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Abstract—This paper presents a novel pipeline for vital sign
monitoring using a 26 GHz OFDM multi-beam testbed. In
the context of Joint Communication and Sensing (JCAS), the
advanced communication capability at millimeter-wave bands
is comparable to the radio resource of radars and hence is
able to sense the surrounding environment while communicating.
The proposed processing pipeline leverages 20 MHz and 16
spatially orthogonal beams with 7◦ Half Power Beam Width
(HPBW) to estimate vital sign activity in single and multi-person
static scenarios directly from raw Channel State Information
(CSI) samples. The proposed pipeline employing phase time-
frequency calibration methods and Discrete Wavelet Transform
(DWT) to improve the performance of conventional Fast Fourier
Transform (FFT) based methods in single person scenario is
described in detail. A frequency-domain comparison between
single and multi-person scenarios is also studied and a k−means
clustering algorithm introduced to extract breath and heartbeat
frequency rates from static persons. According to experimental
results, individual transmit (Tx) and receive (Rx) pair links can
achieve below 2 bpm error in static single-person monostatic
configuration when compared directly to the ground-truth, for
both breath and heartbeat activity using the proposed DWT
method for a human seating in front and up to 2 m from the
Tx/Rx. In static multi-person configuration, individual Tx and
Rx pair links achieve less than 2 bpm estimation error in a
JCAS scenario employing the proposed joint FFT and k-means
method, when two humans are seating at distances below 4 m
from the Rx. The presented research work is a promising first
step in vital signs monitoring using an active mmWave multibeam
communication system, which is promising for practical JCAS
applications.

Index Terms—Joint communication and sensing, vital signs
monitoring, mmWave multibeam communication

I. INTRODUCTION

As current mobile communication networks mature, it has
been well-established that the new era of mobile radio tech-
nologies will be far beyond communications alone. It is envi-
sioned that the future mobile communication generation, 6G,
will offer truly intelligent wireless systems that will provide
both ubiquitous communication and high accuracy localization
and high-resolution sensing services [1]. With the objective to
integrate communication and sensing functions, Joint Commu-
nication and Sensing (JCAS) emerges as a decisive research
topic to improve Spectral Efficiency (SE) and support novel

Fig. 1: Considered JCAS system model with multibeam BS,
adopting joint waveform for sensing and communication ac-
tivities.

applications such as autonomous driving and remote health
monitoring.

In this context, multibeam millimeter-wave (mmWave) radio
systems can provide simultaneous high-speed communication
and accurate sensing at the same frequency band [2]–[4]. Uti-
lizing the orthogonal frequency-division multiplexing (OFDM)
signal waveform at the multi-beam base station (BS), the
transmit signal can be reflected back (back scattering) from
real-world targets and received back at the BS for sensing,
or can be propagated through the media and arrive at the
user equipment (UE) for communicating. A sketch of this
scenario can be seen in Fig. 1. Thanks to the frequency
diversity provided by OFDM transmissions, the total number
of OFDM symbols in the whole waveform can be split into a
number of subcarriers dedicated to active communication, and
the remainder of them for simultaneous sensing [5].

Alongside contact-free localization and tracking, the ability
to measure and monitor vital signs in real time in a contact-free
manner, is a very interesting sensing application in the current
healthcare sector. Such capability can help to a great extent
with disease early diagnosis and prevention [6], [7]. Vital signs
monitoring systems can take the form of either intrusive or
contact-free non-intrusive solutions [8]. Among them, intrusive
techniques are usually cumbersome and not comfortable for

1



Fig. 2: Beam pattern of the Butler matrix at 26 GHz

long-term monitoring; moreover, it requires the target him-
/herself to initiate the monitoring process, which might lead
to a reduced usage or the risk for delayed action. Therefore,
contact-free RF-based vital signs monitoring constitutes a
good solution to avoid interference with the patient’s daily
activities and can operate continuously [9]. To match the
performance of the intrusive monitoring systems, the contact-
free solutions need to differentiate vital sign information
from different patients, as well as to relate the measured
signals to their associated targets. Specific radar systems and
communication systems with specific antenna array topology
(normally redundant for communication purpose, e.g., multiple
distributed Wi-Fi modules) provide high-accuracy localization
and real time vital sign estimation in single and multi-person
scenarios [10]. Nevertheless, neither of these investigations
are conducted with active mmWave communication devices,
which limits the current vision of the performance of these
systems in actual communication scenarios. In lieu of costly
sensing systems, which require complex and specific design
solutions, integrated multibeam mmWave JCAS gives birth
to an ideal solution to this problem by utilizing active com-
munication systems to seamlessly provide both enhanced per-
formance to the network and spatial monitoring capabilities.
Hence, the proposed solution enables an early method for
combining active communication activities and monitoring
the vital signs of patients in indoor scenarios suitable for
healthcare applications.

The remainder of this paper is organized as follows. Section
II gives an overview of the state-of-the-art of the vital sign
monitoring using communication devices and further elabo-
rates the contributions of the paper. Section IV explains the
proposed pipeline and methodology for vital sign estimation
for single and multi-person scenarios. Section III introduces
the measurement campaign. In Section V, numerical analyses
based on real-world measurement are performed and the
performance of the proposed pipeline is evaluated. Finally,
conclusions and future lines of work are drawn in section VI.

II. RELATED WORK

The examined literature includes a wide variety of ap-
proaches tailored towards specific needs and applications. Vital
signs contact-free monitoring solutions based on radio signals
can be grouped depending on their working frequency band.

In sub-6 GHz, research efforts mainly focus on studying the
ability of commodity wireless communication systems for
breathing and heartbeat estimation in single and multi-person
scenario. Additionally, there are existing efforts studying the
use of specific wideband RF systems, such as ultra-wide band
(UWB), in the sub-6 GHz range exploiting large bandwidths to
leverage a better delay/range resolution. At mmWave frequen-
cies, most of the work concentrates on exploiting radar sensing
systems for vital sign monitoring. One example of civilian-use
mmWave radar is the frequency modulated continuous wave
(FMCW) multiple-input and multiple-output (MIMO) radar at
77 GHz [11], initially intended for automotive applications
and rising up to be one of the most attractive solutions due to
their inherent sensing capabilities provided by the waveform
and a large bandwidth.

