
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Understanding athletes preferences
of sport activities through ranking
based news feed recommendation

Stefano Perenzoni
Final project report

2021/2022

Supervisors:
dr. ir. D. Reidsma

dr. E. Mocanu

Human Media Interaction Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands



ii



Abstract

Product personalization is essential to provide users with personalized content and
retain them. Recommender systems are algorithms which give suggestions on what
the users may find more interesting. In this thesis, we want to implement a recom-
mender system to personalize adidas Runtastic’s news feed. Firstly, we analyse the
historical data of Runtastic apps to understand the business context and needs.

This thesis then proposes an approach to optimize diversity within ranking al-
gorithms which does not rely on a diversification-aware loss function. Instead, we
suggest Div-NDCG, a diversity-aware evaluation metric to be used in the model se-
lection process to optimize both NDCG and the diversity metric by selecting the best
model and dataset. Experiments are conducted on Runtastic historical data, from
which we built multiple different datasets. The datasets are built through the com-
binations of different feature engineering and labelling techniques. Both heuristic-
based and machine-learning models are then trained on tested on the datasets. By
comparing their performances, we show that the diversity-aware evaluation metric
better helps choose a model and dataset that optimize both metrics.

Finally, we propose an architecture to implement the tested models on the cur-
rently deployed Runtastic apps to provide product personalization.
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Chapter 1

Problem Definition

1.1 Introduction

Runtastic is a digital health and fitness company, proprietary of the mobile sports
apps adidas Running and adidas Training1. These provide the users with a tool to
precisely track their activities and effort, while offering the opportunity to connect
with other athletes and actively engage with them. The main goal of adidas Running
is to provide a tracking tool for an endless list of sports such as running, cycling
and team sports. Differently, the adidas Training app makes available a series of
body workouts, with or without extra equipment. The apps also offer other sports
and activation related features such as special challenges and monthly reports of
the performed activities. Moreover, the two apps also share a social section, shown
in Figure 1.1. Users can connect with their friends, have a look at the activities they
have carried out, interact with them and show their support. As said, user profiles
are shared between adidas Running and Training. Users indeed only require a
single profile and the social interactions, as of added friends and posted activities,
are synchronised through a news feed section shared between the two apps.

Currently, the news feed section of the adidas Runtastic’s apps shows the sports
activities performed by a user’s friends in chronological order, according to the time
they were completed, as shown in Figure 1.1. This is not optimal in the scenario in
which we want to provide the users with the content they would most likely prefer,
when he or she is scrolling through the social feed. For this reason, this research
aims to analyse the feasibility of a personalised news feed. The goal of the final re-
port is to show the relevance of a personalized news feed for Runtastic, explore and
consider valuable alternatives for a recommender algorithm, implement and com-
pare them based both on their offline performance and on the right fit they represent
for Runtastic’ business case.

1runtastic.com

1

runtastic.com


Figure 1.1: A view of the adidas Running news feed section.

1.2 Context and Background

After being acquired by adidas, Runtastic went through a rebranding process for
both apps in order to better help adidas reach their purpose and goals. Even if
the two, adidas and Runtastic firstly remained independent of each other, they work
together with the goal of increasing adidas’ brand credibility through better sport
experiences and a community connected with the brand that makes the users feel
connected between each other.

Creating a community of athletes is essential for adidas Runtastic for three main
reasons:

• Community as strategy: In 2018, adidas launched a membership program,
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which strongly moved the focus toward member experience. Runtastic wants
to make its members feel part of the brand and its community. To do that,
adidas offers personalized experiences to their customers by rewarding both
sports apps engagement and purchasing activity.

• Community as retention tool: Runtastic strongly relies on the concept of com-
munity in order to activate its users, in the sense of doing sports and tracking
their activities. Adidas uses adidas runner, physical communities of runners,
to connect runners around the world. Complementarily, Runtastic has groups
in its apps to form communities and let them interact digitally. Every group has
the opportunity to define its own events in order to organize runs and activ-
ities. Moreover, adidas Running offers multiple challenges where a user can
participate, track, and monitor his activities as an individual or as a group. Both
challenges and groups have been proving essential to retain users and make
them come back to the apps.

• Community as word of mouth: Online communities have been proven essen-
tials for word of mouth communication [1]. Adidas also relies on the creation of
communities to spread knowledge of its products. For example, adidas Run-
ning allows attaching ad-hoc pictures for each tracked activity. For each car-
ried out activity, a user can attach up to ten pictures, showing, for example, the
place where he went hiking. Finally, performed activities can be shared with
a broader group of friends through more popular social networks, as shown in
Figure 1.2

All these three components of community creation come together in the social
features of the Running and Training app.

While Runtastic sports apps include many different features, users mainly use
the apps because they offer them the opportunity to track their activities, check their
progress and monitor how they are performing over time. Whether they are commit-
ted athletes or more sporadic ones, users might be seeking motivation from differ-
ent components. For example, the adidas membership program aims at motivating
sporadic athletes through the connection to the adidas brand. On the other hand,
monthly advanced reports are offered by Runtastic in order to motivate committed
athletes.

Additionally, being part of a bigger community is also a strong motivation. Users
are motivated by being part of a community to which they feel connected. Groups
and challenges, among the other features, work towards motivating users. However,
reciprocal motivation mainly happens through interaction between users. Historical
data suggests that users receiving interactions from their friends engage more with
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Figure 1.2: An example of an automatically generated recap image which can be
shared with friends on social networks.

the app, as shown in Chapter 3. Also, users giving out reactions to other people
tend to later be more engaged and activate more.

So, with the goal of retaining more and more users, Runtastic wants to strongly
focus on the social features in the two apps. The news feed section has been iden-
tified as a crucial step in the user journey in order to engage and constantly activate
the users. Indeed, once a user spends time in setting up a social profile, completing
it with a profile picture and a personal description, he or she expects to be able to
connect with other users, see their relevant content and interact with them. There-
fore, it is important to make a user’s action visible to those who are following him
and are interested in his sport activities.

User research was also carried out, by the user research team, on Runtastic
users in order to understand their social mindset, both inside and outside the two
apps. These include both surveys sent to a bigger audience and also one on one
interviews to understand individual needs. Insights revealed that users strongly rely
on the community of people they are connected to on the apps in order to find
fitness motivation and inspiration. In a first survey about social profiles, out of about
six thousand users of either app, 57.38% said that they use the social profiles in
order to inspire others. 40.23% of the survey population also revealed that receiving
interactions and comments from their social friends motivate them to go for the next
activity.

The News Feed section of the apps, therefore, is the place where such moti-
vation has to be found. It allows people to see friends’ content and let them know
whether they are impressed by a particularly impressive performance or by great
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looking pictures attached to the news feed post. Facilitating a high number of in-
teractions is essential for both the giver and the receiver of the same in order to
improve motivation and engagement.

1.3 Problem

With the news feed being a major tool for engagement, we have to make sure that
the users actually engage with what is shown them. The news feed is indeed the
place where the content of social connections is consumed. In Runtastic’s particular
case, this happens through likes and comments. However, historical data has shown
that only a few users actively engage with their community through social interac-
tions, as explained in Chapter 3. Indeed, Runtastic measured a Social Interaction
Rate (SIR) lower than ten percent in the last few months. SIR is a performance
indicator that calculated the ratio of monthly active users who have at least given or
received one social interaction.

Runtastic community-oriented strategy is strongly impacted by such lack of inter-
actions. Indeed, without giving and receiving interactions, the sense of connected
community does not fully spread amongst the users. Consequences are a weaker
connection with both the other members and the brand, lower engagement, and a
slower creation of online communities which results in a low level of word of mouth
engagement of Runtastic products and initiatives.

Moreover, the lack of incoming reactions despite having multiple followers poten-
tially represents a loss of motivation for social users, which also causes a decrease
in social awareness. Indeed, previous studies suggested that receiving social feed-
back encourages users to increase their interactions towards other users [2].

1.4 Solution and goals

We believe that personalizing the News Feed by displaying to each user the most
relevant activities for him can increase the impact of the apps and improve the prod-
ucts. Indeed, historical data has shown that users tend to interact more with partic-
ular kinds of activities, which are more relevant to some kinds of users than others,
and therefore drive more interactions. For example, some users prefer activities
where one or more images are attached, while others would rather see posts from
their closest friends.

Recommender systems have changed the way users access, find, and interact
with information in many fields. Users are now used to being targeted with tailored
information meeting exactly their specific needs [3]. These models are learnt and
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developed based on historical data to predict user interests with the best recommen-
dation possible. To do that, recommender systems predict whether a user prefers
an item rather than another in order to maximize the probability of the user interact-
ing with the proposed item. Nowadays, they represent a win-win use case for both
companies and customers [4]. The former are able to engage users more, increas-
ing their value and minimize manual overhead. The latter are offered an improved
service that is able to provide them what they really need rather than showing noisy
and irrelevant information.

Recommender systems have been adopted in many different use cases, impact-
ing almost every aspect of people’s digital lives. Personalized content is showed
users whenever they browse a search engine, or scroll through the products of their
favourite e-commerce website. Also, smart recommendations became crucial within
social network [3]. Here, these are involved in two use cases:

• Following or friendship recommendation, where a user is suggested a list of
other people he might be interested in connecting with.

• News feed post personalization, where a user is displayed the content he is
most interested in anytime he or she opens the app.

The latter is particularly important for most users who do not expect to receive con-
tent ordered chronologically, but instead sorted according to their interests. Indeed,
the most obvious solution in case any kind of advanced algorithms is developed is
to show the news feed in chronological order, showing at the top the most recent
posts [5].

This is also the case for adidas Runtastic. Recommendation Systems could then
be used to understand users’ preferences and get the most relevant activities for
them. The goal is to increase awareness and interactions in the news feed by show-
ing the user the content they are more interested in. This thesis aims at studying how
the technology of recommender systems can be applied to Runtastic’s use case.

There are a number of technologies that allow us to personalize Runtastic’s news
feed: collaborative filtering methods based on the social interaction graph or content-
based solution working upon a user profile and the characteristic of specific activi-
ties, for example. We need to understand what better satisfies our requirements.

The proposed solution should be able to increase the interaction within the News
Feed by showing relevant activities at the top. However, there are two more con-
straints that have to be considered. Firstly, we previously mentioned the importance
of receiving interactions in order to motivate and engage the users. We not only want
to increase the social interaction rate, but we also want to maximize the number of
different users receiving interactions. Diversity, formally defined later in Chapter 4,
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is a particularly important metric. It is of interest of this thesis to include a measure
of diversity within the evaluation of the proposed models.

So, we want to propose a personalized news feed with two main purposes:

1. Displaying personalized content to facilitate social interactions.

2. Displaying diverse content to ensure all users receive interactions.

In the second place, we want to propose a solution that can be put into produc-
tion according to Runtastic capabilities and used in Running and Training apps to im-
prove the products. Indeed, a fully personalised news feed would require a real-time
use case. However, because of a longer data velocity in Runtastic’s data sources,
this is not trivial. Data velocity is the speed in which data is tracked on the apps,
cleaned and made available, and this is approximately eight hours for Runtastic’s
apps. A possible solution can be scheduling the operations of feature engineering
in order to have the most updated data available at run-time, for example.

In order to decide the requirements, we should consider the role of the news feed
section within Runtastic’ apps and want we want to accomplish. As said, activities
are now shown chronologically with no personalization at all. So, a less complex
rule-based model would most likely be already able to improve the amount of social
engagement. At the same time, it would allow for a light and fast-to-run solution
while providing great understanding of why some activities are ranked higher than
some others.

