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Abstract  

Motivated by a case at a large retail chain in the Netherlands, we study short-term order advancement 

in a multi-item, two-echelon system consisting of a distribution center (DC) and many stores. 

Application of traditional inventory replenishment rules may lead to a strongly fluctuating workload 

for order picking, and thus capacity problems, at the DC. By advancing replenishments for slow 

movers, we can balance the workload at the DC without negative impact on the service levels towards 

the final customer. In addition, we also have to deal with limited shelf- and storage space at the stores 

and balancing the workload for order receipt at each individual store. We develop a performance 

evaluation method and an optimization heuristic suitable for large problem instances (i.e., hundreds of 

stores and thousands of stock keeping units). Application to case data from the retail chain shows a 

reduction of 50% in the capacity shortage at the DC without causing major issues at store level. 

Sensitivity analysis shows that the capacity shortage could be reduced by up to 70% if backroom 

inventory is increased slightly. Reducing the capacity shortage at the DC decreases the improvement 

potential of workload balancing at the stores at the expense of a minor (almost negligible) increase in 

the backroom usage at the stores.  

 

Keywords: Inventory; multi-echelon; workload balancing; order advancement; retail. 

 

1. Introduction  

Most retail chains use professional software for demand forecasting and inventory management at their 

stores and distribution center(s) (DC) that typically deploy traditional and proven methods (cf. Silver 

et al., 2017). Basically, these methods focus on balancing service levels to the final customer, such as 

fill rates, with the costs of ordering and holding inventory. However, the resulting short-term 

replenishment decisions also impact the workload at the DC (picking and dispatching) and at the stores 

(order receipt). This is typically not considered when releasing replenishment orders, which may lead 

to capacity overloads at the DC and in the stores. This is also caused by demand patterns that vary over 
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days in the week (e.g., considerably more sales on a Saturday than on a Monday). Therefore, pooling 

replenishment orders over many stock keeping units and stores does not level out the DC workload. 

 

We encountered this situation in a large retail chain in the Netherlands consisting of a single DC and 

around 1,500 stores. Despite the use of professional software, capacity problems occur at the DC where 

on some days many more order lines need to be picked and dispatched than on other days. As a 

consequence, a part of the order lines is delayed because demand exceeds pick capacity. This 

ultimately has an impact on product availability in the stores and thus on customer service levels. A 

simple solution seems to be to adapt capacity to demand. However, this turned out to be infeasible, 

because the labour market is tight and qualified personnel is very difficult to find. The alternative is to 

adapt replenishment demand to capacity without harming service levels at the stores. This means 

controlled advancing of replenishment orders instead of uncontrolled delay (with the risk of negatively 

affecting the service level).  

 

Advancing replenishment orders needs to be done carefully to avoid negative impact on the stores. 

First, stores also have finite capacity to handle inbound deliveries, so they desire a decent allocation 

of the workload over days in the week. Second, advancing replenishment orders means that a store 

receives products earlier than originally planned, and possibly the products do not fit in the reserved 

shelf space on arrival. Of course, this situation is not desirable. As a partial solution, a store may keep 

some items in a backroom until shelf space has become available after customer demand has been 

satisfied, but that space is extremely limited: stores are often located in urban areas at expensive sites, 

so it is best for the retailer to use most space for the shopping area and as little as possible for non-

commercial activities. 

 

Any professional inventory management system will determine the parameters of the inventory control 

policies, such as reorder points that trigger a replenishment when the inventory position (inventory on 

hand plus amount on order minus backorders) drops to or below the reorder point (depending on the 

application). Combining these inventory policies with demand forecasts generated by the same system 

gives insight in the number of replenishment orders that we can expect for the upcoming period (say, 

one or two weeks), both at the DC and at all the stores. This means that we can identify capacity 

conflicts in the short run and try to avoid them by moving some replenishment orders to an earlier 

point in time, the order advancement. Thereby we have to make a trade-off between the costs of (i) 

demand exceeding DC capacity, (ii) order receipts exceeding handling capacity at the stores, (iii) 

backroom usage due to exceeded shelf space at the stores.  
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The number of possible order advancement actions to be considered is very large, as these include all 

combination of stores, stock keeping units (SKUs) and days within the planning horizon. Therefore, 

we reduce the number of options by considering the following aspects: 

 

(i) To optimize transportation between DC and stores, the retailer uses fixed order- and delivery 

schedules to the stores (see Section 3 for details). That is, each store is assigned a set of two or 

three days in the week on which it can release and receive replenishment orders. For each store, 

we can only advance replenishment orders to a preceding replenishment opportunity.  

(ii) Given the delivery schedules, fast-moving SKUs are typically replenished at almost every 

opportunity. So, advancing replenishment orders for these SKUs is not very beneficial and 

would likely lead to shelf space issues. Therefore, we focus on slow movers, where most 

improvement potential is expected. Besides, most SKUs at retail stores tend to be slow movers. 

 

Summarizing, we consider order advancement in a multi-item, two-echelon inventory system for slow 

movers, aiming to balance capacities at both the DC and the stores in terms of order line handling and 

shelf space. 

 

The remainder of this paper is structured as follows. Section 2 reviews the relevant literature and gives 

an explicit contribution statement. In Section 3, we describe the problem derived from our retail case 

in detail. We present our model, assumptions, notation, and the analysis of a given scenario in Section 

4. In Section 5, we develop heuristics to solve our model. Next, in Section 6, we develop numerical 

experiments based on the case data and provide numerical results. Finally, we give conclusions, 

managerial implications, and suggestions for future research in Section 7.  

 

2. Literature review 

Although retail operations is widely studied in literature, only few papers address operational inventory 

management decisions taking into account DC and in-store handling effort. Mou et al. (2017) provide 

a review of literature regarding in-store logistics and inventory distribution models. They find that, 

despite the fact that handling effort is a major entity in retail, it is rarely considered in the decision-

making for inventory retail problems.  

 

Several papers reveal that in-store handling (e.g., replenishing shelves) has a significant impact on the 

operational efficiency (Kuhn and Sternbeck, 2013; Van Zelst et al., 2009). Hence, it is necessary to 
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include this in determining inventory policy parameters to increase the operational efficiency (Reiner 

et al., 2013). Van Donselaar et al. (2010) consider in-store handling in a European supermarket chain. 

They find that store managers significantly override order advices generated by inventory management 

systems by shifting some recommended peak-day orders to preceding nonpeak days. The authors also 

identified that store managers aim to balance in-store workload and improve product availability.  

 

The main driver of in-store handling is the use of backroom inventory if the assigned shelf space is 

exceeded (van Zelst et al., 2009; Kuhn and Sternbeck, 2013). Drawbacks of backroom inventory are 

(1) increased labour costs due to double handling of items, (2) inventory inaccuracy (Raman et al. 

2001), and (3) reduced service levels due to “phantom products”, i.e., products that are available in the 

store but not on the shelf and hence are not visible for customers (Corsten and Gruen, 2003; DeHoratius 

and Raman, 2008). Although the use of backroom is common in retail stores, only few papers take its 

effects into account (Pires et al., 2015). Eroglu et al. (2013) are the first to quantify the expected amount 

of backroom inventory. They introduce the backroom effect as a consequence of misalignment of case 

pack size, shelf space capacity and inventory control policy. The authors show that ignoring the 

existence of a backroom effect results in significantly higher reorder points and total costs.  

 

Next to in-store handling, the workload at the DC for order picking and dispatch also plays an 

important role in retail supply chain efficiency. Papers considering DC handling effort typically focus 

on the tactical or strategic level (e.g., optimizing delivery patterns, determining the unpack location of 

case packs or the size of case packs), see e.g., Sternbeck and Kuhn, 2016; Gaur and Fisher, 2004; 

Wenn et al., 2012; Broekmeulen et al., 2017. In contrast, we focus on the operational level, i.e., short-

term order advancement. Moreover, most papers model a single-item problem and/or assume demand 

to be deterministic and stationary over time (see e.g., Sternbeck and Kuhn, 2016; Gaur and Fisher, 

2004; Wenn et al., 2012; Broekmeulen et al., 2017; Van Woensel et al., 2013). However, this does not 

reflect the real situation retail sector (Ehrenthal et al., 2014; Taube and Minner, 2017). Our work 

differs from these papers by considering multiple items in a multi-echelon setting with stochastic, non-

stationary demand.  

 

To show our contribution to literature, we compare our paper to the closest related papers that consider 

instore and/or DC handling effort as well as backroom usage in Table 1. Summarized, we develop a 

method to advance replenishment orders according to tactical decision rules, such that we balance (i) 

handling workload at the DC for order picking and dispatch, (ii) handling workload at store level for 

order receipt, (iii) backroom usage for inventory exceeding dedicated shelf space. We are not aware 

https://www.sciencedirect.com/science/article/pii/S0377221715011753?casa_token=LvH0NoLsVBMAAAAA:kje-SZtLgd2u-Hf7EOeOZf9OcDqH8fLVRhzuz2nf1O66OmirPMEpC_d2r_swxHD2WLeVAIT0Npo#bib0035
https://www.sciencedirect.com/science/article/pii/S0377221715011753?casa_token=LvH0NoLsVBMAAAAA:kje-SZtLgd2u-Hf7EOeOZf9OcDqH8fLVRhzuz2nf1O66OmirPMEpC_d2r_swxHD2WLeVAIT0Npo#bib0022
https://www.sciencedirect.com/science/article/pii/S0377221715011753?casa_token=LvH0NoLsVBMAAAAA:kje-SZtLgd2u-Hf7EOeOZf9OcDqH8fLVRhzuz2nf1O66OmirPMEpC_d2r_swxHD2WLeVAIT0Npo#bib0012
https://www.sciencedirect.com/science/article/pii/S0377221715011753?casa_token=LvH0NoLsVBMAAAAA:kje-SZtLgd2u-Hf7EOeOZf9OcDqH8fLVRhzuz2nf1O66OmirPMEpC_d2r_swxHD2WLeVAIT0Npo#bib0012
https://link.springer.com/article/10.1007/s00291-018-0511-9#ref-CR20
https://link.springer.com/article/10.1007/s00291-018-0511-9#ref-CR49
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of any study considering this trade-off, which highlights the contribution of our work. As explained in 

the introduction, we focus on slow movers with non-stationary stochastic demand. Moreover, we use 

a real-life data set with many stores, whereas most previous studies focus on a small number of stores. 