A. Sub-6 GHz Vital Sign Monitoring

Early approaches of RF-based vital sign estimation can be
found in the works of [12], [13] and [14]. These first efforts
mainly focused on captured received signal strength (RSS)
and phase channel state information (CSI) acquired from WiFi
commodity systems to obtain breathing information in single
person scenario. Although being a very important step into
contactless vital sign monitoring, the aforementioned efforts
present some practical limitations. Due to the omni-directional
nature of 2.4/5 GHz WiFi signals and the resulting multi-
scattering between multiple targets, it becomes difficult to
separate the vital signs of different targets with the same
breathing rates. Another limitation is that heartbeat estimation
is not possible, because the small scale movement of the
chest directly linked to heartbeat movement cannot be captured
as it is largely camouflaged by the larger displacement due
to breathing activity. The WiFi signal can be reflected from
many indoor objects in multi-path rich indoor environments,
making the recovery of the human reflected signal difficult.
Further research efforts employing WiFi signals for vital signs
estimation can be found in the works of [15] and [16]. In
[15], the authors propose PhaseBeat, a method to exploit CSI
phase difference data between two antennas at the receiver
end, based on a rigorous analysis with respect to its stability
and periodicity. They first calibrate the CSI difference data by
removing direct current (dc) and high frequency noises. After
downsampling the cleaned data, they select the subcarrier with
larger variance for breath and heart rate estimation. To tackle
the multi-person scenario, a Root-MUSIC method is used
to distinguish the different frequency tones, whereas for the
single-person scenario, a FFT-based peak search is performed
to extract the estimated rates. They obtain estimation accuracy
above 95% for breath and heart rates for the single-person
scenario, and 95%, 90% and 80% accuracy for 2, 3 and 4
person scenario, with respect to ground-truth breath and heart
rates obtained with a NEULOG Respiration Monitor and a
fingertip pulse oximeter, respectively. Moreover, they show
that estimation performance degrades as the distance between
the transmitter and receiver increases. At 1 m, they obtain 0.15
bpm mean estimation error, whereas at 5 m this increases to
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Fig. 3: Testing area. Communication (left) and monostatic
Tx/Rx configuration (right)

0.2 bpm, and at 11 m is above 0.4 beats per minute (bpm).
In [16], a joint angle of arrival - time of flight (AoA-ToF)
beamformer is proposed at each packet time. To deal with
the small ToF resolution that the 40 MHz commodity WiFi
yields, a Singular Value Decomposition (SVD) algorithm is
utilized to reformulate the problem with reduced dimensions
by decomposing the data matrix into the signal and noise
subspaces. The estimated AoA-ToF grid after SVD is then
multiplied by the time domain symbol signal, which yields a
time domain signal representing the phase variations due to
chest displacement. Single-person scenario results in line-of-
sight (LoS) and non-light-of-sight (NLoS) condition and up
to a distance of 4 m between transmitter and receiver yield
> 99% median accuracy with respect to the ground-truth.
In [17], Eid et al. propose HoloTag, an ultralow-cost ultra
high frequency (UHF) radio-frequency identification (RFID)
array-based system over which a holographic projection of
its environment is measured and utilized to localize and
monitor the vital signs of several targets. Using minimum
variance distortionless response (MVDR) beamforming for
AoA estimation and a FFT-based vital sign estimation method,
the proposed system achieves 11◦ and 17◦ AoA median error,
for single and two-person scenario, respectively. Breathing rate
estimation error is kept under 0.4 bpm and 0.5 bpm for more
than 60% of trials for single and two-person scenario, respec-
tively. Zhang et al. present MTrack [18] a 2 GHz wideband
system that generates signals between 4-6 GHz. Equipped
with one transmitter antenna and 16 receiver antennas, the
system relies on AoA-ToF beamforming with a path selection
algorithm to suppress interference from dynamic multipaths in
order to detect and track individual signals under multiperson
conditions. The proposed system is capable of localizing and
tracking people’s trajectories with a 20 cm error at a maximum
distance of 7 m for both LoS and NLoS scenarios. Vital sign
estimation achieves >99% median accuracy for both breath
and heartbeat rates. Chenglong et al. establish in [19] a sub-
6 GHz radar-like MIMO-OFDM prototype for contact-free
localization and human tracking in real-time. The pedestrian
is localized directly from CSI samples using a particle filter-
based hologram tracking algorithm. Experimental evaluation
shows that the proposed algorithm can achieve about 20 cm
mean tracking accuracy in real-time.

TABLE I
mMWave Multibeam Testbed Parameters Setting

System parameter Value
Transmit power 15 dBm
Tx/Rx Gain 31 dB
Center frequency 26 GHz
Bandwidth 20 MHz
Subcarrier spacing 15 kHz
# Subcarriers 100
Modulation 16-QAM
Sampling rate 200 Hz

B. mmWave Vital Sign Monitoring

In the mmWave frequencies, research efforts are mainly
focused on the use of radar(-like) systems. In [20], a 8
GHz FMCW radar is used alongside a multi-person tracking
algorithm to localize targets and extract their time domain
phase difference data for estimating chest displacements due
to breathing and heartbeat activities. From the presented ex-
periments, the algorithm is capable of keeping the error below
3 bpm during 90% of the measured time. Similarly, authors in
[21] and [22] use a 77 GHz FMCW MIMO radar to localize
humans in range and angular domain before extracting their
time domain phase difference data. Evaluations under a two-
person scenario show that the system is capable of achieving
error of less than 1 bpm breath rate, and 3 bpm heart rate at a
target-to-radar distance of 1.6 m, with a minimal 40◦ angular
separation between targets. Research efforts have also been
made towards the 60 GHz band of the mmWave spectrum. In
[23], the authors present a study on the use of maximum ratio
combining (MRC) on a UWB 2×4 MIMO radar to improve
the signal-to-noise ratio (SNR). This technique leads to a 18%
improvement in heart rate estimation accuracy with respect
to estimation obtained directly from each Tx-Rx branch.
Lastly, a 24 GHz FMCW radar is used in [24] to propose a
method for processing the captured time domain phase signal
to estimate breath and heart rates in single-person scenario.
This includes detrending the original signal and performing
continuous wavelet transform (CWT) to obtain a fine tuning of
the frequency subspaces. CWT is also used in [20] to separate
breath and heart rate frequencies.

C. Contributions of This Paper

As discussed above, from early stages researches have lever-
aged sub-6 GHz commodity WiFi systems to propose a low-
cost, low-complexity solution for contact-free RF-based vital
signs monitoring which performs well in single-person and in
multi-person scenarios when the breathing and heart rates are
sufficiently different. To overcome such limitations, specific
solutions are proposed in the literature such as UHF tags [17]
or UWB systems [18]. With the unlocking of the 26 GHz
and 77 GHz band for the automotive industry, efforts have
been concentrated in the use of radar systems for vital sign
estimation. Mostly based on FMCW and equipped with MIMO
capabilities, these systems are very suitable for vital sign
monitoring, as their large bandwidth and multiple antennas
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Fig. 4: Testing scenarios. TS1: single-person adopting monostatic configuration. TS2: single-person multistatic configuration
is used to study the influence of incidence angle on estimation performance. TS3: downlink JCAS configuration. Tx acting as
BS and RX as UE to study the sensing capabilities on two-person scenario.

allow them to localize multiple targets and makes them very
sensitive to small-scale chest displacements produced by the
breath and heartbeat movements.

To the best of our knowledge, none of the reviewed vital
sign monitoring research efforts contemplate the possibility of
joint communication and sensing in the framework of active
mmWave multibeam communication systems. The contribu-
tion of this research work serves as first study of the raw
vital sign sensing capabilities of mmWave multibeam com-
munication. The work includes the design and implementation
of a processing pipeline to obtain vital sign information from
single and multi-person scenarios directly from CSI samples in
multibeam mmWave communication. The work introduced in
this paper exploits spatial diversity in multibeam transmission
along frequency diversity provided by the OFDM subcarriers
to obtain accurate vital sign information in single and multi-
person indoor scenarios.

