (in 
this case, the canopy gap), that is covered by the largest eclipse that fits inside the polygon without 
exceeding its borders and passes through the centroid of the polygon. Such a low value was chosen 
because not necessarily all gaps can be accounted as an ellipse even roughly.  
It was also necessary to identify trees, especially to extract tree heights. Thus, another assign class 
algorithm was applied to assign all pixels (unclassified) with a mean pixel value of more than 5 as 
trees. This was followed by the algorithm of find local extrema and find enclosed by image algorithms 
to detect tree tops. To remove false local maxima (tree top) and local minima (seeds or tree crown 
edge) grown tree tops and seeds which were in the proximity of one another were merged before 
starting the region growing process. Then region growing from tree tops was started until significant 
boundaries of tree crowns found. Grown region was stopped based on visual examination. 
A summary of the approach is presented in appendix (3).    
An example of the delineated polygons, with their maximum height points exported as a shapefile, is 
shown in fig 2.5. 
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Figure 2.5.    Output of ECognition, shapefile showing tree polygons and their maximum height points. 
 
 

 
 
Fig.2.6. a raster representation of the ECognition output considering gaps only 
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2.3.5.  Mapping Canopy Gaps: 
 
The output from ECognition was: 
 I) a raster file showing the gaps and tree tops. 
II) A shapefile containing polygons of trees and gaps. 
III) A point file showing the maximum height value within each polygon.  
 
This shapefile proved to be most useful in the later analysis of gaps. The polygons in that file which were 
assigned the class ‘gaps’ were exported as a separate layer to facilitate gap analysis. The human related and 
edaphic features (such as open areas due to historical farming activities, trails and paths, mountains with 
no vegetation) had already been classified. Researchers who have previously done gap analysis set various 
minimum gap area thresholds. Vepakomma (Vepakomma, et al., 2011) had set a 5m2 threshold to define a 
gap. A 5m2 minimum size is ample when it comes to analyzing gaps for solely ecological purposes. 
However, since this research was also to study how gaps are created due to landslide process, a much 
lower minimum gap size threshold had to be set. One more issue that had to be dealt with was that of 
intra-canopy gaps. These are small areas where the laser scanner penetrated through the canopy, thus 
showing a very narrow line of no vegetation. Thus, a minimum gap size of 1m2 was set for the analysis. 
Following this, all polygons with an area lesser than 1m2 and an area to perimeter ratio of lesser than 0.3 
(Since these ‘gaps’ with a low area-to-perimeter ratio are merely the natural distance between trees) were 
selected using the select by attributes query of ArcGis. Also, gaps with area more than a 1000m2 and area 
to perimeter ratio more than 4 were selected using the same query. All of the selected polygons were 
eliminated from the shapefile. The resultant file was a ‘gap map’ of the study area. 
 
For the beginning of analysis, the shapefile with gaps was clipped with the shapefiles of the landslide and 
non-landslide areas prepared by Khamarrul.A.Razak by visual interpretation, (2011) to separate the gaps. 
The gap areas, perimeters, and area-to-perimeter ratios were laid in separate columns in an excel sheet.  
 

2.3.6. Extraction of plots and transects: 
 
For various purposes like gap idenfication and delineation, and extracting values of inclination, orientation 
and Diameter at Breast Height (DBH), it was necessary to extract plots and transects sampled in field. 
There were two ways of extraction possible: 
 

1) Clipping from a predefined shape file:  
This method requires a shapefile(.shp) of the area to be extracted, which is in turn used as a 
command line in lasclip utility to extract the same very area from the LiDAR point cloud of the 
whole area. The coordinates of trees and gaps sampled in field were overlayed upon the Canopy 
Height Model, and the ‘create feature class’ of the Data Management tools in ArcGis 10 was used 
to create a shapefile in circular form, encompassing all the trees in a plot. In case of transects, the 
shapefile was created rectangular, with a length of 25 metres (as the length of a transect sampled 
in field). Further, in the LASClip utility, this shapefile was used as an input, and the output was a 
LAS file representing the 3D point cloud of the same area. (For command line, see appendix  ) 
 

2) Extracting by coordinates :  
In this method of extracting, there is no need for defined boundaries or a shapefile. The desired 
area can be extracted by defining the maximum and minimum X and Y coordinates in the 
Las2Las utility. Thus, the extent of the desired area (from the coordinates sampled in field) was 
entered as an input in LAS2LAS and the output was a LAS file of the desired area, plot or 
transect. 



TITLE OF THESIS 

24 

Both methods were utilised in the study for extracting plots and transects, however, both have 
some flaws: 
1) Extracting from a shapefile: Since the shapefile is made by the researcher by a manual 

method, there is a risk of exclusion of a few pixels. Even though a few pixels in a shapefile 
are not very significant, the same very area might be representing hundreds of points in the 
LAS file (as the point density in the data is as high as 180 points per m2). 

2) Extracting by coordinates: In this method, the maximum and minimum coordinates are, in 
the end, the coordinates taken at the base of the tree. So, when the plot/transect is extracted 
and viewed in an advance viewer like Quick Terrain Modeller, it was realised that a large 
number of points of the canopies of some trees (which were at the boundaries of the plot) 
were excluded, as the coordinates of the base of the tree fall well inside the canopy. 
 
