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ABSTRACT 

In this study, object based image analysis (OBIA) was used to compare the segmentation accuracy for 

trees outside forest (ToF) using a VHR Geo-Eye satellite image and airborne LiDAR data in mapping 

carbon stock. While CPA that is a proxy for DBH was used for the Geo-Eye, CPA and canopy height 

model (CHM) was used for the airborne LiDAR data from which a multiple regression analysis was 

applied.  

 

DBH was randomly measured from all the available trees in the field alongside the tree height and the 

crown diameter. Quantification of AGB was estimated with the use of a mixed allometric equation for 

tropical forest described in Chave et al., (2005). Regression equations were developed between the field 

measured parameters, field measured DBH and remote sensing parameters and the result indicated that 

the coefficient of determination, R2>0.5.  

 

The accuracy assessment result of the segmentation process was 79% and 74% for the airborne LiDAR 

data and Geo-Eye respectively. The result of the relationship between the field measured and that of 

remotely sensed data was R2=0.74 (RMSE=38.24%) and R2=0.73 (RMSE=41.18%) respectively for the 

LiDAR and Geo-Eye data sets.  The highest quantity of predicted carbon was from the airborne LiDAR 

data that had an R2 of 0.90 and RMSE of 14.24%. However, the best model is from the multiple 

regression of the LiDAR data parameters of CHM and CPA with R2=0.69 (RMSE=11.53%). The 

predicted carbon of the Geo-Eye had R2=0.51 with 42.24% RMSE. The result of OBIA gives airborne 

LiDAR an edge to Geo-Eye image in estimating CPA due to her 3-D characteristic in determining forest 

structures. The t-test result rejected the null hypothesis that there was a significant difference between the 

segmented CPAs of the two data sets at 95% confidence interval.   

  

The major problem of this study was the identification of pruned tree crowns on the Geo-Eye image. 

Further investigation should be carried out with a stratified random sampling of the crown size to 

uniformly distribute the data set of the study. These findings will be useful to the CFUGs and the Forestry 

Department of Nepal to propose integration of ToF into their natural resource management scheme for 

carbon stock estimation. Nevertheless, this study encourages the use of airborne LiDAR data for carbon 

stock estimation for trees outside forest in a tropical environment like Nepal.  

 

Keywords: aboveground carbon stock, OBIA, trees outside forest, Geo-Eye, LiDAR, tree height, crown 

projection area, Nepal.   
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1. INTRODUCTION  

1.1. Background  

The forests of the world constitute about 31% of the total land area just over 4 billion hectares (FAO, 

2010). The forest stores more than 650 billion tonnes of organic carbon in both trees and soil of which 

44% is in biomass (FAO, 2010). Compared to other ecosystems, forests are known to play an important 

role in the global carbon (C) cycle as it influences the climate and climate change processes; and are 

globally cherished for numerous services to the society (Pan et al., 2011). Most importantly, the forest 

serves as a brake through to climatic variations due to its ability in carbon sequestration and storage 

(Gibbs et al., 2007). However, forests absorb carbon in wood, leaves and organic matter and release it into 

the atmosphere during the deforestation processes (e.g. burning and clearing of land) (FAO, 2010) leading 

to carbondioxide (CO2) emission. Quantification of large forest carbon stocks is imperative for national 

inventories for net greenhouse gas (GHG) emissions (Wang et al., 2007) and to verify the function of 

terrestrial carbon storage in the global carbon cycle.  

 
The Intergovernmental Panel on Climate Change (IPCC) predicted a rise in the world’s temperature by 

the end of the century from 1.8°C to 4°C due to an increase in the concentration of the amount of GHGs 

from anthropogenic factors (IPCC, 2007). These GHGs are emitted through the fossil fuel combustion 

and forest cover changes resulting from other land uses. This dynamics of forest degradation remains 

inadequately understood (Houghton et al., 1992) as the value of mature and secondary tropical forest as 

sinks of atmospheric CO2 are less considered in carbon stock estimations (Lugo & Brown, 1986). 

Terrestrial forest ecosystems of low and mid-altitude was proposed to be significantly responsible for the 

imbalance in the carbon budget (Tan et al., 1990) as this zone is highly affected by anthropogenic activities. 

To mitigate on the anticipated temperature rise by the end of the Century, the Bali Action Plan of the 

United Nations Framework Convention on Climate Change (UNFCCC) in 2007 introduced a policy of 

“Reducing emissions from Deforestation and Forest Degradation” mechanism within the developing countries (UN-

REDD, 2008) to implement the Kyoto Protocol treaty that was initiated in December 1997 and came into 

force in February 16th, 2005. 

 
Forest biomass assessment is important for national development planning as well as for scientific studies 

of ecosystem productivity and carbon budgets. Typically, carbon stock is obtained from above-ground 

biomass (AGB) as 50% of tree biomass is made up of carbon (Basuki et al., 2009). Estimation of biomass 

of forests is a usual practice to quantify fuel and wood stock and allocate harvestable amount. 

Traditionally, the most accurate method for biomass estimation is through felling of trees and weighing of 

their parts with a scale (Basuki, et al., 2009). This method is destructive, requires much time, heavy 

manpower and is not profitable for large geographic coverage (Popescu, 2007; Verwijst & Telenius, 1999). 

Nonetheless, the method is used for validation of less aggressive and expensive methods like using 

remotely sensed data for carbon stock estimation (Wang et al., 2003). Methods of data collection range 

from satellite imagery to aerial photo-imagery obtained from low flying planes (Brown, 2002).  

 

Even though remotely sensed data are a proxy for AGB, the fact that they provide consistent quantitative 

data over large areas, makes remote sensing based carbon stock mapping far superior to extrapolations 

based on field measurements (Popescu, 2007) as there is no remote-sensing instrument that is capable to 
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measure forest carbon stock directly (Drake et al., 2003). The advantages of using remote sensing in 

biomass estimation include the possibility to obtain measurements from every location of the forest, the 

speed of data collection and processing, the relatively low cost of many remote sensing data types, and the 

ability to easily collect data from difficult to access ground terrains (Bortolot & Wynne, 2005).  

 

There is high inconsistency in the accuracy to obtain AGB from optical data and this varies with the 

different case studies and methods in application (Holmgren & Thuresson, 1998; Wulder, 1998). Optical 

sensors provide systematic observations at regional/global and at coarse (>1 km) spatial resolution 

(Rosenqvist et al., 2003). Their frequencies of occurrence stretch from several times daily (e.g. NOAA 

AVHRR) to every 16-18 days (e.g. Landsat ETM+) that makes the data prune to haze, smoke and most 

especially cloud cover in the tropics. Generally, there is a weak relationship between carbon stock and 

field-based measurements from optical sensors in estimating forest biomass predictions from satellite-

observed vegetation indices (Foody et al., 2003). Biomass data from optical sensors are often inaccurate 

and generally insufficient to estimate carbon stocks of various vegetation types alone (Rosenqvist, et al., 

2003). Remote-sensing systems are restricted by haze, smoke and most especially cloud cover in the 

tropics, although modern technologies including radar systems can penetrate clouds to obtain day and 

night data.  

 

In comparison to the use of optical remote sensing, there has been a great success in the application of 

remote-sensing techniques to estimate carbon stocks from airborne LiDAR in boreal and temperate 

forests. “LiDAR collects samples along the flight path and as such, is not an imaging system” (Patenaude 

et al., 2005). The level of estimated uncertainties of carbon stock is reduced and range between 10-15% in 

temperate forests (Lefsky et al., 2002a; Popescu et al., 2004). Unfortunately, the range of uncertainty 

tropical forest is vast (8-25%) promoted by the topography (Drake, et al., 2003) although they are 

characterise to be among the richest ecosystem in carbon content (Asner, 2009).  

 

The use of airborne Light Detection and Ranging (LiDAR) data to estimate forest stand tree height has 

gained widespread attention (Lim et al., 2003; Naesset, 1997). The point cloud density of LiDAR data is 

delivered in X, Y and Z (3-D) format from which the structural parameters of tree height and CPA can be 

estimated. Interpolation involving tree structural samples is essential for thematic mapping (Patenaude, et 

al., 2005) as relationships can be established to estimate forest carbon stock though tropical forest quickly 

attain maximum height and continue to accumulate carbon for many decades (Hese et al., 2005). The 

extensive coverage of LiDAR remote sensing overrides the proficiencies of radar and optical sensors to 

estimate carbon stocks for all forest types (Drake, et al., 2003; Lefsky, et al., 2002a).  

 

In spite of the advantages of LiDAR, LiDAR would probably be too costly for monitoring a larger forest 

area. Hence, a sampling approach is applied for a subset which is later extended to the whole region 

(Gibbs et al., 2007; Wulder & Seemann, 2003). The lack of collective algorithmic standards or 

unavailability of published processing algorithms like all remotely sensed data makes the application of 

LiDAR data difficult. But its 3-dimensional structure of data acquisition makes it more adaptable. 

Similarly, the estimation of stand height from LiDAR data would be highly dependent on the terrain, slope 

angle and the canopy cover of the vegetation (Gatziolis et al., 2010). LiDAR’s limitation as most remotely 

sensed data is the indiscriminate distinction of tree species as biomass varies between tree species of 

similar height and age using allometric equations (Rosenqvist, et al., 2003). However, incorporation of 

Lidar with hyper-spectral data from which tree species can be identified, may allow biomass to be 

estimated with more accuracy (Lu, 2006).    
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Using VHR Satellite imagery, it is possible to obtain the crown projection area (CPA) or a segment of the 

trees with the help of object-based image analysis (OBIA) technique.  Experimental results have shown 

field measured CPA and DBH to be highly correlated (Hemery et al., 2005) and therefore can be employed 

for forest biomass studies (Alves & Santos, 2002). Direct field measurement of CPA is time consuming 

rendering its application rare (Song, 2007) thereby promoting researchers to an alternative use of OBIA to 

estimate CPA effectively over a wide region. Li & Strahler, (1985) modelled the estimation of CPA from 

satellite imagery using Landsat TM with some success but unfortunately, using the Li-Strahler model, there 

was difficulty in separating the individual tree crowns from the canopy cover with Landsat TM imagery 

(Woodcock et al., 1997). Alternatively, the introduction of OBIA that has been successfully identified and 

applied for CPA delineation using VHR multispectral imagery (Kim et al., 2009).  

 

The two processes of image segmentation for individual tree crown delineation are i) Individual Tree 

Crown (ITC) algorithm (Gougeon, 1995) that is an extension of the image processing software PCI 

Geomatica (Mora et al., 2010) and ii) OBIA software called eCognition Developper8 (Kim, et al., 2009). 

Some studies have demonstrated the successes in the application of the ITC algorithm on series of 

imageries and different forest situations (Gougeon et al., 2003; Leckie et al., 2003).  The ITC technique is 

based on differentiation of either the tree crown or its shadow.  

 

Likewise, the eCognition 8 (or Definiens Developer) that has been gaining much credence recently is 

characterised by the delineation of the individual tree crowns (image object segments) and tree species 

classification (Benz et al., 2004). “Generation of a segment is dependent on one or more homogeneity 

criteria in one or more spatial dimensions (distances, neighbourhoods, topologies etc.) of the feature 

space” (Blaschke, 2010). The scale parameter that determines the maximum extent of heterogeneity of the 

resulting image is dependent on the user as it is practically a trial and error approach since no automatic or 

objective specific method exists (Hay et al., 2003). Significant results of CPA delineation obtained from 

OBIA approach have been applied in different research work (Chubey et al., 2006; Pascual et al., 2008) 

and also for classification of trees outside the forest (Herrera, 2003). No matter how advanced the OBIA 

analysis, field data for validation are often required since “no single sensor on any satellite mission, 

whether Radar, LiDAR or optical, can be expected to provide consistently infallible estimates of biomass” 

(Goetz et al., 2009). 