III. EXPERIMENT AND SYSTEM OVERVIEW

A. Prototype and Experiment

The mmWave MIMO testbed from the KU Leuven ESAT
department consists of a pair of Butler matrix units, a mmWave
front-end operating in the 26 GHz band and multiple Universal
Software Radio Peripheral (USRPs). The Butler matrix used
in this testbed is the one thoroughly depicted in [25]. The
system is able to either transmit or receive up to 16 frequency
dependant spatially-orthogonal beams. The beam pattern of the
Butler matrix at 26 GHz is shown in Fig. 2. It is noticeable
how the center beams have narrower beamwidth and higher
gain, up to 20 dB, compared to those at the edge. The USRP
transmitting intermediate frequency fIF of 2.4 GHz with 20
MHz bandwidth is used to generate the fRF mmWave signal
in the transmitter end. The IF signal serves as input to the
Butler matrix, and the ERASynth+ RF signal generator with
operating frequency of fLO = 11.8 GHz is connected to
the local oscillator port of the Butler matrix [26]. The RF
up/downconversion in a Butler matrix follows the relation of

fRF = 2fLO + fIF [27]. In the receiver end of the Butler
matrix, all 16 beams are used to receive signals from different
directions from all transmitting beams. Therefore, all available
ports of the Rx Butler matrix are employed and connected
to the 16 input ports of the receiver USRPs, while the local
oscillator port of the Butler matrix is connected to the signal
generator, which is synchronized for both Tx and Rx Butler
matrices using Pulse Per Second (PPS) and 10 MHz clock
reference signals. All USRPs run LabView Communications
MIMO Application Framework [28] with a Time Division
Duplexing (TDD) signal frame structure with OFDM symbols.

The testing area is shown in Fig. 3 and is a 2× 4 m2 mea-
surement space in a lab room of the department of electrical
engineering at the KU Leuven. Three testing scenarios (TS)
have been performed to obtain measurement data conveying
different perspectives. Due to hardware limitation, only the 2
central beams (beam 8 and 9) of the 16 available ports on the
Tx Butler matrix are employed. On the Rx end, all 16 beams
are used. The communication system transmit power PT is
set to 15 dBm and 31 dB gain is introduced in both Tx and
Rx ends. An uplink (UL) pilot tone is used to estimate the
channel using 100 OFDM subcarriers with 15 kHz subcarrier
spacing and a channel bandwidth of 20 MHz. The symbol
duration is set to 66.67 µs with a cyclic prefix duration of
5.21 µs. We transmit 1 UL pilot symbol per subframe slot.
Such slot has a duration of 0.5 ms. In all experiments, 5 s of
data are captured, corresponding to a total of 10000 symbols.
The complete radio frame format used in the testbed can be
found in [29]. The modulation scheme used is 16-QAM. The
system parameters setting are summarized in Table I.

To capture the ground-truth vital signs values, we use the
available TMSi Mobi device from the biomedical signals and
systems group of the electrical engineering department at the
University of Twente. Device specification documents can be
found in [30]. Using two ports from the device, we obtain the
heartbeat rate via a pulse oximeter fingertip sensor and the
breathing rate via a respiratory monitor belt around the chest
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Fig. 5: Data processing pipeline for vital sign estimation.

to measure its displacement.

B. Testing Scenario 1 (TS1)

The first testing scenario studies the raw capability of
the multibeam OFDM communication system for detecting
vital signs. In order to do so, the monostatic multibeam
configuration in Fig. 3 is adopted. We place an absorbing foam
between Tx and Rx to limit the unwanted cross-talk between
each other. We place a human target in front of the Tx/Rx
module and we vary the distance between human and device
from 1 and up to 2 m to study the effect of distance in the
estimation results. The human is static, sitting on a chair, and
considered to be in the far field region of the transmitted 26
GHz beams. An schematic of TS1 is depicted in Fig. 4.

C. Testing Scenario 2 (TS2)

We design this measurement scenario to study the influence
of the incident angle between Tx and Rx in the performance
of the proposed pipeline for vital sign estimation. Thanks to
the multiple beams employed in reception, we aim to study
the ability of the system to obtain accurate estimates based
on the spatial diversity provided by the Butler matrix. The
multistatic configuration depicted in Fig. 4 for TS2 is adopted
in this testing scenario in order to obtain different incident
angles based on different locations of the Tx. The Rx module
is always placed in front of the human target while the distance
between the human and the Rx is varied between 1 to 2 m for
each Tx location. The incident angle in Fig. 4, θinc, can be
defined as

θinc = arctan (0.95/d) (1)

thus obtaining 25.4◦, 32.5◦ and 43.5◦ incident angles for
distances 1, 1.5 and 2 m between target and Tx respectively.
For configuration number 1 and 3, we obtain 0◦ and 90◦.
Considering a human width of W m, the Rx azimuth FoV
needed to cover such width when the target is located at a
distance d form the Rx can be expressed as

∆FoV = 2arctan

(
W

2d

)
(2)

Where W m is the width of the human being. In both TS1

and TS2 the target completes 3 breath cycles during 5 s. The
exact breath and heartbeat frequency rate is evaluated using
the ground-truth sensor.

D. Testing Scenario 3 (TS3)
Fig. 4 shows the configuration for testing scenario 3. This

testing scenario emulates a possible use of the multibeam
communication system in a JCAS framework. A downlink
scenario is considered. The Tx, acting as a BS, is placed 4
m away and from a Rx emulating a UE in reception mode.
Two human targets are placed inside the FoV of the Tx beams.
The distance between H1 in the Y axis with respect to the Tx
is varied from 1 to 3 m, while H2 is always placed at 2 m away
from the Tx in the Y axis. The separation between targets is
1 m. For all measurements, H1 breathes at a frequency rate
lower than the one of H2. Both rates are tried to keep constant
during experimental trials. Because only one ground-truth
sensor is available, simultaneous ground-truth measurement on
each target is not possible. Thus, measurements are repeated
with the Mobi device on each target respectively and ground-
truth values are obtain as the mean rates of all measurements.
This needs to be accounted for when comparing the estimation
results with the ground-truth values.

IV. METHODOLOGY

In this section, a processing pipeline to achieve vital sign
estimation directly from captured CSI samples with a multi-
beam mmWave communication testbed is explained in detail.
The proposed pipeline includes time-frequency calibration to
mitigate the imperfections of the RF up/down conversion
chain in the estimated CSI amplitude and phase samples.
The proposed pipeline also includes two different vital signs
estimation methods for single and multi-person scenarios,
respectively.

A. Proposed Pipeline: Overview
The proposed data processing pipeline for vital sign esti-

mation is depicted in Fig. 5. Based on the measured scenario,
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(a) Raw phase. (b) Calibrated phase.

