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ABSTRACT  

Tropical forests contribute significantly to the global carbon balance, attaining high rate of 

carbon sequestration through their huge densities. In order to develop a better understanding and 

quantification of carbon stocks and flux dynamics, estimation of aboveground biomass becomes 

very crucial. Remote sensing technologies have proven superiority over other methods because of 

their extensive coverage capability making estimation of aboveground biomass possible over 

broad spatial scales. To achieve broad scale mapping with remote sensing, statistical relationship 

between sensor-extracted tree parameters and field measurements are used. With the 

advancement in remote sensing technology, laser scanning evolved with the possibilities of 

acquiring three dimensional information of the forest structure.  

The aim of this study is to demonstrate the use of low density data (less than 1 point/m2) for the 

estimation of aboveground biomass in the tropical forest of Nepal (Kayarkhola watershed in 

Chitwan Province) while comparing between regression and geo-statistical approach (ordinary 

kriging and regression kriging)..    

The plot-based approach was adopted and 81 metrics were extracted using LiDAR’s elevation 

and intensity values including canopy density computations. Intensity metrics were excluded from 

further regression analysis because of their poor relationship with aboveground biomass. Data 

reduction technique (PCA) was used to select independent and uncorrelated LiDAR metrics. 

Seven predictors were selected including height maximum, height average and absolute deviation, 

height L-moment (L2), Height L-moment skewness, 40th, 80th, and 95th height percentile. For this 

study, it was possible to employ only the 95th height percentile for predicting aboveground 

biomass without additional variables. The model of 95th height percentile and aboveground 

biomass showed a moderately strong relationship with aboveground biomass, with an R2 of 0.54.  

The performance of the two approaches was assessed using their RMSE values and ME 

estimates. Using regression kriging, this study showed an improvement in the accuracy prediction 

of aboveground biomass with a lower RMSE of 0.20 LN(Mg/ha) and ME of 0.00023 

LN(Mg/ha). Regression analysis resulted in an RMSE 0.68 LN(Mg/ha) and ME of 0.42 

LN(Mg/ha). Regression kriging showed an improvement in the estimation because of its ability 

to account for some variations in aboveground biomass. 
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1. INTRODUCTION 

1.1. Background 

Forest ecosystem is an important factor in maintaining carbon balance in the atmosphere. 

According to FAO, (2010) forests cover about 31% of the total land area of the world. Among 

the terrestrial ecosystems, forests accumulate a larger portion of anthropogenic carbon generated 

mainly through fossil fuel burns (Canadell & Raupach, 2008). Naturally, forest ecosystems absorb 

and store atmospheric carbon dioxide (CO2) over long periods of time. By virtue of this function, 

forests regulate the earth’s changing climate by sucking up excess CO2 in the atmosphere. The 

rate by which a tree stores carbon can be attributed to the rate of by which carbon dioxide (CO2) 

is utilised by the absorptive structure of the tree’s woody tissues, which is required and used in 

photosynthetic processes, tree growth and subsequently forest productivity. Growing trees 

transform atmospheric carbon into woody biomass through photosynthesis. By this process, CO2 

is captured and removed from the atmosphere (CO2 sink). By estimation, for every ton of carbon 

stored in a tree 3.67 tons of CO2 is  removed from the atmosphere (Hunt, 2009). Therefore, 

based on its natural function, the world‘s forest base has captured and stored more atmospheric 

CO2 compared to the amount in the atmosphere (Hunt, 2009). As a result, forests constitute an 

important part of the terrestrial ecosystem by virtue of the role it plays in mopping up the world’s 

atmospheric CO2. 

 

Despite the importance of the forest, acting as a carbon sink and mopping up CO2
 concentration 

in the atmosphere, it can also be detrimental to the carbon cycle phenomena in the atmosphere. 

Natural and man-made activities carried out on the forest resources such as deforestation, forest 

degradation, forest fires and pest and disease outbreaks puts immense pressure on the world’s 

forest. This culminates into the simultaneous release of carbon stocks into the atmosphere that 

have been accumulated over long periods (CO2 source). The Fourth Assessment Report of IPCC 

indicates that “the forestry sector, mainly through deforestation, accounts for about 17% of the 

global greenhouse gas emissions making it the second major source of greenhouse gases after the 

energy sector” (IPCC, 2007).  

 

Invariably, forests absorb CO₂ naturally through the process of photosynthesis but exudes CO₂  

through indiscriminate and destructive man-made activities, regenerating CO₂ back into the 

atmosphere (Brown, 2002). Sustainable management and appropriate maintenance of existing 
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forests, as well as increasing forest area through afforestation programs, could make a substantial 

impact on mitigating the increasingly high rise of atmospheric Co2. 

The recognition of the dual role of the forest as a carbon source and sink has attracted the 

attention of international bodies enabling them rise to the challenges of tackling global climate 

change. This led to the conception of international policies and agreement such as the United 

Nations Framework Convention on Climate Change (UNFCCC) and its Kyoto protocol. 

UNFCCC intends to capitalize on this climate protection role of forests through the introduction 

of a financial and economic compensation mechanism. The mechanism adopted by the 

UNFCCC is called ‘REDD’ (Reducing Emission from Deforestation and Degradation). UN-

REDD is a financial mechanism that offers financial incentives (carbon credit) to forest-rich 

developing countries encouraging them to reduce national deforestation rates and associated 

carbon emissions to below a set baseline (Gibbs et al., 2007). Conversely, the developed countries 

compensate for their CO2 emission by purchasing carbon credits from forest-rich developing 

countries (signatories) that are interested and committed to safeguarding their forest endowment 

from destruction (Angelsen et al., 2009).  

 

Effective REDD implementation will require accurate biomass and carbon estimation and the 

continuous monitoring of the forest carbon pool (Englhart et al., 2011). To achieve these 

requirements, robust methods for quantifying forest carbon storage over time are essential 

(Gonzalez et al., 2010). This would enable signatory countries demonstrate whether or not they 

are able to maintain or increase their forest carbon stock and reduce emissions from 

deforestation,  and as a result qualify for carbon credits. 

 

The target countries for the REDD scheme are the forest-rich developing countries. Most of 

these forest-rich countries are located in the tropics and with good potentials to sequester high 

levels of carbon due to the high forest density. Tropical forests represent a very significant 

portion of the global forest covers and also constitute major threat through high levels of 

deforestation and forest degradation (Brown, 1993) leading to increased carbon emission levels. 

The high rate of deforestation is attributable to population growth and high poverty levels in 

these developing countries (Hunt, 2009). This consequently leads to high dependence on forest 

resources and quest for additional space for agricultural production to meet the food supply and 

economic demands of the growing populace.  

 

Nepal, a developing country, is blessed with vast expanse of forest land area. In Nepal, the forest 

area covers about 40% of its total land mass. This qualifies Nepal as a prospective country for 

mitigating the adverse impact of climate change (Oli & Shrestha, 2009). However, the high 
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dependence on forest resources by the local communities pose a threat to the existing forest 

resources which is gradually been depleted through deforestation and forest degradation. In order 

to alleviate the situation, forest management was handed over to local communities since the 

1970’s (Dhital, 2009). Currently, about 25% of the total forest area are been managed under the 

Community Forest User Groups (CFUG) (Dhital, 2009). Review of studies show that through 

the community management approach, Nepal has witnessed both a reduction in deforestation 

rate and higher carbon sequestration rate (Dhital, 2009; Oli & Shrestha, 2009).  

 

The benefits of the community forestry approach includes restoration of degraded sites, 

biodiversity conservation, sustained supply of forest products to rural people and most 

importantly, promoting local level institutions for resource management (Dhital, 2009; Oli & 

Shrestha, 2009). Therefore, community forest management is considered as one of the strategies 

for controlling emission rates under the REDD policy (Dhital, 2009; Oli & Shrestha, 2009).  

 

Nepal is currently a signatory to the UN-REDD policy scheme and benefits from the Forest 

Carbon Partnership Facility for REDD project implementation. To sustain the UN-REDD 

scheme, it is necessary to baseline the amount forest carbon through aboveground biomass 

estimation in order to ascertain a country’s performance. There are on-going REDD pilot 

programme in selected CFUGs to baseline the amount forest carbon in Nepal and this study is 

undertaken as part of the programme. In addition, this study will assess the use of plot-based 

approach and LiDAR metrics in estimating aboveground biomass. 

1.2. Aboveground biomass estimation 

To understand and quantify carbon stocks and fluxes, continuous assessment, monitoring, and 

management of aboveground biomass are very essential to quantifying biomass changes. The 

biomass of a tree, as defined by Walker et al., (2011), “is the weight of its living plant tissue”. It 

includes both the section of the tree above the ground (leaves, branches, and stems) commonly 

referred to as ‘Aboveground biomass’ and below the ground (roots) referred to as ‘belowground 

biomass’. Aboveground biomass is considered the most important component of trees because it 

is the part mostly affected by forest deforestation and degradation (Brown, 1997). Aboveground 

biomass cannot be measured directly from the field but modelled from other parameters that are 

measured directly from the field, for example diameter at breast height (DBH) and tree height. 

1.3. Methods for estimating above-ground biomass 

The techniques used to estimate aboveground biomass (AGB) have improved over the years, 

especially with the advent and evolution of remote sensing data. According to the review studies 
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carried out by Lu, (2006) and Gibbs et al, (2007), the approaches for estimating aboveground 

biomass can be summarized into three namely; (I) field measurement based, (II) GIS based and 

(III) remote sensing based methods.  

 

The field based method formed the basis of aboveground estimation. The most straightforward 

approach is by harvesting all trees in a certain area and then drying and weighting the woody 

biomass (Gibbs et al., 2007). Though this method seems accurate, it is very destructive, time 

consuming and expensive. The approach is not realistic and practicable for regional and large 

scale biomass estimation (Gibbs et al., 2007; Patenaude et al., 2004). This direct and destructive 

approach has been further improved upon to extrapolate the estimation to a much larger area by 

building allometric models.  

 

Allometric models built from harvested trees are related with forest inventory data of tree 

parameters to produce national level biomass estimates. Although several studies have been done 

using national forest inventory data, for example, Brown et al., (1989), national forest inventory 

data is very expensive to collect and maintain on a continuous bases (Gibbs et al., 2007). 

Inventory based method have the potential to generate biomass estimate with low uncertainty. 

Most times, sampled inventory data are inadequate for the national scale in view and varying 

sampling design are mostly employed due to the inconsistent terrain of the region (Brown, 1997; 

Brown & Gaston, 1995). Another possible, but seldom used, ground measured field data 

technique is the use of geostatistical techniques to generate the spatial distribution of biomass and 

carbon. Sales et al., (2007) demonstrated the use of RADAMBRASIL forest inventory data and 

interpolation with geostatistics in mapping forest biomass in Randonia, Brazil. 

 

GIS based method involves the use of ancillary data such as elevation, precipitation etc. The 

limitation of this approach include lack of quality ancillary data, static nature of the ancillary data, 

difficulty with acquiring up-to-date ancillary data and the indirect relationship with aboveground 

biomass (Lu, 2006). Certain geostatistical techniques such as Kriging with an External Drift 

(KED) can also be used with ancillary data for biomass estimation (2007).  

 

Remote sensing approach involves employing statistical relationship between satellite and 

airborne-extracted tree parameters and vegetative indices (with a correlation with aboveground 

biomass), and field based measurement. Field measurements are converted into aboveground 

biomass with the use of an allometric equation. 
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Based on either of these approaches for estimating aboveground biomass, it is obvious that forest 

biomass cannot be estimated directly (Goetz & Dubayah, 2011; Goetz et al., 2009; Rosenqvist et 

al., 2003). Remote sensing based approach requires supplementary ground based data for a two-

fold analysis with the purpose of calibrating and validating spatial estimates of forest biomass 

predicted from sensor derivatives (Goetz & Dubayah, 2011). To generate spatial estimates of 

forest biomass for a large region, remotely-sensed data can be associated with field based 

aboveground biomass through regression model or geostatistical model. 

 

Remote sensing techniques have proven superiority over the rest of the methods because it is 

cheaper, covers a larger area, and easier to repeat data collection (Gibbs et al., 2007; Goetz & 

Dubayah, 2011; Goetz et al., 2009; Lu, 2006; Patenaude et al., 2005). Due to its extensive 

coverage capability, it can be used to map the spatial heterogeneity of the ecosystem over local, 

national or global scale over time. The use of remote sensing is very crucial for monitoring 

carbon stocks and fluxes and the outcome, appropriate within the framework of international 

policies such as UNFCCC, will influence policies designed to reduce greenhouse gases and aid 

the implementation of the REDD program (Clark et al., 2011).  

 

Remote sensing (RS) technologies using satellites have advanced with the development of new 

sensors and high resolution optical images (Goetz & Dubayah, 2011). High resolution optical 

data have been applied in forestry studies such as mapping vegetation types, land cover 

classification and mapping aboveground biomass (Asner et al., 2010; Fuchs et al., 2009). Optical 

data from satellite-based remote sensing technology is adequate in estimating aboveground 

biomass in homogenous and less dense forest but not appropriate for forest with dense canopy 

(Holmgren & Thuresson, 1998). However, It suffers from a number of limitations such as the 

challenges of acquiring high quality data due to cloud cover interfering with satellite signals 

(Gregory, 2009), most especially in the tropical forest region. Furthermore, there is also the 

problem of low saturation level of the spectral bands, and the derived spectral indices related to 

biomass estimation (Clark et al., 2011; Gibbs et al., 2007). The saturation level is the threshold at 

which optical sensor can estimate biomass levels irrespective of how dense the vegetation in the 

area. Low saturation level could lead to inaccurate and under-estimation of biomass in a dense 

tropical forest. Since most tropical forests are dense and store a large amount of carbon, the 

problem related to the saturation of these optical satellites leads to an unreliable estimate of 

carbon stock. 

 

More recently, active airborne sensors (e.g. LiDAR and RADAR technologies) have emerged 

making it possible to acquire remotely sensed imageries with higher resolution (Clark et al., 2011). 
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These technologies apply the same techniques in acquiring remotely sensed data. While RADAR 

employs microwave energy, LiDAR employs light energy to capture data from the earth surface 

(Clark et al., 2011). The advantage of RADAR sensors over satellite-based optical remote sensors 

lies in the RADAR signal’s ability to penetrate through the clouds. However, both RADAR and 

optical remote sensors suffer from a common setback of decreasing sensitivity with increasing 

canopy structural heterogeneity and age (Gibbs et al., 2007; Patenaude et al., 2004). Again, this is 

a severe limitation in tropical forests with increased aboveground biomass.  

 

Remote sensing employing LiDAR (with laser transmitting sensors) has been proven to be an 

effective method for mapping forest biomass (Clark et al., 2011). The use of this sensing 

technology comes at a significant cost in comparison to the optical remote sensing technology 

but it brings with it a more reliable estimation of biomass and the capability to carry out extended 

spatial analysis in three dimensions (3D). 

1.4. LiDAR remote sensing for forestry studies 

LiDAR remote sensing has the capability to measure the three-dimensional vertical structure of 

the vegetation. LiDAR provides the location (XY) and elevation (Z) data of features on the 

ground. This capability gives LiDAR a cutting edge advantage over other remote sensing 

technologies such as the high resolution satellite imageries. LiDAR has a very high use potential 

in forest resource management because it can be used for the measurement and estimation of 

several forest characteristics. The forest characteristics and how they are derived from LiDAR are 

summarised in Table 1.1 (Dubayah & Drake 2000), signifying why LiDAR remote sensing is an 

important tool for forest studies. 

. 