However, researchers have shown how more complex machine learning ap-
proaches can push the performances even further, especially when trained over
historical data describing the past user’s interactions [6]. Chapter 2 deeps dive into
an up-to-date literature study while giving particular importance to aspects relevant
for our case. In particular, it discusses how recommender systems and ranking al-
gorithms have been applied to personalize the content of a social news feed. Such
investigation is necessary in order to fully address the main research question of
this thesis.

1.5 Research questions

The contribution of this report is mainly practical and lies in researching how the
Runtastic’s apps can be improved. A second major contribution consists of research-
ing how diversity within the recommendations can be optimized when selecting the
best model.

Q1: How can the social news feed be personalized?
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After the state of the art is understood, we want to develop a system that is able
to rank the activities according to their relevancy to the user. With activity, we refer to
any sport activity tracked by a user. Automatically, every activity is then displayed as
a post in the news feed of those users following the one who carried out the activity
itself. This problem can be formalized as following:

Given an input x = (q, d) where q, called query, represents a user and d, called
document, represents one activity, it wants to be identified a ranked list of multiple

documents such that these are sorted according to a relevance score s = f(x).

In this research, we want to explore two different approaches in order to compute
such a relevance score: a rule-based model that relies on a series of heuristics and
a machine learning based model trained over historical interaction data.

A heuristic based model can be defined through a set of manually inferred rules.
Such rules can be inferred thanks to domain knowledge of both the data and the
business case and also through interactive visualization techniques allowing us to
identify relevant attributes related to a final relevance score [7]. Such a model can
be used to clearly explain and motivate to the stakeholders the choices made by
the algorithm. Moreover, the recommendations are more predisposed to any cus-
tomization in order to diversify the proposed content.

On the other hand, as Chapter 2 will describe in more details, learning-to-rank
machine learning models have been proved to be able to outperform rule-based
ones. Learning-to-rank can be used to provide ranking-based recommendation of
activities. The activities are then sorted in descendent order and displayed to the
user starting with the activity the user is most likely to interact with. This approach
allows us to leverage historical click data in order to infer which posts the users are
most interested about.

Q2: How can the evaluated models be evaluated?

A first step for the evaluation of the proposed approaches is offline evaluation.
Offline evaluation is performed on a portion of the data that was not included in the
training dataset. This is used to assess how a model is performing with regard to
some predefined evaluation

When it comes to understanding what is the best approaches, different point
of views need to be explored. To start with, offline evaluation is necessary to un-
derstand how the model would perform on new unseen data in terms of ranking
capabilities. These can be assessed through ranking metrics such as Normalised
Discounted Cumulative Gain (NDCG), or Mean Average Precision (MAP). However,
additional diagnostic metrics can provide a bigger picture and a clearer understand-
ing of how the model behaves. These can still be measured in an offline environ-
ment, but are not strictly related to how the items are ranked. Differently, they can
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describe how the models would help reach certain goals and needs, which drive the
business case itself.

Q3: How can we guarantee results diversification in the chosen
models?

We mentioned the importance of showing content coming from many different
users, within someone’s news feed. This is defined as results diversification. In our
case, for each query, this is measured as the number of unique activity owners in
the N most relevant activities.

This thesis wants to study how we can improve diversity within the chosen mod-
els. It starts with a literature review by looking at what was previously proposed.

Q4: What architecture design better fits the specific needs and the
available resources?

Finally, a production-ready architecture wants to be designed according to the
low amount of resources available. The chosen architecture has an impact on both
the data pipeline and the applied models. For example, if a model has to be run
asynchronously multiple times for each user, extracting complicated features out of
a user past behaviour is made more critical.

This thesis wants to explore how personalization can be accomplished through
the discussed models, and what other uses there are besides a fully personalised
news feed.

1.6 Outline

The remainder of this report is organized as follows. In Chapter 2 an extensive study
of the current state of the art is provided. I will go through many different aspects
in order to provide a figure as complete as possible. These include recommender
system, ranking-based recommendation, rule-based ranking algorithms, learning-
to-rank machine learning models, and the application of the latter to the specific
case of news feed recommender. Then, Chapter 3 gives strong fundamentals to the
project and shows, through detailed analysis, why this is relevant for adidas Run-
tastic. Following, Chapter 4 explains the methodology followed for such project. It
starts by explaining what algorithms have been considered and implemented and
which tools were used to do so. Section 4.2 gives more details about the available
data and how the dataset was collected. Then, it is explained how we will evaluate
the proposed models. Chapter 5 shares the details regarding the technical imple-
mentations and what experiments, through the combination of different algorithms
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and data configuration, were carried out. They are evaluated and results are re-
ported. Finally, Chapter 6 goes into details of the proposed architectures, describing
how the proposed model can be brought into production in Runtastic’s apps.
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Chapter 2

Related Work

This chapter summaries the results of the conducted literature study, comparing the
available results with the current needs of our use case. To start with, a description
of recent developments regarding recommender systems is given. Then, the spe-
cific case of learning to rank, and ranking-based recommendations are expanded in
details. Finally, practical applications to news feed recommendation are discussed.

2.1 Recommender Systems

Recommender Systems have been gaining popularity with the increase of available
digital contents on services such as e-commerces, streaming platforms and social
networks. There are different definitions describing recommendation systems in
different terms.

Ricci et al. described them as a combination of three main aspects: users, items,
and interactions [8].

• A user is the target of the recommendation. A user can be represented by
an ID or by features describing him and his behaviour. The most obvious
attributes include information such as gender and age.

• An item denotes what the system recommends to the users. For example, this
could be a product in case of an ecommerce or a post in case of a social net-
work. They can be represented by a single ID or by a feature vector describing
the item’s content and characteristics.

• An interaction happens between a user and an item. This measures how a
user responded to getting recommended a specific item by the system. It is
also referred to as feedback. Feedback can be measured with two different
methods: explicitly or implicitly [9]. Explicit feedback is expressed by the user
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through a call to action. This includes, for example, ratings and reviews. Dif-
ferently, implicit feedback is deduced from the user’ actions and behaviour.
Examples are watched content and clicked links.

The final goal of a recommendation system is to recommend items to a user for
which an interaction is likely to happen.

There are many taxonomies categorizing recommender systems according to
their characteristics. One of the most globally used ones is that defined by Burke et
al. which divides recommendation systems into three main categories [10]. These
are: collaborative filtering, content-based, and knowledge-based recommender sys-
tems. The first two, described in Figure 2.1 represent the most applied solutions
within production environments [11].

2.1.1 Collaborative Filtering based

Collaborative Filtering (CF) is a technique used for recommendation systems. It is
able to make recommendations for a user based on the opinions on an item of other
users with similar interests [12]. There are two types of well known collaborative
filtering techniques: user-based and item-based [13].

The first one makes recommendation for a user based on items interacted by or
relevant to similar users. Similarly, the latter looks for items that are similar to those
users liked in the past. These approaches further divides into two more categories.
Collaborative filtering techniques can be either memory-based or model-based [14].
The former calculates the similarity between uses or items through metrics such
as Pearson similarity or cosine similarity [15], [16]. Such models have been widely
used in production thanks to their easy, affordable, and intuitive implementation.
Also, they allow for easy integration in order to handle new data and scenarios. On
the other hand, these approaches come with a series of limitations. A first, obvious,
one is a direct consequence of the similarity-dependency. Indeed, these are not
able to handle sparse data because of the lower number of common items between
users. Moreover, they require the similarity to be calculated between each pair.
Therefore, these techniques do not scale well for extremely large datasets. Thanks
to the advancements of machine learning algorithms, model-based collaborative fil-
tering have been studied able to both achieve better performances and scale more
efficiently. These model use historical data such as rating or binary labels to train
and learn a machine learning model and then make the final predictions. Many ma-
chine learning models have been proposed for such a task, for example, clustering
models [17] and Bayesian classifiers [9], [18]. Recently, deep learning architectures
have been applied to collaborative task with improvements in performance and more
accurate recommendations [19]. He et al. proposed a neural collaborative filtering
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based which was using a multi layer perceptron in order to model the interactions
between users and items [20].

Figure 2.1: Recommendation logic for collaborative filtering and content based sys-
tems

2.1.2 Content based

Content based recommender systems make recommendations for a specific user by
looking for items similar to those liked by the user in the past. The idea is to look at
the aspects characterizing an item and identifying the main features that distinguish
such item. These characteristics are used to build a user profile. Eventually, new
items are compared with the user profile in order to decide what are the most similar
items and recommend them [11]. Content based filtering techniques mainly work
on two components: a user profile and an eligible item. Once the attributes of
the two components are retrieved, the model can simply determine whether the
item is relevant or not for the user [21]. For this final task, two approaches have
been explored in the literature. Firstly, rule based models were used. These are
defined through a set of heuristics normally used in traditional information retrieval
methods [22]. On the other hand, recommendations are generated by a trained
machine learning model. Here, a classification task can be planned if the target
label is either interacted or non interacted. Differently, if the goal is to predict a
continuos rating, regression algorithms can be used [23].
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2.2 Learning to Rank

Traditionally, recommendation system were built using a rating score that was in-
ferred by the user interactions. This was either binary or could have assumed multi-
ple values. For example, in the popular MovieLens dataset, ratings ranged from 1 to
5 [24]. More recently, ranking-based algorithms were proposed and able to outper-
form rating-based ones in many use cases [25]. These models directly use ranking
to recommend the most relevant items for users instead of ratings. So, ranking-
based recommendation systems aim at ordering a list of eligible items according to
their relevance. Differently, rating-based ones aim at predicting what is the rate a
user would give to an unseen item and later sort such items based on the predicted
rate in order to provide the final recommendations. In summary, the goal of learning-
to-rank is to learn the best ordered list of items, while rating-based models aims at
learning what is the exact rating a user would give to an item. While using the latter,
a recommendation task can intuitively be cast as a ranking problem, just by ordering
the items according to the predicted rating. In some applications, the exact rating
may be not of interest, while more importance is given to the relative order of the
items. As a solution, learning to rank (LTR) algorithms have started being used to
build recommendation systems.

Figure 2.2: Typical supervised framework of a learning to rank algorithm [26]

This type of algorithms was not new within the literature, but it had already been
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intensively explored within standard information retrieval tasks, such as search en-
gine [27]. These algorithms are a branch of supervised machine learning. Normally,
they require training data labelled with a relevance score, which defines the final or-
der of the recommendations. Figure 2.2 shows the typical framework. The model is
fed with queries qi and each query is associated with many documents xi. For each
query, the ground truth yi is represented by the optimally ordered list of documents.
Ranking algorithms can be categorized into three main classes: pointwise, pairwise,
and listwise. All the three methods demonstrated different characteristics in terms
of performances and shortcomings [28].

2.2.1 Pointwise

Pointwise algorithms are able to learn to rank items from a particular mapping of the
scores assigned by users to individual items, as a typical regression problem [28].
This is the first families of LTR that has been researched. These models do not
learn the relative preference of a user towards items, but instead learn the absolute
likelihood of a user’s interests.

This approach uses a loss function typical of regression tasks, measuring the
distance between the predicted relevance score f(Xi) and the actual score yi. For
example, Mean Square Error (MSE) is used by many implementations of such algo-
rithm [29].

MSE(S, Y ) =
N∑
i

(si − yi)
2 (2.1)

So, loss terms are computed for each pair query-document and then summed
together to compute the total loss.

The final ordered list is retrieved by sorting the documents by their relevance
score with respect to the query Q. In the past, machine learning models such as
Support Vector Machine (SVM) were applied to this problem [30]. Also, tree algo-
rithms for order-wise classification and regression were also adapted [31].