Fig. 6: (a) Raw CSI phase data for Tx#9 and Rx beams
covering the human being over 5 transmitted symbols across
subcarriers. (b) CSI phase data after calibration method is
applied.

the channel transfer function (CTF) is estimated in the uplink
and is denoted, for a given symbol, as H ∈ CNR×NT :

H(f, ts) =


h1,1(f, ts) . . . h1,NT

(f, ts)
. . .
. . .
. . .

hNR,1(f, ts) . . . hNR,NT
(f, ts)

 (3)

where hnr,nt
at each sampling frequency f and symbol ts

is the element of matrix H(f). NR and NT are the total
numbers of the receive and the transmit beams, respectively.
nr = 1, ..., 16 and nt = 1, 2 are the indices of Rx and Tx
beams. For a total number of transmitted symbols, Ns, and
subcarriers, Nf , the total captured channel matrix is denoted
as H ∈ CNs×Nf×NR×NT .

When the transmitted wireless signal is reflected in the chest
of a human with a certain breathing and heartbeat frequency,
fb and fh respectively, the phase of the reflected signal is also
periodic with the same breathing and heartbeat frequencies
[18] [31]. Let us consider the far field scenario in which a
transmitted signal for a given symbol on subcarrier nf , and
for a given transmit and received pair link, is reflected from the
human chest as a plane wave. Then, its phase can be written
as [18] [31]:

̸ Hnr,nt(fnf
, ts) = 2π

d(t)

λnf

(4)

where d(t) = D + αb cos (2πfbt) + αh cos (2πfht) is the
propagation distance of the reflected signal influenced by
the periodic rise and fall of the human chest. D is the
constant mean distance of the reflection path, αb and αh

are the corresponding amplitudes of the periodic signal from
chest movements due to breath and heartbeat activities. λnf

is the wavelength of subcarrier nf . Eq. 4 shows that the
measured phase should increase as the subcarrier frequency
increases. The received time domain phase information is
clearly modulated by the breathing and heartbeat of the human

(a) (b)

Fig. 7: Phase progression of 100 subcarriers over 2.5 s capture
time for Tx#9 and (a) Rx beam 8 and (b) Rx beam 9 of
a human mimicking his/her breathing cycle with a metallic
board.

body, and contains the necessary information for vital signs
estimation, making its calibration, denoising and processing a
crucial step to obtain relevant estimation rates.

After data calibration and processing, power analysis is
performed on the measured channel with the objective to
select the proper beams that carry information on the vital
signs of the human being, while filtering out those beams
that do not contain information on vital sign activity from
the human being. Subcarrier selection is then performed to
pick phase information on subcarriers with larger time domain
variance and increase the performance of the estimation. In
single-person scenario we propose Discrete Wavelet Transform
(DWT) to bring the calibrated and processed data to the
frequency bands of interest related to breath and heartbeat
frequency rates. In this research work, DWT is proposed for
frequency domain analysis because contrary to FFT analysis,
DWT achieves time-frequency representation of data, provid-
ing optimal resolution both in time and frequency domains and
multi-scale analysis of the transformed data. After DWT and
peak search, the estimated breath and heartbeat frequency rate
is obtained by taking the average of all the inter-peak interval
periods from the low and high-frequency reconstructed signals,
respectively. In multi-person scenario the inter-peak interval
calculation after DWT on the processed phase data cannot
be used to compute more than one period rate. Moreover,
as breath and/or heartbeat rates are not known, we cannot
use DWT to decompose the signal into the frequency bands
related to the targets’ vital signs activity. A solution could be
to apply FFT on the decomposed signal after DWT to obtain
the frequency domain behavior of the phase data.

Nevertheless, we found that the iterative decomposing steps
in DWT damaged too much the “already-weak” phase periodic
signal, hence failing to capture the different frequency tones of
different human targets. Therefore, the pipeline employs band-
pass filters to separate breath and heartbeat frequency rates in
their specific bands in multi-person scenarios. This method is
employed in [21]. Frequency domain analysis and peak search
on Fast Fourier Transform (FFT) is then performed to estimate
the number of persons in the measured scenario. The proposed
pipeline novelly uses this result as the input number of clusters
in the k-means algorithm to detect multiple frequency tones
in both breath and heartbeat bands.
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(a) TS1: Monostatic radar link.

(b) TS3: Communication LoS link.

(c) TS1: Monostatic radar link.

Fig. 8: (a)(b) Channel frequency response over transmitted
symbols across subcarriers for central Tx beam and Rx beam 9
(left) and channel ACF (right). (c) CSI magnitude surface plot
for central Tx beam and Rx beam 9 (left) and corresponding
time-domain variance (right).

B. Data Calibration

During channel estimation, because of the imperfect syn-
chronization between the transmitter and the receiver, the
measured raw CSI suffers from various frequency-dependent
phase errors [32]. The estimated CSI phases will suffer from
the sampling frequency offset (SFO) and symbol timing offset
(STO) [33]. The implementation of OFDM is susceptible to
the effect of in-phase and quadrature-phase (IQ) imbalance in
the analog processing. This effect can cause nonlinear phase
distortion on CSI estimation. Moreover, random initial phase
generated by the local oscillator and the consequent imperfect
compensation of the phase-locked loop, may introduce carrier
phase offsets (CPO) on the received phases [34]. In [32],
a method to compensate the introduced errors in the phase
measurements is presented. We adopt this method in this
research. The estimated CSI at a given symbol and subcarrier

Fig. 9: Mean PDP of pair links Tx#8 - Rx#8 and Tx#9 - Rx#8.

in the presence of the aforementioned errors can be expressed
as,

Ĥnr,nt = Hnr,nt exp (−j (ζSFO + ζSTO + ζIQ + ηCPO))
(5)

where ζSFO, ζSTO and ζIQ are the phase shift caused by SFO,
STO, and IQ imbalance, respectively. The SFO phase shift is
proportional to the subcarrier index and the ζIQ for a given
subcarrier k is given by,

ζIQ = arctan

(
ϵg
sin (nfξt + ϵp)

cos (nfξt)

)
(6)

where ϵg , ϵp represent the gain and phase mismatch, and
ξt is the unknown time offset, respectively. Finally, ηCPO

can be considered as a random constant after the initiation
of the transmitter. The aforementioned phase shits errors are
calibrated by the following nonlinear regression:

argmin
Υ

∑
nf

(
∆Θnf

− ζ
(nf )
IQ − nfζSFO/STO − ηCPO

)2

(7)
where ∆Θnk

is the measured residual phase at subcarrier
nk, and Υ = [ϵg, ϵp, ξt, ζSFO/STO, ηCPO]. Such problem
can be solved using the Levenberg-Marquardt algorithm [32].
Once the phase errors are estimated, the calibrated channel is
obtained by compensating the errors in eq. 5. Note that for
a given measurement setting, these parameters only need to
be estimated once, and can be used for future CSI calibration
directly without the redundant processing, namely one-fits-all
calibration [19]. In addition to the depicted method, we apply
MATLAB’s rloess smooth filter on the calibrated data to limit
the fast phase variations [35]. To test the performance of the
calibration method, the Tx and Rx are collocated imitating a
monostatic radar. A person holding a metallic board at chest
height imitating the rise and fall of the chest during breathing
cycles over 5 s is placed at 1 m of the Tx/Rx. During the
captured 5 s, the human holding the metallic board performed
4 full cycles. We use the two centrals beams in transmission
and the 16 beams in reception. We denote transmission beam
indices as Tx#bi and reception beam indices as Rx#bi. Where
bi ∈ [1, ..., 16].