Table 1-1: Forest features retrieved from LiDAR data (Dubuyah & Drake, 2000) 

Forest Characteristics LiDAR Derivation 

Canopy Height Direct retrieval 

Sub-canopy topography Direct retrieval 

Vertical distribution of intercepted surfaces Direct retrieval 

Above-ground biomass Modelled 

Basal area Modelled 

Mean stem diameter Modelled 

Vertical foliar profiles Modelled 

Canopy volume Modelled 

Large tree density Inferred 

Canopy cover, leaf area index Fusion with other sensors 

Life form diversity Fusion with other sensors 
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LiDAR has been proven to be effective for mapping forest biophysical properties (Drake et al., 

2003; Lim et al., 2003). The application of LiDAR with satellite monitoring technology can 

provide baseline carbon estimates and improve the monitoring of carbon stocks, losses and forest 

recovery (Goetz & Dubayah, 2011).  

1.5. Extraction Information from LiDAR data 

Two approaches are generally used in the extraction of information from LiDAR data (Evans et 

al., 2009; Hyyppa et al., 2008). This includes (I) the individual tree-based approach and (II) the 

plot-based approach.  

 

The individual tree based approach involves the identification of individual trees from LiDAR 

followed by the extraction of individual tree parameter such crown projection area and height, 

and relating these parameters to the forest parameter of interest for example, aboveground 

biomass. The plot-based approach relies on the extraction of statistical variables on a plot-by-plot 

base from the LiDAR data, known as LiDAR metrics, and relating them to the forest parameter 

in consideration. Both approaches have constantly been used for forest parameter estimation. 

The use of low density data have been found unsuitable for the identification and extraction of 

individual tree features (Lim et al., 2003).  

1.6. Definition of  concepts 

1.6.1. Allometric equation 

Aboveground biomass is derived from field data using allometric equation. An allometric 

equation is a regression equation that models biophysical parameters, which cannot be derived 

directly from variables measured from the field e.g. DBH (Brown et al., 1989). These equations 

are developed from field data collected by destructively harvesting sparse numbers of trees, of 

varying sizes, from a particular location and estimating its biomass content, which is empirically 

related to its DBH (Brown et al., 1989). The allometric equation differs for different species and 

geographic location. Various allometric equations have been developed in line with various 

criteria such as regions (tropical, temperate), general species groups (tropical moist wood, 

temperate hardwood), and specific species in different regions (Shorea robusta, Pinus species) 

(Brown, 1997).  

 

Studies have shown that an allometric equation using only DBH to explain aboveground biomass 

yield a significant regression results (Brown et al., 1989). Though, inclusion of height in the 

allometric equation can improve the coefficient of determination (r2), measuring the height of 
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trees across a large sample plot can be time consuming, very difficult and, most times, impossible 

to determine the top of trees (Brown, 2002). Therefore, allometric equation based on DBH alone, 

and stratified by species groups or climate types are mostly used (Basuki et al., 2009; Brown et al., 

1989; Nelson et al., 1999). In this study, a specie-specific and a general allometric equation will be 

utilized to derive aboveground biomass from Shorea robusta and other tree species respectively. 

1.6.2. LiDAR metrics 

LiDAR metrics are statistical parameters derived from raw LiDAR point clouds. They describe 

the vertical and canopy structure of the forest statistically. Forest canopy, the portion actively 

involved in the photosynthetic process and the primary source of forest productivity, is closely 

related to tree and stand structure (Drake et al., 2003; Li et al., 2008). Studies have shown that a 

strong connection exist between LiDAR-derived metrics and aboveground biomass (Clark et al., 

2011; Hall et al., 2005; Næsset, 2002, 2004). This can be attributed to the relationship between 

canopy structure and woody biomass (Clark et al., 2011; Drake et al., 2003; Li et al., 2008; Means 

et al., 1999; Næsset, 2002; Nelson et al., 1988). Some examples of LiDAR metrics include 

minimum height, maximum height, mean height, height standard deviation, height variance, 

height percentiles, etc. In this study, a number of LiDAR metrics will be derived from LiDAR 

point clouds to predict the amount of aboveground biomass in the study area.  

1.6.3. Geostatistical techniques 

Geostatistics is a branch of statistics specifically focused on the analysis of spatial data i.e. data 

with a location in space (Webster & Oliver, 2001). Geostatistical techniques take advantage of the 

spatial autocorrelation among sampled variable points in the prediction of regionalized variables 

over an area of interest (i.e. forest study area in this case). Geostatistics includes statistical 

techniques for modelling spatial variability of regionalized variables through prediction and 

simulation (Journel, 1987). An example of geostatistical prediction and simulation tool is kriging 

and stochastic simulation respectively. This study will only utilize kriging as a prediction tool for 

modelling aboveground biomass. Prediction of a target variable in a region, (i.e. aboveground 

biomass in this study) employs both the measured values of the sampled target variable and a 

model of its spatial structure. The semi-variogram is a tool used to represent and model spatial 

variation. This is represented below in equation 1.1. 

𝜸(𝒉) =
𝟏

𝟐𝚴
∑[𝒛(𝒙𝒊) − 𝒛(𝒙𝒊 + 𝒉)]

𝑵

𝒊=𝟏

𝟐

 .................Equation (1-1) 

Where: 

𝑥𝑖 = a data location,  
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ℎ = a lag vector, 

𝑧(𝑥𝑖) = a data value at location 𝑥𝑖, 

Ν = the number of data pairs spaced at a distance (Webster & Oliver, 2001) 

 

Nowadays, the extent of geostatistical prediction has gone beyond spatial prediction from sample 

points alone. Several variants of geostatistical prediction, which combines other auxiliary data 

layer is increasingly been applied such as regression kriging, co-kriging, etc. Ordinary kriging and 

regression kriging will be applied in this study.  

(A). Ordinary kriging 

It is an interpolation method that is based on a linear model of measured parameters for the 

study area. This linear model is a weighing function for kriging and it can be represented by a 

semi-variogram (Hudak et al., 2002). It differs from other interpolation method because the 

weights are “based on the distance between the measured points, the prediction location and the 

overall spatial arrangement among the measured points” (Webster & Oliver, 2001). The sample 

variogram is used to fit an appropriate model e.g. spherical, exponential model, which is then 

used for predicting un-sampled areas. 

 

(B). Regression kriging 

Regression kriging (RK) is a geostatistical technique that combines two approaches; a simple or 

multiple regression of the primary variable on the secondary variable(s) with ordinary kriging of 

the regression residual. Hence, the method addresses both the spatial dependence of observations 

and the relationship between the dependent variable (aboveground biomass) and the ancillary 

variable(s) (Webster & Oliver, 2001). It is represented in equation (1-2). 

 

�̂�(𝑠𝑜) = �̂�(𝑠𝑜) + �̂�(𝑠𝑜) =  ∑ �̂�𝑘  .  𝑞𝑘(𝑠𝑜) +  ∑ 𝜆𝑖

𝑛

𝑖=1

𝑝

𝑘=0

 . 𝑒(𝑠𝑖) ..................Equation (1-2) 

Where: 

�̂�(𝑠𝑜) = the fitted drift  

�̂�(𝑠𝑜) = the interpolated residual  

�̂�𝑘      = the estimated drift model coefficients (�̂�0 is the estimated intercept) 

𝜆𝑖     = the kriging weights determined by the spatial dependence structure of the residual  

𝑒(𝑠𝑖)  = the residual at location 𝑠𝑖 (Hengl et al., 2007) 
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1.7. Problem statement 

There has been advancement in remote sensing technologies toward forest resources 

management including estimation of above-ground biomass. This advancement has gone beyond 

2-dimensional mapping (optical remote sensing) to the world of 3-dimensional mapping (airborne 

laser scanning). All of these, with the goal of achieving accurate inventory work geared toward 

improved forest resources management. Additionally, consciousness is given to accurate 

assessment of carbon fluxes as this interferes with the implementation of the REDD`s 

Programme. LiDAR technology, a portrait of airborne laser scanning has demonstrated to be an 

effective and accurate method for mapping forest biophysical properties including aboveground 

biomass (Clark et al., 2011). Most of the previous researches that have been carried out using 

LiDAR data were conducted in temperate or boreal forest (Naesset et al., 2004) with conifers as 

the predominant trees species. LiDAR studies are very limited in a tropical forest, only very few 

studies have been done. However, this study will demonstrate the application of LiDAR data, 

using a plot based approach in a tropical forest. 

 

Regression approaches are widely applied in modeling relationships between remote sensing data 

(e.g. LiDAR data) of forest attributes and corresponding ground measurements (Arroyo et al., 

2010; Clark et al., 2011; Dubayah et al., 2010; Gregory, 2009; Kim et al., 2010). In contrast, 

geostatistical estimation techniques that relate remote sensing measurements to ground 

measurement have not been extensively used. To the best of our knowledge, no study has 

compared between aspatial regression method and spatial geostatistical method in mapping and 

estimating above-ground biomass / carbon stock in a forested area using LiDAR remote sensing.  

 

1.8.  Main research objectives 

The main objective of this research is to derive various LiDAR metrics from low density LiDAR 

data, to estimate and map aboveground biomass using a plot-based approach and LiDAR metrics 

in the tropical forest of Chitwan, Nepal.  

1. To assess the relationship between the LiDAR metrics and field aboveground biomass in 

the study area. 

2. To compare the accuracy of estimation between regression analysis and geostatistical 

analysis (ordinary kriging and regression kriging) in the estimation of aboveground 

biomass. 

3. To map and estimate aboveground biomass using the best approach (with the highest 

accuracy estimate). 
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The specific objectives, research questions and hypothesis are summarized in the table below. 

Table 1-2: Specific objectives, research questions and the hypothesis 

Specific 
Objectives 

Research Questions Hypothesis 

1 

1:   How strong is the relationship 

between LiDAR metrics and 

aboveground biomass in the study area? 

H1: There is a statistically significant 

relationship between at least one 

LiDAR metrics and aboveground 

biomass in the study area? 

2 

2: Which of the methods (regression 

analysis, ordinary kriging, and regression 

kriging) gives an improved accuracy 

estimate? What are the accuracies of the 

different methods in estimating 

aboveground biomass? 

H1:  Remote sensed data integrated 

with geostatistics (Regression kriging) 

improves the accuracy estimation of 

aboveground biomass in comparison 

with the regression analysis and 

ordinary kriging 

3 

3:  What is the amount of aboveground 

biomass in the study area and how is it 

distributed using the best approach? 
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2. STUDY AREA 

The study was carried out within Kayarkhola watershed, located in the Chitwan district of the 

Central Development Region (CDR) of Nepal (figure 2-1). Chitwan district, which is popularly 

referred to as the “Heart of the Jungle” is part of the seventy-five districts of Nepal. 

2.1. Characteristics of  Study Area 

2.1.1. Geographic location and extent 

Chitwan district lies in the central lowlands zone of Nepal. The district is situated at a distance of 

150km towards the west (260°) of Kathmandu, the capital city. It is boarded at the North by 

Dhading, Gorkha, and Tanahun districts; at the South by Parsa and India; at the East by 

Makwanpur; and at the west by Nawalparasi (ICIMOD et al., 2010). Kayarkhola watershed of 

Chitwan district is located geographically between 27° 40' 07” to 27° 46' 37” latitude (north) and 

84° 33' 25” to 84° 41' 48” longitude (East) – see figure 2-1. 

2.1.2. Climatic Condition 

Chitwan district is characterised by varied climatic conditions due to its elevation dynamics. It 

exhibit both tropical and sub-tropical climate and receives an average annual rainfall of 

1510mm/year (Panta et al., 2008). The average temperature ranges from a minimum of 16 ˚C to 

19 ˚C and a maximum of 29 ˚C to 32 ˚C (Panta et al., 2008). This region experience monsoon 

rainfall around July, with a summer period that is usually hot with heavy rainfall. In the winter 

season, the region is relatively cold and dry. 

2.1.3. Topography 

The altitude of Kayarkhola watershed region ranges from 245m to 1944m. The area is 

characterised by a landscape with steeps and slopes, with majority of the area having slopes 

greater than 30o. This high altitudinal dynamics is portrayed in figure 2-1 showing the DTM. 

2.1.4. Social and Demographic Information 

Kayarkhola watershed region has a population of about 22,000 representing 3935 households 

(ICIMOD et al., 2010). The watershed is occupied by socially and ethnically diverse local 

communities. The dominant ethnic groups in the watershed area are the Chepang and Tamang 

groups. These groups practise shifting cultivation, a traditional system of farming that involves 

moving from one land to the other. The people mainly depend on the forest for their livelihood. 
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Their activities are believed to cause a high depletion of forest resources in Kayarkhola 

watershed. 

 

 

Figure 2-1: Study area showing (a).the map of Nepal (b) Kayerkhola watershed showing the 
community forests (upper right) (b) 3m resolution DTM of the study area from LiDAR 

data (lower left)  
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2.1.5. Vegetation  

Forest types in Nepal are diverse due to the differences in climatic and altitudinal characteristics 

of the region. As a result of this, different species compositions exist according to climatic and 

altitude ranges.  

 

In Chitwan district, the dominant forest types include Shorea robusta forest, mixed hardwood 

forest and riverine khair-sissoo forest (Panta et al., 2008). The forest type in Kayarkhola 

watershed can be broadly categorised as tropical broad-leaved forest. The watershed lies in the 

low hills and inner terai area and is endowed with rich collections of tree species. The dominant 

tree species found in the watershed is Shorea robusta, constituting about 65% of the forest 

composition. Shorea robusta is a woody species with high commercial significance and it is highly 

sought for because of its numerous exclusive uses. Associate tree species found in the watershed 

include Semicarpous anacardium, Cleistocalyx operculatus, Lagerstromia parviflora, Mallotus philliplensis.  

2.1.6. Land cover / Land use 

Chitwan district is largely dominated by forest land areas covering about 60% of the total land 

area of 128,500 hectares. This is primarily because the district hosts two conservation areas 

namely Chitwan National Park (970 km2), popularly known as the world heritage site, and part of 

Parsa Wildlife reserve.  

 

Agricultural lands and urban areas cover about 40% (89,500 hectares) of the area. Kayarkhola 

watershed has a total area of 8,002 hectares with huge forest areas. The forest areas are classified 

into dense forest (4119 hectares) and sparse forest (1702 hectares) with the greatest proportion 

being dense forest (51.48%) – see table 2-1. The watershed comes under the control of the 

community forest user groups (CFUGs) commissioned to manage the forest resources. There are 

16 CFUGs within the watershed area with a total size of 2381.96 hectare. Each community forest 

has its own management plans and strategies for forest management but it is yet to become fully 

operational for sustainable management (ICIMOD et al., 2010). The summary of land cover/land 

use classification in Kayarkhola watershed is given in – see table 2-1. 

Table 2-1: Classification of Land cover and land Use in Kayarkhola Watershed 

Land cover type Area (Ha) Area (%) 

Close to open broadleaved forest (dense) 4119 51.48 

Open broadleaved forest (sparse) 1702 21.27 

Natural water bodies 31 0.39 
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Bare soil 30 0.38 

Grassland and degraded forest 0 0 

Agriculture land and built-up areas 2038 25.47 

Unclassified (clouds) 81 1.02 

Total area 8002 100 

Source: (ICIMOD et al., 2010) - Land cover analysis report 2010 

2.2. Criteria for selection of  the study area 

2.2.1. REDD+ Pilot Project in Nepal 

Kayarkhola watershed of Chitwan district is one of the three watershed areas under the REDD 

pilot project implementation. Nepal is one of the pioneer countries to implement the REDD 

pilot project in preparation towards the development of REDD+ strategy for the country. The 

goal of the REDD project in Nepal is to pilot the feasibility of a payment mechanism in Nepal’s 

community managed forests for conservation, enhancement of forest carbon and REDD. The 

project covers 104 CFUGs with an area size of over 10,000 hectares (ICIMOD et al., 2010). The 

objectives of the REDD project are been implemented by a consortium of three institutions 

(ANSAB, ICIMOD, FECOFUN) with active participation from local communities. The project 

is funded by the Norwegian Agency for Development Cooperation (NORAD). The ongoing 

implementation of the REDD pilot project in Nepal formed the main criteria for selecting 

Kayarkhola watershed as the study area.  

