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ABSTRACT 

The purpose for this paper is to present a method using remote sensing measurement for 
improved retrieval of Leaf Area Index and fractional cover as input in the Surface Energy 
Balance Systems model. The method for estimation is based on comparing LAI based on the 
empirical relationship between LAI and vegetation Indices (NDVI) against Beer’s law derivative 
for LAI and Poisson derived model for factional cover estimation. Furthermore the influenced of 
correcting satellite data by accounting for the variability in the viewing angle is investigated. In 
comparison to the ground observation, both SEBS automated routine and Beer’s law derivative 
model under predicted LAI and thus exhibited a relatively weak predicting power on both the 
ASTER and the AHS data. The Aster data however showed a better R² 0.6249 and 0.6004 for the 
SEBS routines and the Beer’s law derivative model respectively with the scatter produced on the 
Aster data by the Beer’s law derivative model representing results more closely to the ground 
data.  For fractional cover estimation subtle difference in the models’ estimation was observed 
with the major difference being observed at higher values of the viewing angle. Statistically the 
major difference is based on the R² (0.94) and the RMSE of the Poisson model derivative 
parameterization that showed the model performed better when multiplied by the cosine of the 
viewing zenith angle. This study is site specific and is achieved based on aircraft, satellite and field 
measurements made at the Barrax Agriculture Study Site in Spain during the SPARC campaign in 
2004. 
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1. INTRODUCTION 

1.1. Background 
There is a growing concern over the ability of agriculture to support increasing populations such 
that the eradication of poverty and hunger was included as goal one of the United Nations 
Millennium Development Goals that were adopted in 2000 (Rosegrant et al., 2003). Global food 
insecurity together with the continually growing population and consumption  for food is 
expected to remain a worldwide concern for at least another 40years and beyond (Godfray et al., 
2010). 
 
According to Wilhite et al (2007) drought is key threat to this global food security and it is a 
gradual, slow-onset natural hazard whose impact goes beyond the degree of direct exposure to or 
frequency of drought itself, but also by indirectly affecting dynamic responses to changes in the 
economic, social and environmental characteristics of the region. This amounts to drought 
contributing to great losses to agricultural production and recently crop yield has fallen because 
of declining investments in research and infrastructure, as well as increasing water scarcity 
(Rosegrant & Cline, 2003). Wilhite (2007) states that this has prompted an increasing need for 
measures to reduce the impacts of drought on agriculture and other sectors as well as an increase 
in demand for government or donor-sponsored assistance programs. A major research challenge 
is to develop suitable techniques for the forecasting the onset and termination of droughts 
(Mishra et al., 2011).  
 
Drought monitoring systems can be set up to enable advance warning to farmers and agriculture 
managers since drought at a critical stage during crop growth has an impact on yield. Satellite data 
has therefore become popular in the detection and occurrences of drought. Vegetation indices 
such as (Normalized Difference Vegetation Index) NDVI, Enhanced Vegetation Index (EVI) 
and Normalized Difference Water Index (NDWI) have been developed from this data (Anderson 
et al., 2007) and these remote sensing methods use vegetation to represent drought conditions. 
Monitoring can thus be achieved by observing the spectral change of vegetation in the visible and 
near infrared region(Marshall et al., 2004). Based on these two spectral channels the NDVI is the 
most common and not only maps the presence of vegetation on a pixel by pixel basis but also 
provides measures of the amount or condition of vegetation within a pixel (Wan et al., 2004). 
Time series of these vegetation indices at global scale with high temporal frequency are freely 
available at present and these include MODIS (Moderate Resolution Imagery Spectro 
radiometer), SPOT (Satellite Pour l’ Observation de la Terre) VEGETATION and 
AVHRR(Advanced Very High Resolution Radiometer (Rojas et al., 2011). 
 
Environmental remote sensing monitoring and modelling can provide a synergistic means of 
observing changes in thermodynamic balance during drought onset whilst providing reliable 
projections accounting for variations and correlation of water vapour and heat fluxes (Gao et al., 
2009). Different types of modelling systems have been developed over the years in order to use 
remote sensing inputs for surface flux estimation (Zhan et al., 1996). In crop production, 
statistical, semi empirical and crop process can be used and more deterministic models such as 
the soil-vegetation –atmosphere transfer models (SVAT) simulate intermediary variables linked to 
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hydrological processes as well as give access to detailed description of soil and vegetation canopy 
processes that are not only limited to final variables such as evapotranspiration and net primary 
production. SVAT models may intrinsically provide a mean for interpolating fluxes between 
remote sensing data and within these models, it may be possible to implement procedures to 
assimilate data acquired by a large range of remote systems which differ in wavelength domains, 
acquisition time or geometry (Olioso et al., 1999). Agronomists need to assess various variables 
within the soil–canopy system such as LAI, light interception photosynthetic active radiation 
(PAR)(Delécolle et al., 1992) in forecasting crop yield more accurately. Applications such as crop 
production and crop growth simulations require more accurate estimation of LAI of crop 
canopies (Delécolle, et al., 1992). Remote sensing and LAI of crop canopies can be linked based 
on the relationship between red and infrared reflectance with LAI. Thus a provision of crucial 
information on important crop state variables on a regional scale is enabled. Combing remote 
sensing information and crop growth models further provides direct link between state variables 
and remote sensed data as well as independence from time the remotely sensed data acquired. 
This is because crop growth models provide continuous estimates of growth overtime while 
remote sensing provides a multispectral assessment of instantaneous crop condition within a 
given area (Delécolle, et al., 1992).  
 

1.2. Research Problem. 

Modelling is typically necessary to provide means for interpolating between infrequent remotely 
sensed observations. When using a model like Surface Energy Balance System (SEBS ) in 
modelling land surface fluxes, several sensitivity analysis have indicated that the SEBS Land Use 
automatic routines products are very sensitive to the NDVI, fractional vegetation cover and LAI 
resulting in a deeper analysis on the validation of this approach being advised for any particular 
application (SEBS Help).  
 

1.3. Justification 
A model such as SEBS over simplify reality and thus implies that fractional cover and LAI have 
to be accurately modelled in order to reduce the uncertainty that arises from such a process. 
Fractional cover and leaf area index are variables not entirely independent from each other and 
care should be taken in separating them when being modelled because LAI may partially account 
for fractional cover  (Carlson et al., 1997) and thus a method will be formulated that investigates 
the retrieval of LAI and fractional cover based on the established relationship between the two 
parameters. It is also shown that viewing zenith angle in combination with amount of vegetation 
and vegetation structure is shown to have an effect on the magnitude of errors in retrieval 
methods and it is therefore useful to take angular effects into account when applying land surface 
parameters in models (Rasmussen et al., 2010). The novelty in this study is to improve land 
surface parameter retrieval to produce a comprehensible model that is easily applicable in 
improving the estimation of LAI and fractional cover for use in SEBS for Barrax Agriculture 
Study Site. 
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1.4. Research Objectives 
This research aims to evaluate the improvement of retrieval of land surface parameters as input in 
to the SEBS model as compared to using by-products from the automated SEBS routines. 

1.5. Specific Objectives 

1. To formulate algorithms that produce better estimates of land surface parameters LAI and 
Fractional cover in comparison to automated SEBS routines. 

2. Assess the influence of a non random sampling strategy in LAI retrieval from image data. 

3. Evaluate the correction of surface parameter estimation through the inclusion of a viewing 
angle for remote sensing data. 

1.6. Research Questions 

1. To what extent does the low geolocation accuracy impact the sampling strategy in trying to 
reduce the effect of uncertainty in LAI and Fractional cover estimation?  