Both the methods were employed to extract plots and transects and they were viewed in the 
LASViewer utility. LASViewer is a  simple OpenGL-based viewer for LIDAR in 
LAS/LAZ/ASCII format  that can compute and display a TIN. It also has other options in 
viewing, such as one to specify the number of points to display and the number of steps to 
display in. Further, they were also viewed in Quick Terrain Modeller, and it was ensured that 
no points are excluded.  

 
 

2.3.7. Extraction of single trees: 
 
As explained previously, plots and transects sampled in field were extracted from the LiDAR point cloud. 
To validate the inclination and orientation of trees sampled in field, it was necessary to extract individual 
trees sampled in field. An automatic method (like clipping the tree using coordinates from a 2D 
representation like a CHM) was not advisable as there were tilted trees in the area. Thus, if the canopy 
polygon was clipped from the point cloud, it could have led to exclusion of points, thus altering the final 
output. Thus, it was to be done manually. For this job, the Quick Terrain Modeler’s trial version was used. 
This software can open and display LiDAR point clouds with high efficiency. The main advantage of this 
software is that manual editing and analysis can be done in 3D, unlike LAStools where only viewing in 3D 
is available. A tool in QT Modeler, called ‘Z’ or polygon tool, can select a 3D point cloud. The selected 
plot was visualized in 3D, and the shapefile of the tree coordinates were imported into QTModeler. Each 
tree was then visualized from every possible angle, it was ensured that all the points belonging to a tree 
were being extracted, and the select 3D polygon tool was used to select the tree. The crop tool was then 
used to crop the individual tree and export it as a LAS file. It was also ensured that a considerable amount 
of ground points were also included in the tree, as they were needed for further processing. However, 
problems were faced while extracting tilted trees, especially because it was essential to get points on the 
stem too. Intermingled trees were separated using field and ecological knowledge and referring to field 
photos. 
 
The extracted trees were to be used as input for SkelTree software. SkelTree skeletonizes the point cloud, 
and provides information about inclination at 3 different heights (0m, 0.5m, and 1.5m).  A skeleton is a 
line describing the tree shape. Ideally, it is centred within the object and is connected whenever the object 
is connected. In this study, the ‘SkelTree skeleton’ was used to extract inclination and orientation. This 
particular skeleton was previously used to extract the diameter at tree breast height from high density 
airborne LiDAR data (A. Bucksch, 2011; 2010). So, a total of 211 trees were extracted as point clouds and 
used as input for SkelTree to extract inclination and orientation values, which would in turn be used for 
validation of the same values measured in field. An example of an extracted tree is shown in Fig (2.7). 
However, due to time constraints, this operation could not be completed. These extracted trees though 
would be the ‘raw material’ for further research. 
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Fig.2.7. A Tree extracted using  QTModeler 
A total of 1458 points in this tree.     Fig.2.8. a schematic skeleton graph of a delineated tree.(K.A. Razak, et al., 

2011)                                                         
 
 

2.3.8. Extraction of tree heights: 
The shapefile of trees delineated in ECognition was opened in ArcGis. Since the ‘detect local maxima’ 
operation was already completed in ECognition, each polygon had a point showing the maximum height 
location. This was to be considered the final tree height extracted from the CHM. However, two facts 
were taken into consideration before establishing them as tree heights: 

1) The delineation done in ECognition was not 100% accurate. Thus, for some polygons as it was 
observed, more than one tree was included. Thus, while noting down the height, the underlying 
Canopy Height Model was also referred to, as it was the best representation of the tree boundary. 
This was done especially for trees sampled in field, because it was necessary to get the height of 
sampled trees specifically. 

2) In landslide affected areas, the tilt of the trees was taken into consideration. For example, in case 
of a rotational landslide affected area, the tilt of the trees was towards the south.  
 
The heights of trees sampled in field were individually noted down and added to the attribute 
table of the plot shapefile, which were to be used for tree height validation. 
The rest of the tree heights were clipped with the landslide and non-landslide shapefiles to 
separate them, and were put down in an excel sheet.  

 

2.3.9.  Validation of extracted forest attributes: 
 
To fulfill one of the research specific objectives, it was essential to assess how accurately LiDAR gives us 

the information about forest structural attributes. The following attributes had to be and were 
validated using field data and LiDAR-extracted values: 

1) Tree heights: As mentioned before, the tree height values were laid in an excel sheet with the 
height values of corresponding trees collected in field. A regression analysis was done to get the 
R2 value of validation. 

2) Tree inclination and orientation: These values were collected in field at 4 different heights of the 
same tree, namely 0, 0.5, 1.5, 2 meters. The trees extracted from LiDAR data were introduced as 
input in SkelTree, which gave the inclination and orientation values. 
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3) Canopy Gaps: There were two major factors to be ‘validated’ in this section, namely gap 
detection and gap area validation. 

i) Gap detection: This section was one of the most important, because detecting gaps is 
naturally the basic expectation from high point density LiDAR data. The coordinates of gaps 
sampled in field were added as a shapefile above the CHM in ArcGis, and some specific 
conditions were set to classify the gap as correctly detected or incorrectly detected, are already 
explained in section   (gap detection and delineation). Gap detection accuracy was tested for 3 
different files: CHM with 50cm resolution, CHM with 15cm resolution and the ‘gap map’ 
produced as output of ECognition. 

ii) Gap area validation: Most researchers validate gap area using the area derived from an 
automatic delineation process. However, there was one little flaw in the automatic delineation 
that was a major hindrance in validating gap area: interconnected gaps. This problem is 
illustrated in figure 2.9   . 