Given the large problem size, we need a computationally efficient optimization method.  

 

 

Table 1. Papers considering handling effort and are closely related to our paper. 
 

 

3. Case study  

A large retailer specialized in health and beauty consumer goods in the Netherlands is studied in this 

paper. We explain the supply chain structure Subsection 3.1. Subsection 3.2 deals with the 

replenishment policies and the in-store handing, whereas Subsection 3.3 describes the DC handling.  

 

3.1 Retail supply chain structure  

The retail supply chain (Figure 1) consists of one central DC from which around 1,500 stores located 

in the Netherlands and Belgium are supplied. The largest part (i.e., around 80%) of the assortment 

consists of products with low demand.  

DC
Items Echelon level

Van Donselaar et al. (2010) x x Multi Single Stochastic General Stationary Finite (rolling) Operational
Supermarket 

chain
x

Sternbeck & Kuhn (2016) x x Single Two Deterministic General Stationary Finite Tactical
Supermarket 

chain
x

Gaur & Fisher (2004) x x Single Two Deterministic General Stationary Finite Tactical
Supermarket 

chain
x

Eroglu et al. (2013) x x Single Single Deterministic Gamma Stationary Finite Tactical Store audits x

Broekmeulen et al. (2017) x x x x Single Two Deterministic Poisson Stationary Finite Strategic
European 

retail chain
x

Taube et al. (2018) x x x Multi Two Stochastic Poisson Non-stationary Finite Tactical x

Van Woensel et al. (2013) x x Single Single Stochastic General Stationary Finite Tactical
Supermarket 

chain
x

Wen et al. (2012) x x x Multi Two Deterministic General Stationary Finite Strategic
US retail 

chain
x

Taube & Minner (2017) Multi Two Stochastic General Non-stationary Finite Tactical Retail chain

This paper x x x x Multi Two Stochastic Poisson Non-stationary Finite (rolling) Operational
European 

retail chain
x
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Figure 1. Retail supply chain in case study. 

 

Every store is assigned to a fixed weekly order and delivery schedule for sake of transportation 

efficiency (i.e., transportation routes are optimized on these schedules). This schedule dictates on 

which days in the week the store can place replenishment orders. These orders will be picked the next 

day at the DC and delivered to the store the day thereafter (skipping the Sunday). So, the lead times 

are deterministic. Each store has two to four delivery moments per week, see Figure 2 for an example. 

The corresponding replenishment orders have to be placed two days in advance (skipping the Sunday). 

            D: Delivery day 

Store Monday  Tuesday Wednesday Thursday Friday Saturday 

1 D - - - D - 

2 D D D - D - 

3 - - D - D - 

4 - D - D - D 

5 D - D - - - 

…       

1,500 - D D - D - 

Figure 2. Example store delivery pattern. 

 

3.2 In-store operations and replenishment policy 

The in-store process (see Figure 3) starts with a replenishment order that is delivered from the DC on 

a roll container two days later. The roll containers are taken over by store employees and brought to 

the sales room where initial shelf stacking takes places. In case the allocated shelf space for an SKU 

is insufficient for all items, the excess items have to be stored in the backroom until shelf space 

becomes available after consumer purchases. This leads to additional costs caused by (i) monitoring 

shelf space until backroom inventory is depleted, and (ii) additional handling effort due to moving 
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items to and from the backroom instead of to the shelf immediately. Since stores have certain labour 

capacity available to restock shelves, they prefer a balanced handling workload over the delivery days, 

for similar reason as in the DC. We consider the allocation of shelf space to SKUs in the stores – a 

tactical decision - as given.  

 

 

Figure 3. In-store processes 

 

Given the fixed order and delivery schedule per store, each SKU is replenished according to a periodic 

dynamic replenishment policy with fixed lead times. The automated store replenishment system places 

orders according to a dynamic (𝑅, 𝑠, 𝑛𝑄)-policy (cf. Silver et al., 2017). This means that every R 

periods the system is reviewed, where the review period R varies over time in our case. If the inventory 

position of an SKU is strictly below the reorder point s upon review, a replenishment order is created 

with size nQ such that the inventory position after ordering is equal to or larger than the reorder point. 

Here Q represents the case pack size. The reorder points of SKU-store combinations are dynamic, as 

the consist of the forecast demand during the two-day lead time plus a review period and the safety 

stock. The safety stock is determined based on a target service level, cf. Silver et al. (2017). 

 

3.3 Order handling at the distribution center 

An order placed at a store is received the next day at the DC. In general, a specific SKU-store order is 

denoted as an order line. A store order consists of many order lines, one for each specific SKU ordered. 

Each order line requires labour-intensive operations, i.e., orientation time, order picker traveling to the 

location of the SKU location in the DC and picking the case pack(s) and placing it on the load carrier 

for store delivery. Therefore, we use the number of order lines to be processed on a day as indicator 

for the workload at the DC. Because demand and therefore also store replenishments are stochastic, 

the total DC workload is stochastic as well. Besides, the DC workload may fluctuate heavily over the 

weekdays, which may lead to capacity shortages on specific days. Then, some replenishment orders 

have to be delayed until the next delivery opportunity. This leads to an increasing stock-out probability 

at the stores, which entails lower customer satisfaction and a lower profit margin because of lost sales. 
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Stores have finite labour capacity available to restock shelves, and limited space in backroom. As a 

result, stores are interested in minimizing backroom usage and balancing handling workload over the 

delivery days. However, they lack knowledge in considering this when placing a replenishment order. 

Since both the stores and the DC have finite capacity, short-term replenishment decisions need to be 

coordinated over all stores and over the DC without worsening customer service levels. Therefore, 

replenishment orders as scheduled by the automated system may be advanced in time, but not delayed. 

In the next section, we provide a detailed description of the model with its assumptions, notation, and 

mathematical expressions for the analysis of a scenario.  

 

4. Model 

This section formulates the performance evaluation model for the problem defined in the previous 

sections. In Section 4.1, we give a model outline with the key assumptions. The notation (Table 2) and 

is introduced in Subsection 4.2, followed by the derivation of expressions for several performance 

measurements given a scenario (reorder points) in Subsection 4.3, these being required to formulate 

the overall cost function in Subsection 4.4.  

 

4.1 Model outline and assumptions 

We consider a periodic-review, finite-horizon, multi-item, two-echelon inventory system consisting of 

a single DC and multiple stores. The inventories at the stores are controlled using an (R, s, nQ) 

inventory policy, where the (dynamic) policy parameters and the demand forecasts are given. This 

information is generated by the automated forecasting and inventory control system used by the 

retailer. We estimate for each combination of store, SKU, and store-specific order day the probability 

that a replenishment order will be released on each day in a certain planning horizon (say T days) and 

calculate three key performance indicators: 

1. The expected workload at the DC per day, expressed as expected number of order lines. 

2. The expected backroom usage per combination of store, SKU, and day within the planning horizon. 

3. The expected workload per store per day, expressed as the expected number of received order lines. 

From these performance indicators, we compute the following cost factors: 

1. The costs of DC workload exceeding capacity with fixed penalty cost per order line. 

2. The costs of backroom usage per store with fixed penalty cost per item. 

3. The costs of workload variability over the delivery days in the planning horizon per store. 
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We can influence these cost factors by advancing orders. That is, we may temporarily increase a 

reorder point for each combination of store, SKU, and order day if this decreases overall costs.  

Our model proceeds from the following assumptions:  

1. The demand of each SKU-store combination follows a non-stationary Poisson distribution with 

known mean and is independent over SKUs, stores, and days. This is realistic due to the focus on 

slow movers for which it makes sense to advance orders, as these are irregularly ordered. Fast 

movers are typically ordered almost every order day, so order advancement does not make sense. 

2. Demand that cannot be satisfied from stock on hand is lost.  

3. The replenishment quantity is fixed. In principle, multiple case packs can be ordered, but for slow 

movers typically not more than one case pack is ordered. 

4. The lead time between ordering and receipt at each store is deterministic. For sake of simplicity, 

we use in our expressions a lead time of two days, but this is straightforward to generalize. 

5. Any store will replenish the same SKU only once during the planning horizon. This is reasonable 

since slow movers are not sold very frequently. 

6. All store orders released will be picked at the DC the next day (which is trivial to generalize). 

7. Inventories at the DC are always sufficient to fill the replenishment orders of the stores. 

8. In case of order advancement, the size of the order will not be adapted. 

9. The backroom area is sufficiently large to temporarily store the overflow when the delivery does 

not entirely fit onto the shelves. In our optimization method, we will penalize the use of backroom 

capacity thereby reducing its usage. Also, we will measure in the numerical experiments whether 

backroom usage is not excessive. 

10. Costs for order picking at the DC and order receipt at the storages only depend on the number of 

order lines, irrespective of SKU characteristics like volume or weight. Most slow movers at the 

retailer are small items. 

 

4.2 Notation 

Below we describe the notation that we will use, and we refer to Table 2 for an overview of key 

notation. We denote the periods in the planning horizon by 𝑡 =  1, … , 𝑇, the retail stores by 𝑗 =

 1, … , 𝐽, and the SKUs by 𝑖 = 1, … . , 𝐼. We denote by 𝐷𝑖,𝑗,𝑡1,𝑡2
 the cumulative demand for SKU i at 

store j over the periods 𝑡1, . . , 𝑡2, having mean 𝜇𝑖,𝑗,𝑡1,𝑡2
.  
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Table 2. Overview of notation. 