2.  Which model gives an improved estimation of LAI from Aster data and high resolution 
Airborne Hyper Spectral (AHS) data? 

3. Is there a significant improvement in model estimation due to the correction of image data by 
multiplying with the cosine of the viewing angle? 

1.7. Hypothesis. 

For all model predicting LAI and Fractional cover the following hypothesis was formulated: 
 
Qn1: 0H  : There is no significant improvement in the agreement in leaf area index 

(RMSE, R²) if data pairs between image and field observations are obtained by 
areal population statistics rather than single point sampling techniques in 
addressing the  mentioned geolocation inaccuracy issues 

aH  : There is a significant improvement agreement in leaf area index (RMSE, R²) 

if data pairs between image and field observations are obtained by areal 
population statistics rather than single point sampling techniques in addressing 
the  mentioned geolocation inaccuracy issues 

 
 

Qn2:    0H : The new algorithms do not give better LAI and Fractional cover estimates as 
compared to the SEBS routines 

aH  : The new algorithms give better LAI and Fractional cover estimates as 
compared to the SEBS routines 
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Qn3: 0H : There is no improvement in the model estimation after correction of the 

image data by multiplying with the cosine of the viewing angle 

aH : There is an improvement in the model estimation after correction of the 

image data by multiplying with the cosine of the viewing angle 
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2. LITERATURE REVIEW 

2.1. Land Surface Parameters retrieval from satellite data 

2.1.1. Leaf Area Index 

Leaf Area Index (LAI) characterizes the canopy atmosphere boundary where most of the energy 
fluxes exchange occurs. LAI is a biophysical variable that is important in defining structural 
properties of a plant canopy. It is used to quantify the interception of light by the canopy and is 
viewed as a succession of absorbing layers of leaves each reducing radiation. LAI can be used to 
calibrate crop growth models and coupled vegetation and hydrological models. When it comes to 
estimating fractional cover in context of the big leaf model as it is done in the SEBS model, 
fractional cover of a homogenous vegetated land cover is defined as the percentage of soil which 
is covered by green vegetation, when looking vertically from the top (Jarvis, 1995). This is in 
respect to the size of vegetation that interacts with the atmosphere through evapotranspiration, 
absorbing radiation and storing energy and it is influenced by the area of leaves per area of 
ground.  
 
 Lhomme et al. (1988) states that LAI and Fractional cover are important parameters in processes 
such as land surface temperature retrieval where they contribute to what radiometers measuring 
the surface temperature of a crop canopy take into account in terms of radiative fluxes being 
emitted by all surfaces viewed by the instrument. Within a Far Thermal Infrared (FTIR) pixel 
with a vegetated portion, the temperature recorded by the radiometer is a function of the canopy 
temperature plus the temperature of the exposed soil. The vegetated portion can be translated 
into Leaf Area Index (LAI) which is greatly related to canopy process such as evapotranspiration 
as well as directly quantifying plant and canopy structure. LAI is useful in such a case in 
explaining the misrepresentation of aerodynamic temperature by radiative temperature as the 
degree of exposure of soil to radiation varies with different stages of growth implying also a 
variation of radiation emission by the soil measured at the sensor. Over regions characterized by 
fractional cover or row crops ,temperature measurements acquired by thermal infrared 
radiometers often reflect a mixture of soil and canopy temperatures (Friedl et al., 1994). This 
depends on the view geometry of the sensor, the stability of the lower atmosphere and the 
temperature difference between the vegetation canopy and soil background. Accurate retrieval of 
surface temperature becomes complicated if measurements are made by sensors aboard satellite 
platforms far above the ground. Therefore in using remote sensing techniques to measure 
sensible heat fluxes over vegetated areas, differences have been observed, which results in 
thermal infrared temperatures not always representing aerodynamic temperatures. This 
aerodynamic temperature is needed in crop growth models which are useful in monitoring 
agricultural crops during the growing season. This is important in order to adjust the 
management (e.g. irrigation, fertilizers) and to provide information for obtaining yield predictions 
before harvest time as well as detect or forecast the threat of drought beforehand. 
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2.1.2. Gap Fraction theory 

Gap fraction is measured in terms of the probability of light penetration and the amount of 
distribution and openings in the canopy relative to the chances that a light beam reaches the soil 
without contact with vegetation components. The theory of gap fraction therefore applies to the 
percentage or proportion of gaps for the whole hemispherical bottom up view of a canopy. It 
requires accurate modelling to predict light environment in the canopy, photosynthetic activity or 
canopy reflectance. Gap fraction is determined through the geometrical structure of the canopy, i 
e a data set describing location, orientation, size and shape of the vegetation components (Ross, 
1981). 
 A comprehensive explanation of the canopy structure is quite an idealistic scheme because of the 
amount of Information required and therefore the structure is generally summarised by a few 
synthetic variables like the leaf area density and the leaf orientation distribution. The leaf area 
density, l (h) at level h in the canopy is well-defined as the leaf area per unit volume of canopy. 
The leaf area index, L, at a level H in the canopy is related to the leaf area density through: 
 
   
         (1) 

 
 
The mean number of contacts ),,( vvHN  between a light beam and a vegetation element at a 
given canopy level H in the direction for which the incident light beam penetrates inside the 
canopy ),( vv   is given by: 
        (2) 

 
 
Where ),,( vvhG   is the projection function, i.e. the mean projection of a unit foliage area at 

level h in direction for which the incident light beam enters inside the canopy ),( vv  . When the 
leaf area density and the projection function are thought to be independent of the level h in the 
canopy, Eq. 2 is simplified into Eq. 3: 
            (3) 

  
 
The projection function is defined as follows: 
        
    (4a) 

    
    (4b) 

 
Where ),( llg  is the probability density function that describes the leaf normal orientation 

distribution function (i.e. the fraction of leaf area with a normal within the solid angle ld  , in the 

direction l  .This introduces the two normalization conditions given in Eq 5a and 5b: 
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        (5a) 

      (5b) 

 
 
 
The definition varies according to author ),( llg  but may also be defined as the leaf angle 
distribution, i.e. the fraction of leaf area for which the angle between the vertical and the normal 
of the leaf is between l  and  1 dl   together with the azimuth is between l  and  1 dl    
In this case, Eq 5a should be written as (Sinoquet and Andrieu, 1993): 
 
 
       (6)  

 
 
The contact frequency is a very attractive quantity to indirectly estimate LAI because no 
assumptions on leaf spatial distribution, shape, and size are required. Unfortunately, the contact 
frequency is very difficult to measure in an illustrative way within canopies and thus the gap 
fraction is generally preferred. In the case of a random spatial distribution of infinitely small 
leaves, the gap fraction        in direction is related to the contact 
frequency by: 
 
 
       (7) 

This is known as the Poisson model (Weiss et al., 2004). 
 

