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Abstract

With the importance of maritime traffic on the global supply chains
and the role of vessel traffic service operators in its resilience, im-
proving the digital tools available appears an essential step for the
future of maritime traffic management. This work examines the path
toward viability for maritime anomaly detection as an aid for ves-
sel traffic service operators, building from the literature towards a
proof of concept and evaluating hurdles in the process. Leverag-
ing data of moving vessels from radar and Automatic identification
system (AIS) sources, the work discusses maritime anomaly group-
ing, detection strategy, transparency, and visualization as part of the
proof of concept. The framework for maritime anomaly grouping sup-
plies guidance for grouping anomalies and a non-comprehensive set
of anomaly types. Anomaly types defined in the framework supply
the foundation for the detection strategy used in the proof of con-
cept. The selected maritime anomaly detection strategy, leveraging
self-organizing maps and Gaussian mixture model normalized proba-
bility density, performs well by consistently highlighting low-density
areas. Separate transparency models trained on subsets of the features
score individual anomaly types. These transparency models enable the
corresponding visualization to provide what anomaly types deviate a
vessel from normalcy. The proof of concept and process are evaluated
in one-on-one expert sessions, resulting in three aspects to mature the
maritime anomaly detection field. These aspects are: defining the
behavior constituting a maritime anomaly, focusing on transparency
as part of the strategy, and selecting the relevant anomaly types for
vessel traffic service operators. With the potential for the viability of
maritime anomaly detection on the horizon, the steps suggested by
this work will help mature the field toward real-world application.
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1 Introduction

This section provides the motivation, scope, and structure of this work. The
primary motivation is the importance of the resilience of the maritime sector
and aiming to improve the role of vessel traffic service (VTS) operators within
this interconnected system by employing an anomaly detection aid. The
motivation is elaborated in Section 1.1, and the scope is discussed in Section
1.2. The impact of this work is briefly discussed in Section 1.3. Finally,
Section 1.4 provides a brief overview of the structure for the rest of this
work.

1.1 Motivation

The maritime transport sector accounts for 80% of global trade by volume
and 70% of global trade by value (on Trade & Development, 2018). In 2020,
10 billion tons of cargo were loaded, with the prediction of further annual
growth of 2.4% between 2022 and 2026 (on Trade & Development, 2021). The
role of maritime transport in global trade highlights the impact of product
prices on consumers and businesses. A combination of various downstream
effects from the Coronavirus outbreak caused the container freight rate in-
dex to increase by 600% between May 2020 and September 2021 (Placek
& Freightos, 2022). The container shipping congestion has highlighted the
need for digitization of shipping and an increased focus on the supply chain’s
resilience. Furthermore, an increase in freight rate will jeopardize the prof-
itability of sectors reliant on low-value commodities (Analytica, 2021).
Critical nodes in the trade routes consist of busy waterways that are singular
points of failure due to the lack of available fall-back options that can sup-
port the quantity, size, and volume of traffic. The critical nodes in common
trade routes such as straits, canals, and ports frequently cope with traffic
congestion impacting the risk conditions and the effects of incidents in these
waterways (van Meersman et al., 2012). The resilience of maritime trade
routes depends on the functioning of all critical nodes within the system. A
failure of one of these crucial nodes can cause the collapse of a trade route
and take weeks to resolve and clear the backlog. For instance, in March of
2021, the Suez Canal became blocked for six days, and the trade loss was
estimated at $400 million worth of trade per hour, resulting in a trade loss
of $54 billion (Baker et al., 2021).
The Vessel Traffic Services (VTS) monitor busy waterways to protect the
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environment, improve safety, and improve the efficiency of maritime traffic
(Council, 1996). VTS uses systems such as radar, Automatic Identification
System (AIS), and direct communication to monitor the movement of ves-
sels and provide extra navigational safety in monitored waters (Brodje et
al., 2010). VTS operators manage traffic and provide information to ves-
sels in the monitored area. These operators are responsible for maintaining
situational awareness and providing guidance on movement within their as-
signed area. The operators rely on their intuition for these tasks. They
determine the priority of specific vessels by the preparedness and impres-
sion of direct communication and behavioral patterns (Brodje et al., 2010).
Many technological innovations developed benefit VTS operators. Innova-
tions such as AIS, advancement in their display technology, radar technology
(Lin & Huang, 2006), and path prediction (Macdonald, 2002). One of these
has been recent attempts to detect anomalous behavior of vessels to provide
warnings, alerts, or priority for attention using artificial intelligence strate-
gies. The behavior seen as anomalous would be any behavior that deviates
from how most vessels behave, highlighting how vessels deviate from nor-
mal behavior. The maritime anomaly detection field has primarily focused
on the technical viability of anomaly detection systems to determine events
that would require an operator’s attention. While numerous systems have
been proposed and validated to detect anomalies in some capacity, validation
mostly consists of simple tests and cases.
With the importance of maritime traffic and the role of VTS in the resilience
of the global supply chain, improving digital tools seems like an essential step
for the future of VTS. This work aims to create a comprehensive proof of
concept anomaly detection system focused on providing anomaly detection
for VTS operators and determine its usefulness.

1.2 Problem definition

This work develops an anomaly detection proof of concept consisting of de-
tecting various anomalies. The proof of concept helps evaluate the viability
and effectiveness of anomaly detection as a VTS operator aid.
The proof of concept uses data sets from the port of X, consisting of combined
AIS and Radar data for identified types of anomalies detected to train the
models for normalcy. These models provide vessels with a normalcy score for
each type of anomaly that is the inverse of the anomaly score. The output
of these models is technically validated using examining results to evaluate
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the effectiveness in detecting types of anomalies.
To enable validation for the aid of VTS operators, the proof of concept allows
user interaction. Supporting validation utilizes sessions with experts in the
field. From this problem definition, the following research questions arise:

RQ: What is the viability of anomaly detection aid for VTS operators?

Six sub-questions have been identified to answer the main research question
as follows:

SQ1: What types of anomalous behavior exist for maritime traffic?

SQ2: How can we evaluate the effectiveness of maritime anomaly detec-
tion?

SQ3: What effective methods exist to detect maritime anomalies?

SQ4: What is the effectiveness of using self-organizing map and Gaussian
mixture models to detect maritime anomalies?

SQ5: What level of transparency can be achieved using self-organizing
maps and Gaussian mixture models to detect maritime anomalies?

SQ6: How can a maritime anomaly scoring tool aid VTS operators?

1.3 Work contribution

This work aims to connect the practical and the scientific by evaluating the
state of the scientific field and relating it to what is lacking for practical
benefit. It does this by working through the entire process from a practical
approach, attempting to leverage available literature. Since the work looks
at the whole process, it contributes to many aspects in areas of maritime
anomaly detection. This work contributes to maritime anomaly grouping,
the role of transparency, transparency detection strategies, and maritime
anomaly visualization. These contributions, the literature, and expert vali-
dation further enable comprehensive recommendations for the requirements
to achieve practical viability in the field.
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1.4 Report structure

Other sections in this report consist of findings from the literature and the
implication for study design in Chapter 2. The next section provides an
overview of the data relevant to the proof of concept development in Chapter
4.1. Chapter 3 discusses the theoretical background and framework. Moving
forward with practical implementation in Chapter 4 and the results in Chap-
ter 5. The conclusion section returns to the research questions, discusses the
results, and provides future research recommendations in Chapter 6.
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2 Literature

This section discusses the literature on user interaction and maritime anomaly
detection. The implications from the literature discussed in this section form
the foundation for the proof of concept design. The user interaction section
is split up into trust and interface, while the anomaly detection examines the
broader fields and then specifically at maritime anomaly detection strategies.