2.2.2. Data Availability 

Availability of data is another important consideration for the selection of the study site. The on-

going Forest Resource Assessment (FRA) project in Nepal (2010-2014) adopted an integrated 

approach to facilitate the project. This integrated approach entails the combined use of airborne 

laser scanner data (covering a fraction of the entire project area), aerial imagery data (collected 

alongside the laser scanning data), and medium resolution satellite data (covering the entire 

project area) in conjunction with field measurement data to achieve a cost effective and robust 

estimation of forest resources in Nepal.  

 

Kayarkhola watershed is part of the area covered by the airborne laser scanner data collection 

mission for the FRA project. Hence, the LiDAR and aerial photo data exploited in this study 

were sourced from the FRA project. Other additional data such as shapefiles data of the CFUGs 

and study area boundary were sourced from ICIMOD. 
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2.2.3. Study Area Accessibility and Time Constraints 

The Kayarkhola watershed region is characterised by rugged and undulating terrain with very 

high elevation attributes (245-1944m). Due to the challenges of terrain, time limitation and 

budgetary constraints, it was impossible to carry out fieldwork in the entire community forests 

(CFs) within the Kayarkhola watershed. Therefore, only 5 CFs were sampled out of a total of 16 

CFs in the Kayarkhola watershed. The 5 CFs were easy to access with moderate elevation values 

relative to the rest of the CFs. 
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3. METHODS, MATERIALS AND DATA  

3.1. Research method 

Forest parameters (DBH, height) were collected in the field from sampled plots. DBH was 

converted to aboveground biomass using allometric equations (for Shorea robusta and other 

species). The remote sensing data (LiDAR data) was used to generate the Digital Terrain Model 

(DTM), Digital Surface Model (DSM) and the Canopy Height Model (CHM). The CHM was 

validated by comparing its height measurement with field height measurement. Furthermore, 

predictive variables (LiDAR metrics) were extracted for each sampled plot (plot-based approach) 

from LiDAR. Subsequently, the predictive variables were related to derived field aboveground 

biomass using statistical analysis to estimate the total aboveground biomass for the study area. 

Two statistical analysis methods were applied and compared (regression analysis and regression 

kriging) to determine the method that provides a more accurate estimation of aboveground 

biomass. A schematic representation of the research method is shown in figure 3-1. Detailed 

explanation is provided in the following sub-sections. 

 

3.2. Materials and data 

This study made use of the following materials and data to realize its objectives: 

1. Remote sensing data - LiDAR data, Orthophoto image and GeoEye-1 image 

2. Software tools –  GIS software, LiDAR software tools, Statistical tools, Reporting tools 

3. Field location tools – iPAQ, Global Positioning System (GPS), Compass 

4. Field measurement tools – Diameter tape, Measuring tape, Laser Altimeter, Suunto 

Clinometer, Spherical densiometer 

5. Field data - DBH, Height, Canopy cover 

The following sub-sections provide the full description of how the materials and data were 

utilized for this study. 
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Figure 3-1: Research Method 
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3.2.2. Remote sensing data 

LiDAR data and the Orthophoto image were the main remote sensing data used for the analysis 

of above-ground biomass in this study. 

(A). LiDAR data 

The LiDAR data employed in this study was collected by Arbonaut Limited (a Finnish company) 

under the on-going Forest Resource Assessment (FRA) Project in Nepal (2010-2014) - a joint 

cooperation between the Government of Nepal and Finland. The FRA project was established to 

build a National Forest Inventory for Nepal. The flight campaign for acquiring the LiDAR data 

took place between March and April 2011 with a Leica ALS50-II LiDAR scanner flown from a 

9N-AIW helicopter over the study area. The LiDAR data is a point cloud density data with an 

average return pulse density of 0.8 points/m2 - see Table 3-1 for additional information.   

Table 3-1: Features of the LiDAR data and sensor parameters 

Features Descriptions 

Customer Forest Resource Assessment in Nepal, Ministry of  
Forests and Soil Conservation 

Date Flown 2011-03-16 / 2011-03-28 / 2011-04-01 / 2011-04-02 

Times of  collection (UTC) 02:45 – 08:20 / 03:46 – 05:00 / 04:01 – 05:45 / 03:31 – 
05:30 

Date Processed 2011-05-30 

Projection UTM 

Datum WGS84 

Files format ASPRS LAS file 

Aerial Platform Helicopter (9N-AIW) 

Flying altitude 2200 m AGL 

Flying speed 80 knots 

Sensor pulse rate 52.9 khz 

Sensor Scan speed 20.4 lines/second 

Nominal outgoing pulse density 
@ground level 

Average: 0.8 points/ m2 

 

Scan FOW half-angle 20 degrees 

Swath @ ground level 1601.47 m 

Point spacing max 1.88 m across, max 2.02 m down 

Beam footprint @ ground level 50cm 

 

LiDAR data was employed to extract the independent variables (LiDAR metrics) required to 

carry out regression analysis and estimate the aboveground biomass in the study area. The 

LiDAR data employed for this study were already post-processed by Arbonaut Limited using 
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TerraScan Microstation extension (commercial LiDAR software) and ArboLiDAR tools 

(customized LiDAR processing software by Arbonaut Limited).  

The post-processing of the LiDAR data, carried out by Arbonaut Limited, involved classifying 

and filtering the overlapping points caused by partly overlapping flight route. Three LiDAR point 

cloud classes were defined after the filtering process, by Arbonaut Limited. The Arbonaut-

defined LiDAR point cloud classes are: default (1), ground (2), and error (7).  

 

The classified point data were delivered in LAS format (a binary LiDAR exchange data format). 

The LAS formatted data contained the X, Y, Elevation, Intensity, Pulse number, Return number, 

and Nadir angle values (shown on Appendix 2-1) with projection in Universal Transverse 

Mercator (UTM), Zone 45 North coordinate system and datum, WGS84. Eighteen LAS files tiles 

covered the study area (see Appendix 2-2). 

(B). Orthophoto image 

An Orthophoto image is an aerial photograph that has been ortho-rectified. High resolution 

orthophoto images were simultaneously collected alongside LiDAR data by Arbonaut Limited 

during the flight campaign between March and April, 2011. The orthophoto image matches well 

with the LiDAR data because they were acquired at the same time. It has a spatial resolution of 

0.45m.The image was delivered with a projection to UTM, Zone 45 North coordinate system, 

and datum (WGS84). 

 

An initial requirement for displaying and visualizing the LiDAR data within FUSION software - 

the LiDAR processing software used in this study (see sub-sections 3.2.2A) - is to load an image 

of the area of interest i.e. the orthophoto image. In this study, the orthophoto image was pre-

loaded into FUSION to aid the analysis of LiDAR data in FUSION.  

(C). GeoEye-1 image 

The GeoEye-1 image used for this study was acquired on November 2rd, 2009. It consists of the 

panchromatic image at 0.41m and multispectral images (4 bands) at 1.65m. A large scale format 

map of GeoEye-1 image of each sample plots, showing the location of the plot center and plot 

area of 500m2 (circle of radius 12.62m) were prepared, (see Appendix 3). The GeoEye-1 image 

aided easier and faster navigation to the plots and the identification of some trees in the plots. 

LiDAR data and the Orthophoto image were not available during the pre-fieldwork stage; hence 

GeoEye-1 image (0.5m resolution) was utilised. 
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3.2.3. Software tools 

Several software tools (see table 3.3) were utilized for data analysis, processing and presenting the 

study results. FUSION/LDV is the main software tool utilized in this study. Additional 

information about FUSION/LDV is provided in sub-section (A) of section 3.2.2.  

 

(A). FUSION/LDV software  

FUSION/LDV software is a free LiDAR software (commonly referred to as FUSION software) 

developed and continually maintained by the “United States Department of Agriculture (USDA), 

Forest Service, Pacific Northwest Research Station in collaboration with the University of 

Washington” (McGaughey, 2007). It is called FUSION/LDV because it consist of two main 

programs, FUSION and LDV (LiDAR data viewer), and a collection of command line programs.  

FUSION is a comprehensive system designed to handle LiDAR dataset with robust and 

sophisticated functionalities. FUSION is the main graphical user interface (GUI) for displaying 

and projecting LiDAR data in 2-dimensional (2D) views, typical of geographic information 

system (GIS) software tools (McGaughey, 2007). However, LDV enables a 3D visualization, 

measurement and analysis of LiDAR dataset. The tool also supports command line programming 

and provides capabilities suitable for processing large datasets within the FUSION package. 

FUSION can handle various file formats such as shapefiles, images, digital terrain model, and 

LiDAR point data. Numerous studies involving LiDAR data have been carried out using 

FUSION/LDV software and published in several journals of remarkable repute (Angelo et al., 

2010; Baker et al., 2010; Beets et al., 2011; Gaulton & Malthus, 2010; Goerndt et al., 2011; Kane 

et al., 2010b; Richardson & Moskal, 2011). The extensive use of FUSION/LDV software 

indicates the robustness of the tool for LiDAR analysis and justifies its use in this study. 

Table 3-2: List of software used for this study 

Software Application 

ArcGIS 10 GIS Operations 

Random sample plot generation and layout. 

Data visualization and creation of layout for 
presentation 

LAStools  LiDAR data exploration 

Extraction of ground points from LIDAR point 
cloud 

FUSION/LDV 2.90 LiDAR data visualization and analysis 

Generation of the DTM, DSM, and CHM 

LiDAR metrics generation 

Quick Terrain Modeller Filtering of LiDAR data 

R Statistical Package (2.14.1), To perform descriptive statistics e.g. Normality test 
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Microsoft Excel, SPSS Statistical analysis e.g. Correction, Regression 

For Geostatistical analysis - Regression Kriging 

Microsoft Office tools 2010 
(Word, PowerPoint, Visio) 

For report writing, presentation and design of 
flowcharts and diagrams 

  

3.2.4. Field material and equipment 

The following material and equipment, shown in table 3-4, enhanced the data collection and field 

work process. A detailed explanation of the field work activity is presented in section 3.5 - 

Fieldwork. 

Table 3-3: Field material and equipment used for the study 

S/N Materials and Equipment Purpose 

1 GPS and IPAQ (handheld 
navigation computer) 

Navigation and plot identification 

2 Compass  Navigation and direction in the field 

3 Stationeries (Pencil, Sharpener, 
Marker), Clipboard & Datasheet 

Recording of field data and marking of 
measured trees in the field. 

4 Diameter Tape (5m) Measuring DBH of trees in the field 

5 Measuring Tape (30m) Plot layout measurement and crown diameter 

6 Laser altimeter Height measurement 

7 Suunto Clinometer Slope measurement 

9 Spherical Densiometer Canopy cover measurement 

3.3. Research stages 

The details of the fieldwork and how materials and methods were applied to the fieldwork 

process is described in subsequent sub-section. The research is divided into three stages;  

❖ Pre-fieldwork 

❖ Fieldwork  

❖ Post-fieldwork 

3.4. Pre-fieldwork 

The pre-fieldwork stage involved designing of sample plot, and preparation of materials for the 

fieldwork. 

3.4.1. Sampling design 

Stratified random sampling approach was adopted in this study. Kayarkhola watershed has 

varying characteristics in terms of tree density, altitude, slope, stand structure, etc. The land cover 

types of the watershed range from sparse forest to dense forest (table 2-1). Based on the varying 
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land cover characteristics in the area, the watershed had already been demarcated into 16 distinct 

community forests enhancing homogeneity within each stratum. Each community forest 

represents one stratum.  

 

The study area covers 5 different community forests (figure 3.0) with an area size of 764.67 

hectares (table 3-5). Stratified random sampling yields more accurate estimate of forest 

parameters than random sampling (Husch et al., 2003) in forests with land cover type similar to 

Kayarkhola watershed. This approach ensures a representative sample is obtained from each 

stratum and reduces variance by stratifying the area into homogenous blocks. Prior data, available 

through study done in 2010 by ITC NRM students in the study area, was exploited in calculating 

the total sample size. According to Husch et al., (2003), preliminary information of the area is 

required to estimate the sampling unit. A number of sampling units per stratum was allocated in 

proportion to each stratum area. The sample size for each stratum was estimated using the 

formula in equation 1 (Husch et al., 2003). 

 n =  
t2 ∑ PjS

2M
j=1

E2
 …………….. (Equation 3-1) 

Where:                                                                                                                               

n = minimum number of samples required 

t = value associated with specified probability 

M = number of strata in population 

Pj = proportion of total forest area in jth stratum = Nj/N 

s2 = variance of X for the area 

E = allowable standard error in units of X 

Nj = Area size of stratum 

N = total size of the area   (Husch et al., 2003)     

 

For an area size of 764.67 hectares, a total of 73 plots were estimated to be sampled in the field. 

However, in the field, forest parameters were collected from 101 plots across the study area, see 

table 3-5 and figure 2-1. This sampling method was applied for the two mapping approaches 

(regression and geostatistical analysis).  
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Table 3-4: Area size and number of sample plots for the Community Forests 

Strata Area Sample plots 

Devidhunga CF 253.86 28 

Dharapani CF 147.16 16 

Kalika CF 213.77 30 

Satkanya CF 58.28 13 

Kankali CF 91.6 14 

TOTAL 764.67 101 

 

3.4.2. Pre-field work preparation 

Each sample plot center was displayed on the GeoEye-1 image and projected on a larger scale. It 

was printed out and used for the fieldwork to aid faster navigation to the plots. The data sheets 

used for recording information on forest parameter collected in the field were also prepared and 

printed (see appendix 2) in preparation for data collection on the field. Field material and 

equipment, listed in section 3.1.2, were obtained and checked in advance prior to using them in 

the field.  

In order to prepare the iPAQ and ensure it is ready for use in the field, the iPAQ was calibrated 

by re-running its backup files, to restore the iPAQ to its default factory setting from the last use. 

Data for the fieldwork (study area boundary, community forest strata boundary, sample plots 

centers, GeoEye-1 image of the study area) were loaded into the iPAQ.  The GeoEye-1 image 

was converted into iPAQ file format, Enhanced Compression Wavelet (ECW) format, using 

ArcGIS 10 software before loading the image into the iPAQ. 

3.5. Fieldwork 

The purpose of the fieldwork is to measure and collect forest parameters (DBH, Height) from 

sample plots in the study area. The fieldwork took place in Nepal between September 17th, 2011 

and October 19th, 2011. While, the actual field data collection within Kayarkhola watershed, 

Chitwan District, Nepal took place between September 23th, 2011 and October 13th, 2011. The 

data was collected in collaboration with two other colleagues (Amado Adalberto and Purity 

Rima), carrying out similar fieldwork exercise in the area. In addition, the field team received 

support and assistance from the local community, enabling easy navigation of terrain. 

3.5.1. Field data collection  

The iPAQ, GPS, Compass, and the printed images showing each of the plot centers aided and 

eased navigation to the sample plots within the forest. In each plot, the center of the plot was 

located and determined; in most cases a tree very close to the plot center was selected. The XY 
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coordinate of the center was marked and stored on the GPS and the IPAQ.  From the center of 

the plots, the compass was used to determine the Northern direction which served as a start 

direction for tree measurement in all the plots. This ensured uniformity and consistency for the 

process of measuring of trees in each plot. With the aid of a measuring tape, circular plots of 

500m2 (0.05 hectares) area were defined. This translates to a plot size with a radius of 12.62m on 

a flat terrains (less than or equals to 5%). Most of the plots in the study area had slope greater 

than 5%, due to the mountainous and hilly nature of the terrain. Slope was measured using the 

Suunto clinometer in the direction of maximum slope. A slope correction factor (Appendix 4) 

was applied to plot measurement with slope greater than 5% to ensure the radius of the plot is 

properly defined. The slope aspect was also measured for each plot with the compass. The 

elevation was measured with the GPS and photographs of each plot taken. 