 
                              

 
 
 
Fig. 2.9   . Problem of interconnected gaps with automatic delineation. The green points represent coordinates of gaps sampled 

in field. They have been detected correctly, however, due to a narrow passage of pixels with low vegetation; they are 
connected, which makes it almost impossible to calculate the area of one single gap. 

 
Neither the ECognition closing operation nor the shrinking operation in ArcGis could solve this 
problem, so the manually delineated gaps were used for validation of area in this study.  

  

2.3.10. Other parameters for analysis: 
During the course of the research, it was realized that some new parameters could also be tested 
to see whether they can be established as indicators of forest disturbance. One parameter was 
‘tree height dissimilarity’. This parameter was picked with reference to a study by Razak (K. A. 
Razak, et al., 2011), who analyzed the same parameter in the same study area. Another parameter 
chosen was tree density, which is basically the number of trees per unit area (or a 100 m2 as 
chosen in this study). The analyzing process for both of these parameters is described below: 

1) Tree height dissimilarity: The motive behind analyzing this parameter was to see whether the 
disturbance processes are having an effect on the vertical heterogeneity of the forest. For this 
purpose, the tree height tables derived from ECognition were used. 

2) Tree Density: To analyze this parameter, it was necessary to take samples from the area, as overall 
tree density in the whole area would not be the right parameter to compare between landslide and 
non-landslide. The shapefile containing tree polygons was added in ArcGis, and the centroid of 
each polygon was extracted using feature to point tool of ArcGis. Furthermore, the area was 
clipped with the landslide and non-landslide area to separate it for comparison later on. A fishnet 
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of 20x20 meters was overlaid on these files. To generate, random samples, the “Randbetween” 
function in Excel was used. This operation gave a list of 20 random numbers within the extent of 
the number of polygons within the fishnet. This table was joined to the attribute table of the 
fishnet, using the ‘FID’ column of the fishnet to base the joint upon. The selected polygons were 
exported as a separate shapefile, and the ‘join’ function was used again, however, with ‘join data 
from another layer based on spatial location’ option. The selected polygons were joined with the 
table of tree centroid points, and the number of trees that fell within each polygon was noted 
down. Thus, the tree density of every polygon would be : 
Number of trees/400 *100 
This gives the tree density per 100m2. This was of course, calculated separately for stable and 
unstable areas, taking 20 samples each in both areas. These density values would be later 
compared to find out whether or not there was a significant difference between stable and 
unstable areas. 

 

2.3.11. Statistical analyses: 
1) Statistics for validation: 

To validate the values of attributes extracted from LiDAR data, field data was used. Primarily, 
regression analysis was used to find out how accurately the values have been extracted. 
The main purpose was to find out the R2 value, and the standard error in extraction. 
This was done for tree heights and gap areas.  
 

2) Statistics for comparison:  
This study was basically centered on comparing the forest structural attributes in landslide and 
non-landslide zones. A set of tables with various values like tree heights, canopy gap areas, gap 
area to perimeter ratios, tree densities were at hand. For comparison, it was necessary to choose 
the most appropriate statistical test. Some of the properties of these sets of data were: 
i) The two ‘populations’ did not follow any specific parameterized distributions. 
ii) The two samples were not equal in size (for example, the number of tree height values in 

the unstable area was 37414 and that for the stable area was 26690). 
iii) The two samples were independent of each other. 
iv)  
For these very reasons, the Students’ T-test was avoided, because it runs on the basic assumption 
that the samples are normally distributed. A Mann-Whitney U-test was used to compare different 
structural attributes in the two zones. The Mann-Whitney U test is a non-parametric statistical 
hypothesis test to assess whether one of the two samples in a set of independent observations 
tends to have a larger value than the other. One of the biggest advantages in this running this test 
was that it assumes that under the null hypothesis the distributions of both groups are equal, so 
that the probability of an observation from one population (X) exceeding an observation from 
the second population (Y) equals the probability of an observation from Y exceeding an 
observation from X, that is, there is a symmetry between populations with respect to probability 
of random drawing of a larger observation. Moreover, this test was also used for a similar kind of 
comparison (tree structural attributes in stable and unstable areas) was used in a previous study, 
using dendrogeomorphology (Van Den Eeckhaut, Muys, Van Loy, Poesen, & Beeckman, 2009). 
For comparing tree density , t-test was run on the 40 samples, 20 in each zone. 
 