2.2.  Viewing Angle Effects in Land Surface parameter retrieval 
Physical features of an area have an influence on the radiance and this can effectively alter the 
angle between viewer, earth and sun. Therefore measurement of the emission of different cover 
types becomes influenced by the viewing angle of the sensor as different sections of the ground 
cover fraction of the crop will be visible at different viewing angles. The sensor can see only a 
single part of the plant depending on view angle , crop diameter plant distance and crop 
height(Vonder et al., 2000). It is such that when a sensor moves from nadir to off-nadir viewing 
the sides of the canopy come into view and make the soil obscure resulting in an increased foliage 
area viewed by the sensor (Ranson et al., 1985). Taking into account the multi angle measurement 
provides a distinctive way of implying surface information within the observed pixel(Chopping, 
2008) and the prediction of plant geometry parameter such as height , diameter  and crop 
coverage may be possible(Vonder, et al., 2000). Differences have been observed when estimating 
LAI or fractional cover from remote sensing because the variability of viewing angle affects 
measurement at the sensor should be considered if uncertainties and the production of errors are 
possible due to a model’s sensitivity to its input parameters. Therefore in some cases multi 
angular measurement may offer vividly canopy structure leaf properties soil moisture and 
radiation variables than mono-directional measurements(Chopping, 2008). 
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2.3. Modelling Systems of  Land Surface Parameters 
Remote sensing based methods for initializing, updating and validating land surface variables 
within these models still remains inadequate particularly the fact that virtually all of the dynamic 
components of land surfaces that influence and interact with the atmosphere are treated as 
prognostic variables (Friedl, 2002). The success of modelling techniques have been limited due to 
variables such as solar radiation, wind speed, air temperature and humidity, vegetation structure 
(leaf area index, height etc.) and properties, soil properties, moisture availability and viewing angle 
of the sensor. These variables have strong effects on the relationship between thermal radiance 
and partitioning of the energy and mass flux of the surface (Norman et al., 1995) such as when 
solar radiation is incident on crop canopy, part of it is used in vaporization of water meaning that 
if  less water is used more energy is left for canopy heating (Venus et al., 2004) and this needs to 
be modelled appropriately. 
  

2.3.1. Model Description 

SEBS was developed with the goal of estimation of turbulent fluxes and surface evaporative 
fraction using satellite observed data. SEBS is an algorithm that calculates evapotranspiration by 
means of the surface balance index and computes fluxes from visible, near infrared and thermal 
radiances. The algorithm as described by Su (1999) has been implemented by Hans van der 
Kwast and Karssenberg in PC raster Python. It is a single source model with 3 module deriving 
energy balance terms, stability parameters and roughness length. Three sets of data inputs are 
required, (1) albedo, emissivity, temperature and NDVI, (2) meteorological data such as air 
temperature, humidity wind speed), (3) radiation data in the form of downward solar radiation 
and long wave radiation. Fractional cover and LAI are non-spatial outputs but the SEBS was 
adjusted such that it produced spatial maps from the calibrated algorithms. 
 

2.3.2. Model Sensitivity to Input Parameters 

SEBS estimates evaporative fraction and  in order to improve model performance, sensitivity 
analysis has been carried out in order to determine the required precision of input 
parameters(Lin, 2006). Estimation of LAI and fractional cover as input parameters in modelling 
of evapotranspiration by SEBS hinges on their proper estimation to balance out the model’s 
sensitivity. Accurate estimates by SEBS are important since the knowledge of evapotranspiration 
rates is an essential aspect for managers responsible for managing and planning for water 
resources primarily in arid & semi-arid regions where crop water demands are more than water 
received through rainfall. Irrigation from surface and/or groundwater resources is then required 
to meet the deficit. Accordingly knowledge of evapotranspiration rates is useful in understanding 
this water demand by plants and this is based on the fact that under normal conditions plants 
transpire and as water evaporates it cools the leaves but in periods where there is insufficient 
water, transpiration is minimal. 
In SEBS fractional cover is a user defined product and for different purposes it uses different 
formulation of fractional cover. Therefore it is important to note the choice of formula and its 
calibration since it has a subsequent effect on evapotranspiration(Gibson et al., 2011). According 
to Lin (2006) SEBS modelled evaporative fractions increased  with increasing fractional cover 
that the SEBS evaporative fraction is more sensitive to high NDVI value areas. Van der Kwast et 
al (2009) in relation to sensible heat flux mentions that, although  there is a lesser sensitivity of 
SEBS derived sensible heat flux to errors in surface aerodynamic parameters as compared to 
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surface temperature, the errors in the approximation of these parameters from remote sensing 
images using empirical relations can be larger and surpass the 50% limit of input accuracy for 
many land cover types. 
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3. STUDY AREA AND DATASETS 

3.1. Study Area 

 

Source: Map of Spain1 (left) and Barrax Study Site2 (bottom right) 

Figure 1: Location of Barrax Study Site 

The study area (Figure 2) is the Barrax test site which is rectangular in form covering 50km², with 
coordinates related to Zone 30 Datum WGS 84 and corner coordinates as in Table 1. It is located 
in the region La Mancha a plateau 700m above sea level south of Spain. Climatic conditions are 
of high precipitation in spring & autumn and the minimum in summer and the annual rainfall 
averages 400mm. La Mancha has high thermal oscillations during all seasons and it is the driest 
area in Europe. 
 

Table 1: Geographic coordinates of the study site. 

Geographical corner coordinates

Corner 1 575505.9523E 4323210.7146N

Corner 2 585226.6519E 4325555.7469N

                                                      
1 http://www.theodora.com/maps/ 
2 http://www.vacances-location.net/vakantiehuizen/vakantiehuizen-barrax,albacete.thtml 
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Corner 3 575039.5028E 4325144.3194N 

Corner 4 584760.2034E 4327489.3472N

Source: (Valencia, 2011) 

The area is characterized by flat morphology and large uniform land-use units and consists of 
65% dry land and 35% irrigated land with large pivot and other different agriculture units. The 
area has been used for agriculture. 

3.2. Description of  Data  

3.2.1. Remote Sensing Data 
Remote sensing plays a vital role in real time monitoring of agricultural conditions over a large 
area and thereby effectively supplementing the ground mechanisms (Krishna et al., 2009). Satellite 
data can be used in monitoring crop growth which yields required parameters for crop growth 
modelling on a real-time and area basis. The satellite images of different resolutions were used in 
the study. Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) is a 
sensor aboard one of NASA’s Earth Observation System (EOS) satellite. It has a wide spectral 
range and higher spectral resolution of 0.52-11.65 microns with 14 bands. It also provides a multi 
spectral infrared data (8-12 microns window region globally). Aster images also have a high 
spatial resolution at 15m, 30, and 90m. One scene of Aster image acquired on 18th of July 2004 
was applied in this study and this was Level 1B product of which the Aster channels were 
radiometrically calibrated and geometrically co-registered. A description of the Level 1B product 
is summarized in Table 2 
  
Table 2: Description of ASTER spectral bands 

Subsystem Band number Spectral range Spatial Resolution

VNIR 1 
2 
3N 
3B 

0.52-0.60
0.63-0.69 
0.78-0.86 
0.78-0.86 

15m

SWIR 4 
5 
6 
7 
8 
9 

1.600-1.70
2.145-2.185 
2.185-2.225 
2.235-2.285 
2.295-2.365 
2.360-2.430 

30m

TIR 10 
11 
12 
13 
14 

8.125-8.475
8.475-8.825 
8.925-9.275 
10.25-10.95 
10.95-11.65 

90m
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The Airborne Hyper Spectral (AHS) data was collected from the INTA AHS system where an 
80-band line scanner radiometer is installed in a CASA C-212 aircraft and integrated with 
GPS/INS POS-AV 410 FROM Applanix. The radiometer design is such that in the MIR and 
TIR ranges it has a high spectral resolution (30nm to 50nm) and the atmospheric windows (3-
15microns and 8-15microns) are fully covered. Raw data was transformed to sensor radiance 
(level 1b) and later geo-located based on the processing of GPS/INS data synchronized with 
imagery at sensor radiance (level 1c). The AHS data was sampled to a 2m resolution providing 
very high resolution data for the study site. Image used in the study was of 18 July 2004 that was 
of a time close to the satellite overpass with the ASTER image SPARC Report (ESA, 2005).  
 