1.2. Problem statement 

In response to the UNFCCC and the Kyoto protocol on global climate change scenarios, periodic national 

inventories of GHG emissions and removals, as well as forest carbon inventories have to be reported 

annually (Patenaude et al., 2005). The emerging global carbon markets that have integrated the Clean 

Development Mechanism (CDM) within the Kyoto Protocol need accurate and reliable techniques to 

compute sources and sinks of forest carbon. Presently, REDD proposition requires a valid and robust 

methodology to institute standard scenarios to estimate AGB carbon stock using remotely sensed data 

with high accuracy and extensive geographic coverage. This will institute annual monitoring with exact 

benefits sharing through payment for ecosystem services. This implies studies should be extended to 

involve Community-managed forests, Government-managed forests, trees outside forest (ToF) and other 

categories of forest types across the countries that ratified the COP 15 to determine their carbon stock 

potential.  

A quantitative assessment of remote-sensing approaches for AGB carbon stock estimation proposed a 

synergetic use of approaches to override the limitations of each sensor such as Radar saturation, LiDAR 

sampling modes or optical temporal discrepancies (Goetz, et al., 2009; Patenaude, et al., 2005). A 
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combination of airborne LiDAR and multispectral data in a boreal forest gave an increase accuracy of 

adjusted R2 of between 1 and 4% depending on species group (Hyyppa et al., 2001) though closed canopy 

forest has overlapping crowns and are site-specific (Drake, et al., 2003). Policy makers and planners are 

recognising trees inside and outside forests are diverse entities with mutual and synergetic potentials 

(Herrera, 2003). ToFs formulate an incredible supply of fodder, fuel wood, timber and fruits in Nepal 

(Weidner, 2008). But unfortunately, unlike trees inside forest, studies of the quantification and 

contribution of ToF of the tropics in the carbon cycle is scarce (Blaschke, 2010) though they serve as 

“leakages”. There is a necessity to define and comprehend the underlying forces of ToF and their relation 

to carbon storage dynamics. Moreover, this would eventually result to a proper understanding of the value 

of ToF and their ultimate integration within sustainable management of Natural resources of forest, farm, 

pastoral and urban land. 

  

The estimation of remote sensing based AGB carbon stock in the tropics remains a thought-provoking 

mission for researchers due to the complex nature of the biophysical environments (Lu, 2005). Most of 

the method developed from remotely sensed data is based on forest stand plantations. Species-specific 

regression models is impractical in tropics (Brown & Schroeder, 1999) as a 1-hectare plot may constitute 

more than 300 tree species with few occurrence (Gentry, 1988). Hence, biomass regression models for 

mixed tree species must be employed (Chave et al., 2005).  

 

This study aims to further develop and to improve on a method (Chave, et al., 2005) to assess carbon 

stock using CPA derived from VHR satellite image and airborne LiDAR data through object-based image 

analysis (OBIA), tree height from LiDAR data and forest stand parameters measured in the field for trees 

outside forest of Chitwan, Nepal. The Kayarkhola watershed is one of the selected pilot sites for the 

REDD+ implementation initiative by the UNFCCC in Nepal. The use of the above data is to obtain an 

accurate, precise and robust estimation for a sustainable monitoring development mechanism for Nepal 

(Gautam & Kandel, 2010). 

 

1.3. Research objectives 

The main objective of the study is to estimate and map carbon stock from individual trees using very high 

resolution (VHR) satellite image (Geo-Eye) and airborne LiDAR data for trees outside forest of Chitwan, 

Nepal.  

1.3.1.  Specific Objectives 

 To assess the accuracy of segmentation technique for delineating individual crowns (CPA) of 

trees outside forest using VHR Geo-Eye satellite image and airborne LiDAR data. 

 To assess the relationship between forest stand parameters from remotely sensed data (i.e. CPA 

and height) and field data. 

 To estimate and map carbon accurately for trees outside forest in Kayarkhola watershed in 

Chitwan, Nepal. 

1.3.2.  Research Questions 

 What is the difference in accuracy segmenting using VHR Geo-eye satellite image and airborne 

LiDAR data for trees outside forest? 



MAPPING CARBON STOCK IN TREES OUTSIDE FOREST: COMPARING A VERY HIGH RESOLUTION OPTICAL SATELLITE IMAGE (GEO-EYE) AND AIRBORNE LIDAR 

DATA IN CHITWAN, NEPAL  

 

13 

 How strong is the relationship between forest stand parameters i.e. CPA and height extracted 

from remotely sensed data and field data for individual trees outside forest? 

 What is the quantity of carbon stock in trees outside forest in the Kayarkhola watershed, Nepal? 

 

 

Table 1: Objectives, research questions and hypotheses   

Obj. Research questions Research Hypothesis 

1 Can object-based image segmentation 
delineate individual tree crown with high 
accuracy from Geo-Eye and airborne 
Lidar data? 
 

H0: There is no significant difference in accuracy 
between the two data types using OBIA for tree crown 
delineation in trees outside forest. 
H1: There is a significant difference between the two 
data types of delineation. 

2 How strong is the relationship between 
CPA & tree height and carbon content? 

H0: There is no significant relationship between CPA 
& tree height and carbon of individual tree crowns 
H1: There is a significant relationship between CPA & 
tree height and carbon of individual tree crowns 

3 What is the quantity of carbon in the 
area? 

 

 

 

1.4. Definition of concepts 

1.4.1. Forests 

According to FAO, “these are lands of more than 0.5 hectares (ha), with tree canopy cover greater than 

10%, which are primarily not under agriculture or urban land use. These trees should be able to reach a 

maximum height of 5m in-situ at maturity (FAO, 2002)”. However, there is tolerance for each country to 

modify the definition depending on her course and her National Forestry Law. In this light, Nepal just like 

the FAO used 10% tree canopy cover as forest in their definition (Weidner, 2008). 

 

1.4.2.  Trees outside forest (ToF) 

Though there exists no direct definition of trees outside forest (a neologism coined in 1995), FAO defines 

it as “trees growing outside the forest and not belonging to the category of forest, forest land, or other 

wooded land (FAO, 2002)”. Some examples include: 

a) Group of trees growing on an area of less than 0.5ha, including lines and shelter belts along 
infrastructure features and agricultural fields. 

b) Scattered trees in agricultural landscapes.  

c) Trees in parks, gardens and around buildings. 

d) Tree plantations mainly for other purposes than wood, such as fruits orchards and palm 
plantations. 

This study was focused on the first three categories as ToF are not assigned an area in the overall land use 

classification but occur inside other wooded land and other land. Although this definition is based on 
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trees, the concept likewise involves the site and other vegetation at the location. It is wise also to mention 

that, the definition of trees outside forest is dependent on the type of “forest” definition employed. 

Trees outside forest may be predominantly natural and thus not maintained, such as woodlots, gallery 

forests and riparian buffers. Spatially, they may be dotted intermittently on farmland and pasture, or 

growing continuously in line-plantings along roads, canals and watercourses, around lakes, in towns, or in 

small aggregates with a spatial field such as clumps of trees, sacred woods, urban parks as in Figure 2; A, B 

& C (Alexandre et al, 1999). 

1.4.3. High pass filter (hpf) 

A fusion technique applicable to a wide range of sensor types including mixed sensors. It allows true 

colour against the sharpness of an image and ideal where there is a high discrepancy of pixel ration 

between the panchromatic (pan) and the multispectral (MSS) image. 

1.4.4. Intensity hue saturation (ihs) 

Just like hpf, it is applicable to a wide range of sensors but weighting is based on the overlap of the pan 

image wavelength with those of each of the MSS bands. The resulting colour retention is excellent 

although bands with little or no overlap with the pan image will receive less sharpening. 
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2. DESCRIPTION OF THE STUDY AREA  

2.1. Geographic overview 

 
Chitwan District is located between latitude 27°40’07.79” and 27°46’37.15” north and longitude 

84°33’25.88” and 84°41’48.85” East (Subedi et al., 2010) and is found some 150 Km from the West of 

Kathmandu, the political capital of the Country. The District shares a common boundary with Dhading, 

Gorkha and Tanahun Districts in the north, Makwanpur to the East, Nawalparasi to the West and the 

international border of India to the South. It is one of the richest districts of the country with extensive 

natural and commercial forests and diverse agricultural productivities (ICIMOD et al., 2010).  

 

The Kayarkhola watershed covers an area of 2,381.96 hectares and is located in the Chitwan District of 

Nepal in the Central lowland of Nepal. Amongst the five major ecological zones found in Nepal, the 

Kayarkhola watershed is characterised by both the tropical and sub-tropical with abrupt altitudinal 

variation (Subedi, et al., 2010). The Kayarkhola watershed is divided into 15 Community Forest User 

Groups (CFUGs). The CFUGs promote the suitable utilisation and equitable distribution of resources 

available from the community forests to improve the socio-economic situations of deprived sections of 

the community. The activities of the CFUGs are controlled by the Federation of Community Forestry 

Users, Nepal (FECOFUN) and Asian Network of Sustainable Agriculture and Bio-resources (ANSAB).  

The annual average temperature is 24°C with a range between 16°C and 32°C. Precipitation also varies 

from 1584 to 2287mm with an annual average of 1830mm. Moreover, the altitude of the watershed as a 

whole ranges from 245m to 1944m with an area of 8002 hectares. The climate of the district is monsoon 

with evergreen and semi-deciduous tropical forests (IPCC, 2006).  

 

2.2. Land use 

Forest is said to constitute about 60% (128,500 ha) of the District of Chitwan (ICIMOD, et al., 2010). The 

forest is made up of the Chitwan National Park that is known to be a world heritage with an area of 970 

Km², part of the Parsa Wildlife Reserve and the various community forests. However, the Kayarkhola 

watershed accounts for 66.9% (5,195) ha of forests, 0.0005% (3.8) ha of barren land, 3.4% (264.4) ha of 

bushland, 29.2% (2,268.6) ha of farmland for cultivation and 0.43% (33.3) ha of grassland. During the 

growing period, the farmers prune the tree crowns for fuel wood, fodder or just to allow the penetration 

of sunlight into their fields. 
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Figure 1: Location of the study area in Kayarkhola watershed, Chitwan District, Nepal  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Photos of the study area 
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2.3. Socio-economic: 

The actual population of the study area is estimated to be about 22,090 inhabitants with actually 3,935 

households, though there is some uncertainty in this estimate (ICIMOD, et al., 2010). Moreover, the 

population is mostly made up of the forest-dependent indigenous communities. They are basically farmers 

who practice their traditional shifting cultivation as they continue to extend from the lowland into the hills 

with their rice fields. Within the study area, the dominant ethnic groups are the Chepang that is considered 

a vulnerable group and the Tamang (Subedi, et al., 2010). 

 

2.4. Vegetation  

The vegetation of the watershed range from hardwood forest in the lowland through coniferous and 

mixed broad leaves forests in the mid to upper elevation (ANSAB, 2010). Shorea robusta is a dominant 

tropical hardwood species in the area. There are also some dominant associates like Lagerestroemia parviflora, 

Mallatus phillipinensi and Terminelia tomentosa in Kayarkhola. However, there has been some introduced tree 

species (e.g. Dalbergia sissoo and Techtona grandis) that were principally encountered in the rice fields and are 

used as fuel wood and fodder for the livestock (Appendix 1). 
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3. METHODS 

3.1. A Flowchat of activities 

 
The flowchart of activities is presented on Figure 3. It consists of the independent processing of the 

remotely sensed data (airborne LiDAR and Geo-Eye) and the procedures involved in calculating carbon 

stock from the field measured data. These processes are then related through a regression analysis for the 

estimation of carbon stock.  
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                          Figure 3: Flowchart of activities 

 

3.2. Sampling Design 

Spatial boundary of the study area were on-screen delineated to ease measuring and verification (Subedi, et 

al., 2010). Basic topographic information was superimposed on the image to facilitate navigation in the 
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field. An iPAQ was used for navigation and to locate the clearly identified stand-alone trees. Coordinates 

of some trees were recorded on the iPAQ. The pan-sharpened image from VHR Geo-Eye was 

transformed into the Enhanced compression wavelength (ECW) for it to be easily loaded into the iPAQ. 