3) Statistics to test forest heterogeneity: 
There were in all 37413 tree height values in the unstable area, and 26690 tree height values in the 
stable area. Forest heterogeneity induced by changes in tree height and density in a forest has a 
direct effect on gap detection(Zhang, 2008). A Shannon’s index was generated for both areas 
using PAST statistics. Furthermore, a Mann-Whiteney U test was also performed to compare the 
height distributions in stable and unstable areas. 
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3. RESULTS: 

3.1. From field data: 
A total of 13 plots, containing 277 trees and 10 transects with 43 gaps in all were collected from field. 
Some primary descriptive statistical analysis was performed on the field to get an idea about the 
distribution of the structural attributes. The distributions of values were studied and Mann Whiteney U 
tests were performed to compare heights, DBH and gap areas in stable and unstable zones. Following are 
the results of the descriptive and comparitive statistics: 

3.1.1. Height (meters):  

 

 

 
Fig 3.1.   Results of descriptive and comparative statistics of tree heights in stable and unstable zones, 
as collected in field.  
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3.1.2. Diameter at breast height (cm): 
 

 

         

   
Fig 3.2.  Histograms of DBH of trees in the  study area.      

 
A) DBH distribution in stable area          B) DBH distribution in unstable areas. 
 
Results of the Mann Whitney U test for comparing DBH of trees in stable and unstable zones are as 
follows: 
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3.1.3. Inclination (degrees): 
 

                                                

inclination at 0

Mean 60,81
Standard Error 2,21
Median 60
Mode 60
Standard Deviation 19,89
Sample Variance 395,7
Kurtosis 0,674
Skewness -0,7
Range 90
Minimum 0
Maximum 90
Sum 4926
Count 81

inclination at 0.5

Mean 68,99
Standard Error 1,54
Median 70
Mode 75
Standard Deviation 14,12
Sample Variance 199,3
Kurtosis -0,22
Skewness -0,64
Range 60
Minimum 30
Maximum 90
Sum 5795
Count 84
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Fig 3.3.  Descriptive statistics of tree inclination values at 4 different tree heights: o metres, 0.5 metres, 1.3 metres and 2 
metres 
*the count is different at 0 meter height because in field, it was sometimes impossible to reach the base of 
the tree because of being surrounded by thorny bushes. 

 

3.1.4. Canopy gaps:  
Descriptive statistics were performed on the gap area, separately for transects in stable and 
unstable areas. The gap area was calculated using the formula  
Area = π (L*W/4), where L is the longer axis and W is the shorter axis.(J.R Runkle, 1992) 
The results of the Mann Whitney test are as follows:  

                                     

        

 
 
 

Inclination at 1.3

Mean 72,5
Standard Error 1,305
Median 75
Mode 75
Standard Deviation 11,96
Sample Variance 143
Kurtosis -0
Skewness -0,67
Range 50
Minimum 40
Maximum 90
Sum 6090
Count 84

Inclination at 2

Mean 76,2
Standard Error 1,22
Median 80
Mode 80
Standard Deviation 11,2
Sample Variance 125
Kurtosis 0,24
Skewness -0,95
Range 45
Minimum 45
Maximum 90
Sum 6399
Count 84
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Hypothesis Test Summary 

Null Hypothesis Test Sig. Decision 

1 
The distribution of Area is 
the same across categories 
of Type. 

Independent-Samples 
Mann-Whitney U Test .002 Reject the null 

hypothesis. 

Asymptotic significances are displayed. The significance level is .05. 

               Fig 3.4   Histograms of gap areas in stable and unstable and results of the Mann Whitney U test. 
 
 
As an additional analysis, the percentage of transect length in gaps was also calculated, which goes by the 
formula: 
Percentage of total land area in gaps =(transect distance in gaps /total transect distance)*100 (J.R Runkle, 
1992) 
The results are as follows: 
 
 
S No Type of landslide Stability type Gap percentage (%) 
1 None Stable 52 
2 Rotational Unstable 90 
3 None Stable 29 
4 Translational Unstable 64 
5 None Stable 30 
6 Rotational Unstable 58 
7 Translational Unstable 55 
8 None Stable 34 
9 Earth flow Unstable 92 
10 Rockfall Unstable 60 
Table 3.1.   Gap percentage of transects sampled in field 
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3.2. Canopy height model 
The first result coming from gridding in LAStools was a canopy height model. The grid size was tested at 
different values (0.1, 0.15, 0.5, 0.6 and 1 meters) and two sizes were selected as most appropriate for 
different purposes. CHM with a grid size of 50cm was the most appropriate for delineation in ECognition 
(since the software was incapable of handling a lower grid size) and one with a grid size of 15cm was most 
appropriate for canopy gap detection. Fig    shows a zoomed in version of both the canopy height models: 
 

 
 
Fig.3.5. Canopy Height Model at 50cm. All the pixels with a value below 5 have been assigned as ‘nodata’. 
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Fig.3.6. Canopy height model at 15 cm grid size. 
 