Symbol Description 

Indices:  

𝑖 Index for SKUs (i = 1,..,I) 

𝑗 Index for stores (j = 1,..,J) 

𝑡 Index for days in planning horizon (t = 1,..,T) 

𝑛 Replenishment opportunity (n = 1,..,Nj) 

Parameters: 

𝑃𝐶𝑡
𝐷𝐶 Pick capacity available at the DC on day t in number of order lines 

𝑉𝑖𝑗 Shelf space of SKU i at store j in number of items 

𝐷𝑖,𝑗,𝑡1,𝑡2
  Cumulative demand for SKU i at store j over day 𝑡1 up to and including day 𝑡2 (Poisson 

distributed with mean 
𝑖,𝑗,𝑡1,𝑡2

) 

𝑄𝑖 Fixed lot size of SKU i (equal to the MOQ) 

𝑠𝑖𝑗𝑡 Reorder point of SKU i at store j on day t 

𝑂𝐻𝑖𝑗𝑡 On hand inventory of SKU i at store j at the start of the planning period 

𝑂𝑂(𝑘)𝑖𝑗 On order amount of SKU i at store j at the start of the planning period (end of day 0, to 

be received at the end of day k, where k = 1,2) 

𝑆𝑂𝐷𝑗𝑡 Indicates if store j can order on day t 

𝑗𝑛 Number of days until replenishment opportunity n at store j since the start of the 

planning period 

Decision variables: 

𝑠𝑖𝑗𝑡
′  Modified reorder point of SKU i at store j on day t 

Auxiliary variables: 

 𝐼𝑃𝑖𝑗𝑡 Inventory position of item i in store s at the end of day t, (a random variable) 

𝑝𝑖𝑗𝑡 Probability that store j will order SKU i at the end of day t  

𝑞𝑛𝑚 Probability that demand in [1, n] equals m and no replenishment order has been 

released up to n-1 

𝑊𝑗𝑡 Expected total number of order lines received at store i on day t 

𝑊̅𝑗 Average number of order lines over the days which can be influenced at store j 

𝑊𝑡
𝐷𝐶 Expected total number of order lines to be picked at the DC on day t 

𝐶𝑆𝑡 Expected number of order lines exceeding DC capacity on day t  

𝑍𝑗 Costs of variability in the number of order lines received per day for store j 

𝑂𝐻𝑖𝑗𝑡 On-hand stock of item i in store j at the end of day t, (a random variable) 

𝐵𝑖𝑗𝑡 Expected number of SKUs i in the backroom of retail store j at the end of day 𝑡  

Cost factors: 

𝐶𝑖𝑗
𝐵𝑅 Backroom storage cost, which is the same for all items per store 

𝐶𝑂𝐿𝐷𝐶 Penalty costs of order lines exceeding the capacity of the DC per order line 

𝐶𝑗
𝐻+ Penalty costs per order line above the weekly average number of order lines at store j 

𝐶𝑗
𝐻− Penalty costs per order line below the weekly average number of order lines at store j 
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4.2 Calculations for a given scenario 

To evaluate a scenario, we proceed as follows. First, we derive the probability distribution for the 

timing of a replenishment order for each SKU-store combination within the planning horizon, 

including the probability that no replenishment order will be placed at all. Next, we discuss the 

performance evaluation at the DC and at store level, respectively. Combining all cost factors gives us 

the goal function to optimize in Subsection 4.3. 

 

4.2.1. Probability distribution of the timing of replenishment orders 

Assumption 5 states that we can place at most one replenishment order during the planning horizon. 

The timing of this order is uncertain, as it depends on demand to be realized. In the expressions below, 

we focus on a single SKU i at a single store j. For sake of readability, we drop the SKU and store index 

in this subsection. Without having placed any replenishment order, the inventory position at any day t 

equals the initial inventory position minus the cumulative demand, so 𝐼𝑃𝑡 =  𝐼𝑃0 − 𝐷1𝑡 . The first 

opportunity to place a replenishment order is at day 𝜏1. The probability that we use this opportunity, 

denoted by 𝑝𝜏1
, equals the probability that the inventory position falls below the reorder point, so: 

 

𝑝𝜏1
= 𝑃{𝐼𝑃𝑖𝑡 ≤  𝑠𝑡 − 1} = 𝑃{𝐷1𝑡  ≥  𝐼𝑃0 −  𝑠𝑡 + 1} = 1 − 𝐹𝑃𝑜𝑖𝑠(𝐼𝑃𝑖0  −  𝑠𝑖𝑡  |𝜇1𝑡) (1) 

 

where 𝐹𝑃𝑜𝑖𝑠(𝑛|𝜇) denotes the cumulative Poisson distribution with mean 𝜇 in the point 𝑛. Obviously, 

𝑝𝑡  =  0 if day t is not a replenishment opportunity, so if SODt = 0.  

 

For any further replenishment opportunity, we condition on the event that no earlier replenishment 

opportunity has been used. For convenience, we use the shorthand notation 𝑞𝑛−1,𝑚 for the probability 

that demand in [1, 𝜏𝑛−1] equals 𝑚 and no replenishment order has been released before.  If we know 

these probabilities, we find the probability that a replenishment order will be placed at the nth 

replenishment opportunity in the planning horizon by conditioning on the event that no replenishment 

order has been released up to opportunity 𝑛 − 1, and the demand up to 𝜏𝑛−1 equals m. Analogously to 

Equation (1), we see that we will use replenishment opportunity n at 𝜏𝑛 if the total demand up to 𝜏𝑛 is 

at least equal to 𝐼𝑃0 −  𝑠𝑡 + 1, which means that the demand on the days 𝜏𝑛−1 + 1 until 𝜏𝑛 should at 

least equal 𝐼𝑃0 −  𝑠𝑡 + 1 − 𝑚. So we find: 

 

𝑝 𝜏𝑛
= ∑ 𝑞𝑛−1,𝑚

𝐼𝑃0−𝑠𝜏𝑛−1
𝑚=0 {1 − 𝐹𝑃𝑜𝑖𝑠(𝐼𝑃0 − 𝑠𝜏𝑛

− 𝑚|𝜇𝜏𝑛−1+1,𝜏𝑛,
)}    (2) 
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We can compute the probabilities 𝑞𝑛,𝑚  recursively. For the first replenishment opportunity, no 

replenishment order can have been placed before 𝜏1 by definition. Therefore, 𝑞1,𝑚 is simply a Poisson 

density with mean 𝜇𝜏1
. For replenishment opportunity n at 𝜏𝑛, we find that the total demand equals m 

and no replenishment order has been issued (so at least 𝑚 ≤ 𝐼𝑃0 − 𝑠𝜏𝑛
), if (i) no replenishment 

opportunity has been used up to 𝜏𝑛−1 and demand up to that replenishment opportunity equals 𝑘 ≤

𝑚𝑖𝑛{𝑚, 𝐼𝑃0 − 𝑠𝜏𝑛−1
}, and (ii) cumulative demand on day 𝜏𝑛−1 + 1, . . , 𝜏𝑛,equals 𝑚 − 𝑘, with 𝑚 ≤

𝐼𝑃0 − 𝑠𝜏𝑛
 (otherwise we use replenishment opportunity n). Denoting the Poisson density with mean  

in the point m by 𝑓𝑃𝑜𝑖𝑠(𝑚|𝜇), we thus find the following recursive expression: 

 

𝑞𝑛,𝑚 = ∑ 𝑞𝑛−1,𝑘
𝐼𝑃0−𝑠𝜏𝑛−1

𝑘=0 𝑓𝑃𝑜𝑖𝑠(𝑚 − 𝑘|𝜇𝜏𝑛−1+1,𝜏𝑛,
) if 𝑚 ≤ 𝐼𝑃0 − 𝑠𝜏𝑛

   (3) 

 

where  𝑓𝑃𝑜𝑖𝑠(𝑥|𝜇𝜏𝑛−1+1,𝜏𝑛,
) = 0 if 𝑥 < 0.  

Remark: For a constant reorder point s, the order probabilities simplify to 𝑝 𝜏1
= 1 − 𝐹𝑃𝑜𝑖𝑠(𝐼𝑃0 −

𝑠|𝜇1,𝜏1,
) and 𝑝 𝜏𝑛

= 𝐹𝑃𝑜𝑖𝑠(𝐼𝑃0 − 𝑠|𝜇1,𝜏𝑛,
)-𝐹𝑃𝑜𝑖𝑠(𝐼𝑃0 − 𝑠|𝜇1,𝜏𝑛−1,

), 𝑛 > 1. Given the demand patterns 

(e.g. more sales on Saturday than on Monday), store reorder points tend to vary in time, however. 

 

4.2.2. Performance at the DC 

Now we have from equations (2) and (3) the probability distribution 𝑝 𝜏𝑛
 for the timing of the 

replenishment order within the planning horizon, where the probability that no replenishment order is 

issued within the planning horizon obviously equals 1 − ∑ 𝑝 𝜏𝑛

𝑁𝑗

𝑛=1 . Now let us add the item index i 

and store index j again. We use these probabilities to estimate the workload at the DC per day, noting 

that SKUs ordered in the store on day 𝑡 − 1 are picked in the DC on day 𝑡. As a result, the expected 

workload in the DC at time 𝑡 is the sum of items ordered in all stores at time 𝑡 − 1, which is equal to: 

 

𝑊𝑡
𝐷𝐶 = ∑ ∑ 𝑝𝑖𝑗,𝑡−1

𝐽
𝑗=𝑖                          ∀𝑡  2𝐼

𝑖=1       (4) 

 

The number of order lines exceeding picking capacity is a random variable. However, the uncertainty 

will be low due to the pooling effect over many SKUs and stores. Therefore, we ignore this uncertainty 

when calculating the number of order lines exceeding the capacity of the DC at day t, denoted by 𝐶𝑆𝑡: 

 

𝐶𝑆𝑡 ≈ (𝑊𝑡
𝐷𝐶 − 𝑃𝐶𝑡

𝐷𝐶)+          (5) 

where 𝑥+ is a shorthand notation for max{𝑥, 0}. 
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4.2.3. Performance at the stores 

The performance at the stores consists of two components: (i) variability in the workload for receiving 

and storing products, (ii) backroom usage. First, note that the workload for receiving products, 

expressed in the number of order lines, depends on the number of replenishment orders issued two 

days before. Therefore, the expected number of order lines received by store j at day 𝑡 equals: 

 

𝑊𝑗𝑡 = ∑ 𝑝𝑖𝑗,𝑡−2                              ∀ 𝑡 ≥ 3𝐼
𝑖=1        (6) 