In Fig. 6 raw phase is compared to calibrated phase for
beams covering the human being. In general, the aforemen-
tioned frequency domain errors are not seen for all transmitted
errors, but they tend to appear over sporadic symbols over
certain beams. In Fig. 6a the is seen that beam Rx#7 presents
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(a) Tx#8. (b) Tx#9.

Fig. 10: Calibrated CSI amplitude data across Rx beams.

variations over the used subcarriers during several of the
transmitted symbols while the rest of the beams are linear with
respect to subcarrier index, in line with the expected behavior
of the CSI phase with respect to subcarrier index (eq. 4). In
Fig. 6b it can be seen how the implemented method corrects
phase errors across frequency domain to a great extent. In Fig.
7, the phase progression over the 2.5 s plotted of captured
data time is recovered with the implemented method, which
validates the effectiveness of the proposed phase calibration
method.

After phase calibration, we further perform data processing
to clean and remove the dc and high frequency noises as
they have a negative impact on vital sign estimation. The
dc component of the signal firstly affects subcarrier selection
and further damages estimation based on peak search in the
frequency domain, as it appears as a large peak at f = 0
Hz. High frequency noises, on the other hand, camouflage the
actual frequency tones related to vital sign activity. For this,
bc the dc component is not suspected to vary a lot during
the length of the signal, a Hampel filter with a large sliding
window of 2000 samples and a small threshold of 0.01σ is
used to capture the basic trend of the original data, where σ is
the standard deviation of the time domain phase samples. The
detendred dc-removed phase difference data is then obtained
by subtracting the basic trend from the original data. To
remove high frequency noises a Hampel filter with a smaller
window size is necessary, so that the fast phase variations can
be filtered out. Hence we use a window size of 50 samples
and a threshold of 0.01σ is employed. Because of the small
phase variation due to vital signs activity, we found that a
small threshold value is preferred, with 0.01σ being a value
leading to a proper removal of dc and high frequency noises.
Finally, downsampling is performed to lower the original high
sampling frequency.

Fig. 11: Impact of incident angle on reflected power.

C. Power Analysis

Each individual receiving beam obtains information from
very specific AoAs due to their narrow beamwidth. Because
of the large FoV that we can cover in receiving mode with
the use of the 16 orthogonal beams from the Butler matrix, it
is important to make sure that the beams that actually carry
information of the vital signs of the human being are used,
while those who do not, are filtered out. We mainly check
the time domain magnitude variations of the measured CSI
samples across beams. Therefore this step is performed after
subcarrier selection. Because of the sensitivity of the different
subcarriers to the reflections from the human being alongside
their behavior due to multipath and shadowing effects, it is im-
portant to first select those subcarriers who do not experience
deep fade in the channel frequency response, so that the CSI
samples from individual beams contain information related to
reflections off the human being. To obtain information of the
reflected power in the human body in the delay (τ ) domain,
we obtain the power delay profile (PDP) for a given Tx-Rx
beam pair link and symbol from the CTF as [26],

PDPnt,nr
(:, ts) = |IFFT{Hann{hnt,nr

(:, ts)}}|2 (8)

where a Hanning window is multiplied with the CTF to
suppress side-lobes. We analyse the reflection loss on the
human target to study the power loss at 26 GHz of human
beings. To do so, the effect of the distance-dependant path
loss needs to me removed. From RF link budget theory in
free-space, for a given transmission power PT , equal transmit
and receive antenna gains GT = GR = G and received power
PR, the total loss L = PT +GT +GR − PR is

L = LP (dT ) + LP (dR) + LR (9)

where LR is the reflection loss, and dT and dR are the
distances of the object from the Tx and Rx respectively. LP

is the path loss in free-space.
We define the power reflection coefficient, rL, as a metric to

measure the reflection loss that transmitted signals experience
when reflecting off the human body. We define rL as the direct
relation between the reflected Po and incident Pi power values
on the target:

rL =
Po

Pi
(10)

Pi is defined as the summation of the transmit power, the
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Fig. 12: Tx#9-Rx#9 phase processing on 100 subcarriers. Raw phase difference data before and after calibration and Hampel
filter (left). Effect of downsampling on the calibrated and processed data (center). Time domain zoom-in calibrated, processed
and downsampled data (right).

Tx gain and the path loss experienced by the plane wave at
the target. Po is taken as the value in the PDP at the target
distance, removing the antenna gain and the corresponding
path loss. Thus, the resulting power incident and reflected
power values are not distance-dependant as path loss effects
have been removed.

D. Vital Sign Estimation

As already mentioned in Section IV-A, two processing
methods are implemented in this research work to analyse the
capabilities of vital signs estimation of the mmWave multi-
beam system. Once the time domain phase difference signal is
converted to frequency domain via FFT, we use experimental
results to show that in the single-person scenario only one
prominent peak related to a frequency tone is found, whereas
in the evaluated scenario with two-persons, the frequency
domain signal shows prominent peaks related to more than
one frequency tone. Hence, in single-person scenario DWT is
employed to improve the performance of the estimation com-
pared to conventional FFT and peak search method. Because
DWT cannot be used in multi-person scenarios for vital signs
estimation, an FFT-based combined with k-means clustering
algorithm method is implemented to obtain vital signs from
two humans with different vital signs activity. Prior to this, a
subcarrier selection strategy is investigated to further increase
performance based on frequency diversity occurring in the
OFDM mmWave signals.

1) Subcarrier Analysis & Selection: During the process of
the presented research work it has been observed that the
magnitude and phase of the CSI samples present variations
across different subcarriers, meaning that subcarriers present
different sensitivity to chest displacements because they have
different central frequencies and thus different wavelengths.
Because of this, each individual subcarrier interacts differently
when reflecting off the human body. To demonstrate this effect,
we take a look at the CSI measurement data obtained in
TS1 in Fig. 4 when a human is seating 1m away from the
Tx/Rx collocated module. We also analyze TS3 in Fig. 4,
when a human is placed 1 m away from the Tx in a LoS
communication link.

In Fig. 8a-8b the frequency response of the channel is
plotted for all transmitted symbols during the 5s capture time
across subcarriers, alongside the average channel response of
all transmitted symbols, for central Tx and Rx beam 9. The
monostatic radar and LoS communication link are used for
this analysis. The general trend illustrates a frequency flat
channel response over all the bandwidth. Because of the LoS
nature of the measurement scenario combined with the narrow
beamwidth of the Tx and Rx beams, this behavior is expected.
The transmitted signal reflects off the human chest and arrives
back at the Rx without encountering possible scatterers in its
path. The Rx beams receive information from AoA close to
their maximum while attenuating possible multipath compo-
nents arriving at different AoAs, hence the all contributions
picked up by the Rx beam come directly from the human chest.
Nevertheless, for some specific symbols the channel presents
a frequency-selective behavior, with deep fades reaching up to
30 dB attenuation and peaks reaching up to 10 dB gain with
respect to the mean value. It is noticed that the mentioned
peaks mainly occur in the higher frequency components of the
bandwidth. In the right figures of Fig. 8a-8b the correlation
function (ACF) of the channel is plotted. In both cases we see
that the 50% coherence bandwidth is 135 kHz and 150 kHz
for the radar and communication configuration respectively,
which is much lesser than the 15 kHz bandwidth employed
by the individual subcarriers. The 90% coherence bandwidth
is at around 15 kHz for both configurations, hence further
validating the flat fading behavior of the channel in both tested
configurations.