 
 
 
 

3.3. Plot extraction: 
All of the 13 plots and 10 transects were extracted as .las files. Fig   shows an example of a plot extracted 

using LASClip operation: 
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                   Figure 3.7: A field plot extracted from the LiDAR point cloud 

3.4. Gap delineation: 
The output of delineation process was a shapefile containing polygons with their respective classes. Out of 
these, the polygons belonging to the class ‘gap’ were selected and exported as a shapefile. After eliminating 
the polygons with areas falling below and above the lower and upper threshold respectively, a ‘gap map’ of 
the whole area was produced, a zoomed-in version of which is shown in fig  . Also, the manual delineation 
of gaps sampled in field in shown in fig    
 

                       
                                                       

Fig.3.8.   Output of manual gap delineation 
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Fig 3.9. A portion of the ‘gap map’ of the area showing both landslide and non-landslide zones 
 
 
 
As mentioned in the methodology, the ‘shrink’ approach for automatic delineation of gaps as used by 
Blackburn(Corresponding & Blackburn, 2004) was also tried out in this study. This method, did not prove 
to be successful in this study. The output of the shrink method is shown in a zoomed in version in fig 
 

 
                                Fig.3.10.     Output of the shrink approach for delineating gaps 
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3.5. Validation: 
i) Gap detection:  

A total of 43 gaps were sampled. Following are the number of gaps detected correctly and 
incorrectly in the two CHMs at two different grid sizes and the gap map: 
File CHM 

(50cm) 
CHM (15cm) Gap Map 

Correctly detected 25 35 31 
Incorrectly detected 18 8 12 
Accuracy % 58 81 72 
 
Table 3.2.  Gap detection accuracies in 3 different raster files 
 

ii) Gap area: 
Since the automatic delineation method was not valid for estimating, individual gap area, the 
area of manually delineated gaps was used to run the regression equation. Firstly, a histogram 
was generated with all of the 43 gaps. After removing the outliers, a regression analysis was 
done.  A summary output of the regression is shown in table    : 

 
 Fig3.11. Scatter plot of gap areas. On Y axis are the gap areas collected in field and on X axis, gap 
areas extracted from the CHM. Points lying vertically above the zero value of X axis are the outliers, 
the gaps not detected correctly, been assigned the value zero. 

 
Table3.3.   Gap area validation, regression statistics after removing the outliers 

 
 

 
 
 
 
 
 
 

Regression Statistics 
Multiple R 0,70 
R Square 0,50 
Adjusted R Square 0,48 
Standard Error 10,30 
Observations 34 
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iii) Tree heights: 
A regression equation was run for height validation using CHM-extracted tree heights as the 
dependent variable. A summary of the output of the regression is presented in table  

 
 

Regression Statistics 
Multiple R 0,78 
R Square 0,61 
Adjusted R Square 0,61 
Standard Error 1,69 
Observations 277 

 
 
                  Fig.3.12. Regression statistics for tree heights, without excluding outliers  
 
 
Regression Statistics 
Multiple R 0,851634 
R Square 0,725281 
Adjusted R Square 0,724204 
Standard Error 1,475905 
Observations 257 

 
 

 
 
Fig.3.13. Regression statistics for tree heights, excluding outliers 
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3.6. Gap analysis: 
The gap analysis was done entirely for the ‘gap map’ produced, as it covered the whole area and was by 
far, the most accurate representation of canopy gaps throughout the area. For comparison of gap area in 
stable and unstable plots, a Mann-Whiteney U test was done, the results of which are as follows: 
 

 
 
 
 
 

 
 
 
Fig3.14.   Results of comparison between gap area of stable and unstable zones using a Mann Whitney U test 
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A similar kind of Mann-Whitney U test was performed for comparing the area-to-perimeter ratio, which is 
roughly a numeric representation of shape. The results of this test are as follows: 
                            

 
 

 
Fig.3.15. Results of comparison of gap shape (area to perimeter ratio) between stable and unstable zones using a Mann 
Whitney U test. 
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3.7. Height analysis: 
For analyzing the distribution of heights in stable and unstable areas, primarily a histogram was generated 

for both zones. The histograms are as follows: 

        

 
                                      
                   Fig.3.16. Histogram of tree height distributions in stable and unstable zones 
Furthermore, to analyze the diversity in tree heights, a Shannon’s index was generated. The Shannon’s 

index for unstable area was 10.44 and 10.11 for stable area. 
To compare the tree height distributions in both areas, a Mann-Whitney U test was performed, the results 

of which are displayed below:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.17 a. Results of comparison of tree heights between stable and unstable zones using a Mann Whitney U test. 
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Fig.3.17.b. Results of comparison of tree heights between stable and unstable zones using a Mann Whitney U test. 
 
 

3.8. Tree density: 
Table 3.4.  : Results of the T-test comparing tree densities in stable and unstable zones. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable 1Variable 2
Mean 0,0473 0,042125
Variance 0,0004 0,000551
Observations 20 20
Pooled Variance 0,0005
df 38
t Stat 0,7274
P(T<=t) one-tail 0,2357
t Critical one-tail 1,686
P(T<=t) two-tail 0,4715
t Critical two-tail 2,0244
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4. DISCUSSION: 

This study incorporated three different fields: Forest structure analysis, LiDAR data analysis and forest 
disturbance analysis. Originally, it was an objective to extract structural attributes as indicators of forest 
disturbance. However, it was realised that it is possible to characterize certain forest attributes or tree 
structural anomalies, but more field data and survey is required before a certain attribute is called an 
indicator of disturbance. Field data collection could not be done extensively enough because of the 
following reasons: 
 

1. Due to unavoidable circumstances, there was no time to make a sampling design or study the area 
before leaving for fieldwork. This made accessibility a big issue, because many areas were with a 
rugged terrain damaged by landslides. 