 

Forest parameters such as DBH at 1.3m (using diameter tape), tree height (using LASER 

altimeter), crown diameter (using measuring tape), and canopy density (using spherical 

densiometer) were measured concurrently in the field. Trees with DBH less than 10cm have been 

shown to have little contribution to the total biomass of the forest (Brown et al., 2002). Hence, 

only trees with DBH greater than 10cm and the associated tree species were recorded. Tree 

heights were measured at a distance of about 10m from the tree of interest. Due to limited time 

constraint and the difficulties associated with measuring the height of trees in the field, only 

height of few trees were measured, in particular height of the trees used to delineate the plot 

center. The crown diameter was determined by averaging the measurements of the length of the 

crown taken at two sides of the tree. The canopy density was estimated from the four corners of 

the plot and the plot center. The average of the measurements were calculated and then 

expressed as a percentage. Refer to table 3-4 for the list of field equipment and their purpose. 

3.6. Post-fieldwork – data analysis 

The purpose of this research stage was to carry out extensive data analysis on the field data and 

LiDAR by using statistical analysis tools. The following subsections describe the sub-stages that 

make up the post-fieldwork research stage. 

3.6.1. LiDAR data verification and visualization 

LiDAR data for the study area were displayed in FUSION software GUI providing a 2D view of 

area. Using FUSION’s LiDAR Data Viewer (LDV), LiDAR point cloud data for different parts 

of the study area was displayed in 3D view to visualize and examine the LiDAR data. The process 

revealed that the LiDAR data had some outliers. The areas with outliers were represented by 

extreme elevation values, which do not indicate of the true elevation of the area. The outliers 
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were visualized in 3D view as sets of floating point clouds in the point cloud distribution. A 

comparison of the range of elevation values displayed on the histogram bar in figure 3.3 (a 

section of LiDAR data with no outliers) and figure 3.4 (a section of LiDAR data with outliers) is 

shown below. Outliers were removed using the filtering process described in section 3.6.3. 

 

In addition, a summary data report was generated with FUSION providing information on the 

minimum elevation, maximum elevation, total returns, and nominal return density for each 

LiDAR LAS tile covering the study area (Appendix 5-1). About 22.4 million LiDAR point returns 

were recorded from the data. 

3.6.2. Removal of outliers from the LiDAR data 

For this study, the filtering process was carried out to remove the outliers revealed in the study 

area data during the visualization process, described in section 3.6.1, and ensure that errors are 

minimized in the subsequent analysis. The presence of outliers in a dataset will affect the quality 

of the DTM, DSM and the CHM produced. The LiDAR point cloud data for the affected areas, 

in the study area, was filtered using the “cut tool” in Quick Terrain Modeler software. Figure 3-2 

shows an example outcome of the filtering process.  



LiDAR REMOTE SENSING OF ABOVEGROUND BIOMASS USING A PLOT-BASED APPROACH IN THE TROPICAL FOREST OF NEPAL: A 

COMPARISON OF REGRESSION AND GEO-STATISTICAL APPROACH 

32 

 

Figure 3-2: Filtering of LiDAR LAS file IC272 in Quick Terrain Modeler (a) On the left side - 
LiDAR data before filtering (b) On the right side - LiDAR data after filtering 

3.6.3. Above-ground biomass calculation using allometric equation 

Allometric equation is commonly used in the calculation of aboveground biomass from field 

data, mostly using DBH. Due to the absence of species-specific allometric equations for most 

tree species in the study area, aboveground biomass was estimated using the IPCC general 

broadleaf group-wise allometric equation(see equation 3-4) (IPCC, 2007) while for Shorea robusta, 

species-specific allometric equation developed by  Basuki et al.,(2009) was applied (equation 3-2 

and 3-3). The IPCC equation is for tropical moist hardwood forest. Tropical moist forests are 

characterised with receiving an annual rainfall of between 2000mm to 4000mm (IPCC, 2007). 

The IPCC equation was adopted in this study because the study area falls under the classification 

of a tropical moist forest and exhibit similar climatic condition. Similarly, the species-specific 

allometric equation for Shorea robusta was developed for East Kalimantan, Indonesia, which 

experiences an average annual rainfall of 2000m and the temperature range from 21˚C to 34˚C  

(Basuki et al., 2009). By virtue of the similarity in the climatic condition with the study area, this 

species-specific allometric equation for Shorea robusta has been adopted in this study. Both 

allometric equations were developed with DBH alone. 
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1. For Shorea robusta  

ln(TAGB) = −2.193 +  2.371 × ln(DBH) ................. Equation 3-2  

Where: 

TAGB = Total aboveground biomass 

DBH = Diameter at breast height 

Correction factor (CF) = 1.034 (Basuki et al., 2009) 

 

The allometric model for Shorea robusta was developed from logarithm (log) transformed 

variables in order to satisfy one of the prerequisites for parametric regression. The process of log 

transformation tends to equalize the variance over the entire range of biomass values (Sprugel, 

1983). Also, transformation introduces a systematic bias in the calculation. To nullify the bias, a 

correction factor (CF) was applied (Basuki et al., 2009; Sprugel, 1983). The correction factor 

formula is presented in equation 3-3. TAGB calculations for Shorea robusta were multiplied with 

the correction factor given in equation 3-3.  

 

𝐶𝐹 =  𝐸𝑋𝑃(𝑆𝐸𝐸2 2⁄ )   -- Equation 3-3 

Where: 

CF = Correction Factor 

SEE = Standard Error Estimate of the regression (Sprugel, 1983). 

 

2. For other species  

Y = 𝑒[−2.289 + 2.649 × ln(𝐷𝐵𝐻)  – 0.021 ×{ln(𝐷𝐵𝐻)}2] ………..... Equation 3-4 

Where: 

Y = Total above-ground biomass  

DBH = Diameter at breast height (IPCC, 2007) 

 

Total aboveground biomass (TAGB) was estimated for each tree and then aggregated per plot. 

TAGB per plot was converted from Kg/m2 to Mg/ha.  

3.6.4. Generating the Digital Terrain Model (DTM) 

The DTM serves as a ground reference for the generation of the canopy height model (CHM). 

The following steps were employed for generating the digital terrain model (DTM): 

 

❖ Classify the LiDAR point clouds into ground (terrain) points and vegetation (non-terrain) 

points 
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❖ Generate DTM using the extracted ground points 

The ground points of the LiDAR point cloud were extracted using LAStools according to the 

initial classification that was performed by the vendor (Arbonaut Limited). With the extracted 

ground points, DTM of 1m, 3m, and 5m were generated in FUSION software with the 

“GridSurfaceCreate” program. Elevation value per cell was computed by taking the mean 

elevation of all points within the cell. For cells with empty elevation values, interpolation was 

done using neighbouring cells. The syntax/command for the DTM computation in FUSION 

(McGaughey, 2007) was  processed using the command line prompt (CMD) and herewith given 

in section 3.6.5. 

GridSurfaceCreate output_file cellsize xy_unit z_unit coordinate_system zone 

horizontal_datum vertical_datum datafile 

Where: 

output_file = name of the DTM file generated by the process 

cellsize =  model resolution  

xy_unit = LiDAR data xy unit (m) 

z_unit = LiDAR data elevation unit (m) 

coordinate_system = LiDAR data coordinate system - UTM  

zone = 45 

horizontal_datum = LiDAR data horizontal datum – WGS84 (World Geodetic System of 1984) 

vertical_datum = LiDAR data vertical datum - WGS84 

datafile = extracted ground points of the study area 

3.6.5. Generating the Digital Surface Model (DSM)  

The digital surface model generated in this study represents the vegetation elevation in an area. 

The DSM is computed using the highest elevation value in each grid cell. DSM was generated in 

FUSION LiDAR point cloud along with the “CanopyModel” program. The DSM was generated 

for 1m, 3m, and 5m pixel sizes respectively. The syntax/command for the DSM computation in 

FUSION was processed using the command line prompt and is given in section 3.6.6 as: 

CanopyModel output_file cellsize xy_unit z_unit coordinate_system zone horizontal_datum 

vertical_datum LiDAR_datafile 

Where: 

output_file = name of the DTM file generated by the process 

cellsize = model resolution  

xy_unit = LiDAR data xy unit (m) 



LiDAR REMOTE SENSING OF ABOVEGROUND BIOMASS USING A PLOT-BASED APPROACH IN THE TROPICAL FOREST OF NEPAL: A 

COMPARISON OF REGRESSION AND GEO-STATISTICAL APPROACH 

35 

z_unit = LiDAR data elevation unit (m) 

coordinate_system = LiDAR data coordinate system - UTM  

zone = 45 

horizontal_datum = LiDAR data horizontal datum – WGS84 (World Geodetic System of 1984) 

vertical_datum = LiDAR data vertical datum - WGS84 

LiDAR_datafile = LiDAR point cloud 

3.6.6. Generating the Canopy Height Model (CHM) 

The CHM generated in this study represents the vegetation heights of the area. The CHM is also 

referred to as the normalised DSM (nDSM) because vegetation heights are normalised to the 

DTM. The difference between the DSM and the DTM models yields the CHM model. CHM was 

created using DTM as a reference. In FUSION, CHM for 1m, 3m and 5m pixel sizes respectively 

were generated by running the “CanopyModel” program using the command line prompt syntax 

stated below in section 3.6.7. 

CanopyModel /ground:DTM_file output_file cellsize xy_unit z_unit coordinate_system 

zone horizontal_datum vertical_datum LiDAR_datafile 

Where: 

output_file = name of the DTM file generated by the process 

cellsize = model resolution  

xy_unit = LiDAR data xy unit (m) 

z_unit = LiDAR data elevation unit (m) 

coordinate_system = LiDAR data coordinate system - UTM  

zone = 45 

horizontal_datum = LiDAR data horizontal datum – WGS84 (World Geodetic System of 1984) 

vertical_datum = LiDAR data vertical datum - WGS84 

/ground:DTM = The syntax for specifying the DTM used in normalising the data 

LiDAR_datafile = LiDAR point cloud 

3.6.7. Validation of the CHM and optimum sampling grid selection 

In this study, the accuracy of the CHMs (pixel 1m, 3m, and 5m) were assessed by comparing the 

CHM heights with the heights of trees measured in the field. Height values of trees derived from 

the field were regressed with CHM heights for each of the resolution sizes. The validation result 

was quantified using their coefficient of determination (r2) value to ascertain the appropriate pixel 

resolution to employ for this study. Of the 3 models (pixel size 1m, 3m, and 5m) generated, the 

model with a highest r2 was selected as the appropriate pixel size for this study. For this analysis, 
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only the height value of the trees at the plot centre was correlated with the height value derived 

from the CHM model. The comparison process validates CHM and determines the most suitable 

pixel resolution for CHM applied to this study. In this study, the 3m CHM model was employed. 

3.6.8. Extraction of the Field Plots 

For LiDAR metrics to be extracted for each plot in this study, the circular area of the plots was 

calculated in Microsoft Excel using the plot center coordinates and the radius for each plot. The 

slope measurement of individual plot on the field determined the circular dimensions of the plot. 

The circumference of each plot was derived by estimating the X and Y minimum, and X and Y 

maximum either by subtracting or adding the radius to the X and Y coordinates, see equation in 

this section 3.6.9.  

X minimum = X (coordinate) - r 

Y minimum = Y (coordinate) - r 

X maximum = X (coordinate) + r 

Y maximum = Y (coordinate) + r ……………..(McGaughey, 2007)  

 

With the circular dimensions, LiDAR point cloud for each plot was extracted with the ‘ClipData’ 

program in FUSION. The syntax for clipping the LiDAR point clouds with the plot subsets is 

given below in this section 3.6.9. 

ClipData /shape:1 /DTM /height input_LiDAR_datafile output_subset_file (MinX 

MinY MaxX MaxY) 

Where: 

 /shape: 1 = Shape of the plots (1 denotes a circular plot) 

/DTM = Digital Terrain Model used in normalising the data 

/height = Used to convert the elevation values to height above the ground 

(MinX MinY MaxX MaxY) = Dimensions of the plot 

3.6.9. Extraction of LiDAR metrics 

In this study, LiDAR metrics were computed for each sample plot using only first return of 

LiDAR point clouds. Height limit of 2 m was used to eliminate points on the ground. The 

specified height limit ensures ground areas consisting of shrubs and understory vegetation were 

excluded from the computation (Lim & Treitz, 2004). It also ensures that heights above the 

height limit represented canopy areas.  LiDAR metrics was extracted from FUSION using the 

‘CloudMetrics’ program. The ‘CloudMetrics’ syntax for is given below in this section 3.6.10. 
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Three sets of LiDAR metrics were generated for each field plot. The LiDAR metrics include (I) 

metrics derived from using elevation values from LiDAR (elevation metrics), (II) intensity values 

from LiDAR (intensity metrics) and (III) canopy cover computations. The canopy cover 

computations were calculated as percentages of different return ratios above various specified 

height limit.  

 

DTM was used together with LiDAR returns for the computation of the metrics. Using the 

digital terrain model, the elevation values were normalized to represent vegetative height values 

above the ground for the area. The LiDAR metrics were correlated with field aboveground 

biomass. 

CloudMetrics /id /above:2 /first_return input_file output_file 

Where: 

/id      = provides an identifier for each plot (system generated) 

/above:2  = cover estimate with height limit 2m 

/first_return = instructs the program to use only the first return value of the LiDAR data 

input_file       = LiDAR point return values per plot from extraction of field plot process  

output_file = file name containing the LiDAR metrics extracted CSV (comma-separated         

values) file. 

3.6.10. Descriptive statistics of the field data / exploratory data analysis 

In this study, both dependent and independent variables were explored beforehand to ensure the 

data satisfies the regression analysis assumptions and meet the geostatistical requirements. 

Diagnostic graphics of the the variables were explored to check their distribution. Similarly, a 

non-graphical statistical test (shapiro-wilk test) was performed for both variables to confirm 

normality assumptions. Based on the normality test, variables that revealed non-normality were 

log transformed prior to being used for the regression analysis. 

 

Scatterplots of AGB and each of the LiDAR metrics were observed to visualise the association 

and the strength of the relationship between TAGB and LiDAR metrics. This process is required 

because variables with weak or no association are unsuitable for modelling. 

3.6.11. Correlation Analysis  

In this study, correlation analysis (also known as Pearson's product) between each LiDAR metrics 

and field aboveground biomass was performed using SPSS software. The result of the correlation 
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matrix showed the inter-relationship between LiDAR metrics and AGB, and intra-relationship 

within LiDAR metrics. Only the variables (LiDAR metrics) exhibiting considerable relationship 

with aboveground biomass were considered for further analysis i.e. regression analysis. 

3.6.12. Principle Component Analysis (PCA) 

The result of the correlation matrix from the correlation analysis process revealed high 

correlation between the LiDAR metrics. When variables are highly correlated with each other, it 

results to data redundancy in the model. Data redundancy occurs when the inclusion of extra 

variables into the model adds no additional information to it. In this study, principal component 

analysis (a data reduction method) was performed using the ‘princomp function’ in the R 

statistical package to filter correlated independent variable and identify uncorrelated independent 

variables. The uncorrelated independent variables are also referred to as “Main Components”.  

3.6.13. Regression Analysis  

Regression analysis is commonly used for biomass estimation studies. Regression analysis models 

quantify the relationship between dependent variable and independent variable(s). In this study, 

the independent variables are the LiDAR metrics selected from the PCA analysis and the 

dependent variables are the field TAGB.  

 

In this study, the linear model of each of the LiDAR metrics and TAGB were developed using 

the ‘lm function’ in R. Furthermore, multiple regression analysis of various combinations of the 

variables was established. Subsequently, backward stepwise regression was done to generate the 

best model (with the best combination of variables) for estimating TAGB. 