The CSI magnitude pattern is plotted alongside the time
variance per subcarrier in Fig. 8c. It is well observed that
subcarriers with larger variances are more sensitive to breath-
ing cycles than others. Subcarriers with higher frequency
and those in the vicinity of the central frequency, nf =
[−10...10, 30...40], present larger variance compared to those
in the lower end of the bandwidth. Moreover, in the surface
plot in Fig. 8c it is also noticeable that 4 breathing cycles
occur during the 5 s of captured data, corresponding to the
rise and fall of the chest.

The frequency behavior of the channel can be better ex-
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Fig. 13: Effect of subcarrier selection on phase difference data
for pair link Tx#9-Rx#8.

plained using physics mechanisms. Contrary to specular re-
flection where the incident signal is reflected into a single
outgoing direction, diffuse reflection occurs when a flat wave
is scattered into multiple (random) directions due to interaction
with a rough surface [36]. The condition of rough surface is
described in [36] to be:

∆h >
λ

8 cos θinc
(11)

where ∆h is the rough height and θinc is the incident angle.
At 26 GHz and θinc = 0◦ the condition is that ∆h > 1.44
mm. In [37], the roughness of the human body is measured for
slim, muscular and obese body type. It is found that the body
roughness at the chest oscillates from 15.2 mm to 12.8 mm,
respectively. Thus, the reflection of 26 GHz signals occurring
at the human chest can be considered as a diffuse reflection,
meaning that the incident signal will be scattered into different
random directions. These reflections with random phase give
birth to destructive and constructive interference at the Rx,
which translates into the fades and peaks that appear in the
channel frequency response for different transmitted symbols.
It is therefore necessary to filter out subcarriers with low
sensitivity and keep those with larger variance values to make
sure estimation is performed on subcarriers carrying useful
information on chest displacement due to vital signs activity.
For this, a simple threshold detection method is used, where
the value of such threshold is based on the experimental values
obtained during the measurement campaign.

2) Single-person: The proposed vital sign single-person
estimation method uses DWT to recursively decompose the
phase difference data into an approximation coefficients vector
with a low-pass filter and a detail coefficients vector with
a high-pass filter. The approximation coefficient vector rep-
resents the low-frequency information of the input signal,
while the detail coefficient vector describes the high frequency
detailed information [15]. In wavelet decomposition theory,
after L steps, the DWT obtains the approximation coefficient
aL and the sequence of detailed coefficients β1...βL [38].
Moreover, the sampling rate is halved after each step of the
decomposition process. Once the last level approximation and
detailed coefficients are obtained, a peak search followed by a
peak-to-peak time interval is performed in the obtained time
domain decomposed signal for all the selected subcarriers.
Let PS be the number of selected subcarriers, then a set

(a) TX#8-Rx#8.

(b) TX#9-Rx#8.

Fig. 14: Variance across time and subcarrier index for central
beam pair links in TS2.

of peak-to-peak intervals from all PS subcarriers can be
expressed as L = [l1, ..., lPS

], where li is the mean value of
the vector containing the N peak-to-peak intervals obtained
from the ith subcarrier, where i ∈ 1...Ps. Because even if all
selected subcarriers are above the measurement-based variance
threshold, some of them may be more prominent than others.
Therefore, we compute a weighted mean of L taking into
account the variance of each subcarrier. The final estimation
value is obtained as,

E =

PS∑
i=1

vi · li∑PS

i=1 vi
(12)

where vi is the variance of the ith subcarrier.
A FFT-based peak search method widely used in the litera-

ture (see section II) is implemented for comparison purposes
on the proposed DWT method. After prominent subcarriers
carrying larger phase variations across the time samples are
selected, the processed phase difference data is input to a finite
impulse response (FIR) bandpass filter with a passband such of
the typical frequency range of breathing and heartbeat rates.
For the breathing rate (BR) we select a frequency range of
0.08 to 1 Hz (4.5 to 60 bpm). The heartbeat frequency range
is selected to be 1 to 2 Hz (60 to 120 bpm), following typical
and abnormal breathing and heartbeat rates [39]. Afterwards,
FFT is performed in the time domain phase difference data.
Let us denote ωb as the selected frequency range for BR and
ωh the corresponding frequency range for HR, and with the
time domain phase difference data denoted as ϕ(t) the BR and
HR estimates are then computed as:

f̂b = argmax
f∈ωb

|FFT(ϕ(t))| (13)

f̂h = arg max
f∈ωh

|FFT(ϕ(t))| (14)
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Fig. 15: Normalized variance energy at Rx#8.

3) Multi-person: For the multi-person scenario, a FFT-
based combined with k-means clustering algorithm in the
frequency domain for selected subcarriers is used to obtain
estimates on the breath and heartbeat rate different targets.
The number of cluster targets in the measurement scenario is
estimated as the number of peaks in the frequency domain
signal that are above a certain power threshold. This value is
served as input to the k-means algorithm. The aforementioned
threshold will be later discussed based on experimental and
numerical analysis. For a given selected subcarrier nf , a peak
search is performed to obtain peaks of the signal above a
threshold. k-means clustering is then performed on the selected
peaks. The centroid obtained from the clustering is used as the
BR and/or HR estimate at that subcarrier. Given the set of cen-
troids C = [c1, ..., cPS

] from all selected subcarriers, the final
estimated rate is obtained by computing the weighted mean of
C using subcarrier variance as the weighting coefficients.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
contact-free vital signs estimation pipeline using the mMWave
multibeam testbed presented in Section III-A. The measure-
ment setting and testing area have been introduced in Section
III. The measurement campaign has been based on the three
different testing scenarios introduced in Sections III-B to III-D.
We use these experiments to evaluate the performance of the
proposed processing pipeline under single and multi-person
scenarios. The performance of the estimation is evaluated by
comparing the estimates to ground-truth values.

A. Amplitude & Reflection Loss Analysis

To demonstrate the importance of amplitude analysis in
beam selection and the consequential vital sign estimation, we
show in Fig. 10 the amplitude of the CSI samples over time
and across Rx beams for the two Tx beams in TS1. The top
figures of Fig. 10a-10b correspond to the amplitude variations
over time, while the bottom figures show the extracted and
processed phase difference data of beams with larger CSI
amplitude. Firstly, it seen in both figures how the amplitude
data has variations over time because multipath components
arriving from different directions cause destructive interference
at specific time domain sampling times. Rx beams 9 and 10
posses larger amplitudes when transmitting with Tx beams 8
and 9, respectively. In the bottom phase difference plots we
observe how the aforementioned Rx beams posses larger phase

(a) (b)

Fig. 16: DWT (a) breathing and (b) heartbeat signals for Tx#9-
Rx#9.

variations related to vital sign activity than others with lower
amplitude levels. Hence proving that beam selection is needed
for a better estimation of vital signs. In Sec. V-B it will be
further addressed the estimation performance over Rx beams.