Because of the foundation this approach is based on, there is clearly a gap
between the actual objective of a ranking task and the training goal of pointwise
ranking. These models are still able to reach good performances when applied to
particular use cases. If the true relevance score for every query-document pair is
well-known, then pointwise approaches can be a feasible solution. However, often
such scores are not known but what is known is what items, those chosen by the
user in the past, are more relevant than others, those ignored by the user.
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2.2.2 Pairwise

Pairwise approaches formalize the ranking task as a classification problem by pre-
dicting which one of two documents is more relevant for a query. Therefore, the
concept of absolute relevance score is replaced by that of relative preference. A
pairwise model is trained by executing the following steps:

1. Takes document pairs correlated to the same query.

2. For each pair, a relative relevance label is calculated by observing the train
relevance scores.

3. Trains a classification model from the labelled data

Eventually, the trained classification model is used to rank new unseen items.
Intuitively, well known classification algorithms have been used [32]. Therefore, the
learning objective of such models is that of minimising a loss function typical of
classification problems, such as Binary Cross Entropy (BCE).

BCE(S, Y ) =
N∑
i,j

yi,jlog(si,j) + (1− si,j)log(1− yi,j) (2.2)

Some known implementations of such technique are RankBoost and RankNet.
The former operates in round, just like a AdaBoost algorithm. Over each round, a
weak learner is trained. Finally, the weak learners are used to update the distribu-
tion between a pair of documents. Such distribution finally determines which item
is ranked above the other one [33], [34]. RankNet, differently, is a deep learning
approach which aims at minimising a probabilistic cost function by applying gradient
descent methodologies [35].

On top of RankNet, better performing models have been explored and imple-
mented. Burges et al. proposed LambdaRank, an extension of RankNet which only
requires the gradients of the costs and not the costs themselves [36].

Besides outperforming pointwise methodologies, these models also shown some
shortcomings. Firstly, the extremely high computational cost of generating the train-
ing samples limited the applicability of these models in real-world scenarios. A sec-
ond limitation arises when such models are applied to data characterized by three
or more relevance score. Indeed, because of the mapping to a classification prob-
lem, such algorithms and not able to catch and differentiate about the distance in
relevancy between two documents.
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2.2.3 Listwise

Pointwise and pairwise techniques are able to solve ranking tasks by mapping them
to either a regression or classification one and minimizing a chosen loss function for
these kinds of tasks. Therefore, the loss function does not match with the typical
evaluation measures of a learning to rank task such as Mean Average Precision
(MAP) or Normalized Discounted Cumulative Gain (NDCG), introduced in Section
1.1. Differently, the goal of listwise methods is to maximise the chosen ranking
evaluation metric.

In order to accomplish that, many approaches were proposed. Taylor et al. pro-
posed SoftRank. So far, we talked about deterministic relevance scores for each
query-document pair. The idea of SoftRank is to predict a smoothened probabilistic
score [37]. Such smoothening is used to calculate probability distributions for the
final ranks of a document. Therefore, the training objective is an approximation of
NDCG, called SoftNDCG, induced by smoothed scores. Differently, the ListNet al-
gorithm uses Neural Networks and gradient descent to optimize the listswise loss
function [38].

2.2.4 Diversity-aware Learning to Rank

Compared to graph-based solutions, learning-to-rank approaches are not as good
as generalizing results diversification. Li et al. defined result diversification as the
generation of a ranked list of items covering a broad range of topics, where a topic is
a category describing the item, such as the genre in a movie recommendation use
case [39]. Consequently, we refer to diversity as a metric which measures how good
the model is at diversifying the results. As later said in Chapter 4, we proposed a
diversity metric which counts the number of unique users among the top N activities
in the ordered list.

Result diversification is normally guaranteed by the “next document” technique.
The idea is to sequentially choose documents one-by-one based on the ones pre-
viously selected out of the ranked list [40]. It has been shown that such a task can
also be included in the learning process. Reinforcement Learning to Rank has been
proved successful [41], [42]. For example, Slivkins et al. proposed Multi-Armed
Bandit settings have in order to select the best-ranked list that also maximizes user
diversity [43]. However, as multiple list permutations are evaluated, such an ap-
proach is impractical at a product scale.

Other proposed solutions that iteratively select relevant documents to differ from
those previously chosen according to a document similarity function through su-
pervised machine learning methods. The main contribution of these proposals

17



is proposing a loss function that also optimizes diversity according to either user-
defined similarity functions or by learning document similarity automatically [40].

Yan et al. demonstrated the benefits of a diversification-aware listwise approach
by improved performances when compared to both pointwise and pairwise tech-
niques [40]. However, the proposal of a personalized loss function goes beyond the
scope of our project. Indeed, a diversity-aware loss function would add complexity
to both the design and the implementation of the model. Moreover, the mentioned
proposals aim at optimizing diversity in a setting with a high number of topics. Both
Li and Wasilewski’s works used queries characterized respectively by twenty and
twenty-eight topics [39], [44]. However, in our case, the number of topics is upper
bounded by the number of users someone else follows.

Moreover, as later explained in Chapter 4, our goal is also understanding how
the different possible datasets impact the performances and what are the best set-
tings for the production use case. Therefore, we differ from the above by proposing
a method to optimize both diversity and ranking performance when selecting both
the model and the dataset by using a linear combination of the two measures as
evaluation metric.

2.3 News Feed Recommendation

News Feed Recommendation is one of the most important practical applications of
recommender systems and ranking algorithms, given the popularity of social media
platform nowadays. Studies have shown that more than one user out of two strug-
gles with keeping up with the number of new news feed posts whenever they open
an app. Also, they complained about being displayed non-relevant content with re-
spect to what they are really interested in [45]. Ranking news post by relevance aim
at solving this problem.

Supervised ranking models have been applied to get such relevance order. There-
fore, in order to be trained, these models require the data to be labelled with a rele-
vance ground truth. Many approaches were proposed regarding how to model such
relevance score. A popular approach is that of relying on implicit feedback and han-
dling relevance as a binary value. So, for a user, a post can be either relevant if the
user interacted with it or non-relevant, if the user did not interact with the post. [46].
However, mapping the relevance score to a binary target also comes with some
shortcomings. Mainly, a binary target is obviously not able to model the difference
types of interaction a user can have with the posts. Indeed, the majority of social
media platforms allow the user to interact with a post in many ways. For example,
both liking and commenting a post is implemented in basically all social network.
To fill such gap, industrial news feed ranking systems include multiple metrics and
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feedback in the computation of the supervised label as a linear combination of the
different feedback [47]. Combining multiple feedback brings the big advantage of be-
ing able to relate the relevance score more closely to the business goal of a project.
For this reason, such approach is often applied in production environments. A third
different relies once again on multiple feedback. However, instead of combining it
within a single label, the multiple relevance scores are used to train different models
which are later ensembled together [6]. Such approach allows understanding better
how users’ interests affect each of the feedback. Moreover, it does not deny the pos-
sibility of combining together the singular predictions by weighting them accordingly
to the business goal. However, on the other hand, this obviously require more mod-
els to be trained and consulted for every unseen data point. Therefore, scalability
might come less, especially in scenarios with limited resources.

As discussed in Section 2.2, a ranking algorithm takes as input a query Q and a
document D. In the case of news feed recommendation, Q consist of the user who
is viewing the posts in his news feed while D consists of the documents themselves.
Therefore, modelling the user and the post is crucial. Historically, in machine learn-
ing models, the two components are modelled through a handmade feature vector.
Within news feed, many features have been explored. To start with, a user is nor-
mally represented by his past behaviour and activity. This can be done not only by
looking at the historical of posts a user interacted with, but also by looking at other
behaviours of the user on the platform. For example, Chen et al. proposed a per-
sonalized tweet recommender system that strongly relies on the past tweets posted
by the user himself. Also, more static parameters such as demographic of the users
were proved critical in real world recommendation systems [48]. The representation
of a post is also important. Intuitively, this can be represented through its content,
such as text and images [49]. However, in many news feed, such as Runtastic’s,
activities are displayed with a quite minimal amount of information. In adidas Run-
ning and Training app, for example, each post shows the type of sport done in the
activity, its duration, and some limited information about the physical effort made by
the athlete, such as burnt calories. Also, a very short caption and attached images
are allowed. However, these features are not very spread among our user base
and General Data Protection Regulation (GDPR) requirements do not let us access
such information. Therefore, a representation of a post strongly relies also on the
representation of the user who performed it [50]. Finally, features modelling the in-
teractions between the two users and other relevant social features started to be
included [49].

More recently, deep learning architectures allowed the use of more complex em-
bedding to model the user and the and post. Such frameworks made it more efficient
to include negative instances within the representations. Wu et al. recently proposed
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a neural networks based architecture in order to both incorporate multiple feedbacks
and accurately distil negative instances in addition to the positive ones [6]. Even-
tually, the user and news embeddings are used to multiple relevance scores, which
are then used to create an ensemble model.

This step of using the query and the documents modellings to retrieve the final
relevance scores in the last step of a news feed ranking approach. As previously
said, this can be eventually done through heuristic based models or through model
training. Rule based news feed recommendation systems are still widely used in
real world applications because of their flexibility, scalability, and explainability [51].
Berkovsky, for example, proposed a personalization algorithm which calculated rele-
vance score by applying a variation of the tie strength model, which gives particular
importance to the social circle of the user [52], [53]. Differently, many supervised
ranking algorithms listed before have also been applied to news feed recommen-
dation tasks. For example, De Maio proposed a pairwise LTR approach that uses
users’ past behaviours and tweets content to predict a relevance score calculated
as a linear combination of feedbacks such as whether the tweet is retweeted or
replied [50].
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Chapter 3

Background and motivation

This chapter describes the results of the analyses that were performed in order to
understand the contribution to Runtastic products and the feasibility of a person-
alised news feed section. Within Runtastic, every project is indeed prioritized ac-
cording to how this relates to current goals and strategies. So, analysing the current
use of the news feed, wanted to show how known Key Performance Indicators (KPIs)
and metrics would compare between users not socially active within the apps and
users who also actively used the social sections.

Some of the important concepts that will often be referred in this and the following
sections are:

• Monthly Active Users (MAU): This first metric measures the number of users
who opened and navigated the apps at least once over the month of reference.
This is also calculated over a year (Yearly Active Users) or over a single day
(Daily Active Users).

• Runtastic Attribution Model (RAM) Engagement: Within Rutastic’s teams, the
RAM is a well established and extensively used segmentation model which
was developed by Runtastic data team. In particular, it is an RFM segmen-
tation model, a model that differentiates users by looking at three variables:
Recency (R), Frequency (F), and Monetary amount (M) [54]. In Runtastic apps
all the three variables are related to the tracking of activities. Recency is mea-
sured as the days from the user’s last activity, frequency measures how often
a user performs an activity, and the monetary aspect indicates how intense
the performed activities were by using the number of burnt calories. These
three values are linearly combined to calculate the RFM score of a user. The
RFM score of a user defines how engaged he is. To make it more readable to
stakeholder and non-technical people, groups of users are created according
to their RFM score. For example, Figure 3.5 shows three engagement groups.
If a user has an RFM higher than a threshold T , he or she is classified as
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retained and engaged otherwise the user is classified as retained and not en-
gaged. Finally, if the RFM score is particularly low, the user is classified as
lost. Users who are not lost are also referred to as retained users.

This is an example of a reduced version of the RAM to simply distinguish be-
tween new, not engaged, and engaged users. However, once the RFM value is
calculated, more thresholds and therefore engagement labels can be defined.
So, when referring to engagement of a user, we indicate the label the RAM has
attributed him or her. Given a group of users, for example users tracking cy-
cling activities rather than walking ones, and observing in what segments they
are placed, we can understand how engaged, on average, a certain group is
and compare it with other users.