A random sampling technique (Kohl et al, 2006) was used to obtain the tree parameters for the inventory 

in the study so that every tree in the sample can have an equal chance to be measured. Tree samples were 

measured based on their availability and their natural structure (i.e. not pruned) within the vicinity (Figure 

2; D). Efforts were made to cover all the study area during data collection for a concise, concrete and 

statistically acceptable analysis. This was based on maximum variation on our area of interest at different 

patterns of homogeneity and possibility. Trees with DBH of less than 10cm, height of less than 5m and 

pruned tree crown structure were not considered in the sample size.   

3.3. Pre-field work  

The satellite images were used to demarcate our study area using on-screen digitisation. Some single trees 

and a group of trees were identified in-order to cover the whole study area and then printed for easy 

recognition of the trees in the field.  

 

The ECW format of the pan-sharpened image was uploaded into the iPAQ to enable identification of the 

trees. Printed maps in JPEG format of the digitised polygons of less than 0.5 hectares were also used for 

trees identification. Some easily identified trees and their coordinates were recorded on both the iPAQ and 

the data sheets.  

3.4. Field data collection 

The printed maps from the VHR satellite images alongside with the iPAQ and Garmin 12XL GPS were 

used as a guide to locate the various digitised points and polygons. Subedi et al., (2010) confirmed the use 

of GPS tracking as an efficient and accurate method for boundary location. Unfortunately, most of the 

delineated tree polygons on the satellite images before field work were discovered to be bamboo forest 

patches during the field practice. Much emphasis was then laid on the un-pruned stand alone trees that 

were equally part of the original sample size and found to be randomly distributed in the study area. The 

sample size was a function of the tree density, shape and availability (MacDicken, 1997), as the study area 

is a sparse vegetation in rice fields. 

  

Trees with a DBH of 10 cm and above were measured and recorded while the other parameters of tree 

height and crown diameter were recorded on the field. In addition, the well-recognised trees on the iPAQ 

of each identified sample from the Geo-Eye satellite image were recorded (Mora, et al., 2010; Popescu, 

2007). Care was taken to ensure that the diameter tape was placed around the stem at exactly on the 

indicated point of measurement at 1.3m above the ground level. The tree heights were measured from the 

tree base to the tip of the highest point using the Haga altimeter. Tree crown diameter was computed 

from a half of the measurements of the crown projection area (CPA) in the direction of North-South and 

West-East or a sum of the measurement of the radii of the CPAs in all four cardinal directions and then 

divides by 2.  

3.4.1. Field data analysis 

The data collected was entered into an excel spread sheet and descriptive statistics was employed for a 

data summary and to check the bias function of the estimator. Excel, SPSS and R software statistical 

packages were also exploited for the strength of the regression analysis between the field measured 

parameters and further relate to the remotely sensed data.  



MAPPING CARBON STOCK IN TREES OUTSIDE FOREST: COMPARING A VERY HIGH RESOLUTION OPTICAL SATELLITE IMAGE (GEO-EYE) AND AIRBORNE LIDAR 

DATA IN CHITWAN, NEPAL  

 

20 

3.5. Data processing 

3.5.1. Data pre-processing 

The airborne LiDAR data had about 53 million LiDAR measurements for the study area, and the number 

of grid cells to hold each data per measurement is 3.5 million. The brightness of the data was visualised for 

its quality in 3-D from which some stripes were realised on the data (Figure 4: A). The data was splited 

into tiles with user-specified size on which filtering through clipping was then applied. “It is impractical to 

apply progressive morphological filtering to process all measurements as a single file because millions of 

points were collected for each survey” (Zhang et al., 2003). Data of the upper most layers of the point 

clouds (Figure 4; C) were removed as repeated measurement for each cell because the dataset included 

multiple returns of the same laser pulse. (1999) reported that among the several thousand returns obtained 

from a high tree canopy forest like in the tropics, a maximum of just one return is from the ground. This 

implies during the time of data capture, some particles other than the first and last return were recorded as 

vegetation height. A final digital terrain model (DTM) was estimated at 1,293.8m asl. The bare-earth points 

were classified more accurately as they were considered from the ground surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Data pre-processing 

(A) LiDAR stripes in the data (B). Surface points (C). clipping-out process (D) Cleaned image of 2-D & elevation 
representation  

 

Pre-processing was not done on the VHR satellite Geo-eye image as the obtained images were already 

radiometrically corrected.  
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3.5.2. Processing of Canopy Height Model from airborne LiDAR data  

In the process of interpolation of the raw airborne LiDAR data after filtering, the first and the last return 

LiDAR canopy height data were respectively re-sampled into regular grids as digital terrain model (DTM) 

and digital surface model (DSM) (Chen et al., 2003). A TIN-based interpolation was applied to rasterise 

the airborne LiDAR data at a 50cm resolution. The ground control points were then used to construct a 

mathematical model for space registration thereby building up a relationship between airborne LiDAR 

space and image space. The DSM was extracted from the first pulse reflections while the DTM was 

processed using the last returns. The difference in height between DTM and represent the absolute height 

of the tree described as the normalised digital surface model (nDSM) (Chen et al., 2003).  

 

3.5.3. Image fusion Geo-Eye 

Pan-sharpening or image fusion combines the geometric details of a high resolution panchromatic (pan) 

image and the colour information of a low resolution multispectral (MSS) image to generate a high 

resolution MSS image (Neteler & Mitasova, 2008). Image fusion is aimed at increasing the likelihood to 

apply the remotely sensed images as most information acquired from individual sensor applications are 

incomplete, inconsistent or imprecise (Pohl & Van Genderen, 1998). The high spectral and high spatial 

information of the MSS images was preserved to be used in GIS applications for easy interpretation. The 

stacked MSS (2m resolution) image was then fused with the Geo-Eye pan image of 0.5m spatial resolution 

to obtain a spatial pan-sharpened MSS image of 0.5m spatial resolution. The fusion methods of intensity 

hue saturation (IHS) and high pass filter (HPF) in ERDAS IMAGINE 2011 were used and their results 

applied independently on different subsequent processes depending on visualisation of forest 

characteristics and settlements.  

 

3.5.4. CPA delineation 

3.5.4.1. Image filtering 

This technique performs enhancement operations such as averaging, high-pass (edge enhancing), low-pass 

(smoothing) filtering to upgrade the visual interpretation of an image by increasing the distinction between 

features and removing noise. Through averaging or a smoothening process, a 3*3 low-pass spatial filter 

was used in ERDAS IMAGINE 2011 to remove small random spatial variations of noise and some high 

frequency signals in the convolution process (Neteler & Mitasova, 2008). For homogeneity of the image 

segments with the VHR images, a median filter was applied to reduce the amount of convolutions in the 

final segmented polygon (Mora, et al., 2010). Thus a median filter of 3-by-3 was used for the tree crown 

delineation in ERDAS for this study as a control to the unfiltered image.  

 

3.5.4.2. CPA delineation 

The pan-sharpened filtered and unfiltered images were displayed in ArcGIS10 and viewed at various scales 

for the shapes of the tree crown canopies. A scale of 1:250 was used all through the delineation process 

for a better visualisation. On-screen individual tree canopy digitisation was then carried out based on the 

visualisation potential on the unfiltered image with the assistance of the filtered image of the Geo-Eye 

where the texture of the object is properly seen on ArcGIS10. A total of 150 tree crowns segments were 

randomly delineated. Similarly, the truncated airborne LiDAR image was randomly on-screened digitised 

with a total of 145 segments. The airborne LiDAR image had no control as the tree crowns were properly 

differentiated and seen as whitish crown structures (Figure 5).  
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Figure 5: Representation of Geo-Eye (left) & airborne LiDAR image (right) before segmentation 

 

3.6. Image Segmentation  

 
Figure 6: Overview of the segmentation process 

 

The segmentation quality is based on the scale and heterogeneity of the image objects, the spatial and 

spectral aspect of the image, and the type of algorithms (Moller et al., 2007). The process delineates units 

with homogeneous forest characteristic that is similar to forest stand delineated by on-screen manual 

digitisation (Wulder et al., 2008b). This was done using the eCognition Definiens8.64 software in a multi-

resolution segmentation method.  Multi-resolution segmentation is based on geometry of the objects that 

overcomes the problem of over- and under-segmentation. Multi-resolution segmentation allows 
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classification of objects at different scales thereby generalising the levels (Zhang et al., 2003). Through a 

customised trial-and-error experimentation (Hay et al., 2003), the parameters for scale, colour and shape 

were chosen in a multi-resolution segmentation process since the objects have to be meaningful. Figure 7 

present the result of the rate of change and the local variance of the ESP (Kim, et al., 2009), scale 

parameter of 18, shape of 0.5 and compactness of 0.9 was used for the VHR Geo-Eye satellite image for 

better identification of the object segments described to be the normal crown structures.  

 

Likewise, a scale parameter of 10, shape of 0.1 and compactness of 0.5 was used for the truncated 

airborne LiDAR data. Region based multi-resolution segmentation was applied for the airborne LiDAR 

data as it uses region growing techniques to merge pixels with similar attributes (Lohmann, 2002) and is 

noise tolerant. A segmentation combination of elevation and radiometric attributes respectively from the 

airborne LiDAR data and the orthophoto-images were executed. Hence, pixels with similar height and 

spectral attribute were merged into a region resulting to object-based classification of each separated 

region. A knowledge-based classification based on elevation, spectral, texture and shape information was 

incorporated into the system to detect the separated regions. 

 

3.6.1. The segmentation process 

The segmentation processes are scale parameter setting, multi-resolution segmentation, watershed 

transformation and morphology. The independent step by step activity is illustrated below. 

 

3.6.1.1. Estimator Scale Parameter (ESP) setting 

This was done through experimentation to develop a protocol for segmentation using the ESP tools. 

These scales are the peak values obtained from the rate of change and the minimum local variance of the 

ESP tools (Figure 7). Compared to the Geo-Eye, the rate of change of the airborne LiDAR was steeper 

resulting to larger tree crowns with slight change in the scale parameter. However, in both the airborne 

LiDAR and Geo-Eye data types, the scale parameter developed from the subsets of the images did not 

apply for the whole study area maybe due to poor representation. Hence, new scale parameters were 

developed for the whole study area as indicated above. 

 

  

 

 

 

 

 

 

 

 

 

Figure 7: ESP tools for Geo-Eye (left) and LiDAR data (right) 
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3.6.1.2. Multi-resolution segmentation 

During the process within the object features, the customised algorithm was computed to normalised 

difference vegetation index (“NDVI”) as it is one of the simplest and fastest means for vegetation 

identification. NDVI is the most commonly used index to distinguish existing canopies of green plant in 

MSS remote sensing data. Layer values for “Brightness” were used to describe the object segments for the 

Geo-Eye. The image layers were similarly weighted at 1.  

 

For the airborne LiDAR data, “Brightness” and “maximum pixel values” from the object features were 

used to distinguish the image objects. Maximum pixel value gives us the maximum height of each tree 

with it distinct brightness. Areas out of the truncation threshold (6m and >40m) were seen as dark on the 

LiDAR image. Since our minimum tree height from field was 6m, values below 6m were eliminated as 

either grass or another shrub that was not considered as a tree in the process. 