Table 3: AHS spectral configuration 

 PORT 1 PORT 2A PORT 2 PORT 3 PORT 4

coverage(micrometres) 
bandwidth (FWHM) 
λ/Δλ (minimum) 
nº of bands 

0.43 ->1.03
28 nm 
16 
20 

1.55 -> 1.75
200 nm 
8  
1 

2.0 -> 2.54
13 nm 
150 
42 

3.3 -> 5.4 
30 nm 
110 
7 

8.2 -> 12.7
40-50 nm 
160 
10 

 
 The satellite data was pre-processed for PCRaster version for SEBS to generate variables 
fractional cover, NDVI and LAI. 

3.2.2. Ground Data 

In–situ measurements were part of the SPARC-EAGLE campaign carried out from 12-21 July 
2004 at Barrax agricultural study site in Spain. Ground Observations of LAI were obtained from 
an indirect LAI retrieval method using LAI-LI COR 2000 instrument. One ambient light 
measurement was obtained with the sensor extended at arm’s length, upwards over the top of the 
canopy and then 8 below canopy readings with this pattern being repeated per spot (ESA, 2005). 
The measurements were taken in fields of alfalfa (Medicago sativa L.), corn (Zea mays L.), garlic 
(Allium sativum L.), onion (Allium cepa L.), potato (Solanum tuberosum L.) and sugar beet 
(BetaVulgaris L.) as shown by Fig 2. 
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Figure 2: Land use map showing locations of LICOR LAI measurements 

 
Furthermore Fig3 shows LAI measurements from hemispherical photographs that were 
preprocessed with WinPhot and used in the analysis of ground observed fractional cover.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Hemispherical photographs showing calculations using WINPhot software.
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4. METHODOLOGY 

4.1. Sampling Strategy 
 Positional accuracy relates to the accuracy of a point on the imagery with reference to its physical 
location on the ground and thus for any comparison it is important that the same location be 
located both on the image and on the ground (Congalton, 2005). Generally geo-referencing 
images and using global positioning systems (GPS), locational errors can be reduced. However 
there is still uncertainty about whether the field location is tied to a single pixel coordinate 
(Forsythe, 2006) and for this reason it was necessary to estimate a potential locational error in 
pixel units and adjust accordingly in relation to the ground sample unit size. Sampling strategy is 
therefore important in order to be able to provide reliable estimates of land surface parameters in 
crop growth simulations. In this study to get representative measurements of LAI from satellite 
data, coordinates of the ground measurements were converted to point map and the generated 
point map was overlaid on the images to get representative LAI observations that coincided with 
ground measurements. Some points were off their actual position, that is to say a point 
representing a sample in the maize field was then located on the road beside the field when the 
point where overlaid on the image and therefore a qualitative sampling method had to be devised. 
The uncertainty causing the shift in the points was attributed to GPS error sources such as noise, 
bias, blunders (mistakes due to computer or human errors) of which their combined magnitude 
does indeed affect the accuracy of the positioning result.  
 
Table 4: Cumulative error of a standard Garmin GPS 

Error Value

Ionosphere 4.0 meters

Clock 2.1 meters

Ephemeris 2.1 meters

Troposphere 0.7 meters

Receiver 0.5 meters

Multipath 1.0 meter

Total 10.4 meters

 

Based on the type of GPS used a summary (Table 2) of the potential cumulative error was created 
and it was used to generate buffers around the points. Purposive sampling was executed through 
a rank order method to hand pick LAI values. The design was such that for a cluster of sample 
points, a rank order was created based on the ground observation and the area was stratified 
according to crop type and individual field location. The point observation from one stratum 
with the highest ground observed LAI value was ranked as 1 and the next highest was ranked as 2 
and so on. 
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Figure 4: 

Sampling on LAI values from the image. 

4.2. LAI Retrieval 
NDVI and LAI maps were generated based on automatic routines in PC Raster and imported 
into ILWIS. This was used together with an Aster LAI and NDVI product to test the suitability 
of a hand picking technique as part of a sampling strategy as well as compare the degree of 
estimation of LAI from automated SEBS and the exponential law based method (Bsaibes et al., 
2009).Two LAI retrieval methods were based on the following equations; 
 
Leaf Area Index (LAI) is internally calculated by SEBS as:  

            (8) 

1. The exponential law based method (Bsaibes, et al., 2009) derived from the widely used 

works of (Asrar et al., 1985; Baret et al., 1991; Wilson et al., 2007) calculate LAI as: 

                 (9)
 

 
 sNDVI Is the bare soil NDVI value, NDVI is the asymptotic value of NDVI when LAI tends 
towards the maximum value and LAIK is an extinction coefficient.  Parameters NDVI , LAIK and

sNDVI were adjusted using an optimization approach to minimise the Root Mean Square Error 
(RMSE). 
 
Whilst taking into account the variability of the viewing angle Equation 9 was modified by 
multiplying with the cosine of the viewing angle such that the equation translates to; 
 
 

    (10) 
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4.3. Agronomic Parameterization of  Fractional cover 
The crop coverage (CFLEAF)  is described using the relationship between fractional cover and 
LAI (Bouman et al., 1992) as;  
 
   (11) 
     

Where ke is the coefficient of extinction and LAI is the leaf area index. 
 
Light interception (ke) is a useful parameter in the calculation of crop coverage and its 
measurements are usually made close to solar noon when the solar angle is close to 0°. At this 
angle factors like row orientation and canopy height impact have a less contributory impact on 
what is measured. In this study the light extinction coefficient (ke) for only sites( corn and vine 
yard locations) where hemispherical photographs were available was calculated from transmitted 
photosynthetic active radiation (TPAR) and incoming photosynthetic radiation (IPAR) data by;  
 
            (12) 

Or 

         (13) 

 

4.4. Physical Parameterization of  Fractional cover 
The heterogeneous nature of land surfaces results in mixed pixels of anisothermal objects existing 
in far thermal infrared imagery at relatively coarse spatial resolution (Liu et al., 2008). Thus 
variation in the reflectivity of vegetation materials may result in the misclassification of data from 
aircrafts and satellites if angular effects are not considered (Rao et al., 1979; Shibayama et al., 
1985). However crops have a different leaf orientation and LAI when viewed at a low oblique 
angle (<45°) than when viewed vertically  (Rao, et al., 1979) such that it is necessary to explicitly 
bring out the influence of the viewing zenith angle on the measurement by the sensor. Anthoni et 
al (2000) suggest that there is an improvement in the estimation of upwelling radiation at the 
radiometer location over orthogonal cover fraction estimate and express average vegetation 
fraction ( vegetationf ) as a function of viewing angle according to (Norman, et al., 1995) as;  
 
       (14) 
  

And the fraction of ground exposed within the canopy is represented as 

        (15)
  

This is because as a satellite scans over the earth, it encounters different terrains within its 
footprint which impacts the geometry of the angle, between viewer, earth and the sun for each 
pixel.  
In this case however following the Poisson model and assuming the G- function for a spherical 
distribution to be 0.5 in place of ke Eq.14 becomes: 
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    (16) 

 
To address the uncertainty in obtaining data pairs between image and field location, the median 
and 95th percentiles were extracted from the areal population statistics of pixels lying within the 
uncertainty zone around the reported GPS-location as is exemplified in Fig. 4. 
 