3.6.14. Extraction of the covariate for regression kriging 

In this study, the selected independent variables from PCA were used for the kriging process. 

First, the value of the explanatory variable was extracted for the whole study.  This was done 

using the “GridMetrics” program in FUSION. A grid size of 100m2 was used across the study to 

compute the metrics per each grid cell. The output of the “GridMetrics” process was a CSV file 

containing the coordinates of the grid cell and metrics value for each grid cell. This was converted 

into an ASCII file with the “CSV2GRID” program in FUSION. The raster ASCII file was 

imported into ARCGIS 10 and the area of study was masked out using the study area boundary 

shapefiles. The ASCII file of the explanatory variable was imported into R software for the 

regression kriging analysis. The computation of the regression residuals of the model was done in 

R followed by ordinary kriging of the regression residuals (Hengl et al., 2007) 
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3.6.15. Model calibration and validation 

Model validation involves assessing the performance of the model in predicting the target 

variable (TAGB). Model validation assesses the accuracy between LiDAR metric predicted model 

of TAGB with field calculated TAGB.  

 

In this study, the biomass predicted with the model is compared with field estimated biomass. 

Mean Error (ME) and Root Mean Square Error (RMSE) are methods used to ascertain the level 

of precision and the amount of error in the models from the three approaches (regression 

analysis, ordinary kriging, and regression kriging). The formula for ME and RMSE is presented in 

equation 3-5 and equation 3-6). 

 

For the regression analysis in this study, the dataset was randomly split into 2 parts. One part for 

was used for calibrating and the other for model validation. In order to build a robust model, 

more samples are usually required. Also, outliers were removed from the data. Hence the model 

was developed with 75% of the dataset (training dataset) and the remaining 25% dataset (test 

data) was used for validating the model.  

 

Cross validation was used to assess the accuracy of the results from ordinary kriging and 

regression kriging. Cross validation was applied for these techniques because the dataset was too 

small to be split into two. In this study, the entire dataset was used for both model development 

and validation. In addition, a variance map that gives the uncertainty estimate of the prediction 

model was produced.  

 

𝑅𝑀𝑆𝐸 =  √∑ ( 𝑌𝑖 −  𝑌𝑖  ̃)
2𝑛

𝑖=1 /𝑛     ……………….Equation 3-5 

 

  

 

𝑀𝐸 =  ∑ ( 𝑌𝑖 − 𝑌𝑖  ̃)
2𝑛

𝑖=1 /𝑛    ……………….Equation 3-6 

 

Where,  

RMSE is root mean square error of the model 

Yi is the measured/calculated value of carbon 

Yi  ̃is the predicted carbon value by the model 

n is the number of samples  
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4. RESULTS 

4.1. Descriptive statistics of  field data 

Kayarkhola watershed in Chitwan, Nepal embodies a wide range of tree species. About 65 tree 

species were recorded in the field and Shorea robusta was identified as the most dominant tree 

species across Kayarkhola watershed. It accounts for 60.2% of the total tree species recorded in 

the field as shown in figure 4-1. The distribution of tree species, including Shorea robusta, and 

other species in each community forest stratum is represented in figure 4-2. Across the strata, 

Shorea robusta had a greater percentage than other species except in Devidhunga where other 

species had a slightly greater percentage. 

 

Figure 4-1: Frequency distribution of species in Kayarkhola watershed 

 

Forest parameter data from a total of 1927 trees were obtained from 101 plots within the five 

constituent community forests in the study area. The distribution of trees - community forest is 

shown in table 4-1. 

Table 4-1: Total number of trees measured 

Community forest Number of trees 

Devidhunga  402 

Dharapani 230 

Kalika 683 

Kankali  288 
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Satkanya 324 

Total number of trees 1927 

 

 

Figure 4-2: Species distribution per stratum in Kayarkhola watershed 

4.1.1. Field aboveground biomass calculation using allometric equation 

Aboveground biomass (AGB) was calculated for each tree in the sampled plots using their DBH 

measurement and allometric equations as given in section 3.6.4.Estimates of sampled plot AGB 

in each stratum (community forest) were summed up and then mean AGB calculated per 

stratum. Mean AGB estimates in Kg/500m2 was then converted to mean AGB estimates in 

Megagrams per hectares (Mg/ha). Subsequently, total aboveground biomass (TAGB) for each 

community forest was estimated using the area size of each community forest. Table 4-2 presents 

the results of TAGB calculations. 
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Table 4-2: Total Aboveground biomass across the study area using field data 

 

Community 
forest(strata) 

No of 
plots 

AGB in 
sampled 
plots 
(kg/500m2) 

Mean AGB 
in sampled 
plots 
(kg/500m2) 

mean 
AGB per 
ha(Kg/ha) 

mean 
AGB per 
ha 
(Mg/ha) 

Ln (Mean 
AGB per 
ha 
(Mg/ha)) 

Area of 
community 
forest (CF) 

Ln 
(TAGB(Mg)) 

Devidhunga 28 272761.58 9741.49 194829.70 194.83 5.27 253.86 1338.38 

Dharapani 16 102703.53 6418.97 128379.41 128.38 4.85 147.16 714.46 

Kalika 30 221811.50 7393.72 147874.33 147.87 5.00 213.77 1068.07 

Satkanya 14 61385.63 4384.69 87693.75 87.69 4.47 58.28 260.74 

Kankali 13 97486.44 7498.96 149979.14 149.98 5.01 91.6 458.96 

Total 101    708.76  764.67 3840.61 
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Figure 4-3: Distribution of above-ground biomass across the strata 

 

The distribution of field TAGB across the strata is represented using the box plot shown in 

figure 4-3. In general, Devidhunga has the largest range and amount of aboveground biomass 

while Satkanya has the least amount of aboveground biomass. 

4.1.2. Homogeneity of variance of above-ground biomass across the strata 

Bartlett’s test was applied to assess the variation in AGB among the strata and the results are 

shown on table 4-3. The result shows a P-value greater than 0.05, which indicates that there are 

no significant differences in the AGB variance among the strata. It also indicates homogeneity of 

variance among the strata. 

Table 4-3: Bartlett’s test 

Barlett’s K-squared Degree of 
freedom 

P-value 

2.3653 4       0.6689 

 

An analysis of variance (ANOVA) test was also performed to assess whether or not the mean 

AGB among the strata are the same. The result, shown on table 4-4, shows p-value greater than 

0.05 meaning there is no significant differences in the mean AGB among the strata. Furthermore, 
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the ANOVA result shows that the stratification based on community forest user groups an 

effective criterion for establishing homogenous units of forests in the study. 

Table 4-4: ANOVA result 

 Degree of freedom Sum square  Mean square F 
value 

P(>F) 

Strata 4 31323 7831 1.074 0.374 

Residuals 96 700200 7294   

4.2. Exploratory data analysis 

The shapiro-wilk test was done for all the independent variables and the dependent variable. P-

value of less than 0.05 shows that the residuals of the variables are not normally distributed while 

P-value of greater than 0.05 reveals that the residuals of the variables are approximately normally 

distributed. Variables with P-value less than 0.05 were log-transformed before it was used for 

modelling. Also, field TAGB was visualised using histogram graph and a Q-Q plot before and 

after transformation in figure 4-4.  

 

Figure 4-4: Field AGB distribution before and after logarithm transformation 

4.3. The models (DTM, DSM, CHM) 

The 3-dimensional view of the extracted ground points from LiDAR data used in generating the 

DTM is visualised in figure 4-5a and the corresponding LiDAR point cloud for the same area is 
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visualised in figure 4-5b. The ground points show only the laser points on the terrain while the 

LiDAR point cloud shows the total return for the area. 

 

The DTM of the study is shown figure 2-1. The 2-dimensional view as displayed in ArcGIS 10 

and the 3-dimensional view as displayed in FUSION are shown in figure 4-6. From the 2-D view, 

the lighter areas represent high height values while the darker areas denote low height values. 

From the 3-D view, the CHM displays as the grey surface and the green triangulated network.  

4.4. Pixel resolution and validation of  the canopy height model 

The relationship between tree heights from field measurement with corresponding heights 

extracted from CHM for the different pixel sizes (1m, 3m, and 5m) respectively was assessed and 

is shown in a scatter plot (figure 4-7). A summary statistics of height measurements from the 

models and the field is shown in table 4-6. The correlation and regression analysis result between 

height measurement from the field and LiDAR measurement is given in table 4-7. The CHM at 

3m resolution has a higher coefficient of determination (r2) with a value of 0.54. CHM at 1m 

resolution has an r2 of 0.26 and CHM at 5 m resolution has an r2 of 0.47. The result revealed that 

CHM at resolution 3m had a better relationship to field height when compared with resolution 

1m and 5m and therefore was selected as the pixel resolution for the models in this study.  

Table 4-5: Summary statistics of height measurements from the models and the field 

Summary 
1m  

resolution 

3m 
resolution 

5m  

resolution 

Field 
measurement 

Minimum 1.21 4.21 4.55 3 

Mean 12.95 20.17 22.53 21.17 

Maximum 32.01 37.26 37.83 35 

Standard  

Deviation 

8.072 7.31 6.88 6.84 
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Figure 4-5: 3D view of (a) Extracted ground points from LiDAR (upper image) and (b). 
LiDAR point cloud of the same area in the study in FUSION software (lower image) 
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Figure 4-6: The CHM represented in (a).2-D in ArcGIS 10 (upper image) and in (b). 3D in 
FUSION software (lower image) 

 

Table 4-6: Correlation and regression analysis between LiDAR height and field height for the 
pixel sizes 1m, 3m, and 5m 

CHM 
resolution 

Correlation 
coefficient (r) 

r2 Adjusted r2 

1m 0.51 0.27 0.26 

3m 0.74 0.55 0.54 

5m 0.68 0.47 0.47 



LiDAR REMOTE SENSING OF ABOVEGROUND BIOMASS USING A PLOT-BASED APPROACH IN THE TROPICAL FOREST OF NEPAL: A COMPARISON OF REGRESSION AND GEO-STATISTICAL APPROACH 

48 

 
 

 

Figure 4-7: Relationship between LiDAR height from CHM and tree height measurement from the field for pixel sizes 1m, 3m, and 5m. 
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4.4.1. Extraction of Field plots from LiDAR  

The area size of each sampled plot was masked out in FUSION using plot’s XY coordinates and 

radius. An example of circular plot dimensions is presented in figure 4-8.  Each extracted plot 

contains LiDAR point clouds used in the calculation of LiDAR metrics per plot. Figure 4-8 

presents a field plot in FUSION LDV containing both the ground returns and the vegetative 

returns of LiDAR point clouds. 

 

In figure 4-8, the blue points depict the ground returns while the greenish-orange points 

represent the vegetative returns symbolizing trees in the plot. In the figure, vegetative returns 

(points above the ground) should depict the structure of trees in the plot. The structure of trees is 

not fully pictured and appreciated due to low density nature of the LiDAR data used in this study. 

 

Figure 4-8: An example of a circular plot with trees in the plot displayed in FUSION LDV 

4.5. Computation of  LiDAR metrics 

LiDAR metrics were computed from the 1st returns of the LiDAR data. In total, 81 metrics were 

computed using FUSION software for each sample field plots. Table 4-7 presents the list of 

LiDAR metrics generated for this study. Out of 81 metrics, 33 metrics were computed using 

elevation values (elevation metrics) and intensity values (intensity metrics) respectively and 15 

metrics were calculated as ratios of returns above certain height thresholds (canopy cover 

computations). LiDAR data for this study were available in four return type classifications 

(Return 1 to return 4) 
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Table 4-7: LiDAR metrics computed with FUSION software 

Metrics from elevation 

/Intensity values 

Metrics of canopy cover computations 

Minimum height % of 1st returns above 2m 

Maximum height % of all returns above 2m 

Mean height                                                 % ratio of all returns above 2m to total 1st 
return 

Height mode 1st returns above 2m 

Height Standard deviation  All returns above 2m 

Height variance % of first returns above mean height 

Height Coefficient of variation  % of first returns above mode height 

Height Interquartile distance % of all returns above mean height 

Height skewness % of all returns above mode height 

Height kurtosis                                       % ratio of all return above mean height to 
total 1st returns 

Height average absolute deviation (AAD)  % ratio of all return above mode height to 
total 1st returns 

Height L-moments (L1, L2, L3, L4) 1st returns above mean height 

Height L-moment coefficient of variation     1st returns above mode height 

Height L-moment skewness All returns above mean height 

Height L-moment kurtosis All returns above mode height 

Height percentiles (1st, 5th, 10th, 20th, 30th, 

40th, 50th, 60th, 70th, 75th, 80th, 90th, 95th, 99th) 

 

 

4.6. Correlation analysis of  field TAGB and LiDAR metrics 

The result of Pearson’s product correlation between field above-ground biomass (AGB) and 

LiDAR metrics yielded the correlation matrix. The Correlation matrix revealed the strength of the 

relationship between field AGB and each of the LiDAR metrics, and amongst the LiDAR 

metrics. The strength of relationship between LiDAR metrics and field TAGB was moderately 

high. One-third of the LiDAR metrics generated had moderate relationship with field TAGB 

while two-third had a weak relationship with field TAGB. Correlation coefficient (r) for all 

LiDAR metrics ranged from 0.3 ≤ r ≤ 0.55. Intensity metrics (metrics calculated from intensity 

values of the LiDAR data) showed very weak relationship with field TAGB. Their correlation 

coefficient (r) value ranged from 0.008 ≤ r ≤ 0.206. In all, LiDAR metrics displayed both positive 

and negative relationship with field TAGB.  

 

So, LiDAR metrics that had poor relationship with field TAGB, including all intensity metrics 

were excluded from further analysis (i.e. principal component analysis). In summary, a total of 28 

variables showed a considerable relationship with TAGB and were used in the PCA. 
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4.7. Principal component analysis 

The output of the correlation matrix revealed high correlation amongst some LiDAR metrics. 

These suggest multi-collinearity among the predictor variables and were tested with principal 

component analysis (PCA) to extract significant uncorrelated variables to be used for the 

regression analysis. Figure 4-9 is a scree plot that gives an indication of the number of principal 

components (PC) to be considered from the total for the study. The scree plot shows the 

proportion of variance in the principal components.  

 

Figure 4-9: Proportion of variance in PCs  

Table 4-9 displays the proportion of variance of the first four principal components carrying the 

bulk of the variance. 

Table 4-8: Breakdown of the proportion of variance of the 1st four components 

 Comp.1  Comp.2 Comp.3 Comp.4 

Variable Height mean Height AAD Canopy cover Aramean_tfrp 

Standard deviation 4.197  2.368 1.496 0.855 

Proportion of variance 0.629 0.20 0.080 0.026 

Cumulative proportion 0.629 0.829 0.909 0.935 

Where height AAD= Height average & absolute deviation; Canopy cover=% 1st returns above 

3metres; Aramean_tfrp= (all returns above mean) / (total first returns) * 100 

 

The rule of thumb is to retain the PC’s up to the point on the graph where the plot curves. This 

is because most of the variation seemed to be explained by these first sets of variable. However, 
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caution must be taken when determining which of the component to eliminate from a principal 

component regression (Quinn & Keough, 2002). Merely discarding the remaining components 

beyond the plot curve (that has much lesser amount of variance input to the total variance in the 

predictor variables) can be biased (Quinn & Keough, 2002) leading to the loss of important 

significant variable. In view of this, the significance of the relationship of each component was 

tested with TAGB (see Appendix 7).  

 

The test revealed that 7 variables (height maximum, height average & absolute deviation, height 

L-moment (L2), Height L-moment skewness, 40th, 80th, and 95th height percentile) were 

significant predictors of TAGB. Height maximum demonstrated to be the only variable that was 

highly significant (0.001 confidence interval).  