 

3.6.1.3. Watershed transformation 

This process considers the gradient magnitude of an image as a topographic surface. Pixels that are 

draining to a common local intensity minimum form a catchment basin that embodies a segment. The 

process is aimed at re-shaping the tree crowns. The intermingled tree crowns are separated into individual 

tree crowns using a splitting threshold. The threshold is dependent on the expert knowledge of the crown 

diameter. In this process, a length factor of 16 pixels was used as the average crown diameter from the 

field data was roughly 8 metres. 

 

3.6.1.4. Morphology 

The process smoothen the images into meaningful tree crowns. Closed image objects operation was 

applied for the study in order to fill the smaller holes created by the shadow and difference in spectral 

properties. A circular masking of 16 pixels was used for standardisation of the tree crowns since circular 

shapes best describe tree crowns. Objects with crown diameter of less than 1m2 (4 pixels) within another 

objects were merged into the same objects as one crown. This is because it apparently difficult to 

demarcate these objects on the image as another tree crown due to poor reflectance.  

 

3.7. Accuracy Assessment 

The accuracy of the automatic segmentation was tested with the use of reference polygons to the manually 

digitised polygons. Object differences were based on topological features of geometry on the degree of 

containment and overlap relationships (Figure 8).  

Scores were recorded depending on the degree of coverage of the reference polygons; “if the complete 

reference polygon is covered by automatically achieved segments, best scores are given and vice versa” as 

in Figure 8 (Benz, et al., 2004). When a digitised polygon occupies a 50% or more of the automatically 

segmented polygon, then it is considered as matching and otherwise the reverse. The manually digitised 

(150 polygons for Geo-Eye and 145 for airborne LiDAR) and the segmented shape files from Definiens 

of the respective data types were overlaid on a one-to-one matching of the polygons that represent the 

tree crowns to test the accuracy.  
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Figure 8: Topological relationship between two object levels 

 

The automatically segmented polygons and the manually digitised reference segments were introduced 

into the Java Topology Suite (JTS) and GeoTools to validate the segmentation accuracy. GeoTools uses 

JTS Project to provide to an implementation of the geometry of the data structure. GeoTools is about 

implementing spatial solutions where nothing new is done than respecting the rules (JTS, 2012). Using 

Clinton et al., (2005), the geometric segmentation accuracy assessment was defined based on the degree of 

over-segmentation, under-segmentation and a measure of the “goodness of fit” (D-value). The D-value is 

dependent on the proportion of over or under segmentation (eqn 1 & eqn 2).        

                               

Manually on-screen 
digitised segments

Goodness measures
For each segmentation of 

the data types

Selection of best 
segmentation parameters 

for the different data 
types

Segmentation
Results from different 

parametric 
combination of data 

types

overlay

Computer goodness metrics 

                               
Figure 9: Method for accuracy assessment using JTS 

 

      Over-segmentation =                                                                                    eqn (1) 

 

      Under-segmentation =                                                                                 eqn (2) 

 
Where: 

xi = digitised tree crowns (training objects) to judge the segmentation process 
yj = all segmented tree crowns from Definiens  

I  & j = 1 . . . . . n 
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Area (xi ∩ yj) = area of geographic intersection of digitised xi & segmented yj object  [see (Clinton 
et al., 2010) for the complete process]. 

 
The method of the root mean square (RMS) proposed by Weidner, (2008), was used to combine the over- 

and under-segmentation results defined as “goodness-of-fit”. 

 

 Goodness of fit (D) =                                                                                                                eqn (3) 

 

 

The index D is interpreted as the “closeness” of an ideal segmentation result in relation to the digitised 

tree crowns as training objects. D-index ranges between 0 and 1. Perfectly matching objects between the 

referenced and the segmented are accorded a value of zero. This implies under-segmentation and over-

segmentation is non-existent.  On the contrary, a D-value closer to 1 is given where there exists either an 

high over-segmentation or under-segmentation in relation to the largest intersecting segments (Clinton, et 

al., 2010).   

3.8. Regression analysis 

A regression mathematical model was performed between the field measured parameters (tree height, 

CPA and DBH) with field measured DBH as the dependent variable to determine the magnitude of the 

relationship. DBH alone constitutes about 50% of AGB in trees (Basuki, et al., 2009). A strong regression 

relationship between CPA and DBH means CPA can be used as a proxy for DBH in AGB and 

consequently carbon estimation. Likewise, field measured DBH was plotted against tree height and CPA 

from remotely sensed data. The validation of the relationship is based on the 30% data obtained from the 

field for verification.  

 

3.8.1. Aboveground biomass and carbon stock calculation 

The use of allometric regression models (equations) is a decisive phase in estimating AGB of a tropical 

forest, though its direct application is difficult (Brown et al. 1989; Houghton et al., 2001). As such mixed 

species regression models were employed to compute tree biomass since there was the availability of the 

required data to be used in the various allometric equations and the diversity of the tree species (Subedi, et 

al., 2010).  

 

The base model used was from Chave et al., (2005) and supported by Subedi et al., (2010) for carbon 

estimation in Nepal. This is so because some authors suggested that including wood specific gravity into a 

model results to an increase in AGB estimation (Brown et al., 1989; Chave et al., 2005). 

 

Thus, AGB = 0.0509 * ρD²H ………………………………………………….eqn 4 

Where: ρ= wood specific gravity (Kgm-3) 

D= diameter at breast height (DBH) (cm) 

H= tree height (m) 

AGB= aboveground biomass (Kg) 

An area average wood specific density (ρ) of 0.594 for upper slope mixed hardwood forest and ρ=0.72 for 

lower slope mixed hardwood forest were available for the mixed tree species for Kayarkhola watershed. 

The equation above is more adequate as it makes use of the DBH and tree height of which a comparison 

of the tree heights will be made from that acquired from the LiDAR data. 
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There is a direct relationship with the quantity of carbon present in that biomass. Several studies on the 

estimation carbon on dry wood biomass have proven that carbon ranges between 45% and 50% for 

different ecosystems (IPCC, 2006; Westlake, 1963). The resulting AGB was then used to estimate carbon 

stock for trees outside forest using the conversion factor of 0.47 that was considered to be reasonable at 

regional scale by Kale et al., (2009) as represented in eqn 5. 

 

Carbon stock = 0.47 *AGB (MgC)……………………………………………eqn 5 

3.9. Model validation 

From the allometric equation of DBH and tree height, a relationship of the AGB and CPA resulting from 

the segmentation process was analysed using regression models/metrics. AGB was the response variable 

while CPA and tree height were the independent variable in a non-linear regression analysis for carbon 

estimation from any of the parameters that best describe the model. 

 

The value of the segmented product is associated to data quality (e.g., noise, spatial and spectral 

resolution) as well as optimum customisation through trial-and-error of parameter settings, that permits 

variations of segmented results on target objects (Fortin et al., 2000). However, delineated tree crowns 

with a one-to-one ratio spatial correspondence of segments were used to develop a model with 30% of the 

data for model validation. Validation was based on the resulting calculation from the field data with that 

obtained from the predicted carbon quantity by the model. The root mean square error (RMSE) of the 

carbon stock map was calculated and the closer the value of the RMSE is to zero, the more accurate is the 

model. 

 

 

 

 

 

Where:  

RMSE = Root Mean Square Error 

Observed (Co) = indicates calculations based on field samples 

Predicted (Cp) = indicates calculations from established models 

n = number of observations in the sample 

 

 

 

RMSE = 
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4. RESULTS   

4.1. Image Segmentation 

 
The two data sets (Geo-Eye and airborne LiDAR) were used for a multi-resolution segmentation 

processes independently with different scales depending on the ESP tool. The best scale parameters 

described above were employed to obtain the image objects (segments) that are the basic units for a 

segmentation process. Figures 10 & 11 shows some portions of the segmented tree crown objects derived 

from the process. 

 

 
Figure 10: Segmented polygons of Geo-Eye (green lines represent individual tree crowns or clusters) 

 

 

   

 

 

 

 

 

 

 

 

 

 

Figure 11: Segmented image objects from airborne Lidar (green lines represent tree crowns & black colour for bare, build-up 
and vegetation) 
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4.1.1. Segmentation accuracy assessment 

As described in Möller et al., (2007), the assessment of the segmentation accuracy was based on the tree 

crown geometry quality rather than the classification accuracy of the trees outside forest. Generally, the 

Geo-Eye had an accuracy of 73.9% from a total of 138 segmented tree crown objects clearly compared on 

a one-to-one matching of the digitised and the segmented tree crowns. Similarly, a 78.68% was obtained 

from the one-to-one matching of the segmented airborne Lidar data as reference tree crowns and the 

digitised tree crowns (Table 2). This implies the shaped 107 image objects of the manually digitised tree 

crowns coincided with the 136 segmented tree crowns from Definiens and 29 tree crowns were either 

over-segmented or under-segmented.  

 

Table 2: Relationship of 1:1 on segmented and reference tree crowns 

 Total reference CPA Total 1:1 match Correctly segmented CPAs 

Geo-Eye 138 102 73.9% 

LiDAR 136 107 78.68% 

 

 

 
Figure 12: Visual interpretation of automatically segmented (red lines) and manually digitised objects (purple lines) 

 

4.1.2. Segmentation validation 

This was performed in the Java Environment with the use of the JTS and GeoTools (Figure 9). The stand-

alone manually digitised tree crowns were used as reference tree crowns for the segmented product. The 

validation was effected with an over-segmentation of 0.4411 and under-segmentation of 0.1920 for the 

Geo-Eye while the airborne LiDAR data had 0.5028 and 0.1775 for over-segmentation and under-

segmentation respectively (Appendices 5 & 6). Based on eqn (3), a validation accuracy for the D-value on 

the tree crowns was 65.98% for the Geo-Eye and 62.29% was obtained from the LiDAR data (Table 3).  

 



MAPPING CARBON STOCK IN TREES OUTSIDE FOREST: COMPARING A VERY HIGH RESOLUTION OPTICAL SATELLITE IMAGE (GEO-EYE) AND AIRBORNE LIDAR 

DATA IN CHITWAN, NEPAL  

 

30 

 

Table 3: Accuracy assessment from the Java environment 

Data types Over-segmentation Under-segmentation Goodness of fit (D) 

Geo-Eye 0.4411 0.1920 0.3401(65.98%) 

LiDar 0.5028 0.1775 0.3771(62.29%) 

 

4.1.3. Abnormalities in Segmentation Process 

For the airborne LiDAR data, all the field measured trees were recognised and automatically segmented in 

the segmentation process. But, it was realised that 13 trees (2.95%) out of the totally field measured stand-

alone trees outside forest were not segmented for the VHR satellite Geo-Eye image. Twenty-six percent 

(36 trees) of the measured single trees were considered as a cluster of trees for the Geo-Eye while the 

airborne LiDAR data had 29 (21.32%) trees. Table 4 presents the individual proportionality of the tree 

cluster formed by Definiens software while Figure 13 shows some trees that were not captured during the 

segmentation process or that were considered as more than one tree. 