• Time Spent in News Feed (TSNF): This is an important KPI when it comes to
assess the importance of our social features. It measures how much time, in
minutes, users spend looking at the news feed section over a specified period
of time. Normally, this and other KPIs are calculated on a monthly basis.

Although this sections tries to give as much context as possible to motivate a
personalized news feed in details, it is important to notice that much of the anal-
ysed data I was provided with is not publicly available outside Runtastic employees.
Therefore, in the following paragraphs, approximations, ranges, and percentage ra-
tios are used whenever absolute numbers are considered too sensitive.

Runtastic has been tracking and storing usage data since the creation of its prod-
ucts. Since scraping over the whole dataset requires days, we decided to analyse
the data from a time span of one month, spanning from January 1st, 2022 to Jan-
uary 31st, 2022. In this way, we were able to perform calculations in a reasonable
amount of time of a few hours or days while, at the same time, including a significant
number of users.

A first analysis explored the importance of likes and comments in the news feed
and how these reflect on users’ engagement. A quantity-quality approach was cho-
sen. Firstly, the users were divided into groups and the amount of users in each
group observed, to understand how many tend to perform a particular action on the
apps. Following, the average users’ engagement, through RAM, is studied. In par-
ticular, we created and studied two groups of users: user giving reactions and users
receiving reactions. Then, correlation between performed social actions and users’
engagement was observed, for every group..
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3.1 User giving reactions

We started by analysing the correlations between giving out reactions, likes and
comments, and the engagement of a user. To start with, we defined a quantitative
funnel to divide the users within groups. Figure 3.1 shows the user funnel in details.

Starting from the left side, there were about 5 millions users with at least one
app session. We defined these as MAU earlier. Out of these, only approximately
10% have at least one active connection. With active connection, we refer to another
followed users who had at least one activity over the period of focus. Nearly 358

thousands of these users actually uses the social feed section by scrolling their
connections’ activities. Finally, 57% of the users who see someone else’s post also
react to one or more friends’ posts through a comment or a like.

Even though the biggest gap happens between MAUs and users with at least one
active following, it is worth to notice that, out of the users with social connections,
only 37% of them actually engages with their friends. So, on average, only one user
out of three likes or comments a post.

Figure 3.1: Funnel for users giving reactions

This first quantitative analysis shows us how the social features allowing users
to interact with their friends are spread among Runtastic’s users base. Differently,
by qualitatively looking at the RAM segments of the different groups, we can notice
correlation between being socially active and being engaged within the apps. Figure
3.2 shows, for each cohort, the portion of engaged users over the total number of
users.

Besides the user cohorts introduced before, here we can notice two more. Firstly,
users that view social posts but do not interact were considered. This cohort is
obtained as a set difference between the set of users seeing friends’ one or more
posts and the set of users seeing and interacting with one or more posts. Doing so,
we wanted to enlighten the difference between reacting and not reacting to activities.
Then, on the furthest right, an additional group was considered for users at the 50th
percentile regarding the number of given reactions. After observing an increase in
engagement for users interacting, we also wanted to observe whether the users with
a particularly high number of given interactions would result even more engaged.
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Figure 3.2: Engagement for users giving reactions

For the time span we chose, January 2022, this last group is composed of users
that gave fifteen or more interactions.

Starting from the left, about 50% of users with at least one app session are en-
gaged with the apps. This slightly increases for users with at least one active con-
nection, remaining however below 60%. Also, users that use the social feed section
and scroll through their connections’ post tend to engage more. Next, there is a big
gap in terms of engagement between users that react to the viewed post compared
to those who do not react. Indeed, in the former group, seven users out of ten are
engaged while for the latter, the portion of engaged users is, once again, about 50%.
So, there is an improvement of about twenty percentage points between users who
have given at least one reaction compared to users who see the news feed section
but give no reactions.

3.2 User receiving reactions

A second analysis was performed focusing on analysing received reactions. The
same approach as before was applied. Firstly, a user funnel was defined and evalu-
ated quantitatively. Then, correlation between engagements and feature usage was
observed. Moreover, further findings are presented regarding the time spent in news
feed. For the previous analysis the TSNF KPI would have been biased as the way
it is defined would make it circular when analysing users giving out reactions. Dif-
ferently, for this one, we kept the KPI into consideration and looked into the average
and median time users spend in the news feed per month, for each cohort. Table
3.1 summarizes these results.

Once again, Figure 3.3 quantitatively describes the users’ funnel starting with
MAUs, used as point of reference. About 70% of these users also tracked at least
one activity over the period of time in focus. However, only 6% received a reaction
by one of their connections. Only again, we can notice a big gap between users
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with at least one activity, therefore users eligible to receive reactions, and users
who actually receive at least one. Also, it must be noticed that the portion of users
with a received view who also receive a reaction is quite big, about 75%. However,
these users only receive sporadic interactions. Just about 20% of their activities are
reacted.

Figure 3.3: Funnel for users receiving reactions

Such behaviour also strongly impact the engagement of the users. Figure 3.4
shows the portion of engaged users for the different cohorts. The first bar regards
users with at least one app session. There is immediately a big improvement in
engagement while looking at users with at least one activity; about 70% of them are
engaged. A most interesting gap is that between the third bar, users receiving a
view but no reaction, and the fourth one, users receiving a reaction. Indeed, users
from the latter group engage thirteen percentage points more than the other group.
This shows us that there is actually a correlation between receiving reactions from
your friends and being more engaged within the apps. Such correlation lies in the
increase of the percentage of engaged users with respect to the reference cohort,
which is represented by users with one or more app sessions.

Figure 3.4: Engagement for users receiving reactions

As mentioned previously, correlation with time spent in the news feed is also
relevant. This is indeed one of the main social KPI of adidas Running and Training
as it gives a first measure of how important the news feed is for the users. Table
3.1 shows the different user cohorts and both the average and the median time they
spend in the news feed, in minutes, ordered by the former. However, because of
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Cohort name Average TSNF* Median TSNF*

users with app session 3.78 1.08

users with received view post 3.92 1.95

users with activity 4.11 1.15

users with received reaction 13 4.62

users with received reaction percentile 22.92 9.77

Table 3.1: Average and median minutes spent in the news feed section by cohort

a few outliers users who showed uncommon behaviours, averages could often be
misleading. Because of that, we will look at the median. This starts at 1.08 for users
with at least one app session. For the first three groups, no major changes are
shown. Indeed, users with at least one activity also spend a similar amount of time
in the news feed, showing no significant difference. However, there is a significant
improvement between this group of users and those who receive a reaction. The
amount of minutes users with at least one received reaction spend scrolling their
news feed is indeed four times bigger than active users.

3.3 News Feed Retention

Finally, we carried out one more analysis to observe how general social features
impact users’ retention. Some general social features observed are, for example,
adding a friend or commenting an activity. Each social feature defined one specific
cohort of users. For example, social feature S1 defines the cohort Users performing
S1. We used once again the reduced version of the RAM to observe how many
users would retain and engage. However, this time we did not only looked at the
portion of engaged users. Differently, we also wanted to observe how the amount of
churned, or lost, users would change in each cohort.

To do that, we looked at new users and divided them into groups based on the
app features they used over the first two weeks after registration. The analysis in-
cluded about one hundred thousand new users registered between May 2021 and
June 2021. For each feature related to social aspects, one cohort was created.
These are displayed in Figure 3.5. As a user can performed multiple actions, these
cohorts are overlapping. For each cohort, the portion of engaged users, in green,
not engaged users, in orange, and churned users, in blue, is shown. On the left,
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there are active users who did not use any social related feature over their first two
weeks. About 60% of them later churned. It is worth to focus on users liking and
commenting activities, respectively the third and the last bar. These two groups
have approximately an engagement rate 45% higher than the baseline. Moreover,
the portion of churned users is also relevant. Indeed, these are the two cohorts
that shows the lowest number of lost users. In particular, only 6.84% of users com-
menting others’ activities later churn. This is about ten times lower compared to the
baseline. Therefore, this analysis once again shows a strong correlation between
social features and retention.

Figure 3.5: Runtastic Attribution Model segments for social cohorts

From the previously performed analyses, we are not able to point out specific
causation between social features and users’ engagement. However, we showed
that users that are socially active, both in terms of giving and receiving reactions,
tend to engage more and churn less. In the current situation, having a news feed
which is not very used by Runtastic’s users, the analyses’ results are able to motivate
the need of a personalised news feed section. Indeed, there are opportunities in
order to improve both the amount of interacted posts and the amount of time spent
in the news feed.

Secondly, higher engagement and higher time spent within the app are shown
for users receiving one or more social interactions compared to those who do not
receive any. Therefore, it is not only important to maximize the number of posts
someone interacts with, but also the number of users who receive at least one reac-
tion from one of their friends. This can be accomplished with a model that is able to
diversify the content a user sees and interacts with.
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To conclude, it is important to specify that all these analyses show correlation be-
tween the specific social feature and a metric of interests; users engagement, churn
ratio and time spent in the news feed. However, as of now, we are not able to prove
causality between such features and the improvements in the metrics. The only way
we could prove causation would be by A/B testing over such social features. To do
that, ideally, a group of users should be targeted with push notifications advertis-
ing the social section and their friends’ activities. Then, the same metrics observed
before should be studied for such group in order to identify how their engagement
and retention changed after using the social section. However, A/B tests will not be
performed in the work done for this thesis, but will eventually be done later in order
to experiment over the models’ results.
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Chapter 4

Methodology

This chapter describes what algorithms were applied to personalize the news feed
and the possible different approaches explored. Moreover, the complex structure of
the dataset is explained. Finally, the evaluation metrics considered for the different
models are introduced.

4.1 Ranking algorithms

This section describes what approaches will be followed for such personalized news
feed. It starts by explaining why we ruled out some of the previously applied algo-
rithms discussed in Chapter 2. Then, it describes the general algorithms that are
selected and further experimented in Chapter 5.

In this project, we decided to focus on a ranking-based news feed recommender.
Our goal is to implement a content-based method able to rank the different activities
a user can see with respect to the content and the elements they display. So, based
on the characteristics of the user, the activity and the user performing the activity,
we want to calculate a relevance score. These three elements are used to retrieve
a feature vector used as a representation of our data, as explained in Section 4.2.

We then excluded collaborative filtering based methods, which are often consid-
ered the state of the art for recommender systems [13]. One of the main reasons lies
in the extremely high data sparsity of our particular use case. Indeed, data sparsity
is known as a crucial disadvantage of collaborative filtering techniques [55]. With
data sparsity, in this case, we refer to the lack of interactions between a particular
activity and a user. Contrarily to what happens in e-commerce settings, where mul-
tiple users interact with one same item, in our news feed, the majority of activities
do not receive any reaction and the majority of the users do not react, as analysed
in Chapter 3. Therefore, both the social connection graph and the social interac-
tion graph are extremely sparse and not suitable for a collaborative filtering based
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approach.
On the other hand, the content displayed to the users for each activity is very

self explanatory. The users see a limited amount of information such as duration of
the activity and kilo calories burnt. Therefore, we want to leverage such contextual
information by applying content-based ranking.

Another reason why ranking is preferred over traditional recommendations is the
size of the pool of activities we want to rank and recommend. In our case, the size of
such pool is very limited. Indeed, on average, adidas Running and adidas Training
users do not follow many other people. We can assume we want to optimize the
product for engaged users, who open the apps frequently. Hence, every time a user
opens the app, there might be tens or hundreds of activities that need to be ranked.
We do not expect such number to be in the order of thousands. Therefore, we can
avoid using collaborative filtering as a candidate generation tool and focussing on
ranking all the available activities.