2.1 User interaction

User interaction is the field that studies the interaction of humans with com-
puters and subdivides it into technology acceptance, user satisfaction, trust,
computer self-efficacy, personalization, and privacy (Rzepka & Berger, 2018).
The viability of the proof of concept depends mainly on the user interaction
with the system to enable benefit. The AI-enabled systems field can signif-
icantly benefit from incorporating user interaction specific to their purpose
(Rzepka & Berger, 2018). Specific recommendations for the interaction of
users and systems will depend on the specific field. The work from (Praeto-
rius & Lützhöft, 2012) highlights the need to look beyond the technological
ability to create systems for aiding VTS operators. Hence, the proof of con-
cept incorporates various principles. These principles are trust in the system
and the interfacing of VTS systems.

2.1.1 Trust

Trust can be present in many forms, generally between the person and their
trustee. Trustees can, for example, be other humans, organizations, institu-
tions, or even IT artifacts (Söllner & Leimeister, 2013). Benbasat and Wang
(2005) further explains that people also form social and trusting relationships
with technological artifacts and move beyond tool utilization.
In algorithmic decision-making and artificial intelligence tools to aid the
user’s experience and benefits, many considerations are to determine the
perceived usefulness. Within this, papers such as Shin (2020) and Shin and
Park (2019) show that trust correlates with the FATE (Fairness, Account-
ability, Transparency, and Explainability) or FAT (Fairness, Accountability,
and Transparency) principles. Fairness in this context is having a careful ap-
proach to every process of an AI design so that the system will not produce
discriminatory results for groups or individuals Shin (2020). Accountability
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encompasses who and how is accountable for the actions of AI, as argued
by Diakopoulos (2016). The field of artificial intelligence still debates the
definition of transparency, but this work adopts the definition by Shin and
Park (2019). This work defines transparency as the ability of users to under-
stand how an AI system makes a decision. Lastly, explainability is similar
and defined as how the input features of the model are associated with its
decision in a manner understandable by humans (Rai, 2019).
This trust will correlate with more perceived usefulness, convenience, and
satisfaction. To achieve the benefits desired of a data enhancement tool for
users, these can be taken into account early in the process. The work by
Shin and Park (2019) provides guidelines. Explaining the system’s intention,
the sources of data, and the relation between input and outputs form the
guidelines for realizing the benefits. The anomaly detection strategy will
use these guidelines and pick methods that promote transparency and the
interaction of various features to the anomaly score.

2.1.2 Interface

The VTS operator’s role requires active monitoring of many information
sources to gauge the potential risks in their assigned area. Interface design
plays the role of managing the information overflow and information avail-
ability to support user interaction. As early as 1988, Baldauf and Wiersma
(1998) highlights the importance of the implementation method for alerts
and warnings. An option to achieve this can be seen in a priority queue sys-
tem for messages and alerts, as seen in Gonin et al. (2009). Occupied VTS
operators also need the ability to return to earlier notifications, highlighting
further importance for a queue system (Riveiro et al., 2008).

2.2 Anomaly detection

Anomaly detection is the field that specializes in the finding of patterns
within data that do not correspond with expected behavior. An anomaly
consists of finding a nonconforming pattern and providing value in many
fields such as fraud detection, cyber-security intrusion detection, fault detec-
tion for systems, and surveillance (Chandola et al., 2009). Anomaly scor-
ing and detection can employ many strategies, from histograms to complex
machine-learning approaches. The employed strategies might differ based
on assumptions regarding the normal and anomalous data (Chandola et al.,
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2009). In the following section, maritime anomaly detection and its groupings
from literature are discussed and continued with the grouping of maritime
anomalies and exploring the strategies employed in the literature.

2.2.1 Maritime anomaly detection

Anomaly detection within the maritime sector for detecting anomalous be-
havior of ships has been a field of study for almost 20 years. Highlighting
its importance in improving vessel traffic safety, maritime security, and pro-
tecting the environment (Riveiro et al., 2018). Two distinct research areas in
this field are visible in maritime anomaly detection. Specifically, the defense
and civilian approach to maritime anomaly detection. The defense approach
predominately focuses on threats, such as terrorism, smuggling, piracy, and
territorial violations (Martineau & Roy, 2011). The civilian approach fo-
cuses more on vessel traffic safety, often monitored by VTS operators in
busy waters. Anomalies within the maritime field are many different aspects
of the behavior seen in vessel movements. An attempt at grouping types of
anomalies can be found in Riveiro et al. (2018) as follows:

• Positional anomalies: Vessels in unusual areas, outside shipping lanes.

• Contextual anomalies: Factors such as weather, ship type, or time pe-
riod do not correspond to expected behavior.

• Kinematic anomalies: The speed and direction or change of speed and
direction do not align.

• Complex anomalies: Anomalies related to the intention of ships, such
as loitering, drug smuggling, and AIS spoofing.

• Data related anomalies: Anomalies related to data incompleteness or
behavior.

These categories outline the categorization of examples for anomalies, en-
abling the grouping of various papers into types of anomalies found in the
following section regarding the analytical methods used for anomaly detec-
tion in literature. The grouping for anomalies allows a more straightforward
comparison of the anomalies detected in the literature. Many anomaly de-
tection strategies also combine portions of these grouping, and this work
establishes a more specific framework. This process rescopes some anomaly
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types to fit more specific anomalies relevant to civilian anomaly detection,
focusing on contextual and complex anomalies. These changes are because
contextual anomalies are seen as a sub-group of all anomaly types, providing
an extra layer of detail to other anomalies. Factors such as the ship type,
time of day, and weather influence whether or not a certain speed or location
may be normal. The grouping found in the literature identifies the complex
anomalies as the vessel’s intention in this grouping. These are difficult to
validate and more relevant for maritime surveillance from a defense stand-
point rather than the civilian angle. These aspects mean this work will adopt
altered groupings for anomalies and not use those outlined in Riveiro et al.
(2018).
The definitions adopted for this work are as follows:

• Positional anomalies: Vessels that are in a location deviating from nor-
mal.

• Kinematic anomalies: Vessels with an unusual course, speed, or combi-
nation.

• Data related anomalies: Anomalies relating to data incompleteness or
transmission behavior.

• Routing anomalies: Deviations from normal routing paths or sudden
changes in speed or direction.

2.2.2 Anomaly detection strategies

This section explores literature that discusses various strategies for detecting
maritime anomalies. A review summarises various aspects of the discussed
papers. Summarising aspects found in Table 1 are the types of anomalies de-
tected, the data used, the techniques used, and an evaluation of the results.
The review groups the types of anomalies detected in the literature according
to those in Section 2.2.1. The techniques consist of the primary methods used
to create the model and score the anomalies. Finally, each paper’s outcome
and validation portions are summarized to indicate the approach’s effective-
ness in scoring anomalies. The review consists of papers from the keywords
maritime anomaly detection and references found in respective papers.
The result of the literature summary is in Table 1. With the anomaly types
indicated with the first three letters of the grouping provided in the previous
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Table 1: Maritime anomalies detection strategies review

Paper
Anomaly types

Analytical tools Effectiveness
Pos Kin Dat Rou

Zhao and Shi (2019) P P N Y Recurrent neural network Successful in individual cases
Zhen et al. (2017) Y Y N Y Näıve Bayes classifier Successful in individual cases
Osekowska (2014) Y Y N N two-dimensional Histogram Useful frequency map
Handayani et al. (2013) N P N P SVM, interpolation Interpolation helps
Kowalska and Peel (2012) N N P Y Gaussian Process Success on larger displacement