4.4.1. Statistical Analysis 

To check whether there is an improvement in the calculations by the equations, the Bias, Root 
Mean Square Error (RMSE) were together to diagnose the variation in the errors in each 
equation. The Bias checks whether the models were overestimating or underestimating and was 
calculated using the following equation: 

       (17) 

 

Where if  are the observed values and iy  is the predicted values 

 RMSE is the average magnitude of absolute errors and is denoted     

        (18) 

 

Where if  are the observed values and iy  is the predicted values 
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5. RESULTS AND DISCUSSION 

5.1. Sampling Strategy 
Although stratification was based on crop type, sampled values were influenced by field location 
and management practices such that a point observation would be ranked low in terms of LAI 
ground observation but the values within the entire buffer for NDVI for that particular point 
would be higher than another sample point with a higher LAI ground observed value than it.  

 

5.2.  LAI Retrieval 
In order to ascertain the possibility of estimating LAI using the empirical relationship between 
LAI and vegetation indices (NDVI), ground based measurements were analysed as a function of 
NVDI (Figure 5). Results showed that NDVI values saturated at an LAI of 3.5 for the fields in 
the study site. This is in line with the findings of Asner et al  (2003) that at low LAI values spectral 
vegetation indices such as NDVI are sensitive to LAI but the relationship becomes weak and 
nonlinear as the values rise above 3 (Baret & Guyot, 1991). 
 

 
Figure 5: Relationship between Observed LAI and NDVI 

For the inverted modified version of the Beer’s law to measure LAI a site if unique values for the 
parameters were set and these are represented in Table 2 where the set of unique parameters that 
were established by least squares optimisation for both the AHS and the ASTER data. 
 

Table 5: Adjusted parameters for the Exponential Model 
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AHS  
 

0.86 0.83 101008.1 

Aster  
 

0.61 0.81 191008.1 

 
In comparison to the work of Bsaibes et al. (2009) the values are comparatively low  for the 
ASTER data with a LAIK  of 0.61 as compared to that of their study of 0.71 and the NDVI of 
0.81 of the current study against that of 0.89 . For the AHS data, only the LAIK differed and it 
was much higher in comparison. The differences observed may be attributed to the differences in 
crop cover type. 
 
After the calibration of the exponential model, a comparison was made between SEBS automated 
routines and the calibrated model.  Figure (6) show the relationship between observed and 
Estimated LAI retrieval of the two methods on the AHS data and Figure (7) show the 
relationships between LAI estimated by the two methods and the observed LAI measurements 
on the Aster data. For the AHS data the exponential law model over predicted LAI as compare 
to SEBS algorithm with Bias of 1.006 for the exponential model and 0.6004 for the AHS. This 
was quite contrary to the ASTER data that predicted LAI better than the exponential law model 
with a Bias of 0.514 and 0.968 for the exponential law and SEBS respectively. 

 
 
Figure 6: The relationship between observed and Estimated LAI retrieval methods on the AHS 
data. 

 
In comparison to the ground observation, both models under predicted LAI and thus exhibited a 
relatively weak predicting power on both the ASTER and the AHS data. The Aster data however 
showed a better R² 0.6249 and 0.6004 for the SEBS algorithm and the exponential model 
respectively with the scatter produced on the Aster data by the exponential model representing 
results more closely to the ground data.  
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Figure 7: The relationship between observed and estimated LAI of the two methods on the 
ASTER data. 

The much weaker performance of the SEBS algorithm in this study may be attributed to the fact 
that there the relationship between LAI and the NDVI is only strong at low NDVI values and 
according to Carlson and Ripley (1997) at low LAI values that were dominant in the study of less 
than 3, vegetation indices such as NDVI tend to be more closely related to fractional cover than 
to LAI of clumped vegetation. Also according to Asrar et al. (1985) LAI has a better correlation 
with NDVI for single plant species grown under uniform conditions  but not for mixed canopies 
,which often occurs in remote sensing studies where a single pixel can contain several landscape 
units a condition which is applicable to our study site which has different cropping units adjacent 
to each other. 
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Figure 8: Variation in viewing angle of the AHS footprint 

 
 A  map(Fig:8) was generated in order to extract the viewing zenith angle of the AHS swath and 
sample points of both LAI and fractional cover were over laid on the image. This allowed the 
exponential model to be further adjusted in order to investigate the incorporation of the viewing 
zenith angle to aid in its retrieval of LAI and fractional cover retrieval. The estimation of LAI and 
fractional cover was greatly affected by the viewing angle. With Equation (14) dividing with the 
viewing angle served to increase the estimation of fractional cover.  The two equations were then 
compared model 1 (Equation 9) and model 2 (Equation10) for LAI estimation to see if the 
correction by multiplying with the cosine of the viewing angle improved the estimation of LAI. 
As estimators, the median and percentile of the models were obtained by the least squares 
method and Table 6 shows the resultant coefficients. The use of the median values resulted in an 
improved estimation of LAI and this is shown by the Root Mean Square Error (RMSE) of the 
model with the median as the estimator being lower (model 2: RMSE= 1.624131, model 1: 
RMSE=0.611678) than the percentile (model1: RMSE=1.622595, model 2: 1.521922). 
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Table 6: Adjusted parameters between the models 

 
 

 
 

The results (Fig 9) show that the median estimation using model 3 had the lowest coefficients for 
all parameter and was the best predictor for LAI.  
 

 

Figure 9: Comparison between LAI estimation by the two models each using the median and the 
percentile values respectively 

All models were statistically significant, with all the P-values less than 0.05. Although all models 
were statistical significance model quality also had to be assessed. LAI model 2 Median produced 
a high R2 on the validation points. Model 3-median was the best choice because the adjusted R2 

model 1 model 2 

 95th-
percentile

median 95th-
percentile

median 

  
NDVI∞ 0.9 0.894358 0.9 0.9 

NDVIs 1E-10 1E-10 1E-10 1E-10 

KLAI 0.670174 0.6 0.611678 0.604497 

RMSE 1.622595 

 

0.611678 
 

1.521922 

 

1.624131 
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for the training dataset explained 80.3% of the variability in the response variable and it showed 
that the model fitted well to the observed values and only looking at the simple R2 is biased 
upwards since it exaggerates the goodness of fit in a model with more than one variable. The 
model was overally highly significant (P-value = 1.9 x E-9 <0.05). The model predicted well on 
the validation data set (79.3%) meaning that there was little disagreement between the observed 
and the predicted values. This is important as it implies less error in predictions. Consequently 
the correction of the NDVI values by multiplying with the cosine of the viewing angle enabled 
better prediction of LAI as compared to assuming the conditions are at nadir when implementing 
these routines.  

5.3. Parametirization of  Fractional Cover 
 Fractional cover is also an important parameter soil-vegetation-atmosphere transfer models and 
surface energy balance models. The agronomic definition take into account assumes that the 
measurement is at nadir. Remote sensing estimation of fractional cover using the nadir 
assumption results in a non-representative estimation of fractional cover if the measurement is 
recorded at a particular angle. Due to the unavailability of sufficient data only a 19 points were 
used in this part of the study. These were used on Poisson model derivative for fractional cover 
estimation to compare with the agronomic physical parameterization of fractional cover. 
 
 

 
 
Figure 10: Variation in AHS viewing angle as per crop type 

 

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45

ga
rl
ic

ga
rl
ic

Yo
u
n
g 
V
in
e 
Ya
rd

M
at
u
re
 v
in
e 
Ya
rd

p
o
ta
to

co
rn

al
fa
lf
a

co
rn

co
rn

al
fa
lf
a

su
ga
rb

co
rn

co
rn

ga
rl
ic

ga
rl
ic

co
rn

M
at
u
re
 V
in
e 
Ya
rd

p
o
ta
to

M
at
u
re
 V
in
e 
Ya
rd

A
n

gl
e 

in
 D

eg
re

es

Crop Field



 

25 

Figure 11 compares this phenomenon of the influence of correcting for the viewing zenith angle 
when using remote sensing data based on the viewing angle of 19 different crop samples with 
values shown in Fig 10: 
 

 
 

Figure 11: Comparison between Poisson model derivative and the agronomic model estimating 
fractional cover at different angles in relation to the perfect predictor. 