So, the idea is to implement a personalized news feed through ranking. The goal
of ranking is that of sorting a list of documents D according to a relevance score with
respect to a query Q. In this project, documents are represented by the posts, also
referred to as activities, as every post represents one and only one sport activity.
Each query Q is represented by the specific user who has seen the posts in his
news feed, regardless if he interacted or not with them.

This thesis mainly proposes two methods to do that:

• Heuristic based model: Rule based models allow us to define a set of rules
out of personal knowledge of the data. Each rule regards one or more features
and are processed together and combined to retrieve a final relevance rank.

• Learning-to-Rank: Leaning-to-rank models leverage past historical data to
learn user’s preferences. It is a supervised learning algorithm which goal is
retrieving a sorted list of activities.

4.1.1 Heuristic-based ranking

A rule-based ranking model uses a set of rules. In our case, we designed each rule
as a simple function. A rule takes one or more column of the feature vector as input
and generate a single numeric output. Such outputs, coming from different rules, are
then summed together to generate the final rank. Finally, the activities are sorted in
descending rank values to define the final ordered list of activities.

We wanted to keep the model simple by using a limited number of heuristics. So,
we only defined three types of rules. These represent three crucial components that
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a user directly sees or derives, when seeing one activity in the news feed. The rules
are the following:

• Activity recency (R1): This is defined as 1/Mi where Mi is the amount of
minutes from publication for an activity i. So, it measures how many minutes
passed between the moment the activity was performed to the moment the
activity was seen by a user in his or her feed. We take the reciprocal in order
to give a higher value to recent activities.

• Past interactions (R2): This is defined as the ratio of unique interactions,
between the owner of the activity and the user scrolling his feed, happened
in the N days prior to the moment the user is seeing the activity. Section
4.2 better defined the behaviour of such in-the-past dynamic features. This
is the ratio of activity interacted over the total amount of seen activities. It is
calculated for every pair user-user.

• Activity content (R3): This last rule keeps into consideration the visual con-
tent displayed for each activity in the news feed. This value is calculated as
the sum of some binary features and some other continuos ones. In particular,
boolean flags are used to indicate whether the activity contained, for example,
the map of the route or if the user attached any picture. The continuos fea-
tures measure the particular sport performance. For example, a higher value
is given to activities with a particularly high amount of burnt calories.

Finally, all the numeric rules are merged into a single ranking score by summing
them together. We calculate the final relevance score as a sum of the rules as
follows:

Score =

|K|∑
k

wk ∗Rk (4.1)

where K is the number of rules and wk is the weight given to each rule.
Such mathematical model obviously resembles a traditional linear regression

model. Indeed, linear regression and historical values could be used to learn the
best configuration of weights. However, we decided to go for the heuristic approach
and manually defined different configurations which prioritize different aspects of the
activities. Chapter 5 uses one weight configuration to run the experiments.

4.1.2 Learning to Rank

The principles of Learning To Rank (LTR) were already defined in Chapter 2. The
idea is to leverage historical data to encode a relevance score for each user-activity
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pair. This can be done with multiple approaches discussed in Section 4.2. Then,
labelled data is used to learn ranking how relevant each activity is to for a user. It is
of our interest to try different implementations for each ranking technique mentioned
before: pointwise, pairwise, and listwise.

Pointwise Pointwise LTR simplifies the problem by handling it as either a classifi-
cation or a regression one, depending on the relevance variable. It therefore allows
us to try many different known algorithms for these two tasks. Once again, the
problem is kept simpler by relying on intuitive models such as logistic regression,
tree-based models, and gradient boosting ensemble models. When the problem is
mapped to a regression task, the predicted value is used to order the list of activities
accordingly. Differently, when the problem is handled as a classification problem,
two approaches could be taken. On the one hand, the activities could be treated
as either relevant or non-relevant. Then, all the ones classified as relevant could be
ordered with respect to some other values, for example recency. On the other hand,
the probability score of an activity to be ranked as relevant, the positive class, can be
used as relevance score and used to sort the list. We decided to apply this second
approach, which allows us to rank the activities more precisely. Whether classifi-
cation or regression algorithms are used depends on the type of label. For binary
label, binary classification algorithms can be applied. In particular, the algorithms
experimented in Chapter 5 are: logistic regression, Support Vector Machine (SVM),
random forest, and gradient boosted trees. Differently, when the relevance label can
assume multiple values, both discrete or continuos, regression models are applied.
The algorithms tried in this project are: linear regression, SVM, random forest, and
gradient boosted tress.

Pairwise Pairwise ranking transforms the ranking tank into a classification one by
considering pairs of items. Within this project, we apply LambdaMART, which is a
boosted tree-based variation of LambdaRank [36]. This approach can be applied
both to a binary relevance label and a continuos relevance score, allowing us to try
different datasets and configuration. LambdaMART is an ensemble method of Multi-
ple Additive Regression Trees (MART) which applied gradient boosting to learn how
to order a pair of items at a time [36]. An XGBoost implementation of LambdMART
was used for our experiments1.

Listwise Through a listwise approach, we want directly optimize the selected rank-
ing metric. We used the LambdaLoss framework in order to incorporate the metric

1XGBoost Ranking
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objective into the ranking task [56]. Such framework let us leveraging LambdaRank
algorithm for optimizing metric-driven loss functions which are directly related to the
task we want to solve. So, by defining the specific loss functions, we are able to
perform listwise ranking using metrics such as Normalized Discounted Cumulative
Gain (NDCG), or Mean Average Precision (MAP), as objective. Section 4.3 explains
how the metrics work and why they are relevant. The problem with these metrics
is that they are rank-dependent and need to be sorted which makes the metrics
non-differentiable and therefore not suitable as learning functions. LambdaLoss is
a probabilistic framework that assume the scores of documents S determine a dis-
tribution over rankings. Given S, the probability of obtaining relevance labels Y and
the probability of a ranked list π are modelled. This finally allows taking both ranks
and scores when defining the loss function [56]. An XGBoost LambdaLoss imple-
mentation to directly optimize NDCG was used in this project.

Finally, we want to leverage distributed computing in order to train and tune the
models and evaluate multiple hyperparameter configurations in parallel. Therefore,
tools such as Spark, scikit-learn, and hyperopt are combined. In parallel parameter
tuning, the same data is propagated to different nodes of the cluster. Each node can
then train and evaluate a centralized model. The parameters optimization is done,
for all models, by directly using an evaluation metric as objective function. Finally,
the best configuration can are tested on an unseen test dataset.

4.2 Dataset Extraction

The dataset represents a big complication of this project because of two reasons.
The amount of data available at adidas Runtastic is tremendously high. In details,
data is tracked and collected for most of the users’ interactions within the app. For
example, for each sport activity, more than two hundred attributes are collected and
persistently stored. This makes it impossible to compute the data locally and makes
it necessary to use modern distributed computing framework such as PySpark 2.

So, both data collection and feature engineering take a consistent amount of
time. To partially overcome such limitation, we opted to focus on a subset of the data
in order to develop and evaluate a Proof of Concept (PoC) model. So, one month
of user impressions and interactions is considered. Also, only users meeting certain
criteria are involved. For example, we want active users with at least a minimum
number of active connections. However, such filtering is applied at the end of our
data pipeline so that we are able to retrieve data for all the users.

2Apache Spark
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The data pipeline is built as sequential blocks. A block is dependent on the
previous ones and therefore executed sequentially. It starts by retrieving the IDs of
the user database. Once the first datasets of IDs has been defined, the features
and the remaining data can be retrieved. Firstly, impressions are retrieved. An
impression is the action a user performs when seeing an activity in its news feed.
Each impression indeed represents one entry in our dataset. Once impressions are
retrieved, we look for interactions, likes and comments. So, out of the past posts a
user seen, we retrieved which ones he liked or commented. These are marked as
two boolean columns in our impressions’ dataset. So, to every interaction there is
a correspondent impression. However, not all impressions also have an interaction.
Those impressions with no associated interaction represent the negative instances
of our dataset. We want to include both positive and negative instances, since it
has been proved this approach normally improves performances and reliability of
the model [57].

Once these components are defined, the pipeline proceeds with retrieving the
relevant features to represent the pairs query-documents, or, user-activity. Here, we
can identify three types of features characterizing each entry.

• Query-related features: These are strictly related to the user behaviour, as he
represents the query. They are also referred to as user context. User context
could either be static or dynamic. The former consists of those features that
are independent of what happened in the past, such as country, gender, and
age of the user. Differently, dynamic features are used to model how the user
behaved in the past N days regarding, for example, the most interacted sport
and the most done sport. N can be chosen dynamically.

• Document-related features: This set of features is related to the activity
shown in the news feed post. They are also referred to as activity context.
These contain anything relevant in order to describe the activity. Obviously,
particularly important are those aspects actually shown on the post, such as
calories spent or time of the activity. Then, they can also model whether an ac-
tivity belongs to a day streak or whether it is a particularly special performance,
for example.

• Query-Document interaction features: These features model everything re-
lated to the interaction between the query and the document. Mainly, they
describe past interactions between the user viewing the post and the one who
performed the activity. For example, how many interactions happened between
the two users in the past N days. Again, N can be arbitrarily chose.

It is of our interest to explore different values of N. We expect that a higher value
gives more importance to the past while decreasing the novelty, differently, a lower
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number prioritizes the content of the post itself. In particular, Chapter 5 goes through
two different values for all our datasets.

When supervised machine learning algorithms are used, our feature vector need
to be matched with a label which represent the final score of the pair. This label
is obtained as combination of the possible interactions a user can have with one
activity in the news feed. In our case, a user can like or comment an activity. There
are multiple possible choices on how to encode such target label. In particular, we
identified three different techniques to incorporate together such information.

• Bipartite ranking: The type of interaction is ignored, and the label mapped
as a binary feature. It is either 0, if the user did not interact with the post,
or 1, if the user either liked or commented the post. Despite being the most
intuitive way, this solution is not able to describe the difference between the
two actions.

• Cumulative ranking: The relevance label is calculated as the sum of the
types of interactions occurred. So, the label can assume three values: 0, if no
interaction between the user and the post happened; 1 if the user either liked
or commented the specific activity; 2 if the user both liked and commented
the post. Such method allows us to prioritize activities that trigger multiple
reactions by placing them at the top of ordered list.

• Weighted ranking: The relevance label is calculated similarly as before, as a
linear combination of whether a like and a comment happened, with arbitrary
weights. So, while previously the weights were equal to 1 for both types of
interactions, this third method allows us to arbitrarily choose the weighting in
order to prioritize different interactions. For example, Section 3 showed that
comments minimize the probability of churning more than likes. So, scoring
comments more than likes would prioritize the former, giving these activities a
higher score.

In Chapter 5, three different datasets, each created with one of the previous
methods, are used to train the selected models and later compared. In this project,
we limited ourselves to just consider liking and commenting as possible interaction.
However, our target label could be improved by considering other types of implicit
interactions the user has with the post. For example, dwell time could be considered
[58]. Dwell time is defined as the amount of time a user spends looking at a post
in his news feed. While we initially considered including it, we finally decided to
exclude dwell time after observing some data quality issues within our tracking data
we would have used to calculate the metric.
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4.3 Evaluation

The models, separately trained on all the obtained datasets, are then evaluated
through offline evaluation. Offline evaluation is performed on a portion of the data
that was not included in the training dataset. This is used to assess how a model is
performing with regard to some predefined evaluation metrics.