Vespe et al. (2012) Y N N Y Custom code for building track Shipping lanes and turning points
Will et al. (2011) Y Y P N Gaussian processes, KD-trees Resource intensive
Lane et al. (2010) N N P P Bayesian network None determined
Roy (2010) Y Y N N Rule-based reasoner Dependent on rules
Riveiro et al. (2008) Y Y Y N Self-organizing map and GMM Effective representation

subsection. With a label of either Y, N, or P referencing yes, no, or partial
respectively. In the groups of anomaly types that each paper has attempted
to detect, it becomes evident that most of the strategies employed focus on
a small subset of all detectable anomaly types. The literature frequently
aims to detect a specific type or example of an anomaly. Notably, every
paper further uses different analytical tools. Another concern is the lack of
validation on the effectiveness of the papers that are part of the review since
none of the papers have validation beyond individual cases. This lack of
validation makes comparison challenging. Another aspect is that all papers
use AIS source data, except the rule-based system seen in Roy (2010) that
does not outline any specific data.
Other papers that can serve as a basis for comparison between anomaly de-
tection methods are a set of review papers outlining the different strategies
and their respective benefits and applicability. Riveiro et al. (2018) highlight
the prevalence of statistical anomaly detection due to its complex and ill-
defined nature. This anomaly detection strategy utilizes a normalcy model
using various tools and tackling anomaly detection. Many different meth-
ods can create this statistical normalcy model. In an earlier paper looking
at specific machine learning techniques, Obradovic et al. (2014) highlights a
direct comparison of the benefits and detriments. This review looks specif-
ically at neural networks, Bayesian networks, Gaussian processes, Gaussian
mixture models, and support vector machines (SVM). Application of neural
networks in maritime anomaly detection can be found in papers such as Zhao
and Shi (2019) to help predict the future state of a vessel, allowing compari-
son to the actual state. SVM is a supervised approach, shown in Handayani
et al. (2013) to impact the applicable scope significantly. The SVM ap-
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proach primarily allows the detection of changes in vessels’ behavior veering
from normal shipping lanes. As seen in Lane et al. (2010), Bayesian net-
works promise the ability to incorporate expert knowledge and transparency
but lack a maritime domain-specific attempt. Both Gaussian-based meth-
ods have the benefit that the implementations do not require codified expert
knowledge, as these strategies are methods of determining the multivariate
normal distribution of the data, using the probability density to score data
points. When analyzing the attempts for maritime anomaly detection in the
literature, issues regarding various strategies arise. The supervised strate-
gies lack specificity or ability to generate training data stemming from the
lack of anomalous labeled data points (Riveiro et al., 2018). Within other
anomaly detection fields, Cansado and Soto (2008) does offer the ability to
generate random data to label anomalous. Codifying these anomalies will
enable the detection of anomalies as seen in Roy (2010). The need for expert
knowledge of each anomaly limits the generalization. Most research focuses
on unsupervised anomaly detection using various strategies with these lim-
itations. With the transparency aspect in mind, this further reduces the
promising approaches. The prevalence of AIS as a data source with anomaly
detection is also evident. The reliance on self-reported systems does high-
light another potential issue (Chandola et al., 2009). In comparison, the
density-based clustering and recurrent neural network combination in Zhao
and Shi (2019) does enable the segmentation of some distinct anomaly types.
A combination of various methods would be required to detect all anomaly
types, and this combination would need to include separate models for indi-
vidual point and trajectory scoring. Individual point scoring detects many
anomaly types in various groups but lacks track-based routing anomalies.
Track-based anomaly detection strategies enable routing inconsistencies but
cannot detect a wide range of positional and kinematic anomalies.
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3 Methodology

This section covers the theoretical background of the frameworks, maritime
anomaly detection strategies, visualization principles, and expert sessions
employed in this work. This background serves as the foundation for the
proof of concept. The implementation in Chapter 4 builds upon the theoret-
ical foundation with practical choices, providing the results found in Chap-
ter 5. The chapter is divided into five sections, first discussing the research
framework applied in this work in Section 3.1. It then Continues by dis-
cussing the anomaly types detected in the existing literature and how those
will be adapted in Section 3.2. Then, Section 3.3 motivates the maritime
anomaly detection strategy choice and provides a thorough explanation of
its components and formulas. Visualization, in Section 3.4, covers the prin-
ciples incorporated in the visualization that is part of the proof of concept.
The section that discusses the expert sessions covering the resulting complete
proof of concept is covered last in Section 3.5.

3.1 Research framework

The research framework adopted for this work is the Cross Industry Standard
Process for Data Mining (CRISP-DM) (Chapman et al., 2000). CRISP-
DM guides data science processes using six distinct steps iteratively, as seen
below. A suggestion for the interaction of these steps is also made in the
reference architecture, as seen in Figure 1. CRISP-DM was selected first
for this work as it is the most frequently used and can be considered the
standard (Mariscal et al., 2010). Furthermore, it also provides extensive
documentation and practical overviews of the various intuitive steps to help
limit missteps in the process.

1 - Business understanding: Analyse the business needs and objectives,
determining important factors early in an early stage and ensuring the
project answers the right questions.

2 - Data understanding: Examining the data to connect the available
data and the project’s needs.

3 - Data preparation: Process the data to produce to ensure all the
correct data is in one place in the right format.
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Figure 1: Steps of the CRISP-DM Methodology (Chapman et al., 2000),
figure from: Kizilkan et al. (2015)

4 - Modeling: Determine, test, and create the model for the project.

5 - Evaluation: Evaluate the model’s results and review them against the
intended goals.

6 - Deployment: Determine the format of deployment of the results,
develop a post-deployment strategy and deploy the results.

The six steps from the CRISP-DM framework clarify important steps toward
a successful project. For this work, the CRISP-DM framework serves as a
set of separate CRISP-DM cycles, focusing on the frequent evaluation of the
alignment of the prototype with reality. These separate CRISP-DM cycles
align with the various aspects of the overall prototypes: Anomaly types,
anomaly detection strategy, and visualization. Lastly, the viability study
provides a final evaluation of the three cycles combined. Step one, business
understanding, is discussed predominately in Chapter 2 with some broader
scope in Chapter 1. The data understanding and data preparation steps are
discussed together in Chapter 4.1. Modeling selection is split into planning in
Chapter 3 and specific tools selected in Chapter 4. Step five, evaluation can
be found in Chapter 5. Step six, deployment is not reached as part of this
work. These steps are discussed separately for determining anomaly types,
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anomaly detection strategy, visualization, and expert sessions. The expert
sessions serve as the final evaluation step after the smaller cycles.

3.2 Role of maritime anomaly framework

A clear grouping and definition of each type of anomaly supports the selection
for the proof of concept and simplifies feature selection. For this, the group-
ings discussed in Section 2.2.1 serve as the foundation for the framework for
grouping and anomaly types used in this work.

3.3 Maritime anomaly detection tools

As seen in the background section, many different maritime anomaly detec-
tion methods exist in the literature. These methods aim to tackle the problem
with various tools and strategies with differing degrees of success. The strat-
egy selection combines various aspects in the literature and data availability
to select the strategy for the proof of concept. The primary aspects affecting
the choice in anomaly detection strategy are the lack of labeled or concrete
manners of labeling data, ease of adding various context features, the pos-
sibility to achieve some level of transparency for the output, and promising
existing literature. Due to the lack of labeled data and difficulty labeling
data, the strategy needs to leverage an unsupervised approach. The specific
groupings and types identified for maritime anomalies require modularity,
feature selection for each identified anomaly type, and a method of scoring
the combination of all features. The features picked should coincide with
user-understandable concepts, in line with the transparency principles (Shin
& Park, 2019).
Two primary contenders arise with these aspects: the combination of Self-
organising maps (SOM) and a Gaussian Mixture Model (GMM) (Riveiro et
al., 2008) and the recurrent neural network approach (Zhao & Shi, 2019) that
showed distinction in the type of detected anomalies. With this, it became
clear that the combination of SOM and a GMM allow more flexibility in
feature selection as part of maritime anomaly detection. The SOM and
GMM approach allows a ground-up approach by defining various types of
anomalies and connecting these with associated features, thus enabling the
selection of a reasonable subset of the anomaly types identified.
The SOM and GMM strategy trains a model for future data points by cre-
ating a probability density function from the training data set. In this work,
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the training data set consists of data points, where each point denotes the
state of a vessel at a specific time. The strategy first clusters similar data
points, training a SOM to fit all data points. This trained SOM consists
of neurons representing a group of similar data points in the training set,
considered a cluster. The distribution and means of data within each cluster
are then extracted and used in the GMM, weighed according to their preva-
lence, to create a single distribution for the entire problem space. This single
distribution can then score new data points by determining the probability
density for its features. The remainder of the maritime anomaly strategy
section elaborates on the individual components and formulas that achieve
the steps to create the probability density function from the train data set
and further elaborates on the validation of this strategy.