4.8. Regression modelling 

The seven variables selected from the PCA process were used as explanatory variables in the 

regression analysis. Multiple linear regression of the seven variables and log-transformed 

aboveground yielding adjusted r2 values of 0.56. However, none of the explanatory variables were 

significant. From the linear model of each of the independent variables, model of 95th height 

percentile was the best having an r2 of 0.54, as shown on table 4-10. In addition, multiple linear 

regressions of two or more variables were explored.  

 

From most of the combinations, 95th height percentile was the left as the only significant variable. 

This implies that 95th height percentile on its own can predict TAGB in the study. The inclusion 

of other variables in the model had no significant and additional effect in the model. The best 

regression model was selected on the basis of the homoscedascity of the model residuals, highest 

coefficient of determination (R2), lowest Akaike Information Criterion (AIC), reduced standard 

error estimate, and validation statistics (RMSE) estimates. A summary of the AIC estimate and 

the RMSE for each model is presented in table 4-11. The lower the AIC and the Root Mean 

Square Error (RMSE), the better the model. Validation of each model was done with the 

validation dataset and the RMSE was computed. Based from the result, model of 95th height 

percentile was selected and used for prediction of TAGB using the different methods. 

 

The residual from the regression analysis of TAGB and 95th height model is presented in figure 4-

10. The residual gives an indication of the quality of the regression model. The residual result 

shows that the data fulfils the assumptions of regression analysis. From the Q-Q plot, shown in 

figure 4-10, it is possible to conclude that the data approximate a normal distribution 
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Table 4-9: Relationship between field aboveground biomass and LiDAR derived metrics 

Dependent 
variable   

Intercept ln(hmax) (E)AAD el2 elskew ln(ep40) ln(ep80) ln(ep95) 
Adjusted 
R2   

Residual 
Standard 
Error 

P(α = 
0.05) 

AIC 

TAGB -0.7516 1.6918 - - - - - - 0.4721 0.5032 
4.27 x 10-11 
*** 

105.0235 

  (0.7153) (0.2152) - - - - - - - - - - 

TAGB 3.3072 - - 1.1032 - - - - 0.3771 0.5466 
1.21 x 10-8 
*** 

116.4348 

  (0.2468) - - (0.1699) - - - - - - - - 

TAGB 4.27088 - - - - 0.30668 - - 0.2562 0.5973 
5.45 x 10-6 
*** 

 128.677  

  (0.13785 ) - - - - (0.06206) - - - - - - 

TAGB 1.8899 - - - - - 1.026 - 0.4355 0.5204 
4.18 x 10-10 
*** 

 109.6436  

  (0.4099) - - - - - (0.1403) - - - - - 

TAGB 0.365 - - - - - - 1.4273 0.5411 0.4692 
3.68 x 10-13 
*** 

 95.36214  

  (0.5013) - - - - - - (0.1584) - - - - 

TAGB 3.96785 - 0.13231 - - - - - 0.2252 0.6097 
2.26 x 10-5 
*** 

 131.4921  

  (0.20744) - (0.02903) - - - - - - - - - 

TAGB 4.91151 - - - -1.47477 - - - 0.1225 0.6488 0.00186 **   140.0805  

  (0.08023) - - - (0.45519) - - - - - - - 

TAGB -0.09759 0.50129 - - - 0.0288 -0.01749 1.04496 0.5333 0.4732 -  99.35537  

  (0.77424) (0.41697) - - - (0.07151) (0.34371) (0.52852) - - - - 

TAGB -0.636981 0.480385 - -0.317632 - -0.003833 0.150182 1.245745 0.5302 0.4747 
0.0394 * 
(ep95) 

 100.7215  

  (1.050601) (0.419234) - (0.416548) - (0.083533) (0.408977) (0.592032) - - - - 

TAGB -0.62489 0.74382 -0.14057 0.82625 -1.00853 -0.12382 -0.0248 0.99958 0.5614 0.4587 -  97.75665  



LiDAR REMOTE SENSING OF ABOVEGROUND BIOMASS USING A PLOT-BASED APPROACH IN THE TROPICAL FOREST OF NEPAL: A COMPARISON OF REGRESSION AND GEO-STATISTICAL APPROACH 

54 

Dependent 
variable   

Intercept ln(hmax) (E)AAD el2 elskew ln(ep40) ln(ep80) ln(ep95) 
Adjusted 
R2   

Residual 
Standard 
Error 

P(α = 
0.05) 

AIC 

  (1.01558) (0.42085) (0.08005) (0.70255) (0.58310) (0.09500) (0.50480) (0.69111) - - - - 

TAGB 0.52878 - - - - 0.03424 - 1.35455 0.5361 0.4718 -  97.07046  

  (0.59158) - - - - (0.06476) - (0.21048) - - - - 

TAGB -0.2468 0.5214 - - - - - 1.0726 0.5462 0.4666 
0.000964 
*** (ep95) 

 95.54701  

  (0.6791) (0.3931) - - - - - (0.3104) - - - - 

TAGB 0.6324 - - - -0.4507 - - 1.348 0.5454 0.467 
3.16 x 10-11 
*** (ep95) 

 95.6689  

  (0.5408) - - - (0.3520) - - (0.1694) - - - - 

TAGB -0.15438 1.45657 - - - 0.09596 - - 0.4815 0.4988 
6.98 x 10-7 
*** (emax) 

 104.7472  

  (0.81469) (0.26546) - - - (0.06449) - - - - - - 

TAGB 0.4883 - - - - 0.04508 -0.13409 1.48403 0.5301 0.4748 
0.000254 
*** (ep95) 

 98.89634  

  (0.60368) - - - - (0.07045) (0.33087) (0.38335) - - - - 

 

The symbol *** means ‘highly significant’ at 95% confidence interval; ln(ep95) = log(95th height percentile); ln(ep40) = log(40th Height percentile); ln(hmax) =log( height maximum); 

elskew = height L-moment skewness; eaad = height average absolute deviation; el2 = Height L-moment (L2); ln(ep80) =log( 80th Height percentile);The standard errors of the 

coefficient are given in paranthesis 
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Table 4-10: Summary of the estimate of selection criteria for the best model 

 Model AIC RMSE 

1 ln(hmax) 105.02 0.83 

2 el2 116.43 0.79 

3 ln(ep40) 128.68 1.13 

4 ln(ep80) 109.64 0.7 

5 ln(ep95) 95.36 0.68 

6 (E)AAD 131.49 0.82 

7 elskew 140.08 1 

8 ln(hmax)+ln(ep40)+ln(ep80)+ln(ep95) 99.36 0.73 

9 ln(hmax)+el2+ln(ep40)+ln(ep80)+ln(ep95) 100.72 0.7 

10 ln(hmax)+(E)AAD+elskew+(ep40)+ln(ep80)+ln(ep95) 97.76 0.75 

11 (ep40)+n(ep95) 97.07 0.69 

12 ln(hmax)+ln(ep95) 95.54 0.73 

13 elskew+ln(ep95) 95.67 0.7 

14 ln(hmax)+ln(ep40) 104.75 0.85 

15 (ep40)+ln(ep80)+ln(ep95) 98.9 0.7 

Note: ln(ep95) = log(95th height percentile); ln(ep40) = log(40th Height percentile); ln(hmax) =log( height 
maximum); elskew = height L-moment skewness; eaad = height average absolute deviation; el2 = Height L-
moment (L2); ln(ep80) =log( 80th Height percentile);. 

 

Figure 4-10: Regression model residuals for the 95th height percentile 
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4.9. Ordinary kriging (Modelling of  TAGB from field sample points) 

The variogram model was built from field data. A number of plausible models were tested to 

ascertain the best model relative to its parameter. Spherical model exhibited superior 

characteristics and was used in this study. The variogram model (spherical) is shown in figure 4-

10 and the variogram parameters (nugget, sill and range) are in table 4-12. Subsequently, kriging 

interpolation was performed, and prediction map of biomass (shown in figure 4-12) and variance 

map (shown in figure 4-12) were produced. The residuals for ordinary kriging are presented on a 

histogram shown in figure 4-14. The variance map shows the uncertainty level of the prediction.  

 

 

Figure 4-11: Variogram model (spherical) for ordinary kriging 
 

Ordinary kriging predictions ranged from 3.84 log (Mg/ha) to 5.43 log (Mg/ha), with the highest 

predictions recorded in the northern part of the study area, as shown in figure 4-13. Ordinary 

kriging predictions were unbiased since the mean error was almost zero, as shown on table 4-13. 

Variance for the interpolations increased with increasing distance from the sampling locations, as 

shown in figure 4-13. From the variance map, the variance increased with increased distance from 

the sampling point while the variance was low around the points. 
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Figure 4-12: Ordinary kriging predictions for the study area 
 

Table 4-11: Model parameter for ordinary kriging and residual variogram for log (95th height 
percentiles) 

Method Model Partial sill Range Nugget 

Ordinary variogram Spherical 0.45 416 0.25 

Residual variogram (ln(95th 

height percentiles) 

Spherical 0.21 307.2 0.12 
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Figure 4-13: Ordinary kriging variances for the study area 
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Figure 4-14: Ordinary kriging residuals 

4.10. Regression kriging 

The variogram analysis of the residual is presented in figure 4-16. From the set of potential 

models, spherical model was selected because it provided and demonstrated the best fit. The 

model parameter is displayed in figure 4-12. Prediction map modelled using the residual 

variogram is shown in figure 4-16, the variance map is shown in figure 4-17, and a histogram of 

the regression kriging residuals is shown in Figure 4-18, which indicates normality is satisfied  
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Figure 4-15: Residual variogram 
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Figure 4-16: Regression kriging predictions 
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Figure 4-17: Regression kriging variances 

Predictions for regression kriging ranged from 4.01 log (Mg/ha) to 5.81 log (Mg/ha) total above 

ground biomass as shown in figure 4-16. In comparison to ordinary kriging, the kriging variances 

were greatly reduced with the highest variance range being 0.21 log (Mg/ha). The regression 

kriging estimates were more accurate and unbiased, with mean error of 0.00023. The residuals of 

the model are approximately normally distributed, an assumption for meeting the requirements of 

regression.  
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Figure 4-18: Regression kriging residuals 

4.11. Validation of  the models 

With the 25% validation dataset for the regression analysis, above-ground biomass (AGB) 

calculated from field data (observed AGB) was compared with above-ground biomass predicted 

by the regression model (predicted AGB). Validation of the linear regression model between log 

transformed AGB and log transformed 95th height percentile yielded an R2 of 0.53. The mean 

error and the root mean square error results are presented in table 4-13. The observed and 

predicted AGB were graphically visualized in a scatter plot in figure 4-19  

Table 4-12: Validation statistics for the methods 

Validation statistics Regression Ordinary kriging Regression kriging 

Mean Error (ME) 0.03 0.0025 0.00023 

Root Mean Square Error (RMSE) 0.68 0.42  0.20 

 

Regression kriging yielded a higher accuracy and more precise estimates of TAGB than ordinary 

kriging. The mean error and the root mean square error of regression kriging were the lowest in 

comparison to ordinary kriging and regression analysis. The summary of the statistics for the 

three methods is presented in table 4-13. 
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Figure 4-19: Model validation between observed and predicted biomass 

 

4.12. Biomass map of  the study area 

The total above-ground biomass (TAGB) predicted from regression analysis, ordinary kriging and 

regression kriging is presented in table 4-16.  In this study, regression kriging showed a more 

accurate estimate of TAGB as compared with regression analysis and gives a more reliable 

conclusion on the amount of TAGB in the study. The biomass map of the study as predicted by 

regression kriging is presented in figure 4-17. It shows the distribution of above-ground biomass 

across the strata. From the map, Devidhunga community forest showed distribution of high 

amounts of TAGB compared to other community forest. High amounts of biomass showed a 

trend of increase from the southern part of the study upwards toward the northern region.  

Table 4-13: Total above ground biomass estimates with the methods 

 Mean (LN 
(Mg/ha)) 

Area (ha) Total TAGB (LN (Mg)) 

Ordinary kriging 4.83 764.67 3693.36 

Regression kriging 5.19  764.67 3968.64 

Regression analysis 5.21 764.67 3983.93 
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5. DISCUSSION 

5.1. Extraction of  LiDAR metrics 

The forest structure is known to represent the physical and vertical arrangement of trees and the 

woody vegetation. The possibilities of LiDAR data include acquiring 3-dimensional assessment 

and measurement of forest structures. LiDAR measurement is characterized by multifaceted 

arrangements of different returns built together to portray vertical and canopy structure of trees, 

and the forest as a whole. With these multi-layered arrangements of LiDAR returns over tree and 

forest canopies, computation of several statistical variables (LiDAR metrics) describing the forest 

canopy structure becomes feasible (Li et al., 2008). Extraction of all potential metrics from 

LiDAR is most germane. This allows the investigation of all possible metrics and the 

determination of the most suitable explanatory variables that expounds the forest parameter(s) of 

interest. Some studies have focused and tested the use of specific LiDAR variables to estimate 

forest parameters (Lim., 2003)while others have generated several metrics to estimate forest 

parameters (Hall et al., 2005). The aim of this study was to select potential predictors from a large 

set of predictors and estimate TAGB in a tropical mountainous ecosystem, Kayarkhola 

watershed.  

 

In this study, 48 LiDAR metrics were computed using elevation values, including several 

measures of canopy density calculations. This approach aligns with previous studies, for instance 

Hall et al., (2005), Næsset & Gobakken (2005), and Næsset (2002, 2004) extracted 39, 54, 44, and 

46 LiDAR metrics (from elevation values and measures of canopy density) respectively. These 

large sets of metrics are mostly highly inter-correlated and are typically subjected to multi-

collinearity diagnostics to select non-collinear variables for use in predicting the target forest 

parameter.  

5.2. Relationship between LiDAR metrics and above-ground biomass  

Intensity metrics are metrics computed using the intensity value of airborne light detection and 

ranging (LiDAR) data. Airborne laser scanning systems measures not only the distance from the 

sensor to the target but also the reflectance energy (intensity) from target objects on the earth 

surface, providing 3D information of the earth. Mostly, and as employed in this study, LiDAR 

have been widely explored with focus mainly on its additional Z-plane information, the 

distinctive element from other remote sensing devices.  

 

In this study, it was observed that intensity metrics (metrics from intensity values of LiDAR) 

showed weak correlation (0.008 ≤ r ≤ 0.206) with TAGB. This is because intensity data of the 
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LiDAR data used in this study contains the initial raw reflectance values acquired by the sensor. It 

is known that LiDAR intensity data are affected by a host of factors during acquisition such as 

scanning angle, humidity, weather patterns, background reflections, topography (Goerndt et al., 

2010; Yan et al., 2012). These factors account for noise in the data and imply the return signals 

associated with each return are not true representation of the area of study. Studies have shown 

that for intensity data to be beneficial for predicting forest attributes, the reflectance values of 

each return should be geometrically calibrated and undergo radiometric correction processes 

(Yan et al., 2012). The LiDAR dataset employed in this study is known to have not been 

calibrated and corrected as appropriate and may partly account for the weak correlation between 

intensity metrics and TAGB. 

 

In the study by Goerndt et al.,(2010), normalized intensity data was employed to estimate forest 

attributes like basal area, tree density, lorey height, etc. The study deduced that the use of 

normalized intensity metrics improved the prediction of some forest attribute like lorey height. 

Intensity metrics generated in this study was therefore not useful for this study. Hence, intensity 

metrics were excluded from further regression analysis. On the other hand, nowadays, research 

has sprung up to explore the viability of un-calibrated raw LiDAR reflectance measurement. It 

has proven beneficial for tree species differentiation and land cover classification. For example, 

Kim et al., (2009) analysed LiDAR intensity data acquired in different seasons (leaf on and leaf 

off period) to classify tree species. Likewise, Ørka et al.,(2009) explored intensity and structural 

metrics to discriminate between coniferous and deciduous tree species. 