 

and the costs of varying workload within store j over the days that replenishments can be received are: 

 

𝑍𝑗 = ∑ 𝑆𝑂𝐷𝑗𝑡 {𝐶𝑗
𝐻+(𝑊𝑗𝑡 − 𝑊̅𝑗)

+
+ 𝐶𝑗

𝐻−(𝑊̅𝑗 − 𝑊𝑗𝑡)
+

}𝑇
𝑡=3      (7) 

 

where 𝑊̅𝑗 denotes the average number of order lines per day that replenishments can be received, 

calculated as: 

 

𝑊̅𝑗 =
1

∑ 𝑆𝑂𝐷𝑗𝑡
𝑇
𝑡=3

∑ 𝑊𝑗𝑡
𝑇
𝑡=3          (8) 

 

Now let us turn to the backroom usage. Note that we skip the first two days for the calculation of the 

backroom usage, as this is the result of earlier replenishments before the start of the planning horizon 

and can thus not be influenced. So, the first relevant day is t = 3. To evaluate backroom usage, we need 

the on-hand stock for each combination of SKU, store, and day in combination with the shelf space 

Vij. The on-hand stock on day t depends on the timing of the replenishment order: If a replenishment 

order has been released latest two days before t, we have added a lot size Qi to inventory, otherwise 

not. Let us denote the day that store j receives the replenishment order for SKU i by θi,j (i.e., the 

replenishment order is placed at the end of day θi,j – 2). For 3 ≤ t < θi,j, the on-hand stock of SKU 𝑖 in 

retail store j at the end of day 𝑡 (a random variable) then equals: 

 

𝑂𝐻𝑖𝑗𝑡 = 𝐼𝑃𝑖𝑗0 − 𝐷𝑖𝑗1𝑡          (9) 

 

Now the expected number of items 𝑖 in the backroom of retail store j at the end of day 𝑡 equals: 

 

𝐵𝑖𝑗𝑡
(1)

= 𝐸 [(𝑂𝐻𝑖𝑗𝑡 − 𝑉𝑖𝑗)
+

] = 𝐸 [(𝐼𝑃𝑖𝑗0 − 𝑉𝑖𝑗 − 𝐷𝑖𝑗1𝑡)
+

]      (10) 
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In fact, 𝐵𝑖𝑗𝑡
(1)

 can only be positive if there is a shelf space problem at the start of the planning period, 

resulting from previous order advancements. However, when 𝑡  𝑖,𝑗, the on-hand stock of SKU 𝑖 in 

store 𝑗 at the end of day 𝑡 (random variable), ignoring lost sales, equals: 

 

𝑂𝐻𝑖𝑗𝑡 = 𝐼𝑃𝑖𝑗0 + 𝑄𝑖 − 𝐷𝑖𝑗1𝑡          (11) 

 

Then the expected number of SKUs 𝑖 in the backroom of retail store 𝑗 at the end of day 𝑡 equals: 

 

𝐵𝑖𝑗𝑡
(2)

= 𝐸 [(𝑂𝐻𝑖𝑗𝑡 − 𝑉𝑖𝑗)
+

] = 𝐸 [(𝑂𝐻𝑖𝑗0 + 𝑄𝑖 − 𝑉𝑖𝑗 − 𝐷𝑖𝑗1𝑡)
+

]     (12) 

 

The expected number of SKUs stored in the backroom on day t (𝐵𝑖𝑗𝑡) is a weighted average of 𝐵𝑖𝑗𝑡
(1)

 

and 𝐵𝑖𝑗𝑡
(2)

, with as weights 𝑤𝑖𝑗𝑡 the probabilities that the replenishment order is placed after 𝑡 (or not at 

all): 

 

𝐵𝑖𝑗𝑡 = (1 − 𝑤𝑖𝑗𝑡)𝐵𝑖𝑗𝑡
(1)

+ 𝑤𝑖𝑗𝑡𝐵𝑖𝑗𝑡
(2)

         (13) 

 

Here the weights are given by 𝑤𝑖𝑗𝑡 = ∑ 𝑝𝑖𝑗𝑡
𝑇−2
𝑡 =1 ∀𝑡 ≥ 3  . To evaluate (10) and (12), we need 

𝐸[(𝑎 − 𝐷)+], where a is 𝑎 constant and 𝐷 is a Poisson distributed random variable with some mean 

value . In (10), 𝑎 = 𝑂𝐻𝑖𝑗0 − 𝑉𝑖𝑗 and 𝑎 = 𝑂𝐻𝑖𝑗0 + 𝑄𝑖 − 𝑉𝑖𝑗 in (11). Straightforward calculus reveals: 

 

𝐸[(𝑎 − 𝐷)+] = 𝑎𝐹𝑃𝑜𝑖𝑠(𝑎|𝜆) − 𝜆𝐹𝑃𝑜𝑖𝑠(𝑎 − 1|𝜆)       (14) 
 

 

4.3 Total cost function 

The total cost function consists of the following factors: 

• The costs of exceeding the DC handling capacity at 𝐶𝑂𝐿𝐷𝐶 per order line. 

• The costs of workload variability at the stores, specified by Equation (7). 

• The costs of the backroom usage during the planning horizon. 

• The impact of backroom usage remaining at the end of the planning horizon. 

The latter two cost factors require further specification. We have derived the backroom usage per 

combination of SKU, store, and day in (13) using (10) and (12). But the backroom size typically 

depends on the store size Larger stores tend to have larger backrooms, but then the impact of one 

additional product in the backroom should be less than for a small neighbourhood store. We measure 
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the relative size of store j (rsj) by the fraction of total yearly historical demand (𝐻𝐷𝑗) handled by that 

store: 

𝑟𝑠𝑗 =
𝐻𝐷𝑗 

∑ 𝐻𝐷𝑗
𝐽
𝑗=1

           (15) 

 

Then we use as backroom usage cost factor per store: 

 

 𝐶𝑗
𝐵𝑅 = (

(
1

𝐽
)

𝑟𝑠𝑗
 ) ∗  𝐶̅𝐵𝑅                                    ∀𝑗        (16) 

 

where 𝐶̅𝐵𝑅 denotes the input backroom cost factor. 

 

Backroom inventory remaining at the end of the planning period will lead to costs for days after the 

planning period. We also include these costs, assuming a linear decline in the backroom usage. These 

costs must be included in the total cost function. To determine these costs, the inventory is gradually 

decreased. The average days of backroom (𝐷𝐵𝑅) still on hand at the of the planning period is: 

 

𝐷𝐵𝑅𝑖𝑗 =  
𝐵𝑖𝑗,𝑇

𝑖𝑗

           (17) 

The costs of inventory in the backroom at the end of the planning period is therefore: 

 

𝐵𝐶𝑖𝑗 =  ∑ (𝐵𝑖𝑗,𝑇−𝑡
𝐷𝐵𝑅
𝑡=1 ∗  𝜇𝑖𝑗) ∗  𝐶𝑗

𝐵𝑅        (18) 

 

Combining all four cost factors mentioned at the start of this subsection, we find as total cost function: 

𝑇𝐶 =  𝐶𝑂𝐿𝐷𝐶 ∑ 𝐶𝑆𝑡

𝑇

𝑡=2

+  ∑ ∑ ∑ 𝐶𝑗
𝐵𝑅

𝐽

𝑗=1

𝐼

𝑖=1

𝑇

𝑡=3

 𝐵𝑖𝑗𝑡 +  ∑ 𝑍𝑗

𝐽

𝑗=1

+  ∑ ∑ 𝐵𝐶𝑖𝑗

𝐽

𝑗=1

𝐼

𝑖=1

 

(19) 

This is the objective function that we aim to minimize in the next section. 

 

5. Optimization heuristics 

Since (i) the total number of decision variables is large (dimension: I*J*T with potentially thousands 

of products, hundreds of stores, and planning horizon T around 10-20 days), and (ii) frequent 

optimization is necessary (we face an operational planning problem), speed of the optimization 

procedure is essential. Therefore, we focus on simple and fast heuristics based on greedy marginal 



 

 

 

 

16 

analysis as applied by Vaez-Alaei et al. (2018) and Van Donselaar et al. (2021) for a simplified version 

of our model (multi-item, single-echelon). We will develop two variants in this section, to be evaluated 

on performance and run time in Section 6. 

 

As mentioned in the previous section, advancing an order of SKU 𝑖 at store 𝑗 from 𝑡2 to 𝑡1, where 

𝑡1  <  𝑡2, can be achieved by increasing the reorder point at time 𝑡1 (𝑠𝑖𝑗𝑡1
). In each step of our greedy 

heuristics, we increase a reorder point of the combination of SKU, store and day that gives the largest 

reduction in total costs. The difference between the two heuristics that we present in this section is the 

size of the increase that can be one unit (Heuristic H1) or a proper choice of multiple units that 

significantly reduces computational effort (Heuristic H2). This process is repeated until there is no 

decrease in total costs possible anymore. In Subsection 5.1 and 5.2 we give the impact of an increase 

in a reorder point for both heuristics, followed by the generic search procedure in Subsection 5.3.  

 

5.1 Heuristic H1 

To determine the impact of advancing an order of SKU i at store j by increasing the reorder point at 

day 𝑡𝑖  by 1, we have to recalculate the replenishment probabilities 𝑝𝑖𝑗𝑡 ∀𝑡 ≥ 𝑡1 . Obviously, the 

replenishment probabilities for other SKU-store-day combinations remain the same. This results in a 

new set of replenishment probabilities 𝑝𝑖𝑗𝑡
′ . Now the change in expected order lines for SKU 𝑖 to be 

received at store 𝑗 on day 𝑡 ≥ 𝑡1 due to an increase in in the reorder point at 𝑡1 is simply 

 

∆𝑊𝑖𝑗𝑡 =  𝑝𝑖𝑗,𝑡−2
′ −  𝑝𝑖𝑗,𝑡−2                         ∀𝑡 ≥ 𝑡1 + 2     (20) 

 

A similar expression applies to the number of order lines to be processed at the DC, where we have a 

delay of one day: 

 

∆𝑊𝑡
𝐷𝐶 = 𝑝𝑖𝑗,𝑡−1

′ − 𝑝𝑖𝑗,𝑡−1                         ∀𝑡 ≥ 𝑡1 + 1      (21) 

 

Using these modifications, we can quickly find the impact on the number of order lines exceeding the 

DC capacity and the costs of varying workload. See equation (5) and (7). Regarding the backroom 

usage, we observe that 𝐵𝑖𝑗𝑡
(1)

 and 𝐵𝑖𝑗𝑡
(2)

 remain the same, only the weights 𝑤𝑖𝑗𝑡
′  change for 𝑡 ≥ 𝑡1 + 2. 