The mean power delay profiles of the two transmitting and
reception beams pairs are shown for 1, 1.5 and 2 m distance
between Tx and human target in Fig. 9. The two central beams
used in transmission with 7◦ beamwidth point towards the
chest of the human being. In Fig. 9 it is observable prominent
peaks at the distances where the human target is placed. When
the human is placed at 1 m away from the Tx/Rx module, a
prominent peak is observed at the equivalent delay distance
of 1.3 m, while when the human is placed at 1.5 m and 2
m, we observe prominent peaks coming from distances 1.7
m and 2.1 m respectively. Comparing the delay indices from
the prominent peaks with and without human reflections, it is
observable a change of 0.3 dB in both 1 m and 2 m distances
scenarios, and a 0.4 dB change in the 1.5 m scenario.

Following eq. 2, and based on Fig. 2, the rL is computed
averaging power values from the PDPs obtained at Rx beams
5 to 12, 6 to 11 and 7 to 10, to ensure reflections coming
from the human target. Fig. 11 shows the resulting reflection
coefficient values for the aforementioned values at 26 GHz, for
the linearly polarized beam impinging parallelly with respect
to the incident plane. Although not being a thorough character-
ization, some general trends can be observed. Around 35% of
the incident power is reflected off the human chest at normal
incident angle and the reflection loss coefficient decreases as
the incident angle increases. Based on the measurement setting
(see Section III-B), this behavior is expected as when the
incident angle is increased we expect less reflections being
captured at the Rx beams. These results are in accordance
with the values obtained Wu et al. [40] based on simulated
theoretical models.

B. Single-person Vital Signs Estimation

Using the different configurations of the testing scenarios,
we now study the capability of the proposed pipeline for vital
sign estimation in a single-person scenario. An example of
CSI phase data calibration and processing is depicted in Fig.
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Fig. 17: False peak detection and removal example using
subcarrier selection.

12 for pair links Tx#9-Rx#1:16. It is observed how the raw CSI
phase difference data contains very fast variations. After phase
calibration to remove hardware nonlinearities, Hampel filter is
used to obtain the trend of the signal, which is then removed
from the original signal, thus eliminating DC components
on the phase data that can affect the frequency domain
transformation for vital sign estimation. Finally, downsampling
is performed to acquire a more manageable data size. In this
work a donwsampling factor (DS) of 20 is implemented to
bring the original 2000 Hz sampling frequency and 10000
time samples down to 100 Hz and 500, sampling frequency
and time samples respectively.

Subcarrier selection is an important step in vital sign es-
timation. In Fig. 13, individual subcarrier phase differences
are plotted compared to the mean phase difference across all
subcarriers and the mean phase difference of subcarriers with
> 80% of the maximum variance across time domain. Fig.
14a shows surface CSI amplitude samples versus time and
Fig. 14b depicts time domain variance versus subcarrier index,
for the two Tx beams received at Rx#8. The impact of chest
displacement due to breathing activity is noticeable specially
in Fig. 15, where the normalized variance energy per beam is
defined as

NV E =
1

NfNs

Nf∑
nf=1

Ns∑
ts=1

∣∣vnf
(ts)

∣∣ (15)

where vnf
(n) is the variance value at subcarrier nf and sym-

bol ts, obtained from the variance matrix V =
[
V1, ..., VNf

]
with Vnf

=
[
v1(1), ..., vNf

(Ns)
]T

. Variance values per sub-
carriers are spliced in time sample windows at which the
cumulative variance energy is obtained. The results show
three time intervals where variance energy is concentrated
related to the three breathing cycles performed by the human
being. Once the data is processed, we employ DWT with
L = 4 steps and Daubechies wavelet filters of level 4. As
mentioned in Section IV, we perform search peak on the
approximation and detailed coefficients to obtain breath and
heartbeat rates, respectively. In Fig. 16 it is shown the extracted
DWT breathing and heartbeat signals for Rx beam 9 when
transmitting with beam 8. The time positions of the peaks
are subtracted from their respective following peak, to obtain
the period P . The rate is then computed in Hz as 1/P or
60/P in bpm. The ground-truth rates are 0.56 Hz and 1.37
Hz for breath and heartbeat activities respectively. The prior
knowledge of typical breathing and heartbeat values from

Fig. 18: Breath rate estimates (left) and heartbeat rate estimates
(right) for monostatic radar-like configuration with the human
placed 3 m from the Tx for Tx#9-Rx#5:12 beams.

human beings is leveraged to remove false detected peaks on
DWT. Such peaks that present inter-peak interval times outside
range of typical values are deleted. Estimation results shown in
Fig. 17 show the importance of the false peak removal method
for the breathing cycle. In all Rx beams, using the proposed
method leads an enhanced estimation. The estimation on Rx
beam 8 using prominent subcarriers achieves the best result as
expected, as the beam is directly pointing to the human chest.

An example of DWT-based estimation results for Rx beams
5-12 is shown in Fig. 18. Rx beams 5 and 8 achieve perfect
breath rate estimation compared to the ground-truth. This
is expected for Rx#8 as the beam is directly pointing to
the human chest. For the case of Rx#5, results show that
signals reflecting in the human chest can also be picked up
from different azimuth angles due to multipath richness. For
heartbeat rate estimates, Rx#7 achieves 1.2 bpm absolute error.
Overall, from Fig. 18 it is seen that the estimation is very
poor for those Rx beams not picking up contributions from
reflected signals on the human chest, but highly accurate
from beams picking up reflections from the human chest;
demonstrating the capability of individual Tx-Rx pair links
to obtain accurate vital sign information. However, because
in real life applications the ground-truth is not known, a
decision must be made including all information picked up
from beams inside the human’s chest FoV. We propose a
weighted mean method, in which the weighting coefficients
are the time-domain average variance values from all selected
subcarriers. The estimation is unavoidably degraded, with
estimation values increasing to 7.5 bpm and 11.4 bpm for
breath and heartbeat activity, respectively.

Moreover, there is a clear overestimation for different beams
affecting both breath and heart rate estimates similarly. An
overestimation of the frequency rate translates into an under-
estimation of the breathing and heartbeat periods extracted
from the DWT decomposed low and high-frequency signals
in the band of interest, meaning that the obtained mean inter-
peak interval is actually smaller than the ground-truth one. The
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(a) (b)

Fig. 19: Estimation RMSE values for Tx#9-Rx#8 pair link.

DWT decomposition on beams not carrying information on the
vital signs of the person generally produces false peaks, with
small amplitude, that do not correspond to vital sign activity
but are still considered after the correction mechanism because
they still are inside the bounds of the vital sign periods used in
the correction step. Another reason is that in the 5s of capture
time there are around 3 and 7 full breath and heartbeat cycles,
respectively. Meaning that the average inter-peak interval has
very small number of samples, amplifying the importance of
the DWT method to precisely extract the correct frequency
tones.