 
Results show that at low viewing angle there is a negligible difference in the estimation of 
fractional cover by both models as shown by crops viewed at an angle between 0˚ and 8˚ (garlic 
and vine). As the angle increases marked differences in the positions of the points (Corn 14˚) can 
be observed and this signifies that as the viewing angle increases, it impacts the predicting 
strength of the Poisson model. Multiplying with viewing angles at higher viewing angles served to 
increase the fractional cover and bring the value closer to the one to one line signifying that the 
values predicted by the Poisson model became closer to the expected values. However some 
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crops behaved differently, for example point 8 (Alfa Alfa 33˚) in which case the fractional cover 
was either underestimated by the agronomic definition or over estimated by the Poisson model.  
 
Leaf angle distribution and crop cycle of the crops played a role in the effect of the viewing angle 
of the sensor in fractional cover estimation. Planophiles which have a propensity to close their 
foliar canopies and equally shade lower leaves of crop canopy and from a nadir perspective the 
viewer can only see the effect of the canopy closure and yet at an angle the lower leaves can be 
observed and more representative fractional cover estimation can be obtained. This is shown in 
Fig. 11 by (point 6) where viewing a potato field at angle of 5° shows little difference between the 
models’ prediction whereas at an angle of 20° (Point 19) an increase in fractional cover estimation 
is observed. Heliotrophic plants which reorient their leaves throughout the day to maximize 
exposure to the sun such as Alfa Alfa (Medicago sativa L.) and sunflower tend to be challenging 
and are difficult to estimate by incorporating the viewing zenith angle of sensor. Corn on the 
other hand although it exhibits asymmetrical leaf angle distribution, the change is not within one 
day as with heliotrophiles but the change is over time. This therefore means that the crop cycle of 
the corn plant will play a major role as it shifts from an erectophile distribution at an early stage 
of growth and as it fans out as it matures. Erectophile such as garlic are not drastically affected by 
the viewing angle and the fractional cover estimated was approximately the same for both models 
(points 1, 2, 15 and 16). The vine yard has a plagiophile distribution and remained the same as 
well since the field was measured at low angles. 
 

Statistically results show a more pronounced difference in the models’ estimation can be 
observed at higher values of the viewing angle. The difference is based on the R² (0.87) and 
RSME (0.09) of the Poisson model that showed the model performed better when multiplied by 
the cosine of the viewing zenith angle compared to the Agronomic model. This may be attributed 
to that in implementing the agronomic definition a bias is introduced if the viewing zenith angle 
is not accounted for when using remote sensing data. In this case this shown by the bias error 
calculated for the Agronomic being further from zero (0.0813) as compared to the Poisson model 
(0.06456). Overall the implication of this study is that when using a model like SEBS which is 
sensitive to fractional cover as input parameter, improper estimation will result in errors being 
introduced and subsequently propagated throughout the analysis. Gibson et al (2011) revealed 
that the sensitivity of SEBS to input parameters produced errors, if for example ill-defined NDVI 
limits were used in fractional cover retrieval. This error would subsequently be propagated 
further to soil and sensible heat flux up to evapotranspiration estimation.  
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6. CONCLUSION AND RECOMMENDATION 

This chapter will serve to the research formulated in this study and this will be followed by 
limitations of the study and finally recommendations. 
 

6.1. Conclusions 
 

1. To what extent does the low geolocation accuracy impact the sampling strategy in trying 
to reduce the effect of uncertainty in LAI and Fractional cover estimation?  

In the presence of a positional uncertainty, sampling procedure is of great importance such that 
the final output is not greatly affected by the uncertainty and error, potentially arising from the 
source of the data or through processing errors. Although acquisition of LAI is rather tedious 
and intensive is should nonetheless be as representative as possible, and thus there was a need for 
a robust estimator. The median produces a better RMSE in the event that the data has a high 
degree of uncertainty and the median proved to be a quick and useful parameter in counter acting 
the positional accuracy of the data. The low geolocation accuracy resulted in a non-random 
sampling technique centred on stratification based on crop type and field location and hand 
picking values. Though it served to provide some representation, it also aided in the propagation 
of errors in the analysis as is shown by the courser resolution aster image providing better results 
than the finer resolution AHS data. 
 

2. Which model gives an improved estimation of LAI from Aster data and high resolution 
Airborne Hyper Spectral (AHS) data? 

The issue of spatial heterogeneity and coarseness of data had an influence in the execution of the 
study. The exponential model produced the better results overally and especially when 
implemented on the resampled Aster data as compared to the AHS data which initially had the 
finest resolution of 15m. This marked difference between the ASTER and AHS results (although 
both images were finally sampled in the same resolution) could be attributed to errors that were 
accumulated in the processing of the images and also from the fact that non random sampling 
technique was used to hand pick the values on the image. 

 

3. Is there a significant improvement in model estimation due to the correction of image 
data by multiplying with the cosine of the viewing angle? 

 LAI and fractional cover needed be modelled accurately as they are important components in 
land surface fluxes which serve to aid in understanding agriculture drought based on the 
knowledge of how much water a crop requires. Adjusting by multiplying with the cosine of the 
viewing angle served to improve the estimation of the Poisson model showing that indeed the 
variability in the angle at which the measurement of the surface parameters is done impacts the 
reading at the sensor and needs to be adjusted to represent reality. Canopy structure and 
characteristic will also determine will also affect the level to which this adjustment behaves 
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6.2. Limitations of  this research. 
During the course of this study, several challenges were encountered. The major drawback in 
carrying out this study was the quality of the data used. For the LAI measurements of ground 
observations there was not enough metadata available such that a lot of time was invested in 
trying to improve the positional accuracy of the measurements on the satellite images. Very few 
hemispherical photographs were available as another indirect method to measure LAI that were 
really useful for the study in order to investigate the retrieval of the light extinction coefficient 
(ke) for rowed crops. A consistent record of the data was also not available for the DOY of 
interest for all crops. 
 

6.3. Recommendations 
There needs to be a more detail study in the error propagation due to positional inaccuracy.  
A much detailed statistical analysis is needed to compare various methods to minimize errors the 
estimation of parameters if the data is corrupted. 
Further study into the validation of the degree to which the sensitivity of SEBS to fractional 
cover and LAI will be affected by this correction method needs a much deeper analysis. 
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APPENDICES 