So, we only have to re-evaluate (13).  
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5.2 Heuristic H2 

As a faster heuristic, we can avoid recalculating any Poison probability at all. If we set 𝑠𝑖𝑗𝑡
′ =  𝐼𝑃𝑖,𝑗,0 +

1, then a replenishment order is placed at 𝑡1with certainty. This results in: 

 

𝑝𝑖𝑗𝑡
′ = {

𝑝𝑖𝑗𝑡, 𝑡 < 𝑡1

1 −  ∑ 𝑝𝑖𝑗𝑢
𝑡1−1
𝑢=1 , 𝑡 = 𝑡1

0, 𝑡 >  𝑡1

          (22) 

 

Now the change in number of order lines processed at store and DC level (new minus old) are:  

 

∆𝑊𝑖𝑗𝑡 = {

0, 𝑡 < 𝑡1 + 2

(1 − ∑ 𝑝𝑖𝑗𝑢
𝑡1−1
𝑢=1 ) −  𝑝𝑖𝑗,𝑡−2, 𝑡 = 𝑡1 + 2

−𝑝𝑖𝑗,𝑡−2, 𝑡 >  𝑡1 + 2

      (23) 

and  

∆𝑊𝑡
𝐷𝐶 = {

0, 𝑡 < 𝑡1 + 1

(1 − ∑ 𝑝𝑖𝑗𝑢
𝑡1−1
𝑢=1 ) −  𝑝𝑖𝑗,𝑡−1, 𝑡 = 𝑡1 + 1

−𝑝𝑖𝑗,𝑡−1, 𝑡 >  𝑡1 + 1

      (24) 

 

The change in average workload of store j equals: 

 

∆𝑊̅𝑗 =  
1

∑ 𝑆𝑂𝐷𝑗𝑡
𝑇
𝑡=3

{1 − ∑ 𝑝𝑖𝑗𝑢
𝑇−2
𝑢=1 }        (25) 

 

The expected workload increases, because a replenishment order for SKU 𝑖 at store 𝑗 is issued for sure 

now, whereas we had some nonnegative probability that no replenishment order would be released. 

 

Regarding the backroom usage, we only have to modify the weights 𝑤𝑖𝑗𝑡
′ . The differences are: 

 

∆𝑤𝑖𝑗𝑡 =  𝑤𝑖𝑗𝑡
′ −  𝑤𝑖𝑗𝑡 = {

0, 𝑡 < 𝑡1 + 2

1 −  ∑ 𝑝𝑖𝑗𝑢
𝑡1
𝑢=1 , 𝑡 ≥ 𝑡1 + 2

     (26) 

 

And so, the change in expected backroom usage is: 

 

∆𝐵𝑖𝑗𝑡 =  𝐵𝑖𝑗𝑡
′ −  𝐵𝑖𝑗𝑡 = {

0, 𝑡 < 𝑡1 + 2

(− ∑ 𝑝𝑖𝑗𝑢
𝑡1
𝑢=1 )𝐵𝑖𝑗𝑡

(1)
+  (1 −  ∑ 𝑝𝑖𝑗𝑢

𝑡1
𝑢=1 )𝐵𝑖𝑗𝑡

(2)
, 𝑡 ≥ 𝑡1 + 2

 (27) 
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5.3 Finding near-optimal reorder points 

Figure 4 shows the flow of the steps in the optimization, proceeding from the reorder points provided 

by the automated reordering system. We will explain the details below.  

 

 

Figure 4. Flow diagram of greedy-heuristic solution procedure. 

 

As a key bottleneck in the current way of working is insufficient handling capacity at the DC, we try 

to reduce DC capacity shortage first. That is, we select the first day 𝑡′ with capacity shortage at the 

DC. We list all stores that are allowed to order both on day 𝑡′ and on an earlier day 𝑡 < 𝑡′ for which 

DC handling capacity is still available (call this subset H). For these stores, we search SKUs that have 

sufficient shelf space to store an early replenishment order for sure (even if no demand occurs), i.e., 

𝐼𝑃𝑖𝑗0 + 𝑄𝑖  ≤ 𝑉𝑖𝑗. The resulting store-SKU combinations are stored in a subset Ω.  

 

The procedure first checks all SKU-store combinations in subset Ω and selects the tuple (𝑖∗, 𝑗∗, 𝑡 − 1∗) 

for which increasing the reorder point leads to the largest total costs reduction and implements this 
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increase. We continue until the set Ω is empty, or no tuples (𝑖, 𝑗, 𝑡 − 1) within the set lead to a cost 

reduction anymore. The procedure then checks all SKU-store combinations not in subset Ω  and 

increases the reorder point of the tuple (𝑖∗, 𝑗∗, 𝑡 − 1∗) that leads to the largest total costs reduction. We 

continue until no tuples (𝑖, 𝑗, 𝑡 − 1) lead to a cost reduction anymore.  

 

Then we move to the next period 𝑡′  in the planning period with capacity shortage at the DC and 

possible advancement opportunities given the order schedule. This process is repeated until all capacity 

shortages at the DC have been resolved, or no order advancement with cost benefit is feasible anymore.  

 

6. Numerical experiments 

In this section, we study the effectiveness and efficiency of our heuristics. We first define the 

experimental setup in Section 6.1. In 6.2, we discuss the basic scenario. Next, we perform an extensive 

sensitivity analysis and derive managerial insights in Section 6.3. 

 

6.1 Experimental setup 

We evaluated the heuristics on a real-world dataset with 65,745 SKU-store combinations from a large 

retailer in the Netherlands. The dataset consists of 214 retail stores supplied from one DC, and 342 

SKUs. The number of SKUs differs per store. Each retail store is subjected to an order and delivery 

schedule similar to the examples in Figure 2. The SKUs are selected from two product categories (self-

medication and baby food) with as criterion classification ‘slow mover’ in the automated 

replenishment system. Within this classification the average expected demand is not more than 0.69 

per day. Demand forecasts, lot sizes and reorder points are supplied by the automated replenishment 

system the retailer uses. We selected four weeks of data, from 23 May until 19 June 2022. Table 3 

shows the descriptive statistics for some key variables. 

 
Table 3. Case study descriptive statistics. 

 

 

 

 

 

 

We consider the following key performance indicators: (1) number of order lines exceeding the DC 

capacity, (2) expected backroom usage as fraction of the shelf space, averaged over the stores; in this 

65,745 SKU-store 

combinations 

Expected Demand 

[units/day] 

Lot size 

(Q) 

Shelf space 

[units] 
 

Minimum 0.05 1.00 2.00  

Mean 0.21 4.82 6.91  

Maximum 0.69 46.00 54.00  

Standard deviation 0.06 2.83 3.36  
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way we also consider the store size, (3) coefficient of variation (CV) of the workload on the delivery 

day for an average store (averaged over all stores).  

 

In the basic scenario, we use relative cost factors for the optimization, since they are more useful for 

comparing the performance measurements to nominal values. We used cost ratios capacity shortage at 

the DC: backroom inventory: workload variability = 3:2:1. The DC handling capacity is chosen as the 

average DC workload in the planning horizon. In this way, we experience both capacity shortage and 

excess capacity, which makes it possible to test the order advancement model. The planning horizon 

is T = 12 days and is equal to the first 12 days in the dataset. 

 

We programmed both heuristics in Python version 3.9, using the Anaconda Platform. The experiments 

were all conducted on a PC with an Intel Core i5-1147G7 processor, 16 Gigabyte RAM memory and 

Windows 10 64-bit installed. No restrictions were set on the computational time as each run was 

completed in acceptable time.  

 

6.2 Numerical results and insights 

We show the results of the performance evaluation method before optimization in 6.2.1. Next, we 

show the results of the basic scenario after optimization for both heuristics in 6.2.2.  

 

6.2.1 Performance evaluation before optimization 

In the basic scenario before the optimization heuristics there are 1060 order lines exceeding the 

capacity limit of the DC. The average CV of the approximated workload over the delivery days in the 

week over all stores is 0.54. This shows that the workload over the delivery days at the stores is 

unbalanced. Moreover, we observed that 11.04% of the all SKU-store combinations lead to backroom 

usage. The backroom usage of those SKU-store combinations is on average 7.91% of the allocated 

shelf space. This indicates that there could already be a misalignment between case pack size and shelf 

space. This can be explained by the fact that the case pack size and shelf space are set by different 

parties in the supply chain: The case pack size is determined by the supplier (production plant) which 

focuses on production costs (supplier profits), whereas the shelf space is set by the retailer with the 

focus on attracting customers (retail profits). Since there is already considerable backroom usage, we 

only show the backroom inventory increase for the SKU-store combinations with advanced orders in 

our analysis.  
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6.2.2 Basic scenario 

Figure 5 shows the workload at the DC before and after optimization for both heuristics. Note that we 

cannot advance order lines from day 1 and 2 to earlier days, as moving an order from day 2 to day 1 

at the DC would mean that the store should place the replenishment order at day 0, before the start of 

the planning horizon. So, we only use day 3-12 for the performance analysis.  

 
Figure 5. DC workload before optimization versus after H1 and after H2. 