In our case, we want to focus on two kind of metrics. Firstly, we want to assess
how accurate the ranked list. So, metrics to measure the relevance of ordered items
are used. In a second place, we want to compare the models on metrics more
relevant to the business case. In particular, we are interested in measuring how
diverse the made recommendations are.

4.3.1 Ranking performances

Mean Reciprocal Rank (MRR) This metric is one of the most typical ones when it
comes to evaluating ranking models [59]. It is defined as the mean of all the users’
reciprocal rank (RR). It evaluates the reciprocal of the rank at which the first relevant
activity was retrieved [59]. It is equal to 1 if an activity was retrieved at rank 1, 0.5 if
it is retrieved at rank 2 and so on. It is calculated as follows:

MRR =
1

|U |

|U |∑
u

|D|∑
d

1

rankd
(4.2)

where U represents the set of users and |U | its module and rankd is the reciprocal
rank of document d for the user u. Despite being one of the most observed metric,
it does not ideally fit our problem. Indeed, MRR efficiently measures performances
of models where the user is only interested in one relevant document, the most
relevant one. MRR does not consider the rest of the ranked list. Differently, our
models returns a list of activities ranked by their relevance, for which we want the
user to browse in its totality.

Mean Average Precision (MAP) This metric is normally used to evaluate binary
relevance models. So, when the list of documents is ranked through a binary fea-
ture indicating either relevancy or non-relevancy to the user. The MAP is indeed
calculated using concepts of binary classifications such as confusion matrix, and, in
particular, precision. Precision measures the percentage of relevant activities in all
the retrieved items.

precision =
TP

TP + FN
(4.3)
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where TP stands for True Positive and is the number of correctly relevant classified
activities, while FN stands for False Negative and is the number of correctly activities
classified as non-relevant.

Differently from MRR, MAP evaluates multiple items of the list up to a specific
cut-off N . Such cut-off N is included into the metric with the precision at N (Pre-
cision@N) metric. This measure the fraction of relevant activities in the top N rec-
ommendations. Such value allows the user to personalize the evaluation metric,
deciding how many elements we want to limit the evaluation to and can therefore
be adapted accordingly to the specific case. For example, if the users of Runtastic’s
apps views about 10 posts per session, on average, we could set the cut-off to 10

to have a clearer view of how our model would perform in the real-world scenario.
Mean Average Precision is therefore calculated as follows:

MAP =
1

|U |

|U |∑
u

AP (u) (4.4)

AP (u) =
N∑
k

precision(k)rel(k) (4.5)

where n is the total number of activities in the ranked list, precision(k) represents
the cut-off to precision@k, and rel(k) is set at 1 if the item at tank k is relevant, 0
otherwise.

As said, this metric handles binary ratings where, for a user, an item is either
relevant or not relevant. However, in our news feed, we want to rank activities placing
at the top those the user is most likely to interact with. Such interactions consist of
either likes or comments, or a combination of the two. Therefore, mapping it as a
binary classification problem would not allow capturing the full picture.

Normalized Discounted Cumulative Gain (NCDG) This last metric has a simi-
lar approach to MAP and give more importance to highly relevant activities that are
ranked at the top of the list. NDCG is able to handle cases where items are ordered
according to a relevance score, which is not binary any more. It evaluates the mod-
els keeping into consideration that highly relevant activities (e.g. activities that could
trigger both a like and a comment), should precede medium-relevance documents
(e.g. activities that would only trigger a like). These should obviously precede items
with no relevancy at all (e.g. activities that would not trigger any interaction)

NDCG is calculated through the combination of the concepts of gain (G), cumula-
tive gain (CG), discounted cumulative gain (DCG), and ideal discounted cumulative
gain (iDCG).
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Gain is defined in Formula 4.6 and simply measure the relevance score. In our
case, it consists of the numerical ratings given by the combination of the explicit
feedback given by the users through likes and comments.

CG(k) =
k∑
i

G(i) (4.6)

Cumulative gain is calculated as the sum of singular gains up to the first k ele-
ments. k represents the length of the considered list of recommendations.

DCG(k) =
k∑
i

G(i)

log2(i+ 1)
(4.7)

Discounted cumulative gain makes up for the main short come of CG which does
not consider ordering of the items. Differently, dividing the gain by the rank accounts
for the position where an activity was placed in the list.

iDCG(k) =

|RELk|∑
i

G(i)

log2(i+ 1)
(4.8)

where RELk consists of the optimal list of relevant documents up to position k,
ordered by relevance.

NDCG(k) =
DCG(k)

IDCG(k)
(4.9)

Compared to the previous two metrics, NDCG is able to consider both the abso-
lute position of an activity in the ranked list and its relevance, represented through a
non-binary relevance score.

4.3.2 Recommendation performances

According to the business reason explored in Chapter 3, we want to evaluate our
systems accordingly. The types of chosen metrics strictly depend on the particular
goal we want to achieve. Therefore, we needed metrics able to evaluate the systems
in areas not related to the users’ historical interactions.

Diversity If we want to maximize the number of users receiving a reaction, the
evaluation of diversity within the recommended users is extremely relevant. It can be

38



defined as the number of different recommended activity owners among the top K

items. So, we want to measure the number of unique users such top recommended
activities were performed from.

We calculate diversity as a percentage so that it can be represented as a real
number between 0 and 1 without further scaling, just like the other aforementioned
metrics. Diversity is defined as the number of unique users divided by the maximum
between K, the cut-off used for evaluation, and the number of other users followed.

Other metrics could be of interest, for example, coverage could be used to mea-
sure what portion of the followed users gets recommended. We decided to just
stick to diversity when it comes to business related metrics as it is one of the most
important objective of our news feed section.

4.3.3 Evaluation Metric

We propose a linear combination of ranking metric, Normalized Discounted Cumula-
tive Gain, and diversity as evaluation metric to optimize both measures while select-
ing the models’ parameters and the dataset. Such metric, referred to as Div-NDCG,
can be trivially calculated as follows:

DivNDCG = w1 ∗NDCG@10 + w2 ∗Diversity@10 (4.10)

where 10 is the cut-off K chosen for the evaluation, while w1 and w2 respectively
weight the ranking and diversity metric.
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Chapter 5

Experiments and Results

This chapter describes the experiments and discusses the results obtained by the
proposed models on the different datasets. The experimented models are: rule-
based ones, scikit-learn and gradient boosting implementations of pointwise models,
a gradient boosted tree implementation of the LambdaMark algorithm and a gradient
boosted tree implementation of a listwise model using NDCG for optimization within
the loss function through the LambdaLoss framework.

Different datasets were built out of one month of tracking data on both adidas
Running and adidas Training apps. More details about the datasets are given in
Section 5.1.

We evaluated each dataset on the metrics mentioned earlier, with a particular
focus on NDCG and the diversity-aware metric with weights w1 = 0.7 and w2 = 0.3.

5.1 Dataset

We used the data pipeline described in Section 4.2 to build the experiment datasets.
One month of tracking data was used, from January 1st 2022 to January 31st 2022.
As adidas Running and adidas Training share a common social section, tracking
data coming from either one or the other was treated in the same way. Each row
of the dataset, called impression, consists of a user seeing one specific activity.
An impression is referred to as interaction if the user interacted with the displayed
activity. Despite the dataset type, the target label is zero for an impression and an
integer bigger than zero for an interaction. These were calculated with the three
methods described in Section 4.2. All the impressions of a user are identified by a
unique pair (user id, activity id). So, the single key user id identifies a query, and it
is composed by all the impressions given by that specific user.
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Time Window. Flexible time windows were used to extract dynamic features de-
pendent on past behaviour. We used two different settings: seven days window
and thirty days window. The latter is a recurrent value in Runtastic’s data products,
which allows us to speed up the data pipeline. On the other hand, with the former,
we wanted to try a different approach which gives more importance to recent users’
behaviour. At the same time, because of a lower number of distinct user another
one can have interacted with in seven days, we expected higher diversity with this
setting.

Data preprocessing. We followed a preprocessing approach to reduce the size
of dataset by keeping relevant types of users, integrate the dataset with features
coming from other table of Runtastic’s database, and encode the features. One-hot
encoding was applied for categorical features and scaling for the numerical ones.
Finally, we filtered out whole queries based on the number of total users followed
and interactions given. Only users following more than five other users and who
have given at least ten interactions were kept.

After applying the time window and data processing, two datasets were created.
The datasets were of the same size, containing the same users and the same ac-
tivities. They differed in how the features were collected. The first one used a time
window of 7 days, while the second one a window of 30 days. Both had three dif-
ferent types of labels. Table 5.1 summarizes the characteristic of the main dataset,
from which the others have been derived. Finally, the dataset was separated with
an 80/20 ratio on the number of users into training and test datasets.

# Users # Activities Size Median # activities per user

13224 2684254 1.6GB 101

Table 5.1: Main dataset size and properties

For what regards activities receiving any type of reaction and activities with no re-
action, the dataset is balanced. Out of the whole dataset, 52% of activities received
an interaction through either a like or a comment from the user of that specific query.
Most of these interactions are likes, as comments are much rarer in Runtastic’ apps.
Indeed, amongst the activities with received interaction, only approximately 10% are
comments. About 60% of the activities that triggered the user’s comment also trig-
gered the like reaction.
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5.2 Experiment Setup

The experiments were run in a distributed computing environment in order to speed
up the hyperparameter process. The used cluster was composed of 4 workers for a
totality of 64 cores and 448 GB memory. For the ML models, model selection was
parallelized across the cores using Hyperopt, an open source tool for automated
parallel hyperparameter tuning [60]. As we used single-machine ML models, Hy-
peropt was used to run in parallel models with different parameters. Tree of Parsen
Estimators (TPE) algorithm is a Bayesian method used for parameter search while
optimizing the diversity-aware evaluation metric. TPE creates probabilistic models
out of the history of previously evaluated hyperparameters to later suggest the next
hyperparameters to evaluate [61]. Bayesian optimization is generally sequential, as
the results of the previous runs have to be known to model the next run’s parame-
ters. So, this is parallelized by modelling the parallelism parameter. This parameter
sets the maximum number of parallel runs. By having parallelism between 1 and the
maximum number of configurations, we are able to parallelize the hyperparameter
process while also exploring larger parameters ranges thanks to the TPE algorithm1.

Both NDCG and Diversity were evaluated with the same cut-off K = 10. Training
and hyperparameters optimization was done on the training dataset by using 5-fold
cross validation and the best parameters chosen. Then, the models were evaluated
on the same test dataset kept as unseen data. The python library ranx was used
for the evaluation of the ranking metrics [62]. Ranx allows us to evaluate different
models on the same dataset and compare them by performing statistical tests. It
offers a series of in-built ranking metrics such as MRR or NDCG. Moreover, we
implemented and integrated our define diversity metric.

We decided to keep a single hold-out test set for the final evaluation, and applied
statistical significance tests to compare the different models and detect statistically
significant improvements. We followed the approach recommended by Smucker et
al. and applied randomization test through Fisher two sample randomization test
[63], [64].

5.3 Bipartite Ranking

This first dataset has a binary label. This section shows how the selected models
performed on both the 7 days and 30 days dataset. For the three ML-based ap-
proaches, the best performing model on the validation sets is evaluated on the test
dataset. In the following tables, only the performance of the best performing algo-

1Scaling Hyperopt
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rithm for each LTR approach is reported. The heuristic-based model uses equal
weights for the three rules explained in Chapter 4.