 

Table 4: Segmentation abnormalities for trees outside forest 

Data types N° of trees not segmented N° of single trees segmented as clusters 

Geo-Eye 13 (2.95%) 36 (26.08%) 

LiDAR None 29 (21.32%) 

 

 
Figure 13: Representation of segmentation abnormalities on Geo-Eye image 

 

Furthermore, based on a comparison of the proportionality of the on-screen digitised and the 

automatically segmented CPAs, the ratios of 1:2, 1:3, 1:4 and 1:>4 were obtained. The ratio of 1:3 had the 

highest in Geo-Eye image with 11.59% while 1:2 ratios was recorded as the highest for airborne LiDAR 

data which had 11.03% (Table 5). However, ratios of 1:4 and greater were minimal signifying the accuracy 

level of the method. These ratios could have been a result of the many branches of the mostly dominated 

deciduous trees that were considered as individual CPA especially by the LiDAR beams during the image 

capturing process.  
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Table 5: Proportion of segmented to digitised tree crowns as clusters 

Data types Digitised CPA : Segmented CPA 

 1:1 1:2 1:3 1:4 1:>4 Total 

Geo-Eye 102 (73.9%) 14 (10.14%) 16 (11.59%) 4 (2.89%) 2 (1.45%) 138 

LiDAR 107(78.68%) 15 (11.03%) 5 (3.68%) 4 (2.94%) 5 (3.68%) 136 

* Percentages are based on the segmented total of 138 for Geo-Eye and 136 for LiDAR 

 

4.2. Extraction of CPA from datasets/ Comparing CPAs from field data & RS data 

4.2.1. Model development and validation for CPA 

From the segmented CPAs of both the airborne LiDAR data and the VHR Geo-Eye satellite image, the 

model relationship between the field CPA (from field diameter) and the results of the remotely sensed 

data were computed. A regression was run with 142 airborne LiDAR and 129 Geo-Eye samples that 

coincided during the different on-screen digitisation processes of both data sets were used for this analysis. 

The result of the linear regression gave an R2 of 0.7434 and 0.7327 for the airborne LiDAR data and the 

Geo-Eye respectively (Figure 14). This shows that 74.34% of airborne LiDAR and 73.27% of Geo-Eye of 

the variations of the field measured CPA could be explained by the data sets. The RMSE was 38.24% and 

41.18% for the LiDAR and Geo-Eye respectively. A descriptive statistics of the various data sources gave 

different means, standard deviation and standard error (Appendix 8). The linear regression statistics 

between the field measured CPA and remotely sensed CPAs (p < 0.05) are represented on Table 6 below.  

 

Table 6: Linear regression statistics of field measured CPA and remotely sensed CPAs 

Regression statistics Coefficients t-stats p-value 

Multiple R 
R Square 
Adj. R Square 
Standard Error 
Observations 

0.8559 
0.7327 
0.7306 

25.8265 
129 

Intercept 
CPA_Geo-Eye 

19.796 
1.13 

6.16 
18.66 

9.06 -9 
3.4 -38 

Multiple R 
R Square 
Adj. R Square 
Standard Error 
Observations 

0.8633 
0.7453 
0.7433 
26.355 

143 

Intercept  
CPA LiDAR 

7.223 
1.18 

1.979 
1.05-43 

0.0497 
1.05-43 
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Figure 14: Segmentation relationships between field CPA & Geo-Eye (left) and field CPA & LiDAR (right) 

 
The mathematical linear regression models developed goes thus: 

 

Field CPA = 1.13 * CPA Geo-Eye + 19.8... ……………………………..……………eqn 5 

 

Field CPA = 1.18 * CPA LiDAR + 7.22 …………….…….………………………….eqn 6 

 

4.3. Comparison of field measured and remotely sensed data 

4.3.1. Extraction of Canopy height model (CHM) from LiDAR data  

The height of the trees from the airborne LiDAR data was obtained using local maximum filtering since 

during our field survey, the tree height was obtained from the top of the tree. This value represents the 

highest point of a tree crown and the dark area represents vegetation canopy below and above the 

truncation threshold (Figure 15). A box plot of the field height and the airborne LiDAR height 

irrespective of the species revealed their means as 15.28m and 15.02m respectively with a standard 

deviation of 5.89m and 6.23m. The average mean estimator error derived from a subtraction of the mean 

field height (hfield) and mean LiDAR height (hlidar) was 0.26m. Variability was higher in the field height 

compared to the airborne LiDAR height and ranges from about 12 to 19 meters. However, the maximum 

tree height of the system was gotten from the airborne LiDAR data at roughly 35m. 
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Figure 15: Box plots of mean field and LiDAR height 

 

4.3.1.1. Model development and validation 

To develop our mathematical model, 168 sampled tree heights obtained from the airborne LiDAR data 

were compared to that measured from the field. A strong linear relationship (R2 = 0.912, P<0.0001) was 

observed between the field measured and the airborne LiDAR data estimated tree canopy heights in a 

scatter plot. This result indicates that roughly 91% of the variability in the sampled tree heights measured 

in the field was explained by using local maximum filtering of the CHM obtained from LiDAR data. A 

regression statistic was further performed for the significance of the result on field measured tree height 

and LiDAR height (Figure 16). 

 

Table 7: Linear regression statistics of field measured and LiDAR tree height 

Regression statistics Coefficients t-stats p-value 

Multiple R 
R Square 
Adj. R Square 
Standard Error 
Observations 

0.9550 
0.9121 
0.9116 
1.8543 

168 

Intercept 
LiDAR height 

1.716 
0.903 

4.85 
41.5038 

2.81E-06 
1.45 -89 
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Figure 16: Scatter plot & regression table of field measured tree height & airborne Lidar data 

 

So, the mathematical regression model developed for tree heights estimation for tree outside forest using 

airborne LiDAR data with a RMSE of 13.59% is given as in the equation (eqn 7) below. 

 

Field height = 0.903* LiDAR tree height + 1.72 ……………………………..eqn 7 

 

4.3.2. Comparison of DBH with CPAs 

4.3.2.1. Comparisons of DBH with field measured CPA  

In order to test the accuracy for the relationship between the field data and the remotely sensed data, a 

mathematical regression model was fitted between DBH and CPAs from field measurements and 

delineated airborne LiDAR data respectively. The results of both data sets were significant in both the 

linear and non-linear regression models. However, the non-linear polynomial regression models gave a 

better result compared to the linear models and was further used for the model development. An R2 of 

0.533 and a RMSE of 35.65% was obtained for the field measurements of DBH and CPA from the non-

linear polynomial regression (Figure 17; Table 8 below).  

 

Table 8: Polynomial regression statistics of field measured DBH and CPAs of the 3 data sets 

Relationships 
R R Square 

Adjusted R 
Square 

Std. Error of 
the Estimate 

RMSE 
(%) 

Sample 
size 

Field measurement (DBH/CPA) 0.724 0.533 0.529 13.511 35.65 424 

DBH/ CPA from LiDAR 0.731 0.546 0.5366 10.52 26.92 144 

DBH/CPA from Geo-Eye 0.7235 0.521 0.5283 25.1789 46.91 124 

 

The ANOVA table of the model between field measured DBH and CPA is found on Table 9 while curve 

fit is found on Figure 17 below. 
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Table 9: Result of ANOVA test between tree DBH & CPA of data sets 

Parameter combination Coefficients t-stats p-value 

DBH/CPA from field 

measurement 

Intercept 

Field CPA 

17.76 

0.31 

15.77 

21.59 

2.18E-44 

3.64E-70 

DBH/CPA from LiDAR Intercept 

LiDAR CPA 

24.32 

0.26 

17.94 

12.40 

2.53E-38 

2.14E-24 

DBH/CPA from Geo-Eye Intercept 

Geo-Eye CPA 

24.63 

0.39 

15.898 

11.13 

1.62E-31 

2.72E-20 

 

 

Figure 17: Non-linear regression graphs of field measured DBH/CPA 

 

4.3.2.2. Comparisons of DBH with CPA from airborne LiDAR data 

Non-linear regression model on the airborne LiDAR data produced an R2=0.546 from field measured 

DBH and CPA with a RMSE of 26.94% using 144 samples (Figure 19; right). A regression statistic for the 

non-linear polynomial model is represented on Table 9 and the scatter plot on Figure 18; right. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Non-linear regression graphs of field DBH vs CPA Geo-Eye (left) & LiDAR data (right)                                              

 

  



MAPPING CARBON STOCK IN TREES OUTSIDE FOREST: COMPARING A VERY HIGH RESOLUTION OPTICAL SATELLITE IMAGE (GEO-EYE) AND AIRBORNE LIDAR 

DATA IN CHITWAN, NEPAL  

 

36 

4.3.2.3. Comparisons DBH with CPA from Geo-Eye data  

Similarly, as in the airborne LiDAR data, the mathematical regression models carried out for both linear 

and non-linear produced a significant result. A non-linear polynomial model was proven to have the 

highest R2 with values of R2=0.521 for the relationship between field measured DBH and CPA from Geo-

Eye (Figure 18; left & Table 9 above).  The RMSE of 46.91% was obtained from a total of 124 samples.  

 

4.4. Model development for biomass/ carbon stock 

4.4.1. Application of allometric equations for biomass calculations 

The total sample size was used to fit a mathematical model for regression analyses of the existing 

relationships between DBH, tree height and CPA with biomass and consequently carbon. The allometric 

equation developed in Chave et al., (2005) for a tropical moist forest stand was used since there was the 

possibility to measure both the DBH and tree heights in the field for trees outside forest. The wood 

specific density (ρ) of 0.72 for lower slope mixed hardwood forest was employed as our maximum altitude 

for the study site was less than 500m (ICIMOD, et al., 2010). The mixed allometric equation was equally 

adopted by Subedi et al., (2010) for carbon estimation for a tropical forest like Nepal though some authors 

recommended site specific allometric equation for a better accuracy (Basuki, et al., 2009). In this respect, 

carbon stock per tree species was obtained from a multiplication of the biomass with a 0.47 factor 

developed by FAO (Kale, et al., 2009). 

4.4.2. Relationship between carbon and CPA for Geo-Eye data 

A regression analysis was fitted for a model to test the relationship based on the eqn (4) above between the 

parameter biomass (carbon) and CPA for Geo-Eye data. The non-linear polynomial function was 

employed as it describes simple ecological situations where the response variable (carbon) depends on the 

combine effect tree structural parameters of the forest (DBH, tree height and CPA). The R2 =0.5095 and 

p<0.005 was obtained for the non-linear polynomial (quadratic) equation and was significant at 95% 

confidence interval. This indicates that roughly 51% of the quantity of carbon from the field measurement 

is explained by the CPA of the segmented Geo-Eye image for trees outside forest. Table 10 gives a 

presentation of the quadratic regression analysis between carbon and CPA.  

 

Table 10: Regression analysis of carbon and CPA for Geo-Eye data 

 Unstandardised Coeff. Standardised Coeff. 

t-stats Sig.  B Std. Error Beta 

CPA.Geo-Eye -18.368 30.735 -0.348 -0.598 0.554 

CPA.Geo-Eye^2 0.521 0.427 0.711 1.221 0.230 

(Constant) 579.307 476.847  1.215 0.232 
 

The significance of R2 of the result was tested using a one-way analysis of variance (ANOVA) at 95% 

confidence interval (Table 11).  

 



MAPPING CARBON STOCK IN TREES OUTSIDE FOREST: COMPARING A VERY HIGH RESOLUTION OPTICAL SATELLITE IMAGE (GEO-EYE) AND AIRBORNE LIDAR 

DATA IN CHITWAN, NEPAL  

 

37 

Table 11: Result of ANOVA test of carbon and CPA for Geo-Eye data 

 Sum of Squares df Mean Square F Sig. 