Figure 2: Training a SOM to cluster random RGB colors

SOM is an unsupervised, competitive learning neural network to create arti-
ficial groupings within data. The resulting grid of neurons represents clusters
in the data after training, with the number of neurons denoting the number
of clusters. The SOM initializes random values to group similar data points
(See left in Figure 2). Through an iterative process, the SOM measures the
distance to a training data point and maps it to the closest neuron on the
map. This closest neuron is the best matching unit (BMU) and is determined
using the Euclidean distance. After determining which neuron is the BMU,
the weight of the BMU neuron adjusts towards the data point. The weight
of neighbors close to the BMU neuron further changes toward the new data
point. Changing the weights of neurons reduces further in the SOM training
iterations. This simple step repeats on every data point for many cycles to
have the SOM represent groupings in the data (See right in Figure 2). With
this, the SOM can cluster similar data points and reduce the dimensionality
of similar values without context (Yin, 2007).
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The BMU equation, found in Equation (1), determines the BMU neuron
given a distance function and SOM for any data point. Provided a data
point x, given the SOM s and distance function d. I and J are the width
and height of SOM s, using i and j to indicate specific neurons in the SOM.
The BMU neuron (sij) matches with a data point if it is the closest data
point according to distance function d.

BMU(x|s, d) = (d(sij, x) = min(
I∑

i=1

J∑
j=1

d(sij, x))) → sij (1)

Figure 3: A Gaussian Mixture Model combining three distributions into a
single distribution

A mixture model is a type of model that represents the subgroups within
the overall distribution. The GMM is a mixture model that assumes that
the distribution is a combination of normal distributions. Lastly, the added
dimensionality from multiple dimensions represents the need for the mul-
tivariate version of the GMM. Effectively, the multivariate GMM is a tool
to create a probability density function from a set of grouped data points.
Each neuron in the SOM has its multivariate Gaussian distribution, which
combines distributions according to their importance in the training set to
create a single probabilistic model for the entire model space. The impor-
tance of a neuron is the frequency of the cluster, calculated by the percentage
of training data points that have the neuron as BMU.
The multivariate Gaussian probability density function, seen in Equation
(2), determines the probability density for each distribution in the GMM.
The distribution’s mean µ and covariance matrix Σ determine the probabil-
ity density for the data points x. n represents the number of dimensions
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of the data points and multivariate distribution. The mixing proportion π
represents the contribution of the individual distribution to the mixture.

N (x|µ,Σ, π) = 1√
(2π)n|Σ| 12

exp (−1

2
(x− µ)TΣ−1(x− µ)) (2)

Equation (3) provides the formula determining pij, which calculates the prob-
ability that a specific neuron and distribution represent a data point. The
probability, also called the mixing proportion in GMM, represents whether
a specific neuron is the BMU for a data point in the training set x.

pij = P (BMU(x|s) = sij|x) (3)

The combination of SOM and GMM uses the adjusted multivariate Gaussian
probability density function, seen in Equation (4), to represent each specific
neuron’s contribution toward the combined distribution. It replaces the mix-
ing proportion, previously π, with pij as seen in Riveiro et al. (2008) and
shown in Equation (3). This definition of the mixing proportion ensures the
height of the probability density is adjusted by the corresponding contribu-
tion of fij towards the combined distribution as indicated by pij. Further, µ
indicates the average of points with sij as BMU, representing the resulting
weights of sij in the trained SOM. Σ is the covariance matrix determined
by the points matched to sij. Lastly, n is the number of features in each
data point. These aspects use a probability density made for each neuron sij
that given data points (x1, ..., xn) will determine each data point’s probability
density.

fij((x1, ..., xn)|µ,Σ, pij) =
1√

(2pij)n|Σ|
1
2

exp (−1

2
(x− µ)TΣ−1(x− µ)) (4)

To combine the probability density functions fij that represent each respec-
tive sij. The probability density functions combine according to the proba-
bility pij as seen in Equation (5), here I and J reference the height and width
of the corresponding SOM.
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f(x) =
I∑

i=1

J∑
j=1

pijfij(x) (5)

The model built with the combination of SOM and GMM describes the
normalcy of behavior. This model creates a probability density function
that combines d multivariate Gaussian distributions, where d is the number
of neurons in the SOM. Thus, a low probability density score for a data
point indicates it is far from assessed clusters within the training dataset.
Subsequently, a low normalcy score is determined anomalous.
Leveraging SOM for clustering and the multivariate GMM for combining
distributions, the resulting probability density function represents normal
vessel behavior. Separate SOM and GMM models are used for each subset to
determine the contribution of that subset of features. These models achieve
transparency by indicating what anomaly types, connected to the subset of
features, contribute to the anomaly score.
Finally, the result is normalized using a binning system to move from a
probability density function to a more easily understandable value. With
this normalization, the resulting value will be between zero and one, where
one represents the highest seen probability density and zero is the lowest.
Following this normalization, an overall score of one indicates a very normal
point, and a score near zero indicates an anomalous point.
The model’s behavior will be examined to determine if low-scoring data
points are outliers, validating the SOM and GMM approach. Furthermore,
examining the correlation between the transparency scores and overall scores
determines the interaction between various anomaly types and the overall
score. Lastly, expert sessions improve validation by verifying interpretations
of these results.

3.4 Visualization principles

The visualization compliments the proof of concept by providing an interface
to the output of the scores from the SOM and GMM anomaly detection
approach. This interface allows a more accessible examination of the output
from the maritime anomaly detection strategy and aids expert validation.
The visualization takes the form of a simulated real-time minimal viable
product combining the core interaction requirements and maritime anomaly
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detection specific features. The literature review highlights the need for an
interface to explain anomalous scores and a queue to indicate vessel priority.
These principles will be the basis for creating an interface design based on
the created requirements that will be part of the design. An iterative process
with experts highlights the need for various features to provide a minimum
viable product to interact with the system.

3.5 Expert validation purpose

The viability serves as an expert opinion validation series of the maritime
anomaly detection prototype and visualization results. It aims to validate
the results beyond the ability of the researcher. For this, there are four com-
ponents: discussing the process, the overall scores, the transparency strategy,
and the future of the field. For all of these, the visualization serves as the
interface. The process is a brief presentation regarding the anomaly types
and proof of concept choices. A set of low-scoring example vessels is the ex-
ample of the overall model, with a specific point for each vessel examined for
transparency using a reference transparency strategy. The final component
discusses the still missing aspects and future of maritime anomaly detection.
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4 Implementation

This chapter elaborates on the practical choices and implementation build-
ing built on the choices in Chapter 3, creating the models for the results in
Chapter 5. First, this chapter discusses the data used for the proof of concept
in Section 4.1. Then, the anomaly framework created for this work is elab-
orated on in Section 4.2. Thirdly, in Section 4.3 it discusses the choices for
the maritime anomaly detection proof of concept. Section 4.4 discusses the
design of the visualization proof of concept. Finally, this chapter discusses
the format for the expert sessions in Section 4.5.