Table 5.2 shows the performance of the selected models on the ranking metrics
for the 7 days window’s dataset. In the table, every approach tried is identified
by a character. Then, the superscripts over cells’ values indicate whether, for that
specific metric, the approach of that particular row significantly outperformed the
others according to the statistical significance test applied.

# Model MAP MRR NDCG@10 Diversity@10 Div-NDCG@10

a Chronological baseline 0.613 0.647 0.530 0.720bcde 0.587

b Heuristic-based 0.668a 0.682a 0.595a 0.645cde 0.610a

c Pointwise ranking 0.759ab 0.872ab 0.784ab 0.591 0.726ab

d Pairwise ranking 0.764abce 0.883abce 0.795abce 0.604c 0.738abce

e Listwise ranking 0.757ab 0.879abc 0.787abc 0.611cd 0.734abc

Table 5.2: Results on MAP, MRR, NDCG@10, Diversity@10, and Div-NDCG@10
for the bipartite ranking dataset with a 7 days time window.

The chronological baseline is the currently implemented news feed, which shows
activities ordered chronologically, starting from the most recent ones. While achiev-
ing high diversity, the baseline lacks in the other ranking metrics, indicating the short-
comings of such method in facilitating social interactions. The heuristic-based model
is able to significantly increase the ranking metrics MAP, MRR and NDCG@10.
However, it comes with a drop in Diversity. Given the weights used for the Div-
NDCG metric, overall, the latter outperforms the former. The three machine learning
models perform similarly, and they also outperform both the baseline and the heuris-
tic one on the ranking metrics. In particular, the pairwise ranking model performs the
best on all three metrics. Despite a lower diversity, compared to the listwise method,
it performs better in the diversity-aware NDCG metric.

Table 5.3 summarizes the results for bipartite ranking on a dataset created using
a 30 days time window for the dynamic features.

By collecting dynamic features over 30 days, the heuristic-based model achieves
a Diversity@10 close to the one of the baseline, while obviously outperforming the
baseline on the other ranking metrics. Once again, the pairwise method outperforms
all the other models for what regards the three ranking metrics. However, it performs
poorly on diversity and consequently in the diversity-aware NDCG. Because of that,
despite a lower NDCG@10, the pointwise method outperforms the pairwise one on

44



# Model MAP MRR NDCG@10 Diversity@10 Div-NDCG@10

a Chronological baseline 0.613 0.647 0.530 0.720bcde 0.587

b Heuristic-based 0.664a 0.673a 0.584a 0.690cde 0.616a

c Pointwise ranking 0.763abe 0.886ab 0.791ab 0.613de 0.738abde

d Pairwise ranking 0.773abce 0.890abce 0.802abce 0.553 0.728abe

e Listwise ranking 0.758ab 0.884ab 0.789ab 0.562d 0.721ab

Table 5.3: Results on MAP, MRR, NDCG@10, Diversity@10, and Div-NDCG@10
for the bipartite ranking dataset with a 30 days time window.

the Div-NDCG evaluation metric. This shows that including diversity within the opti-
mization evaluation metric over the stages of parameters tuning and model selection
help select a model able to achieve good diversity while only showing a slight drop
in NDCG.

When comparing the performances over the two datasets, the models trained
over the 30 days dataset result in improved ranking performances. In particular, the
ranking model shows an improvement in MAP and NDCG@10. Pointwise ranking
shows better performances in both NDCG@10 and Diversity@10. On the other
hand, for the other models, the improvement in NDCG@10 is followed by a signifi-
cant decrease in Diversity@10.

5.4 Cumulative Ranking

This second dataset has a label built as the sum of the types of possible interaction
happened. Having only likes and comments, here the label can assume three differ-
ent values. Both a 7 days time window dataset and a 30 days one were created. For
the pointwise approach, we modelled the problem as a regression task rather than
a multi-class classification.

Table 5.4 starts with the results for the tried models on the cumulative ranking
dataset with a 7 days time window. Here, the same chronological baseline model
performs with a decreased NDCG compared to bipartite ranking. This is a conse-
quence of the truth relevance scores ranging amongst three values instead of two.

On the other hand, MAP and MRR, which only consider whether an activity is
relevant or not and do not account for its relevance score, show results on the same
scale as before. Also, while NDCG decreases, Diversity does not follow the same
trend compared to the bipartite ranking results but instead it shows improvements
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# Model MAP MRR NDCG@10 Diversity@10 Div-NDCG@10

a Chronological baseline 0.613 0.647 0.460 0.720bcde 0.538

b Heuristic-based 0.661a 0.682a 0.514a 0.636cde 0.550a

c Pointwise ranking 0.763ab 0.889abd 0.721ab 0.598 0.684ab

d Pairwise ranking 0.768abce 0.897abce 0.724abc 0.613ce 0.691abce

e Listwise ranking 0.763ab 0.890ab 0.723ab 0.599abd 0.686ab

Table 5.4: Results on MAP, MRR, NDCG@10, Diversity@10, and Div-NDCG@10
for the cumulative ranking dataset with a 7 days time window.

for different models. Once again, the heuristic-based model shows improved perfor-
mances on all ranking metrics and decreased Diversity@10 compared to the base-
line. Consequently, the former only performs slightly better than the latter on the
diversity-aware evaluation metric. The three ML-based techniques come with an
improvement in raking metrics but a decline in diversity. However, the decline in
Diversity@10 is small. In particular, compared to the heuristic-based solution, pair-
wise ranking is able to achieve a NDCG@10 of 0.724 with drop only to 0.613 in
Diversity@10. The Pointwise and listwise models perform similarly to each other.
Also, ranking metrics are similar to the pairwise one but they come with a lower
Diversity@10. Compared to bipartite ranking, the ML-based models achieve better
performances for both MAP and MRR suggesting an improvement in recommending
relevant activities which tend to drive any type of interaction.

In Table 5.5 are shown the results of cumulative ranking on the 30 days window’s
dataset. For all ML models, the trend is similar to what was observed in bipar-
tite ranking. There is an increase in ranking metrics compared to the shorter time
window’s dataset. In particular, the three ranking techniques show a significant im-
provement in NDCG@10. Once again, the pairwise model performs better than the
others in both NDCG@10 and Diversity@10.

5.5 Weighted Ranking

This third dataset’s label is obtained through the weighted combination of the differ-
ent types of interaction. We weighted commenting an activity twice the weight of lik-
ing an activity. So, there are four possible values for the relevance label. Once again,
regression was preferred over classification for the pointwise ranking approach.

Starting with table 5.6 and the results on the weighted ranking dataset, we can
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# Model MAP MRR NDCG@10 Diversity@10 Div-NDCG@10

a Chronological baseline 0.613 0.647 0.460 0.720bcde 0.538

b Heuristic-based 0.664a 0.673a 0.514a 0.690cde 0.567a

c Pointwise ranking 0.776ab 0.897ab 0.741abe 0.595 0.697abe

d Pairwise ranking 0.780abce 0.903abce 0.743abe 0.617ce 0.705abce

e Listwise ranking 0.774ab 0.895ab 0.739ab 0.607c 0.700abc

Table 5.5: Results on MAP, MRR, NDCG@10, Diversity@10, and Div-NDCG@10
for the cumulative ranking dataset with a 30 days time window.

# Model MAP MRR NDCG@10 Diversity@10 Div-NDCG@10

a Chronological baseline 0.614 0.646 0.412 0.720bcde 0.504

b Heuristic-based 0.661a 0.682a 0.449a 0.636cde 0.505

c Pointwise ranking 0.766abe 0.891ab 0.659abde 0.603 0.642abd

d Pairwise ranking 0.766abe 0.890ab 0.644ab 0.618c 0.636ab

e Listwise ranking 0.759ab 0.895abdc 0.655abd 0.625cd 0.646abcd

Table 5.6: Results on MAP, MRR, NDCG@10, Diversity@10, and Div-NDCG@10
for the weighted ranking dataset with a 7 days time window.

notice that NDCG@10 is even lower with respect to the results obtained in the pre-
vious two datasets. Because of that, the heuristic-based model does not outper-
form the chronological baseline according to the diversity-aware evaluation metric.
Amongst the machine learning methods, pairwise ranking performs poorer than the
other two on the ranking metrics, in particular on NDCG@10 where it is outper-
formed by both pointwise and listwise models. Also, the listwise approach performs
well in terms of diversity. Thanks to its performance on Diversity@10, the listwise
method has the best performance on Div-NDCG@10. Once again, by including
diversity in the optimization metric, Diversity@10 gets prioritized and improves by
allowing the selection of a model able to perform well in both NDCG and diver-
sity. Compared to the results on the previous datasets, despite a general decrease
in NDCG@10, we can observe an improvement in Diversity@10 for all the tested
methods. Regarding the other ranking metrics MAP and MRR, the weighted rank-
ing has similar results as the cumulative ranking, which, as observed earlier, had
improved results compared to the binary one.
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Finally, table 5.7 reports the results obtained for weighted ranking on the dataset
with a monthly time window. An improvement in ranking metrics for the machine
learning based solutions is also observed in this third dataset. Indeed, the mod-
els here outperform the models trained on the previous two datasets. The three
learning-to-rank techniques all perform similarly on the ranking metrics. Pairwise
once again achieves slightly better performances for what regards MAP and MRR.
However, the listwise approach results in the highest Diversity@10 while also out-
performing the other on Div-NDCG@10.

# Model MAP MRR NDCG@10 Diversity@10 Div-NDCG@10

a Chronological baseline 0.614 0.646 0.412 0.720bcde 0.504

b Heuristic-based 0.664a 0.673a 0.461a 0.690cde 0.530a

c Pointwise ranking 0.774abe 0.981abde 0.675abd 0.616 0.657ab

d Pairwise ranking 0.780abce 0.901abe 0.672ab 0.617 0.655ab

e Listwise ranking 0.769ab 0.894ab 0.677abd 0.627cd 0.662abcd

Table 5.7: Results on MAP, MRR, NDCG@10, Diversity@10, and Div-NDCG@10
for the weighted ranking dataset with a 30 days time window.
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Chapter 6

Architecture

This chapter describes how the previously introduced models can be used within
the adidas Running and Training products. Firstly, their possible applications are
discussed in Section 6.1. This does not only focus on a fully personalized news
feed, but also discusses other uses for the proposed ranking models. Then, Section
6.2 and Section 6.3 describes how the proposed use cases would be implemented,
dividing them into two families: non-real-time and real-time applications. Finally,
Section 6.3.1 describes how the process of feature engineering can be handled
in order to be able to make real-time prediction within an environment with limited
resources.

6.1 Personalization

The work of this thesis started from the idea of proposing a personalised news feed
section that could have replaced the current one, based on chronological ordered
activities. However, that is not the only way in which an activity ranker model could
be used on the adidas Runtastic products to engage the users even more. Indeed,
the final ordered list retrieved as output from the proposed models allows person-
alization at many different levels within the apps. For example, this could be used
to improve, through personalization, already existent features. On the other hand,
it can also be used to expand the product and offer new capabilities. Following,
three different applications are described regarding how a ranked list of new friends’
activities can be used to leverage tailored content.

• CRM Notification Customer Relationship Management (CRM) through push
notifications represent a fundamental tool to activate users. However, they
have to be used carefully as users can be easily bothered by not relevant
content. The ranked list of non-seen activities can be seen to decide what is
the most relevant one and target a user with personalized content, inviting him
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or her to interact with the activity.

• Relevant Activities Section A new section can be added to the Runtastic
apps showing the most relevant friends activities a user might have missed.
Ideally, such a section would contain a very limited number of activities while
keeping the news feed ordered chronologically, with no changes. This could
also leverage diversity by, for example, only showing a maximum of one activity
for each user.