Regression 4001166.189 2 2000583.095 3.154 0.055 

Residual 2.283E7 36 634209.694   

Total 2.683E7 38    
 

 

Therefore, the model developed for AGB and consequently carbon stock (AGB*0.47) using CPA from 

Geo-Eye data is given below and represented as in Figure 19: 

 

Carbon stock = 0.521* (CPA) 2 – 18.368*CPA + 579.307………………….……….eqn 8  

 

 
Figure 19: Graph showing relationships between carbon and CPA for Geo-Eye 

 

4.4.3. Relationship between carbon with CPA and tree height for airborne LiDAR data 

A regression analysis was carried out to model if there is a relationship between the parameters of carbon 

with CPA from airborne LiDAR data. We obtained an R2 of 0.46 for the non-linear regression as best 

scores based on the 54 observations used as training data. Similarly, R2 = 0.902 for the non-linear 

polynomial was obtained for a regression plot of carbon and tree height. The non-linear regression 

equation with the highest R2 was accepted to be used for the model development since the quantity of 

carbon is explained by roughly 90% of tree height in the relationship (Figure 20). 
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Table 12: Polynomial regression analysis of carbon with tree height and CPA from LiDAR data 

Tree parameter Unstandardised Coeffs. Standardised Coeffs. t-stats Sig. 

B Std. Error Beta 

Tree height 

Tree height^2 

(Constant) 

-285.988 

15.081 

1504.468 

58.870 

1.635 

475.854 

-1.005 

1.908 

-4.858 

9.222 

3.162 

0.000 

0.000 

0.003 

CPA 

CPA^2 

Constant 

-18.371 

0.137 

1238.515 

9.263 

0.032 

389.438 

-0.516 

1.121 

-1.983 

4.306 

3.180 

0.053 

0.000 

0.003 
 

 

Table 13 presents the result of a one-way ANOVA test.  R2 was very significant and almost zero at a 

confidence interval of 95%. 

 

Table 13: Result of ANOVA test of carbon with tree height and CPA of LiDAR data  

Tree parameter  Sum of Squares df Mean Square F Sig. 

Carbon/Tree 

height 

Regression 

Residual 

Total 

1.167E8 

1.266E7 

1.294E8 

2 

51 

53 

5.385E7 

248302.451 

234.983 0.000 

Carbon/CPA Regression 

Residual 

Total 

5.951E7 

6.985E7 

1.294E8 

2 

51 

53 

2.976E7 

1369520.27 

21.727 0.000 

 

 

Thus, the model developed from the regression analysis for tree height and carbon stock based on the 

relationships of the airborne LiDAR data can be presented as in Figure 20: 

Carbon stock height = 15.08*tree height^2 – 285.99*tree height + 1504.47…………eqn 9 

Carbon stock CPA = 0.14*CPA^2 – 18.37*CPA + 1238.52 …………………….…….eqn 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Graph showing relationships between carbon and CPA (left); & carbon & tree height for LiDAR data 
(right) 
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4.5. Model validation  

4.5.1. Model validation for Geo-Eye data  

Through a random selection by the R statistics package, 30% (25) of the data set was used to validate the 

model. A plot of the predicted values against the calculated carbon stock produced a model with R2 of 

0.97 (Figure 21; left). This is an indication that 97% of the calculated carbon from the field data is 

accounted for the predicted carbon based on a non-linear regression model. The “goodness-of-fit” 

between the predicted and the observed had a RMSE of 42.43%. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Scatter plot of model validation for Geo-Eye (left) and airborne LiDAR data (right) 

4.5.2. Model validation for airborne LiDAR data  

  

Similarly, a total of 24 samples were used from a random selection in R statistics to validate the model for 

airborne LiDAR data. An R2 of 0.904 was obtained representing roughly 90% of the calculated carbon 

which is accounted for the predicted carbon using the model (Figure 21: right). The calculated RMSE of 

the model was 14.24%. 

 

Moreover, a multiple regression was performed between carbon stock and the parameters of CPA and 

tree heights obtained from the airborne LiDAR data. The result gave us an R2 of 0.689 with a RMSE of 

11.53%. The model for the multiple regression models is thus represented in Table 14 and the scatter plot 

of CPA and tree height on Figure 22. 

 

 

 

 

 

 

 

 

 

 

 

 

  



MAPPING CARBON STOCK IN TREES OUTSIDE FOREST: COMPARING A VERY HIGH RESOLUTION OPTICAL SATELLITE IMAGE (GEO-EYE) AND AIRBORNE LIDAR 

DATA IN CHITWAN, NEPAL  

 

40 

Table 14: Multiple regression statistics of tree height & CPA of LiDAR data 

Regression Statistics 
    Multiple R 0.830552 
    R Square 0.689817 
    Adj. R Squar 0.661619 
    Std. Error 368.5669 
    Observations 25 
    

      ANOVA 
       df SS MS F Significan F 

Regression 2 6646169 3323084 24.4629 2.55739E-06 
Residual 22 2988514 135841.6 

  Total 24 9634683       

        Coefficients Std. Error t Stat P-value Lower 95% 

Intercept -1048.28 282.8795 -3.70574 0.00123 1634.934284 
CPA_LiDAR 0.7583 3.037651 0.249634 0.80519 5.541402699 
LiDAR_height 117.2713 16.77965 6.988902 5.2E-07 82.47245531 

 

Carbon stock = 117.27*Tree height LiDAR + 0.758*CPA LiDAR – 1048.28 ………eqn 11  

 

 
Figure 22: Scatter plot of multiple regression model validation from airborne LiDAR data  

4.6. Carbon stock map 

Carbon stock for trees outside forest was computed based on the 4 independent quadratic models (eqns 8 

to 11). Three of the models came from the airborne LiDAR data based on the tree height and CPA 

parameters and the other from VHR Geo-Eye satellite image based on CPA alone. The highest quantity of 

carbon was obtained from the tree height estimation alone, followed by the multiple regression between 
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the tree height and the CPA from the airborne LiDAR data on a total surface area of 1007 ha. The 

quantity of carbon stored by the trees from the CPAs in both data sets was low. However, the best model 

was obtained when the multiple regression analysis was employed between the parameters (CPA & tree 

height) obtained from the airborne LiDAR data with a RMSE of 11.53%. 

 

Table 15: Estimated quantity of carbon/ha from the various parameters 

Data set Parameter Quantity of 

carbon (Kg) 

Quantity of 

Carbon (tons/ha) 

R2 RMSE (%) 

Geo-Eye CPA 33,088,320 32.86 0.51 42.24 

LiDAR CPA 53,533,258 51.16 0.46 41.29 

Tree height 165,067,004 163.92 0.90 14.24 

Tree height & CPA 82,972,738 82.4 0.69 11.53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Carbon stock map of the study area 
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5. DISCUSSION  

5.1. Rule set  

Multi-resolution segmentation is highly dependent on the parameter combination that determines the 

maximum heterogeneity of the image. Though creating a rule set in segmentation has been very 

progressive and effective, the application is time consuming as all the individual images required for the 

study could not benefit for a rigorous application for the rule sets develop from the beginning of the 

research. By this, a rule set developed for one image was not applicable to the next image even though 

were for the same process (Möller, et al., 2007). However, Clinton et al., (2010) described the selection of 

scale parameter of a rule set as “a data exploration problem rather than an optimisation problem”. 

Unfortunately, rule sets developed from a subset of the independent data with an accuracy of 85% in this 

study could not be used when applied to the whole image. This maybe either due to a poor representation 

of the subset or the inconsistency attributed to the trail-and-error of the segmentation process (Zhang et 

al., 2003). Hence, direct and continuous trail-and-error to a whole study site is the most suitable if more 

accurate segmented objects are to be achieved. 

5.2. Image segmentation and validation 

The accuracy assessment result of 74% from Geo-Eye and 79% from airborne LiDAR was based on a 

one-to-one matching of the digitised tree crowns to the automatically segmented tree crowns based on 

visual interpretation. The D-value obtained were respectively 66% (0.34) for Geo-Eye and 62% (0.377) for 

airborne LiDAR data. A t-test of both data sets proved that there was no significant difference in accuracy 

between the Geo-Eye image and the airborne LiDAR data using visual interpretation of the OBIA 

segmented tree crowns. Appendix 11 presents an assessment using a two-tail sample test with equal 

variance and the result of t-critical was greater than t-statistic (t critical = 1.98 > t stats = -0.873). Therefore, 

the null hypothesis there was a significant difference between the two data sets is rejected at 95% 

confidence interval. The 55 samples are the data for which the samples from one image are exactly the 

same to that of the other. 

 

This implies segmentation of the tree crowns was better for the airborne LiDAR data compared to the 

Geo-Eye satellite image. The high value of the airborne LiDAR data can be attributed to fact that during 

the tree crown segmentation process, the data was truncated to eliminate all vegetation out of the 

threshold between 6 and 40 metres. Despite being conducted for trees outside forest within a tropical 

forest, the segmentation accuracy of this study was relatively high indicating that our spectral and shape 

characteristics introduced to the classifier were generated from segments that matched the tree crown 

objects. However, an attempt to improve on the degree of segmentation was not successful as much over-

segmentation became more eminent.  

 

This result is identical to what was obtained by Wang et al., (2004) (75.6%) during their division of tree 

crown from non-tree crowns in a young created forest plantation in the north of British Columbia, 

Canada. Compared to the result obtained by Ke et al., (2010) of a segmentation accuracy of 61.3% in a 

mixed forest of broad and needle leaf tree when region growing algorithm was employed, the result of this 

study seems to be better in both data sets.  
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The validation using the Java Topology Suite (JTS) and Geo-tools most probably minimises subjectivity of 

the visual interpreter during the segmentation process. Though the D value of 66% (0.34) for Geo-Eye 

and 62% (0.377) for LiDAR is less than that obtained in visual interpretation, the process is highly 

unbiased. Unfortunately, it is difficult to determine with precision if the discrepancy in the result is based 

on either a poor classifier or poor segmentation to the reference digitised tree crowns (Clinton, et al., 2010).  

Applying the resulting image objects as sampling units makes it more complex as the size of any of the 

objects is considered as same (one unit) thereby resulting to the same effect with misclassification of either 

a small or large object (Radoux & Defourny, 2007).  The result of this study maybe different based on the 

segmentation scales that are different from one another as explained earlier (paragraph 5.1). Hence, the 

segments developed from the different reference data sets cannot be directly compared except using point 

sampling units (Chubey, et al., 2006). 

5.3. Accuracy assessment of Canopy Height model (CHM) from airborne Lidar data 

Tree height is a significant variable in the quantitative measurement of forest biomass and consequently 

carbon stock, growth and site productivity of a forest. The linear regression method had a mean estimator 

error (hfield – hlidar) of roughly 26cm (RMSE = 13.59%) between the field measured tree height and airborne 

LiDAR tree height from local maxima. This error can be attributed to the error of the approximate fit of 

the regression line from the vertical layers returns and the measurements of the field tree height from the 

instruments used. This study was carried out in a  mostly dominated deciduous trees outside forest that 

have got lots of branches that could have been detected by the LiDAR beams as other tree tops as shown 

in Figure 13 (Table 4 & Figure 2; B). However, the result from this study is better than that of Wang & 

Glenn, (2008) who had an error estimator of 51cm (RMSE ranged between 25 – 50%) in a predominantly 

pine tree dominated forest with just 79 tree samples in Idaho, USA. Moreover, the LiDAR mean tree 

height of this study (15.02m) compared to that of field observation (15.28m) confirms the result of 

Popescu et al., (2002) that the height underestimation is due to the fact that chances are high that the 

LiDAR beam misses the tree tops of the highest branch.  

 

Compared to Andersen et al., (2005), (R2 = 0.98; RMSE = 1.3m) who worked in a pacific Northwest 

conifer forest, the R2 = 0.912 and RMSE = 13.59% of this study is lower. The reason can be due to the 

difficulty in the identification of treetops for a mixed broadleaf forest compared to a species specific pine 

tree forest.  Fortunately, this study is higher than the work of Hollaus et al.,  (2006) whose R2 ranged 

between 0.73 – 0.84% for species-specific Spruce and fir trees in a complex alpine forest. Unfortunately, 

none of their result was conducted neither in a mixed deciduous forest type nor in trees outside forest or 

generally carried out in a tropical forest environment that could have at least spelt a closer relationship.  