5.3. Principal component analysis (PCA) 

PCA was appropriate for these dataset because there were a large number of predictors; most of 

the predictors (LiDAR metrics) were highly correlated with each other. From the analysis, the 

first 3 component (mean height, height average &absolute deviation and canopy cover) explained 

the greater proportion of the variance. The 1st component (mean height) carried the bulk of the 

variance as shown in figure 4-9. However, in order to ensure that important variables were not 

lost, the strength of the relationship of each component with the response, was tested (Quinn & 

Keough, 2002). Seven variables (maximum height, height average absolute deviation, height L-

moment (L2), Height L-moment skewness, 40th, 80th, and 95th height percentile) were found to be 

significant and independent variables from the component. It deduced that the first 3 

component, with the greatest proportion of variables, were not significant with the response 

(TAGB).  
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PCA is a linear combination of all tested metrics and as such could yield some variables that 

cannot be biologically deduced to the predicted variable of interest (Li et al., 2008). Examples of 

such variables are height L-moment (L2) and height L-moment skewness. Some of the 

nominated variables from this study have been applied for TAGB and stem volume estimate in 

previous studies (Hyyppa et al., 2008). For example, in the study of Kane et al., (2010a), 95th 

height percentile was one of the variables selected from a PCA to measure canopy structure.   

5.4. Regression modeling of  TAGB and LiDAR metrics 

Numerous plausible models could be developed from the PCA selected variables. However, 

fifteen linear models were developed in order to achieve parsimonious models that could be 

easily interpreted. The PCA result showed maximum height to be the only highly significant (α = 

0.001) variable. This is not surprising because height of trees has been found to have close 

relationship with their biomass. As a result of this relationship, height is been used to boost 

allometric equations for the estimation of aboveground biomass (Chave et al., 2005).  

 

For individual tree-based approach of estimating forest attributes, height has also been used as an 

additional and useful predictor in LiDAR based regression models. With this high significance of 

maximum height, it was expected that the linear model of maximum height and TAGB would be 

able to predict TAGB adequately with a high R2 but this was not the case. Height maximum 

yielded an R2 of 0.47.  

 

For plot-based approach, maximum height has a propensity to be less stable because of its high 

sensitivity to outliers and might not be a good predictor for estimating forest biophysical 

properties (Kane et al., 2010a; Næsset & Gobakken, 2005). In a study done by Lim et al., (2003) 

in various stands of an hardwood forest using LiDAR metrics, height maximum was determined 

to be a good predictor in a closed canopy forest. But for the study area, a forest with irregularly-

layered canopies and characterized with presence of some dominant trees having heights higher 

than their surrounding trees, height maximum will not be a suitable predictor. This is because 

height maximum will not be a measure of the total canopy area of the plot but of the single 

dominant tree. The forests in the study are characterized by irregularly-layered canopies and due 

to the sparsely dense nature of the data; height maximum could not be shown to be a good 

predictor candidate. 

 

The linear model of each LiDAR metrics and TAGB tested as highly significant except the model 

of height L moment skewness which tested as moderately significant and had a very weak R2 of 

0.12 (table 4-10). Of all these, model of TAGB and 95th height percentile yielded the highest 
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coefficient of determination (R2) of 0.54. Multiple linear regression of all the predictor was shown 

not to be significant, although, it yielded a higher R2 of 0.56. This means that one or two variables 

would be sufficient to yield a significant model. Inclusion of additional variables rendered the 

model insignificant. Other models having two or more predictors either resulted in an 

insignificant model or had only 95th height percentile as significant. These models of two or more 

predictors all had R2 greater than 0.50, except the model of height maximum and 40th height 

percentile which had an R2 of 0.48. Generally, the addition of extra variables in the multiple linear 

regressions did not improve the model’s R2 and yielded an insignificant model or model with only 

one variable been significant. The outcome of the regression modelling shows that 95th height 

percentile alone can predict TAGB without the necessity of extra predictors. The best regression 

model was selected on the basis of the homoscedascity of the model residuals, highest coefficient 

of determination (R2), lowest Akaike Information Criterion (AIC), reduced standard error 

estimate, and validation statistics (RMSE and ME) estimates. 

5.5. Relationship between TAGB and LiDAR metrics 

LiDAR metrics gives a statistical description of forest canopy structures that can be related with 

field measurement of forest attributes (Li et al., 2008). In general, LiDAR metrics generated had a 

moderate relationship with TAGB in this study. The regression model of 95th height percentile 

and TAGB yielded a R2 of 0.54 in this study. In comparison with the few studies in tropical 

forests: Drake et al., (2002) estimated tropical forest aboveground biomass with a large footprint 

waveform scanner (Laser Vegetation Imaging Sensor (LVIS)) in Costa Rica and attained an R2 of 

0.93. The study done by Drake et al., (2002) is not comparable to this study because he utilised a 

waveform LiDAR while this study used a small footprint laser scanner. Waveform laser scanners 

can measure and retrieve ground heights consistently in forests with highly dense canopies. 

Capturing forest canopy structure accurately is therefore enhanced with waveform scanner as 

compared to a small footprint laser scanner where the probability of capturing forest canopy 

structure is low. In another study carried out by Drake et al., (2003) in a tropical wet forest in 

Costa Rica and tropical moist forest in Panama, using LVIS, he found LiDAR metrics to be 

highly correlated with forest parameters such as mean stem diameter, basal area and aboveground 

biomass with an R2 range of 0.65-0.92. Also, biomass change quantification with LVIS in Costa 

Rica and attained an R2 of 0.65 (Dubayah et al., 2010).  

 

Following series of studies in Costa Rica tropical rainforest landscape that showed impressive 

results with LVIS large footed laser data, Clark et al., (2011) investigated the use of small 

footprint laser data in the region. With laser point density of 6 points/m2, he observed a strong 

relationship between plot level metrics and aboveground biomass.  A more recent study was done 
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by Kronseder et al., (2012) in Central Kalimantan, Indonesia, a region similar to the study of 

interest. Here, the author also used a full waveform LiDAR data to assess aboveground biomass 

estimation in a lowland dipterocarp forest in the region. The best model of 45th & 65th height 

percentiles and standard error of the mean explained 83% of the variation in the forest. From the 

review done above, only the study of  Clark et al., (2011) is comparable to the work done in this 

study where the study used small footprint laser data. His result shows a stronger relationship 

with TAGB and this can be attributed to a higher point density. 

 

Unlike in the tropics, numerous studies have been done in temperate and boreal region 

(Canadian, Norwegian, Swedish, and Finnish forest) using canopy height metrics with plot-based 

approach and have reported strong relationship with forest variables (Lefsky et al., 1999; Næsset, 

2002). A review of laser scanning experience in this region can be found in (Hyyppa et al., 2008; 

Naesset et al., 2004). A few of these studies are: Lefsky et al., (1999) achieved 90% and 75% of 

the variability of aboveground biomass and leaf area index respectively in a Douglar-Fir forest. 

Means et al.,  (1999) estimated height, basal area, total biomass and leaf biomass with a large-

footprint LiDAR device and achieved R2 of 0.95, 0.96, 0.96, 0.84 respectively. Majority of this 

LiDAR studies were conducted in temperate regions like Canadian, Norwegian, Swedish, and 

Finnish forest (Hyyppa et al., 2008; Naesset et al., 2004). So there is no basis for comparison with 

work done in these regions because of characteristics differences in the forest type for example 

species type and composition, and climatic condition. Aside differences between tropical forest 

and temperate forest, other factors are also prevalence that can cause differences in the 

relationship between LiDAR metrics and TAGB within inter-region (i.e. temperate – temperate 

or tropical – tropical). Factors include LiDAR data density, laser scanner parameter used in data 

collection, allometric equation, and canopy structure. 

 

LiDAR data density refers to the number of pulses reflected from the object of interest per unit 

square metres. In other words, LiDAR point density captures the tree’s vertical structure. Figure 

4-8 shows an example cross-sectional view of trees in one of the plot in the study. Due to the 

sparsely dense nature of the LiDAR data in this study (0.8 points/m2), tree structure was not 

fully captured (figure 3-2), even though this is the foundation for LiDAR data relationship with 

aboveground biomass. LiDAR density of about 1 point per square metres has been successfully 

used to estimate forest parameters in the temperate region; no such study has been carried out for 

tropical forest aside the one carried out by this study.  

 

One distinctive difference between temperate region and tropical region is in their species type 

and composition. In the study of (Næsset, 2002, 2004), their study comprise mainly of two 
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coniferous species (Norway spruce and Scots pine) while in a typical tropical forest, like in this 

study, species composition could be greater than 50.  The reflective property from a forest stand 

with huge diversity of tree species is different from a stand with few species. In Naesset et 

al.,(2004), it was confirmed that a stand with a mixture of deciduous and coniferous trees may 

degrade prediction precision and produce biased estimate especially when there is a larger 

proportion of deciduous trees. Besides tree shape, complex canopy structure of tropical forest 

coupled with variable tree height within plots could explain the difference in the relationship 

observed. To buttress this point, Clark et al.,(2011) with a point density of 6 m-2 observed an 

improved estimate of R2 from 0.90 to 0.96 from a natural forest with complex canopy and tree 

height variation to a plantation with an even aged structure with less variation.  

 

In line with the point density, with a higher laser flying altitudes, sparsely dense data are acquired 

and underestimation of tree height is a great possibility. The study of Yu et al., (2004) tested three 

flight altitude (400 m, 800 m, and 1500 m) to assess their effect on tree height estimates. There 

was a decrease in the accuracy of tree height as flight altitude increased. In our study, a flight 

height of 2200 m was used which provides an explanation to the low density data acquired and 

moderately strong relationship with aboveground biomass due to low frequency of returns per 

crown (Hyyppa et al., 2008).   

 

Allometric model used in a study can also affect the relationship of LiDAR metrics and 

aboveground biomass. The study of Drake et al., (2003) assessed the relationship between 

LiDAR metrics and allometrically estimated aboveground biomass between two tropical region 

(tropical wet and tropical moist forest). The study showed a significant difference between the 

two zones of which he attributed this to the different allometric model applied. His study has also 

answered the question of whether LiDAR metrics relationship can be generalized. The result 

from his study also shows that LiDAR relationship with aboveground biomass can be different 

even in similar regions (i.e. tropical to tropical). Differences in the relationship experienced in his 

study 

 

LiDAR metrics generated in this study can be grouped into 3 classes in order to assess the 

strength of relationship between LiDAR metrics and TAGB. These include height distribution 

measures of central tendency (for example, height mean, maximum, standard deviation, the L-

moments, skewness and kurtosis), height percentiles and measures of canopy density.  

 

Height distribution measures of central tendency are statistical estimates around the mean. They 

are known to be highly susceptible outlier values. LiDAR data available for this study was shown 
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to have outliers (fig 3-2). Outliers have the tendency of displaying an abnormal sequence of 

values. Though efforts were made to eliminate them (figure 3-8), total removal is realistically not 

possible. This possibly will explain the reason why their LiDAR metrics relationship with TAGB 

was somewhat weak.  

 

Height percentiles represent the distribution of laser first return from the low end of the division 

(0th) to the high end (100th). Studies have shown that height percentiles are strong predictor of 

forest biophysical properties because of its direct connection to the vertical structure of trees 

(Goerndt et al., 2010; Kane et al., 2010a; Means et al., 1999; Næsset, 2002, 2011). So, it is not 

unexpected that most of the height percentiles had a better relationship with TAGB compared to 

other metrics. 95th height percentile was shown to be a relatively strong predictor of TAGB in 

this study. Height percentiles within the range of 90 and 95 have found its application in forest 

stand parameter estimation including above-ground biomass (Drake et al., 2002; Kane et al., 

2010a; Lim & Treitz, 2004).  

 

The result of this study is comparable to previous studies that found 95th height percentile as a 

significant variable either singly or in combination with other metrics. For example, Kane et al., 

(2010a) found out that inclusion of 95th height percentile in the regression model with two other 

metrics (rumple and canopy density) improved the model as compared to the combination of 

other metrics. The 95th height percentile represents the distribution at the high end region of the 

plot canopy structure area. It is almost akin to maximum height, but 95th height percentile is less 

sensitive to anomalous high points than maximum height (Næsset, 2002). Basing on this, Næsset 

& Gobakken, (2008) excluded maximum canopy height region from the computations of 

measures of canopy density. Rather, the vertical range between the lower canopy limit (2 m above 

ground) and the 95th percentile of the canopy height was used. Likewise, Kane et al., (2010a) 

extracted 95th height percentile of first returns in place of maximum height for the assessment of 

stand structural complexity. On the contrary, in the study of Clark et al., (2011), with a point 

density of 6 points m-2, the best model for the estimation of a tropical rain forest aboveground 

biomass was the model of mean height and maximum (R2 of 0.90). The high density data could 

have annulled the effect of instability at the maximum height. 

 

Canopy density metrics have found efficacy in the estimation of forest parameter (Maltamo et al., 

2006). The rationale is because of their close connection with forest structural characteristics. In 

this study, canopy density metrics had weak relationship with AGB. It could be attributed of the 

low data density of the LiDAR data. The LiDAR returns were sparse such that they were not 

representative of the true canopy structure in the plot area (4-8). This could forms the rationale 
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for the poor relationship of the canopy density metrics with AGB. Lim & Treitz (2004) explained 

that forest canopy cover and laser point density may affect the use of canopy density metrics for 

the characterization of forest structural parameter and nullify already established facts about the 

relationship between vertical distribution of LiDAR returns and foliage area of trees and then the 

forest. The poor relationship exhibited by the canopy density metrics could also be attributed to 

the complex and heterogeneous nature of the forest. Heterogeneous forest like it is the case of 

the study area (Chitwan forest, Nepal), embodies assortments of tree species of various shapes 

and height. This variation in tree species type and height could also have accounted for the poor 

relationship between canopy metrics, representing the canopy are of the forest and AGB. This 

might not have been the case in a homogenous forest or a plantation that constitutes even aged 

trees. Metrics that have been found to be applicable for the estimation of forest biophysical 

properties are peculiar to different geographic locations and climatic conditions. In other words, 

it implies that metrics applicable in a particular geographic location cannot be generalized to 

other areas. Also, it might not be found as relevant in another area that share common climatic 

similarities with the area due to other factors that could constitute to the difference (Drake et al., 

2003). This explains the reason why different studies present different metrics as being related to 

AGB.  

5.6. Regression kriging and Regression analysis  

The results of regression kriging using 95th height percentile as an explanatory variable gave a 

standard error of the mean smaller than the regression approach. This is caused by the ability of 

the kriging algorithm to account for some of the variability in total above ground biomass. 

Regression kriging uses both concepts of regression analysis combined with auxiliary information 

in the prediction of the independent variable (i.e., total above ground biomass) (Hengl et al., 

2007). Therefore, regression kriging considers the long term variations (trends) as well as local 

variations, which makes it superior to the simple regression and ordinary kriging. Conversely, 

regression approach only makes use of the explanatory information without taking the local 

variations into consideration. Furthermore, high standard error in regression analysis derives 

from the moderately strong relationship of total above ground biomass with 95th height 

percentile.  

 

The variogram model used for the predictions of TAGB had high nugget, implying that most of 

the variations occurring at small scales had not been captured. This originated from the design of 

the sampling (stratified random sampling) used. Accurate modelling of a target variable is 

dependent on sampling density and sample size (Webster et al., 2006). Random sampling usually 

misses most of the small scale variation which is the justification for the large unexplained 
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variation. However, in spite of the sampling plan used, the variogram model used (spherical 

model) was appropriate as the variances of kriging were small, an indication of little uncertainty 

associated with the TAGB predictions (McBratney et al., 1981).  