Appendix a: Aster data LAI calculations 
 
Field  Operat

or 

Coordinates NDVI Observe

d LAI 

LAI_SE

BS 

Sqerror 

1 

BIAS LAI 

model 2 

Sqerror 

2 

BIAS 

C1 A1 577799.4 4323405 0.651 1.85 1.7549 0.00904 0.0951 2.66907 0.67087 -0.81907 

C1 F2 577737.6 4323396 0.634 1.58 1.6824 0.01049 -0.1024 2.50254 0.85108 -0.92254 

C1 S1 577808.8 4323399 0.67 1.4 1.84136 0.1948 -0.4414 2.87769 2.18357 -1.47769 

C1 U1 577807.9 4323406 0.651 1.76 1.7549 2.6E-05 0.0051 2.66907 0.8264 -0.90907 

C1 U2 577728.3 4323394 0.639 1.72 1.70328 0.00028 0.01672 2.54979 0.68855 -0.82979 

C3  579048.5 4323210 0.698 2.23 1.98104 0.06198 0.24896 3.2435 1.02718 -1.0135 

C3  579159.8 4323123 0.715 2.47 2.07426 0.15661 0.39574 3.51337 1.08863 -1.04337 

C5  578379.8 4324336 0.683 1.96 1.90424 0.00311 0.05576 3.03745 1.16091 -1.07745 

C2  578110.5 4323589 0.723 3.1 2.12066 0.9591 0.97934 3.65758 0.3109 -0.55758 

C2  578059.4 4323673 0.739 3.5 2.21897 1.64103 1.28103 3.99074 0.24083 -0.49074 

G1 F1 577164.9 4324223 0.241 0.76 0.62773 0.0175 0.13227 0.57894 0.03278 0.181059 

G1 F3 577093.5 4324174 0.263 0.72 0.67135 0.00237 0.04865 0.64358 0.00584 0.076417 

G1 U2 577243.2 4324144 0.243 0.49 0.63167 0.02007 -0.1417 0.58471 0.00897 -0.09471 

G1 U3 577440.3 4324071 0.291 0.63 0.72792 0.00959 -0.0979 0.72972 0.00994 -0.09972 

V V 577837.1 4323902 0.245 0.22 0.63562 0.17274 -0.4156 0.59051 0.13727 -0.37051 

V V 577793.9 4323918 0.272 0.31 0.68939 0.14393 -0.3794 0.67078 0.13016 -0.36078 

V V 577821.2 4323842 0.2 0.216 0.54772 0.11004 -0.3317 0.46488 0.06194 -0.24888 

V V 577841.3 4323794 0.181 0.256 0.51088 0.06497 -0.2549 0.4146 0.02515 -0.1586 

V V-red 577878.7 4323987 0.313 0.251 0.77344 0.27294 -0.5224 0.80073 0.3022 -0.54973 

C1 C1-D1 577817.2 4323406 0.663 1.69 1.80879 0.01411 -0.1188 2.79771 1.22702 -1.10771 

A1 A1-D1 574537.9 4326607 0.757 3.73 2.33954 1.93338 1.39046 4.47007 0.5477 -0.74007 

A2 A2-D1 575359.6 4324909 0.736 3.36 2.19994 1.34573 1.16006 3.9229 0.31686 -0.5629 

B1 B1-D1 574755 4325463 0.728 4.48 2.15057 5.42626 2.32943 3.75461 0.52618 0.725385 

C9 C9-D1 575996 4326253 0.719 2.92 2.09725 0.67693 0.82275 3.58389 0.44075 -0.66389 

C10 C10-D1 575970 4326580 0.71 2.57 2.04611 0.27446 0.52389 3.42929 0.73837 -0.85929 

G1 G1-D1 577291 4324336 0.269 0.63 0.68336 0.00285 -0.0534 0.66166 0.001 -0.03166 

G1 G1-D2 577248 4324376 0.278 0.63 0.70149 0.00511 -0.0715 0.68917 0.0035 -0.05917 

G1 G1-D3 577207 4324386 0.273 0.63 0.6914 0.00377 -0.0614 0.67383 0.00192 -0.04383 

G1 G1-D4 577580 4324213 0.27 0.63 0.68537 0.00307 -0.0554 0.6647 0.0012 -0.0347 

P2 P2-D1 575755 4325413 0.656 3.96 1.77706 4.76521 2.18294 2.72145 1.53402 1.238555 

P3 P3-D1 575030 4325513 0.687 4.03 1.92426 4.43414 2.10574 3.08992 0.88375 0.940082 

SF1 SF1-D2 576298 4326203 0.513 0.5 1.26245 0.58133 -0.7624 1.64476 1.31047 -1.14476 

A4 F1 573779 4327859 0.757 5.66 2.33954 11.0254 3.32046 4.47007 1.41593 1.189931 

A4 F2 573753.2 4327822 0.742 3.41 2.23829 1.37291 1.17171 4.06152 0.42448 -0.65152 

A4 U1 573719.6 4327838 0.754 4.01 2.31864 2.86071 1.69136 4.37981 0.13676 -0.36981 

A4 U2 573661 4327795 0.749 3.52 2.28454 1.52636 1.23546 4.23961 0.51783 -0.71961 

A5 F1 573467.9 4327715 0.762 5.25 2.37516 8.26473 2.87484 4.63251 0.38129 0.617486 

A5 F2 573388.6 4327621 0.785 3.93 2.55291 1.89639 1.37709 5.7019 3.13963 -1.7719 
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G2 AT 574203.9 4326688 0.223 0.64 0.59245 0.00226 0.04755 0.52788 0.01257 0.112116 

G2 A2 574333.1 4326759 0.235 0.078 0.61594 0.28938 -0.5379 0.56174 0.23401 -0.48374 

G2 A3 574283.8 4326646 0.214 0.65 0.57492 0.00564 0.07508 0.50294 0.02163 0.14706 

P1 A1 576661 4324722 0.693 5.29 1.95491 11.1229 3.33509 3.1719 4.48634 2.118098 

P1 S1 576487.7 4324629 0.712 5.64 2.05729 12.8358 3.58271 3.4624 4.74192 2.177595 

P1 S3 576625.7 4324717 0.693 5.89 1.95491 15.485 3.93509 3.1719 7.38806 2.718098 

P1 S2 576506.2 4324571 0.698 5.97 1.98104 15.9118 3.98896 3.2435 7.4338 2.726499 

P1 S4 576889.9 4324517 0.688 4.63 1.92932 7.2937 2.70068 3.1033 2.33081 1.5267 

P1 S2 576796.7 4324486 0.642 4.16 1.71598 5.97323 2.44402 2.5788 2.50018 1.581196 

C6 S1 577860.8 4324679 0.715 2.19 2.07426 0.0134 0.11574 3.51337 1.75132 -1.32337 

C6 S2 577945.8 4324519 0.702 2.67 2.00235 0.44576 0.66765 3.30312 0.40084 -0.63312 

P2 U1 575698.9 4325483 0.489 4.28 1.19369 9.52531 3.08631 1.51737 7.63215 2.762634 

P2 U2 575616.5 4325439 0.649 4.72 1.74614 8.84384 2.97386 2.64857 4.29081 2.071426 

P2 F1 575659.5 4325411 0.659 3.2 1.79056 1.98652 1.40944 2.7537 0.19919 0.446304 

P2 F2 575611.3 4325382 0.656 3.65 1.77706 3.50789 1.87294 2.72145 0.86221 0.928555 

      RMSE 1.6455 0.96852 RMSE 1.12935 0.038876 

 

Appendix b: AHS LAI calculations 
 
Field  Operat

or 

Coordinates NDVI  SQerror

1 

LAI_mod

el1 

BIAS Observ

ed LAI 

LAI_mo

del2 

Sqerror

2 

BIAS 

C1 A1 577799.

4 

4323404.

5 

0.751 0.20077 2.29807 -

0.44807 

1.85000 2.15901 0.09549 -

0.30901 

C1 F2 577737.

6 

4323395.

6 

0.723 0.29232 2.12066 -

0.54066 

1.58000 1.94561 0.13367 -

0.36561 

C1 S1 577808.

8 

4323399.

4 

0.707 0.39629 2.02952 -

0.62952 

1.40000 1.83923 0.19292 -

0.43923 

C1 U1 577807.

9 

4323405.

8 

0.748 0.26815 2.27783 -

0.51783 

1.76000 2.13418 0.14001 -

0.37418 

C1 U2 577728.

3 

4323393.

9 

0.741 0.26196 2.23182 -

0.51182 

1.72000 2.07823 0.12833 -

0.35823 

C3  579048.