4.1 Data

The data used for the proof of concept is from the port of X. For this area,
there are two primary sources of data: AIS transmission and a combined
source of radar and AIS data that VTS uses. This combined radar and AIS
data are the most accurate for VTS usage (Lin & Huang, 2006). The data set
thus uses the merged data, supplementing with AIS data to fill in the fields
that are not present. The methods of vessel detection and processing are
left out due to confidentiality. The data used for this work is of the highest
quality available at the time. The data consists of points that update the
state of a vessel at a specific time. These data points can be connected to
a specific vessel using its identifier, which is a random string that represents
that vessel. The time delta between updates for vessels is determined by
connecting all data points and checking for the difference in time between the
last data point. This time delta further serves as the indicator to determine
the change in speed and course per second since the last data point.
This data set is further filtered to include only vessels present in the area of
interest, moving vessels (>0.1 m/s), valid identifier, and an expected update
interval for the system. With this, the data set consists of all moving vessels
that transmit AIS within the area. The information inside a data point is
in Table 2, including the name, type, unit, usage, and an elaboration on the
contribution of that column.

4.2 Defining a maritime anomaly framework

A distinction for various specific types within the groupings discussed in
Chapter 2 supports the modular approach for maritime anomaly detection.
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Table 2: Data sample
Column Type Units Use Elaboration

Identifier String - Identifier Vessel identifier
Time Datetime - Various The timestamp for the vessel update

Breadth Float meters Visualization -
Length Float meters Visualization -

Longitude Float knots Detection Current position
Latitude Float knots Detection Current position

Time delta Float seconds Intermediate value Time since last update
Speed Float knots Detection Current speed of vessel

Speed delta Float knots/s Detection Difference in speed since last update
Course Float degrees Detection Movement direction of vessel

Course delta Float degrees/s Detection Difference in course since last update

Orientation Float degrees Visualization Facing direction of vessel
AIS delta Float seconds - Time difference between 2 most recent updates
Draught Float meters - Depth of vessel below waterline

This section discusses the starting point for the grouping of maritime anomaly
types. Respectively these groups are the data-related, kinematic, positional,
and routing anomalies. The earlier chapter provides descriptions for these
groupings, but the anomaly types that fit in those groups further elaborate on
the grouping. This context could consist of information on the type of vessel,
weather patterns, specifics of the area, and other potential avenues to enrich
the information on whether or not specific behavior are to be considered
anomalous. This work discusses some avenues to include context, but the
final implementation does not contain any context.
Here are the descriptions and types that correspond to each anomaly group
elaborating on the earlier descriptions and starting with Data-related anoma-
lies. The vessel’s behavior does not cause data-related anomalies. Instead,
data-related anomalies relate to the transmission or detection of vessels. The
consistency of data information refers to anomalies detected using misaligned
information regarding a vessel. Meanwhile, the consistency of transmission
refers to the consistency of AIS transmission of specific vessels, which may
be connected to the tampering or hindering of AIS transmission devices
(d’Afflisio et al., 2021; Katsilieris et al., 2013). Kinematic anomalies re-
late to a vessel’s current speed or direction (Note that kinematic anomalies
do not include changes in speed or direction). The positional anomalies are
vessels present in an unexpected area, given the context. The positional
anomalies consist of the following types: unexpected arrival, unauthorized
access, low-depth waters, and unexpected area. Mentions of unexpected ar-
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rival can be seen in Lane et al. (2010) and consist of vessels that present
themselves at an unexpected time or place. Further mentions can be found
in d’Afflisio et al. (2021), consisting of a vessel entering or heading towards
an area that the vessel does not have permission to access. Low-depth wa-
ter anomalies consist of vessels close to or heading towards areas that lack
sufficient water depth compared to their draught. Lastly, the unexpected
area is the anomaly that encompasses the vessel’s location. Finally, routing
anomalies consist of two different groupings of anomalies. The first grouping
is anomalies corresponding with changes and the deviation from tracks seen
in the literature (Lane et al., 2010). The second grouping consists of change
anomalies outside the vessel’s ordinary behavior changes. These recognized
types are the changes in direction and speed. Deviations from tracks consist
of vessel behavior that does not align with the expected navigation from one
point to another. Proximity anomalies and leaving expected track anomalies
are part of the deviation from track anomalies. The proximity anomalies
refer to close passes with either land, shallow water, or other vessels. In
comparison, expected track anomalies are vessels that do not use a logically
used path from one point to another. To define logically used paths, Vespe
et al. (2012) offers the option to build a database of typical tracks in an area.

Figure 4: The types of maritime anomalies used for the proof of concept

Figure 4 shows all the groupings and types of maritime anomalies. Data-
related, kinematic, and positional anomalies only have a single sub-group
of anomalies. Nevertheless, other types of anomalies can expand the scope
of these groupings. Note that this grouping is non-comprehensive but does
elaborate on various specific types of anomalies that will be detectable from
data commonly used to detect anomalies. The proof of concept uses five
different anomaly types from the types defined here. These are the speed,
course, location, speed change, and course anomalies. The types included in
the proof of concept correspond to at least a portion of three groupings.
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4.3 Transparent maritime anomaly detection

This section discusses the maritime anomaly detection implementation for
the proof of concept. The implementation builds upon the strategy selection
and theoretical foundation, discussed in Section 3.3, towards a functioning
anomaly scoring proof of concept. The implemented maritime anomaly de-
tection tool creates a probability density-based model for anomaly scoring
and corresponding transparency scores. Here the overall model provides the
general score for each data point, seen as the anomaly or normalcy score.
The transparency models provide additional scores for each implemented
anomaly type, explaining which ones contribute to the overall data point
score. The proof of concept trains a SOM based on an extensive training
data set, creating clusters used in the GMM to build the distribution for
the entire problem space. As a final step, a binning system normalizes the
probability density scores to values between 0.00 and 1.00. In developing the
maritime anomaly detection proof of concept, the primary steps consist of i)
system design ii) feature selection iii) tool selection iv) conditions to achieve
stability. The implementation portion of maritime anomaly detection will
follow these steps to clarify the exact steps taken to create a proof of con-
cept for a SOM and GMM maritime anomaly detection model using the data
explained in Chapter 4.1.
The system can handle a classic train and test split, which simulates training
on historical data and testing on real-time data. Enabling the training of the
SOM, building the GMM model, and the bins for the model created ahead
of scoring. Each of these steps is resource intensive but can support state
checkpoints in a small file format, no longer requiring the training data set.
The system design can be found in Figure 5, starting at the top left with the
data set outlined in Chapter 4.1. This data set splits between the training
data of all data points fitting the filter criteria from the month of training data
and the simulated real-time input consisting of the next two days. The train
and test data represent a sizeable recent time frame, where the training is
most of the data set to provide sufficient data for the model. Meanwhile, the
test set is large enough to have sufficient variety in the time of day to examine
the model behavior. The training uses the training data, with the SOM for all
features (SOMall) and the models for subsets of overall features representing
the transparency models (e.g., SOMspeed, SOMcourse). The trained SOMs, in
combination with the training data set, build the GMM. Each GMM model
(GMMall, GMMspeed, and further transparency models) requires the storage
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Figure 5: Architecture for the system

of the characteristics of all distributions that are a part of the GMM. These
characteristics consist of the frequency of the distribution, the mean, and the
covariance matrix. These are the given parameters to provide the probability
density function described in Equation 4. The GMMall model calculates
the overall probability density of the test data points. In combination with
the transparency scores from the transparency models. Lastly, the binning
normalization normalizes the probability density to a value between 0.00
and 1.00. The bins correspond to 0.1% intervals of the probability density.
Ensuring the lowest 0.1% of data points will correspond to the value 0.000,
with the next 0.1% corresponding to 0.001. Deciding these bins continues for
each of the 0.1% intervals up to 1. The normalized probability density values
represent the scores for the data point, having the overall anomaly score and
the transparency score for each. The visualization shows these normalized
values, and the set thresh holds.
The SOM and GMM combination fits as a base layer, allowing expandability
with more features and types. The final implementation only used the green
types, as seen in Figure 6. The selected types consist of speed anomalies,
course anomalies, location anomalies, change in direction anomalies, and
change in speed anomalies. The final implementation left out the orange
types, transmission consistency, and low-depth waters. Similarly, the imple-
mentation left out the size and type of ships. However, all of these lack the
continuous data requirement creating over-fitting characteristics skewing the
overall model drastically.
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Figure 6: Selected types of anomalies for the prototype