• Fully Personalized News Feed The sorted list of ranked activities can be
used to fully replace the chronologically-ordered News Feed by displaying first
the most relevant activities. Therefore, every time a user updates the news
feed, the non-seen activities are ranked and displayed accordingly.

While the first use case can work asynchronously, the last two work synchronously
with the client side requests of the users. In detail, CRM push notifications send out
time is not dependent on the usage of the apps by the user. The ranking model can
be run at any time on a user and the most recent activities his or her friends has
performed. Then, a notification can be sent to the user asking him to check out and
interact with the highest ranked activity. Differently, for the other two use cases, all
the new activities a user can see have to be ranked and ready to be displayed at
the moment the user access the apps. These two different scenarios are defined
respectively as asynchronous and synchronous recommendations. The main differ-
ence between the two lies in when the activities have to be ranked, which impacts
the way all the necessary data is made available at runtime for the model to be run.

6.2 Asynchronous Recommendations

The concept of asynchronous recommendations lies in the fact that the recommen-
dations are not a response to an action performed by a user in the app. Differently,
the recommendation can be performed at any preferred time; asynchronously with
the behaviour of the user in the app. So, asynchronous recommendations are not
triggered by client requests coming from the user’s device.

Given a user and a list of new activities performed by his or her friends, asyn-
chronous recommendations can be made at any desired time by running a saved
model. The concept of saved model is crucial for this section. With saved model, we
refer to any model ready to be applied to get a ranked list of activities. For example,
this can simply be a vector of weights or a trained machine learning model. The
models discussed and evaluated in Chapter 5 can all be used as a saved model.
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Figure 6.1: Flow diagram for asynchronous recommendations.

In an asynchronous use case, the advantage is that both the runtime of the
model and the time necessary to retrieve the needed data are not relevant. The only
requirement is that the two steps are executed one after the other, starting from the
latter. As an example, let’s have a list of N users U for which we want to rank a list
of activities Ai with i ≤ N . As said in Chapter 4, the ID of the user Ui and the ID
of the activities in Ai uniquely identify a query-document pair and are all we need to
retrieve the necessary data.

Once the data is retrieved, it can be given as input to the saved model. For each
user Ui, the output is the list of activities Ai ordered by relevance. Finally, the most
relevant activity can be sent to the user as the content of a push notification. In
this way, the users are targeted with content which they might actually interact with.
Figure 6.1 shows a simple schema of the described process.

6.3 Synchronous Recommendations

Synchronous recommendations are the response to a user’s action performed on
the apps. Whenever a user opens the social news feed or refreshes it, his friends’
new activities have to be ranked and displayed to the user ordered by relevance.
This happens through a continuos communication between the client, the backend
servers, the recommender model, and the data sources. Each component has to
perform rapidly.

The proposed architecture does not change client and backend sides signifi-
cantly. The two components would follow the same structure as the current news
feed. The only slight difference would require the client side to display the activities
ordered according to their rank, which however does not represent a major issue.

On the other hand, both the saved model and the data sources have to be de-
signed accordingly. This thesis does not analyse in details the runtime necessary to
run each model. Differently, we assume the models discussed in Section 5 would
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only add low latency to the current process. Our assumption is supported by relevant
publications which showed a limited time complexity of the various models early dis-
cussed [65], [66], [67]. Moreover, Runtastic relies on Amazon Web Services (AWS)
to effectively manage AI as a service for its products [68].

At last, compared to the asynchronous setup, the major difference lies in the
data sources and in the way data is retrieved. We assumed fast response by the
saved models once all the necessary input data is given. However, retrieving the
data from Runtastic data sources is not trivial in time and its time complexity cannot
be assumed to be irrelevant to the whole process.

In this section, we focus on how the data is made available in run time for our
models. We start with the data pipeline described in Section 4. The section in-
troduced three families of features: document-related, query-related, and query-
document interaction features. Moreover, a further differentiation was made be-
tween static and dynamic features. As said, the latter are the result of the aggrega-
tion of multiple values over a time window.

It is important to understand what tables of Runtastic’s relational data sources
are involved. For query-related features, two tables are involved. One describes
the user and all the information available about him or her, such as gender, age,
or location. This is where all the static features are retrieved. Differently, dynamic
user behaviour is calculated out of the sport activity table. This contains all the
sport activities tracked by the users on the apps. Given the size of the two tables
being over 1 Terabyte (TB), querying them can be expensive in terms of time. As
a solution, partitions are used within the relational table to speed up queries. A
partition is composed of a subset of rows in a table that share the same value for a
predefined subset of columns, called the partitioning columns. In particular, in the
case of the sport activity table, the year, month, and day the activity was performed
are used as partitioning columns. Given the current date and the size of the time
window, partitions can be used to only query those rows include in the relevant
timeframe.

The sport activity table is also queried to get all the document-related features.
These indeed describe the context of the performed activity. Once again, date par-
titions are used for a fast data retrieval.

Finally, the features describing past interactions between the user target of the
recommendations and the one who performed the activity are retrieved from an-
other table. The interaction table contains all the social interactions happening on
the news feed of the two apps. Once again, this table is also partitioned by date
columns, which are used in combination to the dynamic time window to collect users’
behaviour.

Static and dynamic features have to be retrieved differently. The first one can be
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Figure 6.2: Flow diagram for synchronous recommendations.

rapidly queried from the tables without any extra computation necessary. The latter
requires extra computations that involve multiple rows over the whole time window.
For example, a dynamic feature counts the number of unidirectional interactions
from user A to user B. Another one divides this count feature by the number of total
interactions from user A to get the percentage of interactions from A to B over all his
reactions. So, dynamic features’ computation is not constant in time, but depends
both on the size of the time window and the number of rows involved. As a solution,
we want to schedule and anticipate the computation of dynamic features so that they
are available at runtime for each user at the moment a request is sent from a client.
Section 6.3.1 explains the followed approach.

Once the saved model and the data are available at runtime, the new activities
can be ranked at each request and displayed to the users. Figure 6.2 summarizes
the flow of a a news feed request from a client.

6.3.1 Feature Engineering

Computing the aggregated dynamic features at the moment a request is sent is
not feasible. As a solution, we want to schedule a part of the pipeline, the one
involving dynamic features. With scheduling, we mean running the pipeline prior to
the request and store the results so that they can be rapidly read at the moment the
request arrives.

One on hand, scheduling the feature engineering process obviously allows us to
free the run of the model from the dependency of data computation. On the other
hand, the model might receive as input data that is not the most recent one. Indeed,
as the data pipeline is scheduled, it is run at a fixed time and its results stored. Then,
the results are only updated at the next run of the scheduled process. Consequently,
if, for example, a request arrives three hours after the scheduled job, the features
given as input to the model will miss the last three hours of data. This delay, however,
only regards the features and not the activities we are ranking. It means that at any
request of a user U , all the activities recently performed by his or her friends will be
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Figure 6.3: An example of the scheduled feature engineering process.

ranked, including the ones terminated a few minutes prior to the request.
Scheduling the features retrieving and storing the result allows us to sequentially

update the results by only moving the dynamic window. Suppose we have a moving
window of seven days and the feature engineering job is scheduled to run once a
day. At every day, the window is simply moved further by one day. By doing this,
data from eight days ago T − 8 leaves the window, while the most recent one from
one day ago T − 1 enters the time window. Going over the data of these two days is
enough to update the stored results. The results are update by removing from the
computation the data of T − 8 and adding that of T − 1

Figure 6.3 shows an example. Here, the feature interaction count counts the
number of past interactions between U1 and U2. Each day column counts shows the
number of interactions happened between the two users on that day. The size of
the time window is fixed and at every job run it is moved one day further. At first,
the data from T − 9 to T − 2 is used to calculate the result feature. For every pair of
connections between two users, the result is stored in the social connection table.
At the next iteration, the window is moved between T − 8 and T − 1. The count of
T − 9 is subtracted to the results and the one of T − 1 added.

One main advantage of this approach is that table partitions can be used when
updating the results to only read the needed portion of data. In this example, as
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the job is scheduled to run once a day, we can use date partitions on the interaction
table in order to rapidly remove from the count the interactions that are now eight
days old and add those happened in the last twenty-four hours.

Also, this solution can handle new interactions between two users who have
never interacted before. The third row of the two tables in Figure 6.3 shows such an
example. To save disk space, a sparse matrix can be used and therefore no results
at all would be saved for users who did not have any interaction yet. So, if a new pair
of users is found when scraping the latest interactions, their features can be stored
for the first time.
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Chapter 7

Conclusions and recommendations

This final chapter draws the conclusion of this report. Firstly, section 7.1 states how
what has been done can contribute both to Runtastic and to the diversity-related
question. Then, section 7.2 goes through future improvements that can be done to
help both Runtastic and future research.

7.1 Conclusions

This report showed how Runtastic’s news feed could be improved by using a recom-
mender system to sort activities in a relevant order for the user. A number of have
been introduced by explaining their feasibility with respect to Runtastic’s specific
use case. The paper theoretically shows that personalization through content-based
ranking fits best the problem compared to, for example, graph based solutions.

While the most important aspect is increasing the number of interactions on the
news feed, the report showed that also increasing the number of users receiving
reactions might bring benefits in terms of retention and engagement. To do that, we
proposed including a measure of diversity as an important metric in both the model
selection and dataset creation phases. This diversity metric was used together with
other ranking metrics such as MAP, MRR, and NDCG which measures the perfor-
mance of the models in different contexts. In general, the three ranking metrics
followed similar trends by increasing and decreasing with respect to the model and
the dataset used. Some cases showed that using a diversity-aware variation of the
NDCG metric allowed some models to outperform the other because of their per-
formances with respect to Diversity@10 despite having a worse NDCG. Pointwise
and pairwise ranking on the binary labelled dataset are an example of such be-
haviour. Result diversification is guaranteed and improved while only giving up a
slight decrease in ranking metrics. In general, including diversity within the eval-
uation function showed that we can optimize such trade-off between ranking and
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diversity metrics.
How the datasets were created also showed to have an impact on how the

models would perform. Out of the two time windows that were used to collect the
dataset’s features, the longer one resulted in better performance. This suggests that
users tend to prefer interacting with a similar kind of content over a longer period of
time, and they do not change preferences rapidly. Also, MAP and MRR displayed
higher values on the datasets that were not using a binary relevance label. However,
longer time windows come with a more complicated feature engineering process,
which could be extremely relevant for the synchronous use cases.

Finally, we showed how scheduling feature engineering can remove the real-time
dependency of the whole product on the data sources, which are slow and not suited
for such a real-time use case. On the other hand, scheduling might cause losing a
portion of data and consequently running the recommendation model on data that
is not fully up to date. However, the results suggested how a longer time window
benefits the model’s performances. At the same time, a longer time window is less
affected than a short one from the scheduling architecture, since the part of missing
data would be less relevant compared to the longer user’s past behaviour.

7.2 Recommendations

This project took a different path in order to guarantee results diversification, through
the comparison of differently generated dataset and the addition of a diversity-aware
metric as optimization metric. However, future work may be necessary to better un-
derstand the benefits of incorporating diversity into the training phase of the learning-
to-rank models. Also, especially when it comes to pairwise and listwise approaches,
more complex algorithms and models might be tried to see how this benefits the
performances.

Further work can also be done on how the relevance labels are encoded. In
this project, we looked at different linear combinations of likes and comments. As
said earlier, more implicit feedback such as dwell time could be integrated when
calculating the label. Also, diversity and coverage could be optimized by encoding
into the label whether an activity has already received interactions or not. In this
way, activities with no reaction would be given more importance.
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