 

Heuristic H1 reduces the order lines exceeding DC capacity at the DC by 51.82%. There is still a 

capacity shortage on day 8 and excess space on day 5 and 7. The probability that we can advance from 

day 8 to day 7 is low because there are few stores with a delivery schedule that allows for deliveries 

on two consecutive days. We could also advance from day 8 to day 5, however, from in-depth analysis 

we see that the reduction in costs of order lines above the capacity on day eight does not outweigh the 

extra costs of backroom inventory on day five (= day four in the stores). We also find that the average 

expected backroom inventory does hardly increases under the current cost structure, which means that 

we mainly advance orders that directly fit into the shelves. The average CV of the approximated 

workload over the delivery days in the week over all stores is reduced with 0.042. In conclusion, the 

capacity shortage at the DC is decreased without any negative impact at store level. We provide the 

detailed results per performance measurement in Appendix A (Table A1).  

 

Heuristic H2 performs almost as well as H1 regarding the reduction of order lines above the capacity 

at the DC (48.27%). The average expected backroom inventory of the advanced SKU-store 

combinations increases very slightly with 0.51% of the allocated shelf space. Also, the reduction in 
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workload variability at store level is somewhat less (0.040 versus 0.042 for H1). Moreover, the overall 

expected workload in the short run increases, since we replenish for sure now. In the long run, this 

does not make any difference, since demand remains the same and the products have to be picked and 

received at some day anyway. Nevertheless, planners consider it an advantage to know for sure when 

to place a replenishment order.  

 

We observe that we can advance many orders without exceeding the shelf space. As a result, we 

improve the in-store product availability, which is beneficial for reducing stockouts and stimulating 

demand as the customer perceives nice full shelves (cf. Van Donselaar et al., 2010). Figure 6 shows 

that the shelf utilization of the advanced orders increases by more than 10% for both heuristics. We 

conclude that we find results that are beneficial both at DC and store level.  

 

Figure 6. Shelf utilization of advanced orders - before optimization versus after H1 and H2. 

 

The computation times of H1 and H2 in the basic scenario are 93 and 37 minutes, respectively. H2 

requires fewer computations in every iteration (since the Poisson probabilities do not have to be 

recomputed), and typically uses less iterations as steps are larger. The major determinant of the 

computation time is the number of iterations, which are 3351 and 1653 for H1 and H2, respectively. 

So H2 performs slightly worse, but is considerably faster than H1. This may be an argument when 

moving to larger problem instances.  
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6.3 Sensitivity analysis and further insights 

In this subsection, we perform a sensitivity analysis on DC capacity, length of planning horizon, shelf 

space, and cost factors: 

• DC capacity: up to 10% more than in the basic scenario. 

• Planning horizon varying between 8 and 24 days. 

• Shelf spaces at the stores: 10% less or 10% more; given the structurally expanding product 

assortment, it could well be that the average shelf space available per SKU will decrease.  

• Cost ratios for DC capacity shortage, workload variability at stores, and backroom usage: 5:1:1, 

10:1:1, 1:5:1, 1:10:1, 1:1:5, and 1:1:10. 

 

6.3.1 Sensitivity for DC capacity 

In Figure 5 we saw that capacity is tight. We therefore increase the capacity limit at the DC stepwise 

by 1% until 10% additional capacity is reached and rerun the heuristics. We modify the capacity 

parameter with the aid of a scaling factor f(capacity). Figure 7 shows the impact of a marginal capacity 

increase on the reduction in capacity shortage.  

 

 

Figure 7. Impact of marginal capacity increases on reduction in capacity shortage. 

 

Obviously, the capacity shortage is reduced when increasing the capacity limit of the DC. A more 

interesting observation is the relative increase of reduction in capacity shortage. This reduction can be 

explained by the fact that while increasing the capacity limit, there is relatively more excess space on 

earlier non-peak days which leads to a performance improvement of both heuristics. When increasing 
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DC capacity by 10%, the heuristics H1 and H2 can reduce the remaining capacity shortage by 69.83% 

and 69.92%, respectively. Notably, heuristic H1 works better when capacity is tight, but when there is 

ample capacity, H2 works slightly better. The impact on expected backroom inventory and CV of the 

workload over the delivery days is very small or even negligible. 

 

6.3.2 Sensitivity for length of the planning horizon 

We expect that a larger planning horizon increases the planning flexibility but will also increase run 

times. Therefore, it is useful to gain insight into the impact and benefit of considering a longer or 

shorter planning horizon. We consider horizons ranging from T = 8 days to T = 24 days, see Figure 8. 

Between T = 8 days and T = 14 days, the reduction in capacity shortage at the DC doubles. Further 

extension of the planning horizon does not help reducing capacity shortage. A drawback of increasing 

the planning horizon is the increase in computation times, see Table 4. 

 
Figure 8. Impact of planning horizon on reduction in order lines exceeding the capacity limit. 

 

 Table 4. Computational times depending on the planning horizon (in minutes). 

 

 

 

 

 

 

6.3.3 Sensitivity for store shelf space 

We expect that available shelf space may have a significant impact on the improvement potential, since 

it determines to which extent orders can be advanced without having to use backroom capacity. We 

therefore investigate two scenarios, one which 10% additional shelf space capacity and one with 10% 

  Planning horizon T 

  8 12 14 18 20 24 

H1 48.94 92.53 130.81 163.39 201.42 249.29 

H2 33.14 37.01 44.73 67.00 81.93 96.04 
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less shelf space capacity, see Figure 9. We modify the shelf space parameter with the aid of a scaling 

factor f(shelf space), where f(shelf space) = 1.0 indicates the basic scenario. 

 
Figure 9. Impact of marginal capacity increases on reduction in capacity shortage. 

 

We observe that a 10% reduction in shelf space leads to an increase of the expected backroom 

inventory. The impact of less shelf space is for H2 three times higher than for H1. Further, expected 

backroom inventory hardly decreases if we increase the shelf space. Also, 10% less shelf space leads 

to less reduction in DC capacity shortage (about 6%) with negligible impact on the CV of the store 

workload, see Table A1 in Appendix A for details. 

 

6.3.4 Sensitivity analysis cost parameters 

The cost parameters – in particular their ratio – are important inputs for the order advancement model. 

Therefore, to evaluate its robustness against different settings of ratios, a sensitivity analysis was 

carried out. So far, the basic problem instance assumed the original costs reported by the case company. 

In other words, 𝐶𝑂𝐿𝐷𝐶: 𝐶̅𝐵𝑅 : 𝐶𝐻+: 𝐶𝐻− = 3:2:1:1. The parameter settings are chosen with the aid of a 

scaling factor f (.). The factor f(DC) modifies the DC workload cost parameter. The factor f(variability) 

changes the cost parameters for workload variability over the delivery days at the stores. Finally, the 

factor f(backroom) modifies the backroom inventory cost parameter. In each analysis the scaling 

factors are equal to 1 and one of the cost parameters is varied, so for example f(DC=5) gives a cost 

ratio 𝐶𝑂𝐿𝐷𝐶: 𝐶̅𝐵𝑅 : 𝐶𝐻+: 𝐶𝐻− = 5:1:1:1. Since the difference in results of the sensitivity analysis for 

H1 and H2 is small, we only show the results of the sensitivity analysis of H1 in Figure 10.  
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Figure 10. Impact of cost factors on performance measurements with heuristic H1. 

 

It is evident that an increase of the DC workload cost factor reduces the capacity shortage at the DC. 

However, this increase negatively impacts the expected backroom inventory and workload variability 

over the delivery days at the store. Especially for f(DC) > 5, the increase in expected backroom 

inventory at the stores is substantial. The workload variability over the delivery days at the stores 

decreases when the DC workload cost factor increases. This may be explained by the fact that 

increasing importance is dedicated to decreasing the capacity shortage at the DC instead of decreasing 

the workload variability over the delivery days at the stores. Moreover, we observe that the increase 

in expected backroom inventory is zero if we increase the backroom cost factor. This means that we 

only advance orders that do not require backroom inventory space. We see that this slightly negatively 

influences the reduction in capacity shortage at the DC. This may be explained by the fact that the 

order advancement optimization stops earlier, since there is no more reduction in total costs. When 

f(backroom) is larger than or equal to 5, there is no increase in expected backroom inventory anymore. 

Consequently, the reduction in capacity shortage does not change anymore. Further analysis shows 

that an increase of the variability cost factor reduces the CV of the workload over the delivery days at 

the stores, especially when f(variability) > 5. However, a drawback of this increase is that it negatively 

influences the expected backroom inventory and the workload variability over the delivery days at the 
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stores. We observe that varying the variability cost factors at the stores between f(variability) = 1 and 

f(variability) = 10, reveals an increase of the expected backroom inventory by a factor of nine. The 

decrease of the reduction in capacity shortage at the DC can be explained by the fact mentioned above 

that increasing importance is dedicated to decreasing the workload variability over the delivery days 

at instead of decreasing the capacity shortage at the DC. However, we observe that the decrease of the 

reduction is relatively small. Lastly, we observe that increasing the cost factor f(DC) from 5 to 10 leads 

to an increased backroom usage and a reduced capacity shortage. Further analysis reveals that - for an 

extreme cost ratio - the capacity shortage can be reduced by 70% under 10% more backroom usage 

(as percentage of the allocated shelf space).  

 

7. Conclusion 

We presented a new operational order advancement decision model suitable for slow movers in a 

multi-item, two-echelon, periodic-review inventory system. Our decision model advances 

replenishments of slow movers from peak days to non-peak days, aiming to balance capacities at both 

the DC and the stores in terms of order line handling and shelf space. We furthermore derived two 

greedy marginal-analysis heuristics to optimize the reorder points for individual SKU-store-time 

period combinations. Based on or analysis, we draw the following key conclusions based on a case 

study for a Dutch retailer: 

1.  Advancing replenishment orders does not negatively affect the service to the stores and may 

increase product availability as observed by the higher shelf utilization. 

2. The workload exceeding the capacity limit at the DC can by reduced by 50-70% (see Figure 7).  

3. The workload over the delivery days at the stores can be more balanced, with a reduction in the 

coefficient of variation of order lines up to 0.065. 

4. We can advance many orders without exceeding the shelf space, as confirmed by the limited 

backroom usage (see Figure 10). 

5. By advancing orders we improve the in-store product availability by more than 10 percent points, 

which stimulates demand (see Figure 6). 