2. The 3 different researchers in the study area had different objectives, so sampling had to be done 
considering everyone’s objectives. 

3. The Leica GPS system 1200 accompanied by a total station is a fairly heavy piece of equipment. 
Moreover, readings could be taken only at locations visible from the established GPS station. 
Thus, due to time restrictions, only one or two GPS station establishments were possible in one 
day. 
 

These shortcomings made the field data collection a bit lacking. However, this study did prove that gap 
area can potentially be established as an indicator of forest disturbance. A major point to note here is that 
these gaps are not treefall gaps or gaps created by direct erosion of the super surface layer. Those are 
obvious indicators of disturbance. Interesting fact here is that the landslides in Bois Noir are slow moving, 
which means that they do not just uproot trees in their path. They just cause some growth anomalies, thus 
creating the phenomenon what the Siberians call drunken trees. Thus, these growth anomalies would have 
otherwise been very hard to detect from satellite imagery or any other low resolution remote sensing data. 
LiDAR opens up an entirely new window of opportunities for analysing forest structure in detail. Some 
prime properties of the forest stand in Bois Noir which make this study more interesting are: 
 

a) The species diversity of the forest is fairly low, containing a majority of Pinus uncinata and some 
Pinus Sylvertris (Scots Pine) and very few Larix decidua (Larch) trees. This implies that the 
heterogeneity in heights or gap sizes is not due to species difference.                         

b) The tree density of the forest is high, ranging between 300 to 800 trees per hectare, which falls 
into the medium to high category as described in a study regarding tree density in regular 
coniferous forest stands (Hudak et al., 2006). This also implies that this tree density leaves very 
less room for canopy gaps, which is the prime issue in this study. 

c) Owing to the high tree density and concluding from a previous study, it can be said that there is 
no factor of wind induced disturbance in the study area. A previous study which related climatic 
conditions to the landslides in the same study area (Bois Noir) concluded that the climatic 
conditions (such as rainfall, snow and wind) merely trigger landslides in the area, but do not cause 
any disturbances themselves.  
 

The R2 value of tree height regression was 0.72, which is still fairly low compared to other researchers who 
have used LiDAR data. Popescu(2002) got an R2 value of 0.9 for estimating tree height, with data of much 
lower point density. Considering the high point density of the data, the R2 value should have been much 
higher. The most obvious reason for this could be regarding field data.The accuracy of field data was also 
a question. Traditionally, field data is considered to be most accurate when using low resolution remotely 
sensed data, because the standard error in metres does not matter in such a case. However, LiDAR data 
used in this study had an average point spacing in centimetres, which means that the tree height estimation 
error could be only measured in centimetres. It was observed in field that 3 different researchers 
estimating tree height had a semi-consistent difference of 1 meter in measuring height of the same tree, 
using the Nikon laser rangefinder. This raises an important question that given LiDAR data of high point 
density, is field data collected by humans accurate enough to validate LiDAR data? 
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5. CONCLUSIONS 

5.1. From field: 
The major conclusion from field data collection was that the sampling design should be decided before 
starting fieldwork, especially in landslide affected mountainous areas, because of accessibility issues. While 
sampling in plots, the tree density should also have been noted down.  
 
While sampling in transects, the predefined sampling scheme is even a larger issue.  The predefined 
transect length of 50 metres could not be used in reality because of inaccessible terrain or extreme slope. 
Furthermore, a camera with fish-eye lenses should be used to take a picture of each gap, because it 
captures the gap in 180 degrees and can be used to calculate gap length and area. 
 
From the descriptive statistics of field data, the following conclusions could be drawn: 

1. The DBH of trees does not differ in stable and unstable areas, as concluded from the Mann 
Whitney U test with a significance of 0.359. 

2. Canopy gap area was found to be much more in unstable areas than stable areas, as concluded 
from the Mann Whitney U test with a significance of 0.002. 

3. Gap length percentage of transects in unstable areas (mean 69.83) was much more than that 
in stable areas (mean 36.25). 

5.2. From data: 
 

5.2.1. In relation to research question 1  

(Which tree structural parameters differ significantly in affected and unaffected forests?), it can be 
concluded that canopy gap area, canopy gap shape (area to perimeter ratio) and tree height distributions 
differ significantly in stable and unstable areas. 

5.2.2 In relation to research question 2 (What is the relation between structural anomaly and the type of 
the landslide affecting the tree?) it can be concluded only from field observations that a rotational 
landslide induces a backward tilt in trees, and the inclination and orientation values change at different tree 
heights. In contrast to this, a translational landslide produces a forward tilt in trees, but the tree inclination 
and orientation stays uniform. However, this could not be validated, so it remains as a mere field 
observation. 
 