RMSE values with respect to distance and incident angles
are plotted in Fig. 19 for monostatic radar-like configuration 1,
2 and 3 in TS2. These values are obtained by the DWT method
for each Rx beam and selecting the beam with a smaller
RMSE value. Hence, the results in Fig. 19 represent the case in
which the best performing Rx beams are selected as the final
estimation result. Although not having a very representative
data set, we observe a general trend that the estimation error
increases as both distance and incident angle increase. A
reason for this is that at larger distances reflected signals are
more attenuated, and at large incident angles reflected signals
modulated by the human chest may be not picked up by beams
with larger gains. Also, breath rate and heartbeat rate RMSE
values are kept under 5 bpm at 1 and 1.5 m and for all
distances, respectively. Breath rate is kept under 5 bpm for
incident angles below 40 degrees, while heartbeat rate achieves
this for angles below up to 40 degrees.

The FFT-based method depicted in section IV is used to
compare it to the proposed DWT-based method. Fig. 20a
shows the frequency domain mean power signal of subcarriers
with >80% of the maximum variance value of the Tx#9-Rx#8
pair link for the monostatic radar-like configuration with the
human placed at 1 m from the Tx. Typical FFT-based methods
for vital sign estimation found in the literature (see section II),
rely on selecting the maximum peak from such signal. Using
this method in Fig. 20a, we obtain an absolute error of more
than 20 bpm compared to the ground-truth. In Fig. 20b the
selected individual subcarrier’s centroids are depicted in red
dots. The mean weighted average of these points is show as
the black cross, taking the variance of each subcarrier as the
weighting factors. We thus observe an absolute error of 0.1435
Hz (8.61 bpm) compared to the ground-truth, which is >7 bpm

(a) (b)

Fig. 20: Tx#9-Rx#8: (a) FFT-based single person estimate. (b)
FFT with k-means clustering single person estimate.

worse than the one obtained with the proposed DWT-method
for the same Tx-Rx pair link.

C. Multi-person Vital Signs Estimation

The two person measurements obtained from TS3 are
analysed in this subsection. As mentioned, the two measured
targets breathe at different rates. The ground-truth breath rates
values for these targets are 0.35 Hz (21 bpm) and 0.69 Hz
(41.1 bpm). Firstly, let us compare the normalized frequency
power illustrated in figures 20a and 21. Compared to the
one person scenario, two prominent peaks are seen in the
two person scenario. We use this experimental result, which
we have observed through our research work to determine
the number of targets input to the k-means algorithm for
estimating rates. Estimation results for the breathing rate are
depicted in Fig. 22. Based on the geometry of TS3 and the
Butler matrix pattern some insights can be drawn. For instance,
taking a look at Fig. 22a and Fig. 22b where transmission is
performed with Tx#9, it is observable that estimation on H1

is poorer than the one for H2. This is because the beam used
in transmission is mainly pointing to H2, hence reflections
will be larger modulated by its frequency. Nevertheless, the
Tx beam is also capable of reaching H1, modulating reflected
signals with its frequency. In this case, Rx#6 and Rx#12 have
0 and 1.5 bpm error values. When transmitting with Tx#9, the
error is kept under 2 bpm in all cases for both targets in Fig.
22c and Fig. 22d. The presented results for the two-person
scenario reveal that individual beams have the capability of
recovering information from reflected signals in an indoor
environment thanks to the rich multipath environment. The
estimation performance relates directly to the geometry of the
scenario and the orientation of the Tx and Rx beams, which
can be leveraged to also obtain vital sign estimation on targets
breathing at similar rates. More experimental evaluation is
needed to fully evaluate the performance of such pipeline in
those circumstances. For instance, further evaluation is needed
to clearly define a mapping strategy of the locations covered
by the Tx-Rx pair links combining reflection loss analysis
and vital sign extraction. In this context, with such strategy, a
clear view on the location of the targets should be achieved,
helping make a decision strategy for when Tx-Rx pair links
contain information of two or more targets breathing at the
same rate; which the current state of the algorithm would only
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Fig. 21: FFT analysis of the two person scenario. Mean value
of all subcarriers (left) and mean value of >80% variance
subcarriers (right), for pair link Tx#9-Rx#12.

(a) Tx#9 - Rx#6. (b) Tx#9 - Rx#12.

(c) Tx#8 - Rx#6. (d) Tx#8 - Rx#12.

Fig. 22: Breath rate estimates in two person scenario.

detect as one target. In short, this small study reveals that
joint communication and sensing can be possible in mmWave
multibeam systems, with the possibility to dedicate specific
communication beams to sensing activities.

VI. CONCLUSION

In this paper, the capability of a 26 GHz multibeam OFDM
testbed for vital signs estimation has been studied based on a
measurement campaign on single and multi-person scenarios.
A post-processing pipeline algorithm is introduced, imple-
mented and put under test to evaluate the performance of
vital sign estimation, in single and multi-person indoor sce-
narios, which are useful for joint communication and sensing
applications. The pipeline includes frequency and time domain
calibration of the captured CSI samples to remove frequency-
phase nonlinearities introduced by the up/downcoversion RF

chain and a proposed method for a correct high frequency
denoising. Two different methods are proposed based on single
or multi-person scenarios. DWT is employed in single-person
scenarios to obtain better estimates compared to FFT-based
methods found in the literature. For multi-person scenarios,
FFT and k-means clustering algorithm is employed to obtain
vital sign information from different targets. The influence of
frequency diversity and fading is also studied.

Reflection loss has been studied and compared to some
incident angles. It is find out that reflection loss is larger at
the normal incident angle with 35% of the incident power
reflected. The proposed methodology in monostatic radar-like
configuration further reveals that DWT can offer estimation
performance below 2 bpm absolute error for individual Tx and
Rx beam pair links, while using FFT-based methods the error
can increase to 8 bpm. In monostatic radar-like configuration
results reveal that the RMSE increases with the incident angle.
In two-person scenario, the proposed vital sign estimation
method, based on frequency analysis and k-means clustering,
reveals that individual beams are able to pick up reflections
coming from different targets while offering 3 bpm absolute
error, which opens up the possibility to dedicate specific
beams to sensing activities in active mmWave multibeam
communication.

This paper demonstrates our preliminary investigation on
the raw capability of mmWave OFDM multibeam systems
to simultaneously perform active communication and sensing
in future generations of mobile communications. It deserves
further and extensive exploration. Future lines of work should
include a more extensive measurement campaign covering
more Tx/Rx locations to have a better insight on the influence
of distance and incident angle in both reflection and vital
signs estimation. For this, a more controlled scenario like a
anechoic chamber should be used. Using a controlled scenario
should also be helpful to make sure multipath components
are well accounted for. Such extensive campaign should also
make it possible to better evaluate the proposed pipeline in
real-world indoor scenarios for more than two targets, and
simultaneously evaluate the capability of the system for joint
active and sensing activities. Based on the spatial diversity of
the multibeam system, mapping targets in space based on their
vital signs could also be an interesting application in a future
line of work.
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