6. Heuristic H2 that guarantees order advancement yields slightly lower performance at considerably 

higher computation speed (around a factor 3). The computation speed is an advantage when 

moving to larger problem instances. Besides, planners consider it an advantage to know for sure 

when to place a replenishment order. 
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The study has some limitations. First, our model only considers at most one replenishment order for a 

specific SKU-store in the planning period. This is justified as the model is applied on slow movers for 

which it is unrealistic that more than one replenishment is required within two weeks planning horizon. 

Second, we assume a Poisson distribution for the demand, also because we have little information on 

the exact shape of the demand distribution. Other demand distributions may lead to different results, 

although the modelling logic remains the same. 

 

We foresee several opportunities for future research. For example, we could consider order 

postponement next to advancement only, insofar this does not seriously affect the service levels. Also, 

advancing orders over more than a single replenishment period only could be beneficial. Demand 

variability may be higher or lower for slow movers, and some SKUs facing intermittent demand exist 

in the assortment. The latter could for example be modelled by a compound Poisson distribution. 

Finally, other retail sectors may require specific model extensions, such as perishability of food 

products. In such a case, order advancement may have a negative impact on the fraction of products 

that need to be disposed.  
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Appendix A. Experimental results 

This appendix shows in Table A1 the experimental results. All percentage difference refer to the 

performance evaluation before optimization. 

 

Table A1. Experimental results for each experiment. E[B] = Expected backroom inventory as 

fraction of the shelf space above the standard shelf space, CV = coefficient of variation of 

workload at the delivery days, CS = Capacity shortage at the DC. 

 

Experiment ∆𝐸[𝐵] ∆𝐶𝑉 ∆𝐶𝑆 

 H1 H2 H1 H2 H1 H2 

Case problem setting 0.10% 0.51% -0.042 -0.040 -51.82% -48.27% 

       

Sensitivity analysis  

Capacity + 10% 0.00% 0.38% -0.045 -0.043 -69.83% -69.92% 

Shelf space - 10% 1.70% 3.59% -0.040 -0.039 -44.62% -42.79% 

Shelf space +10% 0.00% 0.23% -0.047 -0.044 -58.45% -54.07% 

T = 8 0.06% 0.43% -0.031 -0.028 -30.49% -28.10% 

T = 14 0.11% 0.92% -0.049 -0.047 -63.82% -60.99% 

T = 18 0.14% 2.57% -0.060 -0.054 -63.2% -60.8% 

T = 20 0.16% 2.73% -0.060 -0.062 -61.25% -59.42% 

T = 24 0.18% 2.67% -0.061 -0.063 -61.99% -60.20% 

1:1:1:1 0.09% 
 

-0.045 
 

-44.62% 

 

5:1:1:1 1.69% 
 

-0.038 
 

-52.43% 
 

10:1:1:1 5.11% 
 

-0.033 
 

-61.40% 
 

1:5:1:1 0.00% 
 

-0.036 
 

-41.05% 
 

1:10:1:1 0.00% 
 

-0.036 
 

-40.85% 
 

1:1:5:5 1.29% 
 

-0.053 
 

-43.49% 
 

1:1:10:10 4.43%   -0.065   -39.53%   
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Introduction 
This document serves as guideline for implementation of the master project ‘’Order Advancement in a Multi-

Item Two-Echelon System: Theory and Case study’’ conducted at Slimstock in 2022 by Quinziano ten Hagen. 

The goal of this project is to reduce the number of order lines exceeding the capacity limit at the DC. 

Therefore, we focus on optimizing replenishment orders from local stores to the distribution center (DC), by 

deciding upon which replenishment order of a specific store-item-day combination to advance to a 

preceding order moment (given the order- and delivery schedules).  

An advantage of advancing order lines from peak days to non-peak days is that it does not adversely affect 

availability and thus on customer service levels. However, by advancing replenishment orders we have to 

satisfy multiple stores requirements; (1) stores also have finite capacity to handle inbound deliveries (i.e., they 

desire a decent allocation of the workload over the delivery days in the week) and (2) stores receive products 

earlier than originally planned, this can lead to situations where products do not fit in the reserved shelf 

space on arrival. In this situation, products that do not fit on the shelf could be temporarily stored in the 

backroom. However, this not desirable since the backroom capacity is limited and ensures double handling 

effort. Therefore, we have a trade-off between (i) the order lines exceeding the DC capacity, (ii) balancing 

the handling effort at the stores over the delivery days in the week planning horizon, and (iii) backroom 

inventory due to exceeded shelf space at the stores. 

For the problem definitions/introduction, literature review, performance evaluation method, improvement 

heuristics, case study results, we refer to ‘’Order Advancement in a Multi-Item Two-Echelon System: Theory 

and Case study’’. 

The remainder of this document is structed as follows. Sections 1 provide the management summary. Section 

2 elaborates on the practical implications of this research and provides an implementation plan. Finally, we 

provide our recommendations to Slimstock in Section 3. 

Author:  

Q. ten Hagen 

 

Supervisors University of Twente: 

dr. M.C. van der Heijden 

dr. D.R.J. Prak 

 

Supervisors Slimstock:  

J.M. Veldhuizen, MSc 

B. van Gessel, MSc 

  



 

  2 

Contents 
1. Management summary .................................................................................................................................................................... 3 

2. Implementation plan......................................................................................................................................................................... 6 

2.1. Input data ..................................................................................................................................................................................... 6 

2.2. Implementation steps .............................................................................................................................................................. 7 

3. Recommendations for Slimstock ................................................................................................................................................... 9 

 

  



 

  3 

1. Management summary 
Problem  

This research on balancing the workload in a retail supply chain was done for Slimstock, an inventory 

optimization software and consultancy company. Typically, retail supply chains use professional software for 

demand forecasting and inventory management at their stores and distribution center(s). The main focus of 

this kind of professional software is on optimizing inventory management processes by balancing service 

levels to the final customer, such as fill rates, with the costs of ordering and holding inventory. However, 

optimizing the supply chain encompasses more than only the aspect of inventory management (e.g., 

handling). This is typically not considered when releasing replenishment orders at the stores. As a 

consequence, the replenishment orders of the stores fluctuate significantly over time. This leads to capacity 

problems at the distribution center where on some days many more order lines need to be picked and 

dispatched than on other days. This causes the workload for the order pickers in distribution centers to be 

highly unstable. Furthermore, capacity is limited and typically very flatly distributed through the week. As a 

consequence, a part of the order lines is delayed because demand exceeds capacity. This may ultimately 

have impact on product availability in the stores and thus on customer service levels.  

Literature  

Although retail operations is a widely studied area in literature, there is a limited number of papers that 

address inventory management decisions that consider both the DC handling effort and the in-store 

handling simultaneously. From literature review, we found several papers considering in-store handling. 

Those papers reveal that in-store handling has significant impact on the operational efficiency. The main 

driver of in-store handling is the use of backroom inventory if the assigned shelf space is exceeded. Although 

backroom is common in traditional retail stores, only a few papers take its effects into account. Next to in-

store handling, the workload at the DC supplying the stores, for example for order picking and dispatch, 

also plays an important role in retail supply chain efficiency. Papers considering DC handling effort typically 

focus on tactical or strategic level and model a single-item problem and/or assume demand to be 

deterministic and stationary over time. Our research focuses on the operational level and considers multiple 

items with stochastic, non-stationary demand. In other words, to the best of our knowledge there are no 

models directly applicable to our research problem in the existing literature. 

Model 

After analysing relevant literature, we developed Order Advancement: a new model consisting of a 

performance evaluation method and optimization heuristics. Typically, professional inventory management 

system generates demand forecasts and determines the parameters of the inventory control policies. This 

gives the insight in the number of replenishment orders that we can expect for the upcoming period, both 

at the distribution center and at all the stores. In this way, capacity conflicts in the short and the long run can 

be identified and gives the opportunity to avoid them by moving replenishment orders to an earlier point in 

time (order advancement). Postponing replenishment orders is also possible, but this might yield service 

level loss and is therefore out-of-scope. With order advancement we have to make a trade-off between (i) 

reducing order lines exceeding DC capacity, (ii) order receipt handling effort at the stores over the delivery 

days in the week, and (iii) backroom inventory due to exceeded shelf space at the stores. To limit the available 
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options, we consider only slow-movers and advancing to a single preceding replenishment opportunity. The 

order advancement model consists of two parts, (1) performance evaluation method and (2) optimizations 

heuristics. The performance evaluation method calculates the expected workload at the DC, handling 

workload at each individual store, and expected backroom inventory. Moreover, the performance evaluation 

method gives the total cost function which comprises three relevant cost components: DC capacity shortage 

penalty costs, store workload handling costs, and backroom inventory costs. Since we encounter a large 

problem instance and frequent optimization (e.g., daily, or weekly) is necessary, speed of the optimization 

procedure is essential. Therefore, we focused on a simple and fast heuristics based on greedy marginal 

analysis. We developed two variants of the greedy marginal heuristics. In each step of our greedy heuristics, 

we increase a reorder point of the combination of SKU, store and day that gives the largest reduction in total 

costs. The difference between the two heuristics that we present is the size of the increase in reorder point, 

that can be one unit (Heuristic H1), or a proper choice of multiple units that significantly reduces 

computational effort (Heuristic H2). This process is repeated until there is no decrease in total costs possible 

anymore.  

Results 

We conclude that developed short-term order advancement model is beneficial for balancing the handling 

workload at both DC and stores. First of all, advancing replenishment order does not negatively affect the 

service to the stores. Second, advancing replenishment orders led to a more balanced workload at the DC, 

with a possible reduction of order lines exceeding the DC capacity of over 50%. Third, order advancement 

also led to a more balanced handling workload at the stores, with a coefficient of variation (CV) reduction 

up to 0.065. Next, order advancement also led to significant more fully stocked shelves, which improves the 

product availability and could be beneficial in reducing stockouts and stimulating demand. A drawback of 

order advancement is that it could slightly increase the total average backroom inventory in the stores. 

However, this increase is very small and does not outweigh the benefits.  