5 

4323209.

6 

0.69 0.08440 1.93949 0.29051 2.23000 1.73593 0.24410 0.49407 

C3  579159.

8 

4323122.

7 

0.705 0.20378 2.01858 0.45142 2.47000 1.82659 0.41398 0.64341 

C5  578379.

8 

4324336.

0 

0.672 0.01192 1.85083 0.10917 1.96000 1.63573 0.10515 0.32427 

C2  578110.

5 

4323588.

8 

0.761 0.53589 2.36795 0.73205 3.10000 2.24582 0.72962 0.85418 

C2  578059.

4 

4323673.

1 

0.762 1.26528 2.37516 1.12484 3.50000 2.25487 1.55034 1.24513 

G1 F1 577164.

9 

4324222.

9 

0.257 0.01012 0.65939 0.10061 0.76000 0.39622 0.13233 0.36378 

G1 F3 577093.

5 

4324173.

8 

0.338 0.01135 0.82653 -

0.10653 

0.72000 0.55543 0.02708 0.16457 

G1 U2 577243. 4324143. 0.176 0.00013 0.50118 - 0.49000 0.25621 0.05466 0.23379 
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2 6 0.01118 

G1 U3 577440.

3 

4324071.

4 

0.209 0.00420 0.56519 0.06481 0.63000 0.31123 0.10161 0.31877 

V V 577837.

1 

4323902.

1 

0.175 0.07798 0.49924 -

0.27924 

0.22000 0.25458 0.00120 -

0.03458 

V V 577793.

9 

4323917.

7 

0.228 0.08539 0.60222 -

0.29222 

0.31000 0.34413 0.00117 -

0.03413 

V V 577821.

2 

4323842.

4 

0.172 0.07696 0.49342 -

0.27742 

0.21600 0.24971 0.00114 -

0.03371 

V V 577841.

3 

4323793.

7 

0.185 0.06898 0.51864 -

0.26264 

0.25600 0.27096 0.00022 -

0.01496 

V V-red 577878.

7 

4323986.

8 

0.247 0.15098 0.63956 -

0.38856 

0.25100 0.37800 0.01613 -

0.12700 

C1 C1-D1 577817.

2 

4323405.

6 

0.641 0.00047 1.71173 -

0.02173 

1.69000 1.48113 0.04363 0.20887 

A1 A1-D1 574537.

9 

4326607.

1 

0.795 1.19161 2.63839 1.09161 3.73000 2.60156 1.27337 1.12844 

A2 A2-D1 575359.

6 

4324909.

0 

0.789 0.59839 2.58644 0.77356 3.36000 2.53035 0.68832 0.82965 

B1 B1-D1 574755.

0 

4325463.

0 

0.776 3.99825 2.48044 1.99956 4.48000 2.38956 4.36993 2.09044 

C9 C9-D1 575996.

0 

4326253.

0 

0.789 0.11126 2.58644 0.33356 2.92000 2.53035 0.15183 0.38965 

C10 C10-D1 575970.

0 

4326580.

0 

0.758 0.04991 2.34659 0.22341 2.57000 2.21909 0.12314 0.35091 

G1 G1-D1 577291.

0 

4324336.

0 

0.285 0.00734 0.71568 -

0.08568 

0.63000 0.44883 0.03282 0.18117 

G1 G1-D2 577248.

0 

4324376.

0 

0.278 0.00511 0.70149 -

0.07149 

0.63000 0.43545 0.03785 0.19455 

G1 G1-D3 577207.

0 

4324386.

0 

0.261 0.00140 0.66735 -

0.03735 

0.63000 0.40359 0.05126 0.22641 

G1 G1-D4 577580.

0 

4324213.

0 

0.264 0.00188 0.67334 -

0.04334 

0.63000 0.40915 0.04877 0.22085 

P2 P2-D1 575755.

0 

4325413.

0 

0.691 4.06181 1.94461 2.01539 3.96000 1.74176 4.92057 2.21824 

P3 P3-D1 575030.

0 

4325513.

0 

0.747 3.09354 2.27115 1.75885 4.03000 2.12602 3.62514 1.90398 

SF1 SF1-D2 576298.

0 

4326203.

0 

0.493 0.49688 1.20490 -

0.70490 

0.50000 0.93870 0.19246 -

0.43870 

A4 F1 573779.

0 

4327858.

6 

0.82 7.73158 2.87943 2.78057 5.66000 2.95666 7.30806 2.70334 

A4 F2 573753.

2 

4327822.

3 

0.794 0.60904 2.62959 0.78041 3.41000 2.58939 0.67340 0.82061 

A4 U1 573719.

6 

4327837.

8 

0.814 1.42189 2.81757 1.19243 4.01000 2.86103 1.32013 1.14897 

A4 U2 573661.

0 

4327794.

8 

0.808 0.58006 2.75838 0.76162 3.52000 2.77268 0.55849 0.74732 



 

36 

A5 F1 573467.

9 

4327715.

2 

0.806 6.30406 2.73921 2.51079 5.25000 2.74466 6.27675 2.50534 

A5 F2 573388.

6 

4327620.

5 

0.797 1.62265 2.65617 1.27383 3.93000 2.62630 1.69962 1.30370 

G2 AT 574203.

9 

4326688.

1 

0.159 0.02955 0.46810 0.17190 0.64000 0.22885 0.16905 0.41115 

G2 A2 574333.

1 

4326759.

3 

0.172 0.08213 0.49342 0.28658 0.78000 0.24971 0.28121 0.53029 

G2 A3 574283.

8 

4326646.

4 

0.161 0.03168 0.47201 0.17799 0.65000 0.23203 0.17470 0.41797 

P1 A1 576661.

0 

4324721.

9 

0.691 11.1916

6 

1.94461 3.34539 5.29000 1.74176 12.5899

8 

3.54824 

P1 S1 576487.

7 

4324629.

1 

0.708 12.9958

7 

2.03502 3.60498 5.64000 1.84560 14.3974

8 

3.79440 

P1 S3 576625.

7 

4324716.

6 

0.724 14.1632

7 

2.12659 3.76341 5.89000 1.95260 15.5031

4 

3.93740 

P1 S2 576506.

2 

4324570.

5 

0.737 14.1657

7 

2.20626 3.76374 5.97000 2.04742 15.3866

1 

3.92258 

P1 S4 576889.

9 

4324516.

5 

0.685 7.37551 1.91421 2.71579 4.63000 1.70722 8.54263 2.92278 

P1 S2 576796.

7 

4324486.

2 

0.633 6.15898 1.67827 2.48173 4.16000 1.44436 7.37473 2.71564 

C6 S1 577860.

8 

4324679.

3 

0.789 0.15716 2.58644 -

0.39644 

2.19000 2.53035 0.11584 -

0.34035 

C6 S2 577945.

8 

4324519.

3 

0.753 0.12835 2.31175 0.35825 2.67000 2.17586 0.24417 0.49414 

P2 U1 575698.

9 

4325483.

1 

0.681 5.69129 1.89436 2.38564 4.28000 1.68475 6.73531 2.59525 

P2 U2 575616.

5 

4325438.

5 

0.7 7.44390 1.99165 2.72835 4.72000 1.79558 8.55224 2.92442 

P2 F1 575659.

5 

4325411.

4 

0.599 2.73741 1.54549 1.65451 3.20000 1.29988 3.61045 1.90012 

P2 F2 575611.

3 

4325382.

0 

0.612 4.22481 1.59457 2.05543 3.65000 1.35302 5.27610 2.29698 

      RMSE 0.83464   RMSE 1.00672 

 

 

 