 

The variogram of residuals used for regression kriging had a reduced nugget than the ordinary 

variogram. This is because some of the variation that could not be accounted for by the spatial 

dependencies of the target variable had been taken care of by the covariable and 95th height 

percentile. This is the reason for the reduced prediction variances in the regression kriging 

interpolations (figure 4-18). However, the nugget could not drill down much since 95th height 

percentile had a very weak correlation with TAGB. The 95th height percentile was obtained from 

the LIDAR metrics with very sparsely distributed tree density, a scenario that could have resulted 

in the moderate correlations of the LIDAR metrics with total above ground biomass. 

5.7. Sources of  error and uncertainty in biomass estimation 

All the stages involved in biomass estimation forms potential sources of error and uncertainties 

to the overall result obtained. It ranges from field measurement processes, LiDAR acquisition, 

allometric computation of field aboveground biomass, etc. According to Phillips et al., (2000), 

knowledge of error estimation is important to understand the “level of uncertainty in projected 

carbon fluxes”.  

 

GPS error was a possibility in the field. The study made use of the Garmin GPS for navigation 

and plot location. The precision and accuracy of any handheld GPS equipment depends on the 

strength of signal it can receive at any point in time. Several factors such as dense canopy cover, 

weather conditions, and number of visible satellite to the equipment impacts its precision and 

accuracy. In a forested mountainous region like Nepal, dense canopy cover was inevitable. Some 

of the days on the field were cloudy and rainy. Most times, the number of satellite the GPS 

acquired was very minimal. All of these hindered sharp signals reception in the field resulting to 

positional error. Measurement error in the field was very possible and unavoidable considering 

the steep nature of the terrain of the study area. This include improper measurement of DBH, 

possibility of wrong recording of field data both in the field and during data compilation, inability 

to correctly locate the tree top because of the dense nature of the forest yielding incorrect height 

measurement, omission of some trees in the plot.  

 

According to Gibbs et al., (2007), the use of LiDAR data for estimating TAGB with different 

approaches yields results with high level of accuracy and minimal uncertainties. Despite the 

improved accuracy that can be achieved with the use of LiDAR, it is very sensitive and prone to 
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errors. This includes error during LiDAR data acquisition, specification of sensor parameter, and 

LiDAR model processing (DTM, DSM and CHM). Studies have shown that LiDAR captured at 

a high flying altitude result to low point density and underestimation of tree heights and a high 

scan angle greater than 10° is susceptible to measurement errors (Evans et al., 2009). LiDAR for 

this study was acquired at a very high flying altitude (2200 m AGL) and a scan angle of 20 °. 

Presence of outliers in the data was seen (fig 3-2) and some portion were completely void of 

points (had no data) constituting errors in the data. All of these culminate to errors and 

uncertainties and ultimately affected biomass estimation.  

 

The regression model was developed with logarithm transformed variables in order to satisfy 

regression and geo-statistical assumptions.  Although, the process of transformation introduces 

bias in the calculation, in order to be able to compare the results of the three approaches, 

biomass estimates were reported in the transformed unit, rather than their initial original unit. 

 

Choice of allometric equation is very critical to biomass estimation. Allometric equations are 

either species specific (for each specific species) or general (for group of species).  The availability 

of species specific equation is practically impossible for tropical forests due to their rich diversity 

in tree species. This study however made use of a general allometric model (developed for moist 

tropical forest) for all species except for Shorea robusta. The problem associated with general 

models include a generalisation of biomass estimates across species resulting to an under 

estimation of biomass i.e. biased estimate. They are developed with the assumption that tree 

species accumulate biomass at the same rate, which is not the case. Besides this, accumulation of 

errors in allometric models commences from the initial phase of allometric model development 

which spans from choice and number of tree species used, diameter range, tree measurement, 

availability and inclusion of wood specific gravity.  

 

Assessing and quantifying the magnitude of the different sources of error is certainly beyond the 

scope of this study. It is an already established fact that the use of generalised equation rather 

than species specific equation gives a bias estimate of aboveground biomass but like earlier 

mention above, this source of error is unavoidable in a tropical forest study. According to Chave 

et al., (2004), the most important source of error is associated with the choice of allometric 

equation. To demonstrate the impact of allometric equation to estimating aboveground biomass, 

he tested six different equations and obtained aboveground biomass range from 215 to 461 Mg 

ha-1 with a mean of 347 Mg ha-1 and standard error of 77 Mg ha-1. This range of result obtained 

illustrates the gravity of its impact in a biomass study. 
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5.8. Limitation of  this study 

The study was limited to 5 community forest out of a total of 16 due to time constraint and 

difficult terrain. The inclusion of other community forests would have provided a broader 

platform to analyse and compare results. Results obtained from this study however might not be 

typical of the other forests and cannot be generalized for the Kayarkhola watershed. 

 

The allometric equation developed from DBH and height would have been a better choice for 

TAGB calculation in this study considering the fact that it would be used with a LiDAR-height 

regression model. Unfortunately, height of all trees could not be measured due to time constraint 

and again problems associated with tree height measurement in tropical forests. Inclusion of 

height parameter would have improved the correlation result. Hence the allometric model for the 

LiDAR study is slightly inappropriate.  
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6. CONCLUSION AND RECOMMENDATION 

6.1. Conclusion 

The main objective of this research was to derive various LiDAR metrics from low density 

LiDAR data and to estimate and map aboveground biomass using a plot-based approach in the 

tropical forest of Chitwan, Nepal. The study questions were: 

 

1. How strong is the relationship between LiDAR metrics and field aboveground biomass in 

the study area? 

LiDAR metrics generated in this study had a correlation coefficient range of 0.3 ≤ r ≥ 0.55. 

Seven LiDAR metrics selected by the PCA all tested significant when regressed with 

aboveground biomass. Out of 15 linear regression models that were developed, 95th height 

percentile alone proved to be able to predict aboveground biomass without the necessity of extra 

predictors. This is because inclusion of additional predictors did not improve the model. The 

model of 95th height percentile and aboveground biomass showed a moderate relationship (R2 = 

0.54). Intensity metrics did not prove useful for this study because of their weak relationship with 

aboveground biomass. Hence, they were excluded from further regression analysis. 

 

To the best of the knowledge of the author, no study has been done in a tropical forest with a 

density of < 1 point/m2 using a plot-based approach. Although some studies have already been 

carried out in temperate and boreal forest with density of about 1 point/m2, which achieved 

some good result, results from a temperate forest cannot be compared with those of the tropical 

forest. Any such comparison is inappropriate because of glaring differences in factors such as 

species composition, canopy structure and climatic condition, which all have an impact on 

LiDAR metrics relationship and aboveground biomass. In the study, a moderate relationship 

between the LiDAR metrics and aboveground biomass was observed in the study area. 

 

2. Which of the methods (regression analysis, ordinary kriging, and regression kriging) gives 

an improved accuracy estimate? What are the accuracies of the different methods in 

estimating aboveground biomass? 

 

The performance of the three approaches was assessed using their Root Mean Square Error 

(RMSE) values, and Mean Error (ME) of (table 4-13). The regression kriging showed an 

improvement in the accuracy prediction of aboveground biomass with a lowest RMSE of 0.20 

and ME of 2.3 ×10-4. Regression analysis resulted in an RMSE of 0.68 and ME of 3 × 10-2. 
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Regression kriging showed an improvement in the estimation because of its ability to account for 

some variations in aboveground biomass. In the study area, regression kriging gives an improved 

accuracy estimate.  

 

3. What is the amount of aboveground biomass in the study area and how is it distributed 

using the most accurate approach? 

 

Regression kriging was used to map the spatial distribution of aboveground biomass. The total 

aboveground estimate for the study was 3968.64Mg with the regression kriging approach. The 

biomass map revealed that areas with high to moderately high elevation (toward the north eastern 

part of the study) had higher distribution of biomass. Devidhunga community forest had the 

highest distribution of aboveground biomass when compared with the other community forests. 

This is attributed to the high elevation of the named community forest (figure 2-1).    

6.2. Recommendation 

This study has revealed a moderately high relationship between the best model of 95th height 

percentile and aboveground biomass using a small footprint laser scanning data. However, 

TAGB can be estimated in a tropical region using a low density LiDAR data. The review of 

LiDAR studies carried out in tropical forest using large footprint waveform laser data and 

another study with a small footprint laser scanning data having a density of 6 points/m2, showed 

impressive results compared to our work. Therefore, I recommend the use of either large 

footprint waveform laser data or a small footprint laser scanning data of density > than 5 

points/m2 using a plot-based approach for a tropical forest study in future study in the same 

watershed. 

 

LiDAR studies in boreal and temperate region have demonstrated that there is no significant 

difference in estimation of forest attributes between different point densities using a plot-based 

approach. Based on literature reviews done under this study, studies of this kind are lacking in 

tropical forest regions. The result of the temperate regions cannot be generalised for the tropics 

until the hypothesis is tested. Furthermore, studies assessing the effect of different sensors and 

flying altitudes on forest canopy metrics and its biophysical properties have not been tested in 

tropical forests. Such studies are recommended in tropical forest and plantation region. 

 

LiDAR remote sensing is known to have an edge over optical remote sensing including high 

resolution data for the estimation of forest biophysical properties because of its additional 3D 

characteristics. However, the comparison of these sources of data has rarely been done, especially 
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with a plot-based approach. It would be interesting to quantify the relative increase in accuracy 

and precision when LiDAR is employed. This study recommends the comparison between 

LiDAR data and high resolution data (for example Geo-EYE data) for the estimation of forest 

biophysical properties while adopting the same approach. 

 

Furthermore, this study recommends the use of differential global positioning system (GPS) for 

forest navigation and plot identification in a tropical study rather than the use of Garmin GPS.  

With a differential GPS, more precise information on location would be obtained, positional 

error lowered and co-registration error of plots on the ground and the image can be considerably 

reduced.  
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7. APPENDICES 

Appendix 1: Sample plot displayed on GeoEye-1 image showing the plot center and plot area 
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Appendix 2:  

A subsection of LAS file tile-IC215 with its attributes 

X Y Elevation Intensity 
Pulse 
Number 

Return 
Number 

Nadir 
Angle 

262000.5486 3068062.368 243.769989 41 0 1 8 

262000.3186 3068061.028 242.470001 44 0 1 8 

262003.1586 3068062.508 244.25 26 0 1 8 

262090.0786 3068062.388 258.350006 0 0 2 7 

262089.9086 3068060.858 253.559998 16 0 3 7 

262090.0586 3068061.798 253.610001 23 0 2 7 

 

LiDAR LAS file tiles covering the study area 
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Appendix 3:  

3-A: Data Sheet Template 

 
 

 

  

Name of recorder..........................................................Date............................................. Plot radius size.......12.62m..................

DBH Height DBH Crown

(cm) (m) (cm) diam(m)

1 16

2 17

3 18

4 19

5 20

6 21

7 22

8 23

9 24

10 25

11 26

12 27

13 28

14 29

15 30

Management type:

Strata Name:

Forest type: Crown cover (%)

Aspect
Sampling Plot 

No.

Coordinates

                                X                                                           Y
Elevation

Slope

(%)

RemarkSpecies
Crown

diam.(m)
Remark Species

Height

(m)

DATA COLLECTION FORM FOR KAYERKHOLA WATERSHED, CHITWAN, NEPAL

Tree 

No.

Tree 

No.



LiDAR REMOTE SENSING OF ABOVEGROUND BIOMASS USING A PLOT-BASED APPROACH IN THE TROPICAL FOREST OF NEPAL: A 

COMPARISON OF REGRESSION AND GEO-STATISTICAL APPROACH 

82 

Appendix 4:  

 

4-A: Slope correction table  
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Appendix 5:  

(1) Summary report of the LiDAR LAS tiles in the study area 

LiDAR 
LAS tiles 

Min X Min Y 
Min 
Z 

Max 
X 

Max Y Max Z 
Total 
Returns 

IC215.las 262000 3068000 241.34 263000 3068999 2272.32 1,070,831 

IC229.las 262000 3067000 241.69 263000 3068000 2322.64 1,457,680 

IC230.las 263000 3067000 418.18 263999 3068000 2423.04 2,194,170 

IC242.las 261000 3066000 217.75 261999 3067000 2260.48 1,133,956 

IC243.las 262000 3066000 249.34 262999 3067000 2287.54 1,294,545 

IC244.las 263000 3066000 368.78 264000 3067000 2442.67 1,596,626 

IC255.las 260000 3065000 197.15 261000 3066000 2213.18 734,378 

IC256.las 261000 3065000 211.83 261999 3066000 2392.96 1,110,014 

IC257.las 262000 3065000 272.08 262999 3066000 2476.85 1,156,139 

IC258.las 263000 3065000 331.11 264000 3066000 2570.62 1,434,601 

IC268.las 259019 3064000 183.87 259999 3064999 2388.55 742,106 

IC269.las 260000 3064000 192.84 261000 3064999 2507.22 985,309 

IC270.las 261000 3064000 231.79 262000 3065000 2491.26 1,157,715 

IC271.las 262000 3064000 363.95 263000 3065000 2410.53 1,747,671 

IC272.las 263000 3064000 261.55 263999 3065000 1423.60 1,113,171 

IC283.las 259000 3063000 174.77 260000 3063999 2179.69 735,207 

IC284.las 260000 3063000 206.58 261000 3064000 2246.43 1,446,579 

IC285.las 261000 3063000 280.75 262000 3063999 2386.57 1,346,687 

Overall        22,457,385 
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Appendix 6: Result of Correlation Matrix 

 

corelation matrix 
result-ln transformed-final.xlsx 
 

Appendix 7: Result of Correlation Matrix 

 

Variables 
Variable 
Name 

Estimate 
Standard 
error 

T-value P(α = 0.05) 

(Intercept) (Intercept) 1.47E+02 6.99E+00 20.973 <0.0000000000000002*** 

enx1 emax -1.15E+01 1.69E+00 -6.826 0.00000000231*** 

enx2 emean -1.44E+01 8.52E+00 -1.685 0.0964. 

enx3 emode -1.71E+00 5.51E+00 -0.31 0.7573 

enx4 estdv 2.22E+01 2.21E+01 1.009 0.3166 

enx5 evar -2.77E+01 1.58E+01 -1.753 0.0838. 

enx6 eskew -1.30E+02 7.08E+01 -1.838 0.0702. 

enx7 eaad -2.39E+02 1.13E+02 -2.117 0.0377* 

enx8 el1 9.01E+01 6.42E+01 1.403 0.1649 

enx9 el2 2.80E+02 1.39E+02 2.008 0.0484* 

enx10 el3 -4.12E+02 2.09E+02 -1.97 0.0526. 

enx11 elskew -3.19E+02 1.50E+02 -2.132 0.0364* 

enx12 ep10 1.32E+03 6.73E+02 1.958 0.0541. 

enx13 ep20 3.57E+02 2.21E+02 1.612 0.1113 

enx14 ep25 -3.06E+03 1.58E+03 -1.939 0.0564. 

enx15 ep30 5.17E+02 2.72E+02 1.899 0.0615. 

enx16 ep40 -1.38E+03 6.91E+02 -1.997 0.0496* 

enx17 ep50 3.23E+03 1.67E+03 1.93 0.0575. 

enx18 ep60 -6.89E+02 4.19E+02 -1.642 0.1049 

enx19 ep70 -4.77E+02 2.73E+02 -1.747 0.0848. 

enx20 ep75 9.57E+03 4.92E+03 1.944 0.0558. 

enx21 ep80 -2.07E+03 1.00E+03 -2.072 0.0418* 

enx22 ep90 -2.26E+04 1.16E+04 -1.942 0.056. 

enx23 ep95 4.79E+03 2.37E+03 2.021 0.047* 

enx24 ep99 -2.70E+04 1.39E+04 -1.948 0.0553. 

enx25 pfra 7.50E+04 3.83E+04 1.959 0.054. 

enx26 para 1.02E+05 5.21E+04 1.95 0.0551. 

enx27 ara_tfrp 2.20E+05 1.13E+05 1.959 0.054. 

enx28 aramean_tfrp -1.85E+17 9.49E+16 -1.953 0.0547. 
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