The maritime anomaly detection prototype was developed in Python 3.10
(Rossum & Drake, 2009) to enable easy access to libraries and data science
tools. The miniSOM (Vettigli, 2018) package is a robust and straightforward
SOM implementation. The miniSOM package needs a small change to allow
it to provide time estimates for larger training data sets without crashing on
completion. This change avoids creating a q× q matrix, where q is the train
data set size when training using a verbose setting. All SOMs trained using
the same parameters, using a size of 50 by 50 neurons, an initial distance
between neurons of 1.00, a learning rate of 0.5, and one million iterations.
The training of six different SOMS resulted in one for each type selected and
one for the overall model. The 50 by 50 size was chosen as a size limiting
stability filtering of distributions without making the size overly large. The
learning rate was chosen at 0.5 to represent high plasticity in the model (Yeo
et al., 2005). This learning rate ensures that the SOM finds sufficient new
clusters in the data set. The initial distance between neurons represents the
initial distance considered for updating near a winning neuron. This distance
is set to 1.00 to ensure clusters initially avoid interacting broadly, with the
distance between clusters decreasing to ensure cluster interaction later in
training (Mersiovsky et al., 2018). A large number of iterations improved
the improvement beyond 100000 iterations while maintaining less than ten
hours for each overall or transparency model in a single-threaded manner on
a powerful single machine server. Optimization of learning rate and sigma is
not part of the scope due to the limited ability to compare similar results with
the validation strategies available. Training a single SOM and then extracting
feature subsets was also attempted. This extraction proved unsuccessful due
to disconnection between clustering and extraction of subsets.
The GMM implementation was self-implemented in two steps after exam-
ining available packages that did not offer all features required. First, the
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trained SOM is used to determine the win map for the training data. This
win map determines the means, covariance, and frequency of each neuron
in the SOM. Determining the win map consists of each neuron collecting all
data points with that neuron as its Best-matching unit (BMU). For which
the mean will correspond to the respective neuron weight in the SOM. The
covariance is determined using all data points connected to each neuron. Fi-
nally, the percentage of data points connected to that neuron compared to
the total amount of data points determines the frequency. The next step se-
lects distributions that are a part of the distribution, excluding distributions
with too much sensitivity. Firstly, this step removes all neurons with a single
corresponding data point since these do not have a respective covariance.
Then the distributions that lack significance due to too much sensitivity re-
sulting in infinity probability densities are checked to that their covariance
matrix has a sufficiently low condition number. Calculating the condition
number checks that the distribution has enough significance to not result in
issues by providing infinity values. In Equation 6 the formula for a condition
value is provided. The condition number of a matrix is a measure of the sen-
sitivity of a matrix to change. The formula calculates the condition number
by multiplying the matrix’s absolute determinant with the inverse matrix’s
absolute determinant. Literature by Strang (1988) provides a rule of thumb
for the condition number, it creates a value k for a matrix A, which is in
Equation 7, it creates the rule of thumb value k given using the condition
value for matrix A. For this, the matrix loses k decimal places in round-off in
Gaussian elimination, where k was set to 10 for all distributions, maximizing
included distributions while minimizing issues. A low k filters too many dis-
tributions, whereas a very high (> 20) for k would let in distributions that
would result in infinity probability density values for some test data points.
Generally, less than 0.01% of data points were excluded from the model’s
large training samples using the selected k.

cond(A) = ||A|| · ||A−1|| (6)

k(A) = log(cond(A)) (7)

The characteristics from all distributions are combined with the self-implemented
function as seen in Equation 4 and Equation 5. This function is provided a
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list of data points and will return a corresponding list of probability density
values accordingly. The function achieves by treating the entire scoring as a
vector operation. After the GMMall model determines the probability den-
sity and the transparency models determine the transparency scores, those
scores determine the bins. This model thus provides a score between 0.000
and 1.000 for the overall score and each anomaly type. The visualization then
shows the scores given to all the data points corresponding to the vessels.
A different transparency strategy, using depth-first re-scoring of values, en-
ables validation of the transparency models. This separate transparency
strategy is a point of reference for comparing the transparency models to an
alternative strategy. This separate transparency strategy employs a much
more resource-intensive but more straightforward approach. It starts with
the initial point and examines the highest possible scores by changing indi-
vidual features to their optimal positions in an iterative cycle. The different
strategy aims to find what can be considered a normal data point at the
location of the inspected data point. The strategy validates specific data
points for their transparency by providing a reference for the transparency
models. The different strategy starts with all the original features of the
data. Then the different strategy changes one feature at a time for a wide
range of values. The strategy stores the highest normalcy score and fea-
ture value for each feature. The feature with the highest normalcy score is
then selected, assuming the score is improved and has not reached the nor-
malcy threshold ( 0.1). This normalcy was chosen based on the assumption
that a minimum of 90% of data points are normal, aligning with a visual
inspection of data points scored between 0.1 and 0.15. Suppose none of the
features reach the normalcy threshold. In that case, the data point examined
is changed for the selected feature to the value corresponding to the highest
normalcy score. The strategy examines all features again, with the best fea-
ture changed, to look for the highest normalcy score in the next iteration. A
graph also complements this strategy, enabling quicker comparison. In this
graph, nodes correspond to the changed feature and the depth. At the same
time, the vertices in the graphs between the nodes provide information about
the change.
Figure 7 provides an example of the graph corresponding to the different
transparency strategy. The results of the depth-first re-scoring are shown
by having the nodes correspond to the shortened anomaly type names with
a number for the iteration. The vertices provide the results for the highest
normalcy score for that feature. In the graph seen in Figure 7, the red node
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Figure 7: A depth-first re-scoring approach towards normalcy

labeled Start corresponds to the original values of the data point examined.
Where the vertex to course∆0 shows that the highest normalcy score ob-
tainable with a single feature changed is 0.07 if the courseδ would have a
value of 2.3 m/s2. The orange arrows also indicate the direction of the path
towards normalcy for this data point. Comparison between this graph and
the anomaly scores of a data point allows validation for the transparency
level achieved using the transparency models of the proof of concept.

4.4 Visualization design

The visualization described in this section compliments the maritime anomaly
detection strategy by providing an interface with the anomaly and trans-
parency scoring models to the proof of concept. It visualizes the environ-
ment of moving vessels, where each data point has an anomaly score and
corresponding transparency scores. A set of requirements support a min-
imum viable product. The requirements divide into two main categories:
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core interaction and features specific to anomaly detection. The relevant re-
quirements can be found in Table 3 and Table 4 and their importance for a
minimum viable product. The tool selection aims to satisfy all requirements
with minimal effort, enabling interaction with the model and completing the
proof of concept.