5.2.3. In relation to research question 3 (To what extent can we derive tree parameters from the high 
density LiDAR data?) the following conclusions can be made: 

i) Tree height: These can be derived very easily, both from the LiDAR point cloud and from a 
gridded canopy height model. 

ii) Canopy projection area: This can be derived from a gridded Canopy Height Model, by 
digitizing or automatic delineation in ECognition. 

iii) Diameter at Breast Height: This can be derived if an individual tree is extracted and used as 
input for Skeltree software, provided the tree has enough LiDAR points on its stem. 
However, this requires a large amount of time and manual work. 

iv) Tree inclination and orientation: This can be derived by extraction of tree from LiDAR point 
cloud and using as input for Skeltree. However, it must be ensured that the tree has enough 
points on the stem, and some ground points are retained.  
However, due to time constraints, tree inclination and orientation and DBH could not be 
extracted. 



TITLE OF THESIS 

45 

5.2.4. In relation to research question 4 (How reliable is the LiDAR data for analysing the tree structure?) 
it can be said that tree heights can be derived with a high amount of accuracy (R2 value of 0.72). Also, 
canopy gaps can be detected with a fairly high accuracy (81%) which increases with grid resolution. 

 
Overall, it can be concluded that “canopy gap area differs significantly between stable and unstable forests, 
and can be considered an indicator of landslide induced forest disturbances”. 
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6. RECOMMENDATIONS: 

Though this study stopped at proving that certain forest structural attributes differ significantly, it 
opens up a new topic for further research, perhaps one relating these anomalies to landslides in 
deeper detail, with explicit knowledge of landslide and the underlying terrain. Some of the tree 
attributes are discussed in detail below: 
 

1. Tree height: It was concluded that though there is no major difference in tree heights between 
stable and unstable areas, there is indeed a major difference in the distribution of tree heights in 
stable and unstable areas. This opens up a new question to investigate: Is this a sign of ecological 
disturbance or mechanical disturbance?  
 

2. Canopy Gaps: This forest structural attribute has been studied for decades now, James Runkle 
(J.R. Runkle, 1982) being the ‘pioneer’ of studying canopy gaps with minute details. LiDAR makes 
gap analysis more interesting because now every detail of the gap sampled in field can be verified 
using the point cloud. Some factors associated with gap analysis are discussed below: 
 
i) Gap definition: The initial concept of a forest canopy ‘gap’ was as an area of disturbance created 
by a single treefall (K.A. Razak, et al., 2011; J.R Runkle, 1992). However, the definition of gap 
should differ based on the motive of the study. Kneeshaw (Vepakomma, et al., 2008) set a 5 meter 
vegetation height threshold for defining gaps. However, in this study, the topic of interest was not 
canopy gaps due to treefall, but gaps created due to slow moving landslides. There are major 
agents like hurricanes, earthquakes, volcanic eruptions which cause huge gaps in canopy. 
However, since slow moving landslides are not the major agents of gap creation, an area threshold 
had to be set to define gaps. Surrounding trees were also a major issue, because there were ridges 
and earthflow zones there was a continuous passage of no vegetation. However, these could be 
detected by calculating the area to perimeter ratio. It could be said that area to perimeter ratio of 
gaps says more about disturbance patterns than just gap area, because it also speaks about the 
shape of the gap. Also, owing to the high point density of LiDAR data, the intra canopy gaps 
were also visible, which had to be eliminated from the analysis. Thus, the definition of gaps 
(limited to this study) would be “an opening between multiple canopies, with an area of more 
than 1m2, and an area to perimeter ratio of more than 0.4”. This also implies that the largest 
fitting eclipse within the gap occupies a minimum 40 % of the total gap area.  
ii)  
ii) Sampling gaps and recording gap properties: As mentioned earlier, due to time constraints, a 
perfect sampling scheme could not be made. It is important to mention here that while sampling 
for gaps, accessibility and location should be the prime factors to be taken into consideration. 
While recording gap properties, namely major and minor axis of the gap, it was a dilemma 
whether to consider the end of surrounding canopies as the boundary of the gap or the base of 
the surrounding trees. Both methods are valid, however, differ significantly in measurements. 
Moreover, the gap axes were measured from the ground, so it was a “view from below”, whereas 
while validating the size of gaps, the measurements are from “above”. This factor could also be 
the main reason for a low R2 value for gap area validation. Once again, the accuracy of human 
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measurement vs. LiDAR accuracy comes into question, as the axes measured in field were done 
by approximately starting from the end of one canopy to the opposite one in the axis.  
 
iii) Gap detection: Going with the parameters mentioned above for defining gaps, it is 

necessary to analyze the number of gaps that can actually be detected from the LiDAR 
data. Gridding is essential as the view in two dimensions gives a better idea about the size 
and shape of the gap. It was also observed that gaps are better detected when the grid 
resolution is high. However, gaps could be even better detected from the LiDAR point 
cloud itself. A previous study concluded that gap detection accuracy increases by 16% 
when done using the LiDAR point cloud instead of gridding and interpolation(Gaulton 
& Malthus, 2010). However, this method could not be implemented in this study because 
of failure on the part of Ecognition to handle such a high point density. At a 15cm grid 
size, 81% of the gaps were detected. But, the expected accuracy was much higher 
because: The LiDAR data had a point density as high as 180 points per m2, and the 
coordinates of the gap location had been taken with a Leica GPS system 1200 coupled 
with a total station, which gives accuracy up to millimeter level. This opens up a new 
possibility that the gap was created in the period between LiDAR data acquisition and 
field data collection. Also, at some places, the location collected in field, fell within the 
canopy of a tree when overlaid on the CHM. A 1 meter threshold was set for such cases. 
However, this could also mean that the canopy has shifted, indicating tree disturbance. 
Both these cases point to a forest disturbance which has occurred between 2009 and 
2011. 
 