5.4. Comparing DBH vs CPA 

The non-linear polynomial coefficient of determination between the field measured CPA and the DBH 

ranged between 0.5 and 0.52 and were statistically significant (p<0.005) in all the data sets. The values of 

the R2 were 0.520, 0.524, and 0.504 with RMSE 26%, 35.65% and 46.91% in airborne LiDAR, field 

measured data and VHR Geo-Eye satellite image respectively (Table 8). This result indicates that, R2 from 

the LiDAR data was better than that from the Geo-Eye image with roughly half the RMSE percentage 

and within the range of results obtained by Anderson et al., (2000). They obtained an R2 that ranged 

between 0.37 and 0.8 for species-specific relationships in Akansa, USA. A functional relationship was 

reported between DBH and CPA in a deciduous broadleaf and coniferous forest based on field 
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measurements. But, he did not confirm the power sigmoid relationship though this study is based on a 

quadratic relationship. Compared to the Geo-Eye image, the good result of the airborne LiDAR can be 

attributed to the data truncation as this process eliminated the introduction of unwanted particles 

considered as noise (Maltamo et al., 2004). 

 

This result is lower than that of Avsar, (2004) who worked on Lebanon cedars in Turkey. He had an 

R2=0.72 for CPA and DBH relationship based on a power model. The low result of this study can be 

attributed to trees species diversity as each tree species has specific behaviour corresponding to the 

different forest habitats (Baral et al., 2009). There is also a usually practice of temporal pruning or lopping 

of the trees as either fodder for the cattle, fuel wood or timber by the farmers (Appendix 7; photos A, B & 

D). This has the advantage to allow sunlight penetrates into the rice fields to improve yield. Though care 

was taken that these types of trees should not be included in the sample, their biological recuperation is 

difficult to be differentiated with the limited time we had in the field.   

5.5. Comparing CPAs 

There was a strong linear relationship (R2 > 0.7) between the field measured CPA and those from the 

segmentation of the remotely sensed data for trees outside forest. The result of the airborne LiDAR (R2 = 

0.74; RMSE = 38.24%; t = 3.13; α < 0.05) is better than that for the VHR Geo-Eye satellite image (R2 = 

0.7327; RMSE = 41.18%; t = -1.125; α < 0.05) and both of them were statistically significant. The 

discrepancy could be attributed to the shape and texture of the image object obtained from the 

segmentation process. Some individual tree crowns in the process were considered as double or more 

trees (26%) and roughly 3% of the measured trees were not segmented at all in the VHR Geo-Eye image 

(Figure 13). The 2 year time lapse in the acquisition of the Geo-Eye data and the field survey could also 

have affected the accuracy of the result as either the tree size or the shape of the tree crown could have 

increased in size (Song et al., 2010) compared to that of airborne LiDAR that was just a couple of months. 

An alteration of the scale parameter from its origin of the subset produced a change in the segments that 

promoted the formation of larger tree crown making over-segmentation more conspicuous especially in 

the LiDAR data. The Geo-Eye image was taken at the beginning of leaf fall in Nepal that could have 

reduced the real structure of the crown shapes and making it difficult to differentiate the tree crowns and 

the undergrowth due to spectral reflectance. The Geo-Eye image seems to be taken either early in the 

morning or late in the evening. The sun angle made the shadows to be taller or larger than even the real 

trees thereby making segmentation difficult to obtain real crown objects. 

 

5.6. Model development 

Within a forest, an increase in tree girth does not necessarily increase the tree crown (Köhl, et al., 2006). In 

this perspective, a non-linear polynomial (quadratic) regression was used in the development of the 

mathematical model in both the airborne LiDAR and the VHR satellite Geo-Eye image since validation is 

based on the creation of a good testable hypothesis for a model in relation to the problem in course rather 

than a clear cut “true” model (Levins, 1966). Quadratic models also eliminate the possibility of having 

negative carbon stocks. The quadratic model was the best in the coefficient of determination with (R2 > 

0.5). 

 

Linear relationships between DBH and crown diameter in a natural forest cannot be observed with trees 

that have a DBH greater than 40cm (Hemery, et al., 2005). This is so because the rate of growth of the tree 
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girth and that of the tree crown are almost the same at the beginning, but the crown diameter will starts 

decreasing as the trees mature thereby taking a sigmoid shape of a normal growth curve. At maturity, the 

rate of growth is stabilised and as a result so too is the quantity of carbon stock in the plant until naturally 

die out.  

 

The mathematical model developed for trees outside forest for carbon stock estimation has an R2 of 

0.5095 (RMSE = 42.24%) for Geo-Eye CPA, R2 = 0.46 (RMSE = 41.29%) for LiDAR CPA, R2 = 0.902 

(RMSE = 14.24%) for airborne LiDAR tree height, and R2 = 0.6898 (RMSE = 11.53%) for a multiple 

regression between the segmented CPA and tree height (CHM) obtained from the airborne LiDAR data 

(confer 4.6). The R2 of the Geo-Eye and poor RMSE of 42.42% could be attributed to the pruning (confer 

5.4., paragraph 2). Some of the trees were omitted during the segmentation process as can be seen in Figure 

13. The high rate of commission error from the segmentation process by considering a single tree to have 

more than one crown is either due to the size of the crown from spectral reflectance (Appendix 7; D) or 

an abnormality of over- or under-segmentation resulting from the scale parameter (Clinton, et al., 2010).  

 

The prediction of carbon from CPA was seen to be best for the airborne LiDAR (R2 = 0.46; RMSE = 

41.29%) compared to the Geo-Eye that had a RMSE of 42.24% as explained above. This low prediction 

from CPA could be attributed to the segmentation process from which the image objects were subjected. 

Even with the inclusion of the watershed transformation and morphology for object re-shaping, the image 

objects of this study were difficult to be crown-like in shape. The activity of pruning usually practiced 

could have reduced the shape of the crowns resulting to over segmentation. Using the tree height 

independently from the LiDAR, R2 was 0.902 (RMSE = 14.24%) that basically is due to the 3-D 

characteristic making it free from haze or clouds.  

 

Integration of the LiDAR tree height and the CPA from the segmentation process in a multiple regression 

analysis gave an overall R2 of 0.6898 with a RMSE of 11.53% (eqn 11). Despite the low R2 as compared to 

that from the CHM, the RMSE was conspicuously good as errors generated from either the determination 

of the tree height using local maximum filtering or the CPA from the segmentation process is 

compensated by the other. This however, introduces variations from the tree parameters thereby making 

multiple regression more significant statistically for trees outside forest.  

5.7. Biomass and Carbon stock validation 

Surprisingly, in validating the carbon stock model from the predicted and the observed calculations, the R2 

from Geo-Eye image with only CPA as a variable was the highest with 0.9701.  This was followed by the 

LiDAR tree height (0.9037) and the multiple regression of tree height and CPA with 0.6898. Despite the 

high R2 for the CPA from Geo-Eye model, the model is controlled by an outlier in the data set as the data 

is not equally distributed as seen on the graph (Figure 23a). Upon removal of the outlier, the R2 was 0.362 

that signifies a weak relationship between the observed and the predicted carbon based on the Geo-Eye 

CPA for trees outside forest. However, Appendix 7; D & F present a Ficus spp. tree whose crown diameter 

is more than the tree height. Situations of the nature could have contributed as an outlier that is difficult to 

be experience in a closed canopy forest because of tree branch intermingling (Lu, 2006) and direct 

competition for sunlight. 

 

Considering the airborne LiDAR data, and comparing it to the Geo-Eye, the model validation for LiDAR 

height alone was very significant at R2 = 0.9037. The sample data was more distributed around the mean. 
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Nevertheless, this was more visible in the multiple regression model of CPA and tree height from the 

airborne LiDAR data though with an R2 of 0.6898 and RMSE of 11.53% as in eqn 11 (Figure 22).  

5.8. Biomass and Carbon stock estimation 

Irrespective of the model used, a majority of the trees had carbon of <1000kg/tree and very few had 

carbon of >5000Kg/tree. From this study, tree height estimation had the highest carbon stock of 163.92 

tons/ha. This result is comparatively smaller to that obtained in the Chitwan area for sparse vegetation of 

140 tons carbon/ha (tC/ha) of total forest carbon density for the whole mid-altitude Kayarkhola 

watershed (ICIMOD, et al., 2010). However, the result of this study is only based on trees outside forest 

while those for ICIMOD et al., (2010) encloses everything in the watershed including sapling, herb, litter, 

soil and below ground carbon. But, the multiple regression model stands out as the best model in 

estimation of carbon stock for trees outside forest with a RMSE closest to zero.  

5.9. Error in segmentation process 

Despite working for trees outside forest, the shape of crowns was not as eminent as was expected in the 

Geo-Eye image. A fixed scale of 1:250 was applied during the on-screen digitisation process but the 

irregular patterns of the tree edges could have originated/introduced some errors of either over- or under-

segmentation. At times, it is difficult to differentiate the limit of one tree and another tree or to separate 2 

trees that have been recognised as a single tree from the image even after field data collection. However, 

this was limited for the airborne LiDAR data due to the truncation threshold that was introduced before 

the segmentation process.  

 

Data for the study was acquired in November 2009 for the Geo-Eye which is the beginning of leaf fall in 

Nepal and most tropical countries and the field work was undertaken in September-October 2011. Leaf 

fall gives room for the understory to be conspicuously visible in the images thereby making tree 

identification difficult and fuzzy in the Geo-Eye image. In addition, the almost 2 years gap could have 

increased the size of the tree crowns (Song et al., 2010) as some tropical hardwood trees have a yearly 

growth rate of 30.5cm. However, this could not be realised in the airborne LiDAR data as there was only 

6 months difference between the time of data acquisition and the fieldwork survey.  

 

Distinct boundaries between the tree crowns are difficult to be observed on the image. In addition, it 

seems difficult to clearly separate the reflectance of other vegetative structures like understory shrubs or 

grass/herbs of less than 5meters high for trees outside forest. An easy crispy identification is mostly 

obtained when natural boundaries of roads, rivers and tree hedges are used in separation of the rice farms.  

 

However, the segmentation process of the airborne LiDAR data was less complicated with little errors. 

This was basically due to the truncation of the image during data pre-processing into rasterisation as all the 

noisy particles of less than 6m and more than 40m were eliminated during the process (Figure 4). 

Brightness of the objects segments and maximum pixel value were employed to obtain a distinct image 

objects as tree crowns.  

5.9.1. Error from the allometric equation  

Tropical forests has her uniqueness to comprise more than 300 different tree species in 1 hectare plot 

(Gentry, 1988) that makes it difficult for the application of species specific allometric equations in natural 

forest. However, this study had a total of 40 different species in the area occurring at different magnitude 

(Appendix 9).  Variations in the structural characteristics (topography, age and soil type) of the forest 
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contribute as an uncertainty in the allometric equation. The allometric equation used in this study (confer 

3.8.1) reduced the degree of error as it made use of wood specific density, DBH and tree height (Chave, et 

al., 2005). Wood specific density (ρ = 0.72) for lower slope mixed hardwood forest was used since our 

maximum altitude was 500m asl.  

 

The derived coefficients in the allometric equation was confirmed as the main source of error by Kettering 

et al., (2001) though her argument was on a non-linear power function in Sumatra, Indonesia. Hence, their 

usefulness is limited to the study area. 

  

Similarly, errors may result during data collection from the measurements, sampling design and a poor 

representation of the study area especially with trees outside forest. Nonetheless, we expect a lesser error 

as the allometric equation employed for this study was developed for a tropical forest (Chave, et al., 2005) 

and has been tested for carbon stock estimation in Nepal (Subedi, et al., 2010). 