Table 3: Core requirements visualization

Core interaction

Requirement Value
Map panning Move around the map to inspect specific areas
Map zoom Zoom in to inspect smaller and larger areas

Automatic updates Automatic timeline to simulate real-time

Manual time change Ability to alter time manually for inspection
Track vessels Ability to track vessels between different timestamps
Select vessels Live information of selected vessel

Table 4: Anomaly requirements visualization

Anomaly detection

Requirement Value
Queue Ability to track vessels between different timestamps

Transparency visualization for contributing factors to score
History Graphs over time to see the previous state of vessel

The requirements allow for a good enough experience to allow the inspection
of all relevant aspects in the visualization itself. Primarily, smooth movement
in combination with live updating timing required a high degree of flexibility
in the tools. The visualization uses a pure JS approach, combined with
Mapbox JS (Mapbox, 13). These tools allow for maximum flexibility and
a web page as an interface. The web page hosts anywhere, requiring the
serving of the JSON data separately or locally as a single HTML page that
would load the JSON data from a file.
An initial design to support all the requirements, leveraging the abilities of
the selected tools, is found in Appendix A.1. Further iterations improved
upon this design by taking feedback on the preferred information and avoid-
ing specific design choices. During this, the primary changes were the ability
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to have many graphs open simultaneously, the choice from many colors to
simple colors, and moving from a pie chart to a bar graph, clearly indicating
the respective score of each anomaly type rather than the relativistic scores.

Figure 8: The final visualization design

The final design, seen in Figure 8, supports all requirements. Most core inter-
actions do not have a representation in the final design, focusing on features
specific to anomaly detection. Selected vessels are colored blue, showing the
information in the bottom left, and the queue is on the bottom right as
part of the anomaly detection features. The coloring of specific values in the
vessel information screen and the bar graph is a part of the transparency
strategy. The additional graphs represent the history of the selected vessel,
showing the past vessel behavior and anomaly score. These graphs represent
the overall score, speed, course, and location over the previous minute.

4.5 Expert validation outline

The expert sessions serve as a validation step on the results from the frame-
work and proof of concept components. This validation consisted of one-on-
one sessions with an expert in VTS systems, maritime artificial intelligence,
and VTS standards. The sessions discuss the process and tools used to
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achieve the results. The sessions then moved forward to presenting and dis-
cussing results in a guided manner to limit the amount of system-specific
knowledge needed. The primary discussion points are the anomaly type
framework, maritime anomaly detection strategy, transparency strategy, and
visualization. These discussion points aim to provide better validation and
recommendations using the feedback provided by the experts.
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5 Results

This section discusses the results that arose from the theoretical foundation
and practical implementation in Chapter 3 and Chapter 4. These results
divide into four aspects: The types of anomalies identified, the technical
prototype, the visualization prototype, and the expert validation results.
The chapter discusses the framework used to separate types of anomalies
first. Second, the results from the test set of the trained model built upon
the framework follow. Then the visualization complimenting the model is
discussed. Finally, the last section discusses feedback from the expert sessions
discussing the other results.

5.1 Novel framework for maritime anomalies

The framework for anomaly types created for this work consists of four differ-
ent groups of anomalies. The framework groups have various types detectable
from point-based anomaly detection strategies. The framework is the foun-
dation for understanding maritime anomalies and determines the subset of
the anomaly types included in the proof of concept. The selected types cre-
ate a combined result for the maritime anomalies. Each anomaly type gets
a score to help explain what type contributed to an anomaly as part of the
transparency models.
The framework improves the work of Riveiro et al., 2018, adapting it to better
include context as a different aspect for all anomaly types and adding routing
anomalies. Further, the scoping expands with explicit anomaly types that
provide examples. Elaboration on the process and extra grouping information
can be found in Section 4.2.
These groups are data anomalies, kinematic anomalies, positional anomalies,
and routing anomalies. The data anomalies divide into detection and trans-
mission anomalies. Speed and course anomalies split kinematic anomalies.
Location-based anomalies take the form of positional anomalies. Finally, the
changes and deviations from expected tracks fall under routing anomalies.
This framework for anomaly types can be seen in Figure 9 and also in Section
4.2.
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Figure 9: The types of maritime anomalies used

5.2 Transparent anomaly model

A maritime anomaly detection proof of concept combines self-organizing
maps and Gaussian mixture models. A framework for anomaly groupings
and types is the foundation for selecting types for the proof of concept. The
primary goal is to use transparency models to explain what anomaly types
contributed to the overall anomaly score. The visualization is also part of
the proof of concept to visualize the anomaly and transparency scores. This
visualization is elaborated in Section 5.3. Section 3.3 elaborates on the the-
ory of self-organizing maps and Gaussian mixture models that serve as the
tools used for the proof of concept. Finally, Section 4.3 discusses the imple-
mentation and parameter selection to achieve the used model.
This section will provide the results from the proof of concept, examining the
overall model scores and their relation to the scores from the transparency
models. These are also referred to as the all model for the overall model and
the speed, course, speed delta, course delta, location transparency models.
The model’s training was done with a month of data as outlined in Chapter
4.1. The first two days of the next month serve as test data. The anomaly
types from the anomaly grouping, framework type, and used features are
part of the final model that is summarized as follows:

Overall: Longitude, Latitude, Speed, Course, Speed delta, Course delta
Speed: Longitude, Latitude, Speed
Course: Longitude, Latitude, Course
Speed delta: Longitude, Latitude, Speed delta
Course delta: Longitude, Latitude, Course delta
Location: Longitude, Latitude

The results examine the test data in subsets based on their respective scores
and their correlation. A set of 39 vessels with more than 200 scores below
0.01 were further selected, with the individual examined data points con-
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sisting of the lowest score for each of these vessels in the test data. This
set represents vessels with many low normalcy scores, where the individual
examined data points represent the least normal. These 39 vessels are ex-
amined and classified as anomaly, normal, or data quality issue. The lowest
data points for each vessel serve as validation points for the success of the
transparency strategy. The first part of validation starts by examining the
39 vessels for their anomaly scores.
The 39 vessels represent 49.56% of all scores below 0.01 in this test set.
Allowing manual examination of a manageable sample size representing a
large portion of the resulting detected anomalies. These 39 vessels represent
a large portion of anomalous behavior. The manual examination of the 39
vessels aims to validate that the behavior detected constitutes outliers. The
39 vessels have their identifier replaced with a number. For each vessel,
the number of data points within the test data set is in the total column.
The percentage of data points for each vessel that scored under 0.01 and
0.03 is in the columns warning and threshold. A score of 0.01 and 0.03
indicates the probability density of the data point is lower than 99% and
97% of scored points, respectively. The 0.01 and 0.03 as default values for
warning and threshold represent less than ten vessels with scores below the
threshold at one time while presenting highlighted vessels most of the time.
The threshold and warning subgroup of data points are further explored in
later results, comparing them to other subsets of the scored data points. Note
that the threshold is thus consistently higher since it includes all the warning
data points. The vessels are organized based on the number of data points
below 0.01. All the vessels classify as anomaly, normal, or data according
to whether they can be considered an outlier following a manual inspection.
This classification considers both data and anomaly as anomalous, where
data constitutes anomalous behavior unlikely to be the vessel movement.
Table 5 contains the first 12 of 39 vessels as a sample of the examined vessels.
The table of all 39 vessel is in Appendix A.2. From the manual examina-
tion resulting in the table, all 39 vessels behave like outliers in the detection
moments. However, 11 out of 39 vessels selected (28.2%) can be considered
likely to be detection data quality issues. These 11 out of 39 vessels are likely
not behavior from the vessel but in detecting vessel behavior before becoming
a part of the data set. Some examples of these data quality issues include
non-moving vessels with speed, large course changes, and non-connected tra-
jectories.
The transparency of the graph was measured by whether or not the alterna-
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Table 5: Overall statistics (12 of 39 vessels)

Nr Warning Threshold Overall

1 72% 89% Anomaly
2 10% 19% Data
3 7% 16% Anomaly
4 17% 39% Data

5 6% 10% Anomaly
6 78% 92% Anomaly
7 9% 17% Anomaly
8 11% 20% Anomaly

9 17% 18% Anomaly
10 26% 37% Anomaly
11 14% 19% Anomaly
12 12% 25% Data

Table 6: Transparency alignment (12 of 39 vessels)