iv) Gap delineation: This proved to be the toughest job of all in gap analysis. Previous 
researchers came up with different methods to delineate gaps, yet no research can answer 
the question “when two gaps are interconnected, what could be considered as the 
boundary between two gaps”? The easiest way out of this problem is to consider gap 
fraction, so there is no question of determining the boundary between two gaps. 
However, it still proves to be a hindrance while validating gap area. Manual digitizing is 
also an option, but it is open to criticism because of human-induced bias.  
 
Two new possibilities came up after gap delineation and area validation was done: 
a) If the gap area sampled in field was lesser than that derived from the CHM, this 

could mean that gap closing is in progress. As mentioned earlier, regeneration was 
out of question because the time period between LiDAR acquisition and field data 
collection was just 2 years. Thus, the most probable reason for gap closing is that the 
trees have been subjected to more disturbance of some kind, causing them to incline 
more or change their orientation at certain heights. 
 

b) If the gap area sampled in field was more than that derived from the CHM, this very 
clearly points towards disturbance, which caused the gap to widen.  
Both these possibilities lead us into the field of gap dynamics. Gap dynamics have 
been studied by nearly every researcher who studies canopy gaps. Gap dynamics tell 
us about the ecological conditions in the forest, and also whether the forest is in 
quasi-equilibrium(http://www.csc.noaa.gov/crs/tcm). Since LiDAR data was 
available for only the year 2011, studying gap dynamics was impossible in this case. 
However, since it can be concluded from this study that gap area shows a significant 
difference in landslide and non-landslide areas, gap dynamics could easily be 
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associated with the landslide processes that occur in the study area. It opens up an 
entirely new field of study, especially for the Bois Noir landslide. Previous studies 
dealing with analysis of trees for reconstruction of landslides mainly dealt with tree 
ring analysis (Lopez Saez, et al., 2011). Now, with high resolution data like LiDAR 
available, it is well possible to relate various tree characteristics with landslide 
processes. In fact, for a landslide researcher or geomorphologist, it is also possible to 
reconstruct past landslides using gap dynamics. 
 
Thus, it can be confidently stated that “ canopy gap area, gap shape do indicate disturbance 
caused due to landslides, however, studying these two attributes at multiple points in time (that is gap 
dynamics) could potentially be a major indicator of landslide processes in the Bois Noir region”.  
 
It is hoped that if LiDAR data for Bois Noir is collected again, some research will 
come up with the gap dynamics and their association with landslide processes.  
 
Last but not the least, it is also important to mention that LiDAR is emerging as an 
excellent source of data, especially to study forest structure. Given efficient software 
like Quick Terrain Modeler, an endless horizon of possibilities arises from studying 
the LiDAR data. For decades researchers have struggled with low resolution 
remotely sensed data for analyzing forest structure, but LiDAR opens a new window 
of opportunities to study the forest. To describe the efficiency of LiDAR data, it 
would be appropriate to quote William Blake here, “if the doors of perception are cleansed, 
everything would appear to man as it is: infinite”.   
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APPENDICES 
Appendix 1: Field data collection form: 

i) Plots: 
Tree 
ID 

Tree 
Positi
on 

Tree 
Heig
ht 
(m) 

Tree 
orientation at 
() 
Heights (m) 

Inclination 
angle at () 
Heights 

DB
H 
(m) 

Tree 
Specie
s 

Crown 
Diamete
r (m) 

Type of 
deformation 

x y z 0 0.5 1.3 2 0 0.5 1.
3 

2  

                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
 

i) Transects:     
 
 

Field Observation Form, Barcellonnette 
Transect 
no: 6 
Transect length: 50m                                                      Type of 
landslide: 

Rotational+Earthflo
w 

Gap ID Photo id Number of 
surrounding trees 

Major Axis Length 
(m) 

Minor Axis Length 
(m) x y 
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Appendix 2: List of command lines used in LAStools: 

1. For LASGround: 
lasground -lof file_list.txt -merged -o lasground1.laz 
2. For LASHeight: 
lasheight -i *.las -replace_z 
3. For Gridding: 
lasgrid -i *.las -otif -step 0.1 -elevation -lowest -fill 3 
4. For clipping from shapefiles (lasclip) :  
lasclip –i *.las –poly transect.shp –o transect.las 
5. For clipping by coordinates (las2las):  
las2las -i *.las -o out.las -clip 630250 4834500 630500 4834750 
6. For viewing a .las file: 
lasview –i transect7.las  
Note: The specific file names or coordinates mentioned in these command lines are just as an 
example to facilitate understanding on the part of the reader/user.  
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Appendix 3:  Rule set used in ECognition: 
 
 