Sensitivity analysis shows that we can increase the reduction of order lines exceeding the DC capacity limit 

up to 70%. Moreover, the heuristic in which we advance a certain order for sure makes larger steps in each 

iteration and fewer computations. This makes the heuristic three times faster than the marginal incremental 

heuristic, while the performance in reduction of order lines exceeding the DC capacity is almost similar. This 

makes the heuristic especially relevant in practical instances, where problem instances of traditional retail 

supply chains are enormous. 

Recommendations 

First, we recommend Slimstock to implement the order advancement model in the current replenishment 

method of slow-moving items according to the implementation plan. Slimstock should evaluate whether the 

order advancement model performs properly for all assortment categories as well as for multiple retail 

settings including events and promotions. Second, we recommend Slimstock to conduct further research on 

optimizing order- and delivery schedules of the stores. In this way, Slimstock could advise its clients about 

the stores’ delivery schedules. Third, we advise Slimstock to update the data (e.g., shelf spaces) in the 

inventory management software frequently, as the quality of our order advancement model is determined 

by the quality of the input data. Fourth, we recommend Slimstock to create a dashboard that visualizes the 

performance indicators. Finally, we recommend Slimstock to determine the set of products for which the 
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order advancement model is applicable and the customer specific ratio of the cost parameters. Future work 

can focus on more general supply chain structures, or applications to particular sectors (e.g., food retail), or 

extending the method to allow for other demand distributions to capture other demand classes. 
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2. Implementation plan 
The goal of the order advancement model (i.e., performance evaluation method and greedy heuristics) is to 

reduce the order lines at the DC, by optimizing the reorder levels at SKU-store-day level, while also 

considering the impact at the stores for both delivery moments and backroom usage. In this section, we 

elaborate on how the suggested model can be implemented and what the first steps are Slimstock has to 

take after finalizing this research. In Subsection 2.1 we summarize which data are required of a client to 

implement the suggested order advancement model. Next, we explain the steps that has to be taken in the 

implementations phase in Subsection 2.2.  

2.1. Input data 

To implement the proposed order advancement model, data is required. First of all, we need of each SKU 

in every store the following data: current starting inventory position, replenishment policy and parameters 

such as: order- and delivery schedules, , minimum order quantity (MOQ), and fixed shelf space, historical 

demand transactions without promotions or events, daily demand forecast, backroom size, and daily DC 

order picking capacity.  

In the proposed order advancement model, we assume one capacity limit for the entire DC. However, the 

DC could consist of several areas (e.g., dynamic picking system (DPS), sorter, volume, free storage) with its 

own order picking capacity limit. In this situation, the suggested order advance model requires a relatively 

small adjustment since we have several smaller problem instances instead of one large problem instance 

(i.e., one problem instance per area). One important assumption here is that each article is only picked from 

1 picking area / method. Balancing between picking from different areas is out-of-scope. This could only 

make the optimization heuristics faster. In case the available pick capacity can be shifted between areas, we 

have again one large problem instance. Furthermore, as mentioned above, we need the daily demand 

forecast. Therefore, we advise Slimstock to determine daily demand forecast for slow-moving items.  

To guarantee that the proposed model performs properly, the order advancement model should only be 

applied for retail clients who have the required data available and ensure it is accurate. Moreover, the 

proposed order advancement model is based on several assumptions. For the complete list of model 

assumptions we refer to ‘’Order Advancement in a Multi-Item Two-Echelon System: Theory and Case study’’. 
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2.2. Implementation steps 

The implementations phase consists of several steps as shown in Figure 1.  

 

Figure 1: Implementation phases 

Broader experimentation 

Although the first results and insights of the order advancement model seem to be beneficial, the 

implementation might come with some risks and challenges. First of all, we limited the scope to the retail 

supply chain structure explained, slow-moving items, two product groups (self-medication and baby food), 

and 234 stores. This means that the order advancement model has yet to be tested for other retail supply 

chain structures or sectors (e.g., food retail), demand classes and assortment categories. Therefore, it is 

necessary to perform additional experiments with other datasets as the first step of the implementation. The 

evaluation method and optimization heuristics are programmed in Python since Python is used by the 

research department of Slimstock. Therefore, experimentation with other datasets is possible immediately. 

Furthermore, in our study we included every SKU within the scope in the order advancement model. 

However, in general, retailers may set for any reason restrictions on which SKUs they absolutely don’t want 

to advance (e.g., value, shelf life, promotion, etc.). As a consequence, business rules have to developed and 

tested for those restrictions. Moreover, the model is not tested on SKUs with promotions. However, 

promotions will only adapt the expected demand and could lead to extra order- and delivery moments. In 

this case, the solution procedure will not change, but the performance could change. Lastly, the heuristic in 

which we marginal increment the reorder point is solved in 37 minutes, whereas the heuristic in which we 

place an order for sure is solved in 93 minutes. Those computational times could decrease if the code could 

be programmed more efficiently.  

Functional design 

The second step of the implementation is the functional design. In this step, the employees of internal 

product support (IPS) and a consultant have to develop the design and user story in Slim4. The workload of 

both DC and stores on a throughout the week should be visualized in a dashboard (see Figure 2 for an 

example of a visualization of the workload at the DC). Furthermore, the daily DC picking capacity limit need 

to be defined. Moreover, the frequency with which the order advancement should be run, should be 

determined. The heuristic in which we place an order for sure is approximately three times faster than the 

heuristic where we marginally increase the reorder point, while the performance is almost similar. Besides, 

planners consider it an advantage to know for sure when to place a replenishment order. Therefore, we 

advise use this heuristic more often than the marginal increment heuristic.  
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Figure 2: Example visualization of DC workload. 

 

Technical design 

The third step is to develop a pilot which will be tested in the next phase. The programmed order 

advancement model in Python should be programmed in the test environment.   

Pilot-test and implementation in Slim4 

The next step is to perform a pilot with the performance evaluation method and chosen optimization 

heuristic. The goal of the pilot is to investigate the impact of such as trends, seasonality, and promotions on 

the order advancement model. Our proposed order advancement model touches upon the core of 

inventory control, namely replenishment order advice generation. Therefore, it is important that the time 

period of the pilot is large enough. We propose to execute the pilot among retailers operating in different 

sectors (e.g., food retail). In case problems arise in the pilot, they have to be reviewed and solved in the 

previous phase (technical design). Whenever the results of the pilot seem satisfying, start implementing the 

order advancement model for both existing and new clients.  

Evaluation 

The last step is to evaluate the implementation of the performance evaluation method and chosen 

optimization heuristic. First of all, the cumulative capacity shortage at the DC should be monitored. When 

there is a trend in the cumulative capacity shortage at the DC, the tactical decisions have to be reviewed 

(e.g., order- and delivery schedule, parameters, etc.). Moreover, after implementation of the order 

advancement in the retail sector we have to determine whether a modified version of the proposed order 

advancement model is suitable for other industries such as pharmacy or wholesale. In this case, the client 

should have a backroom or an equivalent storage space. 
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3. Recommendations for Slimstock 
Regarding the study: ‘’Order Advancement in a Multi-Item Two-Echelon System: Theory and Case study’’, 

several recommendations for Slimstock are formulated: 

1. Examine all steps and issues mentioned in the implementation plan. 

First, we recommend Slimstock to implement the order advancement model in the current replenishment 

method of slow-moving items according to the implementation plan. Slimstock should evaluate whether the 

order advancement model performs properly for all assortment categories and cases including events and 

promotions. This is especially important since the proposed model is promising, but this is not guaranteed 

in other settings.  

 

2. Review the order and delivery schedule. 

Second, we recommend Slimstock to review the order- and delivery schedules of the stores. The delivery 

schedules of retailers are mainly based on long-term contracts with logistics service providers. Therefore, 

they form a restriction for Slimstock. However, we recommend Slimstock to investigate if the order- and 

delivery schedules are optimal from both inventory management as transportation perspective. In this way, 

Slimstock could advise its clients about the stores’ delivery schedules.  

 

3. Update the shelf space data frequently. 

Third, we recommend Slimstock to update the shelf space data once every six months. Updating the data 

guarantees the accuracy. This will improve accuracy of the order advancement model and prevents stores 

for unexpected backroom inventory. We recommend to update the shelf space data once every six months 

since adopting the shelf spaces is a tactical decision and therefore does not change frequently.  

 

4. Determine the set of products and stores that should be considered in the order advancement model. 

Fourth, we recommend Slimstock to determine the set of products and stores that should be considered in 

the order advancement model. As mentioned earlier retailers may have restrictions on which SKUs they don’t 

want to advance. Reasons for not advancing products might be the value, shelf life, and promotion. 

Furthermore, some stores might prefer to receive all slow-moving items on the same day in the week. In this 

situation, the proposed model should be modified with business rules.  

 

5. Determine the customer specific ratio of the cost parameters. 

Fifth, we recommend Slimstock to determine the customer specific ratio of the cost parameters. The ratio of 

the cost parameters depends on the focus of the retailer. For example, if the retailer wants zero increase in 

expected backroom the cost parameters of backroom have to set higher than the other cost parameters. In 

this way, the optimization heuristics will only advance replenishment orders that immediately fit on the shelf.  

 

6. Create a dashboard to visualize the performance indicators. 

Sixth, we recommend Slimstock to create a dashboard that visualizes the performance indicators. In the 

study: ‘’Order Advancement in a Multi-Item Two-Echelon System: Theory and Case study’’, we created 

visualizations for some performance indicators. We recommend to create one unique dashboard with the 

results of the performance indicators to measure the effectiveness of balancing and business rules over time. 
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Based on wishes of the retailer, other performance indicators can be added to the dashboard. Moreover, 

cumulative capacity shortage at the DC should be monitored. In this way, trends could be observed which 

will lead to advises to review tactical decisions.   

 

7. Analyze in detail the demand distributions.  

Seventh, we recommend Slimstock to analyze the demand distributions in more detail. We recommend to 

analyze how frequent different demand distributions appear. The assortment of retailers also consists of 

SKUs facing intermittent demand. The latter could be modelled by a compound Poisson or negative Binomial 

distribution. The assortment also contains normal and frequent movers. For those items, further research 

has to be conducted on the demand distribution that best fits the data (e.g., Gamma)  