5.10. Limitations of the study 

The limitations of this study are: 

 Differentiation of the pruned and un-pruned trees was not possible on the VHR Geo-Eye satellite 

image and even during field work it was difficult especially when the pruning period is more than 

6 months. Though care was taken that the pruned trees should not be included in the sample, our 

result revealed some discrepancies in the characteristic behaviour commonly found for tree 

structural parameter in other studies (Hemery, et al., 2005; Mora, et al., 2010).  

 Though species-specific allometric equation has been considered to produce good results for 

biomass and consequently carbon stock estimation, this study settled on the use of mixed 

allometric equation but making use of the wood specific density that is known to significantly 

contribute in models relating to AGB estimation (Chave, et al., 2005). 

 There was high off-nadir view angle in the Geo-Eye image that has been report to contribute 

significantly to the segmentation result. The tree crowns (CPAs) are difficult to be located by the 

softwares and this might have contributed enormously in the lower R2 obtained in both images of 

the study despite the differences in sensors. 

 The quality of the image was not the best as its acquisition was during the tree fall period. This 

helps to reduce the size of the tree crowns (Song et al., 2010) and promotes the difficulty in 

separating the undergrowth from the tree tops.  

 Figure 13 gives a presentation of some trees that were not segmented by the eCognition software 

during the segmentation process in Geo-Eye image. Such cases could have caused the less 

accuracy which is as a result of the software.  
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6. CONCLUSION AND RECOMMENDATIONS  

Considering the complex nature of a tropical forest in its structure and function, the segmentation process 

remains promising and efficient in the identification of individual tree crowns. Though some of the trees 

outside forest could not be recognised in the segmentation process, a statistically acceptable R2 that ranged 

from 0.5 to 0.9 for both data sets between carbon, tree height and CPA spells a consistency of the 

Definiens technique for carbon stock estimation with a validation from the field data. From the objectives 

of the study, the following conclusions were arrived: 

6.1. Conclusions 

 What is the difference in accuracy segmentation using VHR Geo-eye satellite image and airborne 

LiDAR data for trees outside forest? 

The result of both data sets produced a good result using visual interpretation with an accuracy assessment 

greater than 70% (Geo-Eye = 74% & LiDAR = 79%) in the use OBIA in mixed deciduous dominated 

trees outside forest in a tropical milieu. In comparing the CPAs of both data sets in a t-test, it was realised 

that there was no significant difference in accuracy between the Geo-Eye image and the airborne LiDAR 

data using visual interpretation of the OBIA segmented tree crowns (t critical = 1.98 > t stats = -0.873). 

Therefore, the null hypothesis there was a significant difference between the two data sets is rejected at 

95% confidence interval.  

 

 How strong is the relationship between forest stand parameters i.e. CPA and height extracted 

from remotely sensed data and field data for individual trees outside forest? 

Generally, there was a strong relationship (R2>0.7) between the field measured forest stand parameters 

and that obtained from remotely sensed data. The strongest relationship (R2 = 0.912) was between the tree 

height obtained from the airborne LiDAR and that of field measurement. R2 for field CPA and Geo-Eye 

CPA was 0.733 (RMSE=41.18) while that of airborne LiDAR was 0.743 (RMSE=38.24%). These 

differences could be attributed to off-nadir view angle, time of image acquisition (confer 5.5). 

   

 What is the quantity of carbon stock in trees outside forest in the Kayarkhola watershed, Nepal? 

Carbon stock for trees outside forest was computed based on the 4 independent models. The quantity of 

carbon stored by the trees from a quadratic regression model of tree heights of the airborne LiDAR was 

the most impressive (roughly 163 tons/ha). A multiple regression analysis was employed between the 

parameters (CPA & tree height) obtained from the airborne LiDAR data. 

6.2. Recommendations 

The role for trees outside forest as fuel wood and fodder makes it a powerful “leakage” to the well 

protected surrounding community forests. Their protection will promote conservation priorities of the 

Kayarkhola watershed which can bring in more benefits in terms of its carbon credits to the CFUGs and 

the Forestry Department as a whole.  
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The same study should be repeated with a stratified random sampling of crown sizes for a uniform 

distribution of the data set. This may possibly improve the outcome of the result where the data set would 

be evenly distributed within the study area. 

 

The validation results of this study from both data sets were highly significant for the field measured and 

the remotely sensed data (R2>0.7) and as such can be recommended for future use in biomass and carbon 

estimations. 

 

The use of a general allometric equation due to the quantity of data available since the field data couldn’t 

have been good for species specific allometric relationships. It will be of significance for more data to be 

collected or the sample study area increased so that species wise allometric equations of CPA and tree 

height can be employed for a comparative study here described. 

 

As of now, the result of this study is valid only for trees whose diameter at breast height is greater than 

10cm and height more than 6m except an additional study is accompanied this present one.  
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APPENDICES 

Appendix 1: Tree species encountered outside forest, Kayarkhola watershed, Chitwan, Nepal 

 Local names Scientific names Plant family 

1 Asna/ saj Terminalia tomentosa Combretaceae 

2 Badahar Articarpus lakoocha Moraceae 

3 Barro Terminalia bellerica Combretaceae 

4 Bayer Zizyphus jujube Rhamnaceae 

5 Bel Aegle marmelos Rutaceae 

6 Bakaino Melia azedarach Meliaceae 

7 Botdhayero Lagerstromia parviflora Meliaceae 

8 Chilaune Schima wallichiana Theaceae 

9 Chiuri Madhuca buttyracea Sapotaceae 

10 Chiple Villebrunnea frutescens Urticaceae 

11 Dabdabe Daphne papyracea Thymelaeaceae  

12 Dumare  Ficus glomerata Moraceae 

13 Pipal  Ficus religiosa Moraceae 

14 Ficus Ficus bengalensis Moraceae 

14 Kadam Anthocephalus cadamba Rubiaceae 

15 Kadu Cynecardia odorata Flacourtiaceae 

16 Khanyo Ficus semicordata Moraceae 

17 Khanyu Ficus cunia Moraceae 

18 Kabro Ficus lacer Moraceae 

19 Khari Celtis australis Ulmaceae 

20 Indra jow Holarrhena antidysenterica Apolynaceae 

21 Khokila n/a n/a 

22 Kimba Morus alba Moraceae 

23 Kharseto Ficus hispida Moraceae 

24 Kadhero Litsea polyantha Lauraceae 

25 Lapsi Choerospondias axillaris Anarcardiaceae 

26 Lychee Litchi chinensis Sapindaceae 

27 Amp Mangifera indica Anarcardiaceae 

28 Chatiwan Alstonia scholaris n/a 

29 Nebharo Ficus rexburghii Moraceae 

30 Kraysi Priotropis cytisoides Moraceae 

31 Sal  Shorea robusta  

32 Singane n/a n/a 

33 Simal Bombax ceiba Bombacaceae 

34 Siris Albizia procera Leguiminosae 

35 Sissoo Dalbergia sissoo Leguiminosae 

36 Taki Bauhinia purpurea Leguminosae 

37 Teak Techtonia grandis Verbanaceae 

38 Bheller n/a n/a 

39 Jamun Syzigium cumini Myrtaceae 
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Appendix 2: List field equipments and software and their functions 

 Equipment Function 

1 iPAQ and GPS Navigation 

2 Suunto compass Orientation 

3 Diameter tape Diameter measurement 

4 Measuring tape (30m) Length measurement 

5 Haga altimeter Tree height measurement 

6 Slope meter Slope measurement 

7 Data sheets Collection of field data 

 Softwares 

8 ArcGIS 10 GIS analysis 

9 ERDAS 2011 & ENVI 4.8 Image processing and remote sensing applications 

10 eCognition Developer 8 Tree crown delineation and classification (OBIA) 

11 Lastools Analysis of LiDAR data 

12 Quick Terrain Modeller Lidar analysis 

13 R software, Excel 2010 Statistical analysis 

14 Microsoft office & Endnote Thesis writing 

 

 

Appendix 3: Table of metadata of airborne LiDAR data  
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Appendix 4: Table of the metadata of ortho-photo 

Image type RGB image optimized for automatic interpretation. 

Format GeoTIFF with tfw 

Compression Image files non-compressed TIFF.  

Source  From digital sensor 

View angle Nadir –looking 

Collection procedure Image files will be collected during the LiDAR acquisition.  

Resolution 0.45 m at 2500 agl altitude 

Orthorectification 
The image has to be ortho-rectified to 1 m horizontal precision over the 
LiDAR.   

Bands The image files contain three bands: R, G, and B.  

NIR width (approximate) 830  - 1100nm 

R width (app.) 610 - 660nm 

G width (app.) 530 - 590nm 

B width (app.) not available. 

Color Balancing 
The image files are color- balanced over the project area. Preferably, 
satellite image is used in color balancing as a reference. 

Opening angles 
Max 16 degrees off-nadir in the final product. (Wider angle can be used 
to cover overlaps if necessary) 

Flight line direction According to the LiDAR flight plan.  

Weather conditions Preferably they are obtained with clear weather.  

Sun angle 
Sun angle must not be less than 40 degrees and, preferably, not more 
than 80 degrees above horizon during the collect. 

Clouds 

No more than 3% of cloud cover or cloud shadows are accepted. If 
clouds or cloud shadows exist, a polygon shape file or DGN has to be 
delivered to show all clouded areas. If more clouds are received, a 
discussion and production unit's confirmation about the data usability is 
needed. 

Season 
 All trees have to be under full leaf cover and green. 
In Nepal the photographic months are from October to March. This will 
be discussed with the clients and the time period will be selected. 

Projection UTM zone 45N 

Band registration error Maximum band-to-band dislocation 0.3 pixels 

Horizontal location error Max +/-1m  

Tiling Images are tiled to 12Mb each.  

Image Tile index Ortho_tile index_Block_Icimod 
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Appendix 5: Java intersector for airborne LiDAR segmentation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MAPPING CARBON STOCK IN TREES OUTSIDE FOREST: COMPARING A VERY HIGH RESOLUTION OPTICAL SATELLITE IMAGE (GEO-EYE) AND AIRBORNE LIDAR 

DATA IN CHITWAN, NEPAL  

 

58 

Appendix 6: Java intersector for Geo-Eye segmentation 
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Appendix 7: Pruned and normal trees displayed 

 

 

 

 

 

 

 
C: normal tree  

D: pruned tree 

 
B: pruned tree 

 

A: pruned tree 

 

F: normal tree  

 

E: normal tree 
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Appendix 8: Descriptive statistics of the 3 data sets 

 Field CPA (m2) Geo-Eye CPA (m2) Lidar CPA (m2) 

Mean CPA (m2) 70.23 37.395 51.52 

Standard Error 3.396 3.31 3.31 

Standard Deviation 52.51 37.54 39.44 

Minimum 7.07 6 10 

Maximum 397.41 283 329 

Count 238 129 142 

Confidence level 6.88 6.54 6.543 

 

 

Appendix 9: Distribution of tree species for trees outside forest 

 
 

Appendix 10: Summary of field measured data 

 DBH Tree height CPA 

Minimum 10 6 3 

1st quartile 25 11 7 

Median 32 14 8 

Mean 40.77 15.27 8.634 

3rd quartile  50 18 10 

Maximum 138 33 24 
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Appendix 11: Result of the t-test 

t-Test: Two-Sample Assuming Equal Variances 

     Geo-Eye LiDAR 

Mean 45,32727273 52,65455 

Variance 1620,63165 2252,156 

Observations 55 55 

Pooled Variance 1936,393939 
 Hypothesized Mean 

Difference 0 
 df 108 
 

t Stat 
-

0,873196218 
 P(T<=t) two-tail 0,384493495 
 t Critical two-tail 1,982173424   

 