Nr Bar graph Alternative method

1 Location Location
2 Course delta Course delta
3 Course delta Course delta, Course
4 Course delta, Course Course delta, Course

5 Location Location
6 Location Course (Large), Speed (Large)
7 Speed delta, Course delta Course, Course delta, Speed
8 Speed delta Speed delta

9 Location Location
10 Course delta, Course Course delta, Speed or Speed delta
11 Course delta Course delta, Course
12 Course delta Course delta

tive transparency tool outlined in Section 4.3 aligned with the transparency
models from the proof of concept. The transparency alignment validation
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point is the lowest value for each of the 39 selected vessels. With this, the
different transparency strategy graphs serve as a reference tool to determine
the direction of the data point. Furthermore, we have the correlation and
histograms between various individual feature scores for subsets of the en-
tire test set. The direction of the reference tool toward normalcy and the
bar graphs is in Table 6 and the entire table in Appendix A.3. This ta-
ble compares the interpretation of the bar graph to the interpretation of
the depth-first graph-based search. Both results for the alternative method
required manual intervention to find the optimal explanation. For these,
a close second option on the first iteration produced better results on the
second iteration. The interpretation nuances can be found in Section 4.3.
Table 6 compares the transparency to the reference transparency tool for
the lowest data point of each of the 39 vessels. This reference transparency
tool compares how the data point deviates from normal by re-scoring data
points with different feature values to determine the local optimum. The
transparency models are trained separately and use a subset of features to
indicate the contribution of the corresponding anomaly type. Commas sep-
arate multiple features in order of priority for the bar graph column in the
table. Commas for the alternative method show the next iteration step, with
’or’ indicating multiple options towards normalcy for that depth. Bold re-
sults for the alternative method indicate that it resulted from scoring another
first step with less change in the data point feature.

Table 7: Correlation values between overall score and transparency scores
Anomaly type 0.00 - 1.00 0.00 - 0.01 0.00 - 0.03 0.00 - 0.10 0.50 - 1.00 0.90 - 1.00

location 0.120 0.147 0.127 0.086 0.034 -0.019
Speed 0.099 0.128 0.108 0.128 -0.014 -0.082
Course 0.524 0.161 0.034 0.100 0.310 0.208

Speed delta 0.209 0.216 0.212 0.153 0.082 0.019
Course delta 0.226 0.275 0.273 0.149 0.102 0.020

Table 7 includes the correlation between various transparency scores and the
overall score. The correlation values are calculated by how the transparency
model scores relate to the overall score for various subgroups. The subgroups
consist of below 1%, below 3%, below 10%, above 50%, and above 90%, all
comparing the correlation to the overall score. From this correlation table,
it is clear that the course significantly impacts the overall score. Further, it
shows the lack of impact of other anomaly types in the more normal data
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points.

Figure 10: Histograms for feature scores, subsets of the results

The histograms of various features for different subsets of the tests serve as
a validation result. Examining these histograms shows the effects of various
anomaly types on the overall score. By definition, the normalization step
ensures that the histograms are equal in each distribution for the entire test
set. Thus, the histograms do not include those for the entire test set. The
histograms below 1%, below 3%, below 10%, above 50%, and above 90%
show trends in the data. Each histogram shows the frequency of different
transparency model scores in the subset of data, sharing the same y-axis
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and x-axis between all 25 histograms. Each row of histograms corresponds
to a different transparency model, where the columns have different colors
corresponding to the same subset. The histograms show that a single low
score does not have to impact the overall model drastically. The histograms
also show the impact course has by both the frequency of low course scoring
data points seen as very anomalous and the inverse interaction on high scoring
data points.

5.3 Maritime anomaly visualization

To complement the anomaly detection proof of concept, according to the
design found in Section 4.4, a visualization was created using JavaScript and
MapBox as the map provider. This visualization served as an interface to
interact with the proof of concept and to examine the required components
to support a maritime anomaly detection implementation. This visualiza-
tion has three primary anomaly detection-related features: the queue, trans-
parency bar graph, and vessel history.

Figure 11: Visualization, with a vessel selected

Figure 11 is the resulting visualization. The bottom right has the queue
system, while the bottom left has the vessel information and the transparency
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bar graphs. Lastly, the bottom has a set of graphs explaining the last minute
of history.

Figure 12: The queue for de-
tected anomalies

Figure 13: Vessel info and trans-
parency

The queue, seen in 12, shows data points that got low scores from the anomaly
model, in this case, grouped in two categories warning and threshold. Warn-
ing and threshold correspond to < 1% and < 3% respectively. Clicking on
specific vessels in the queue will select them and shift the map’s focus to-
wards the data point. The history, vessel information, and transparency bar
graph provide further information about that specific vessel.
The transparency bar graph in Figure 13 shows at a glance what features
contribute towards an anomaly, using the separately scored subsets of fea-
tures. The size of the bars is the inverse of the result to make the size appear
more noticeable when it is more anomalous. The coloring of the bars is ac-
cording to the same thresholds as set for the queue. This bar graph shows
that course is a factor in the low score of the vessel.
The history graphs, seen in Figure 14, show the overall score, speed, and
path visualize the history of the selected vessel. In a live VTS system, the
graphs would likely be incorporated with history systems already present.
The overall score over time graph on the left shows that the score decreased
from 0.16 to 0.05, then increased before decreasing further towards the cur-
rent low score in the previous minute. The speed graph shows the vessel first
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Figure 14: The history graphs for the selected vessel

slowed and then maintained a steady speed just below 2 knots. The third
graph shows that the ship’s course was heading northwest from the red to
the blue dot.

5.4 Expert validation

A set of four one-on-one expert sessions put the other results into a better
perspective and allow improved future work recommendations in Chapter 6.
These sessions are not meant to validate the model, but discuss the future
of the field and provide improved recommendations. This means the ses-
sions merely support future speculation and not a validation of the proof of
concept.
Some comments were made by the experts, for example that an essential
missing aspect is the importance of larger vessels and segmenting of vessel
types. The people more accustomed to VTS workflow also point towards the
importance of vessel interaction and having the tool take up limited operator
focus. The current feature set selected more towards enforcing rules and
possibly too much movement in visualization. Overall the experts seemed
optimistic that the proof of concept shows promise towards an aid that could
help VTS operators prioritize. Since it showed consistent overall results and
the transparency is a valuable addition.
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6 Conclusion

This chapter concludes this work by connecting back to the research questions
from Section 1.2, answering them individually, and discussing the method’s
limitations and results. Each research sub-question also touches on future
work, which comprehensively elaborates on the direction of the maritime
anomaly detection field. The results, found in Chapter 5, serve to answer
the research questions discussed in this chapter. These results are obtained
through a process starting from existing literature found in Chapter 2, ex-
ploring the theoretical basis in Chapter 3. Building on the theoretical basis
and using the data described in Chapter 2, the caveats for implementation
and elaboration on design are in Chapter 4. The structure of the results, im-
plementation, and methodology chapters correspond to four categories aim-
ing to answer specific research questions: the anomaly framework, maritime
anomaly detection, visualization, and expert validation. The anomaly frame-
work answers SQ1, whereas maritime anomaly detection discusses SQ3 and
SQ4. The combination of the transparency strategy and the visualization
covers SQ5. Visualization further serves as a basis for the expert validation
that helps answer SQ6. Finally, the sub-questions combine to answer the
main research question.

SQ1: What types of anomalous behavior exist for maritime traffic?

This work provides a framework for grouping maritime anomalies and a non-
comprehensive set of individual anomaly types. Section 5.1 presents this
framework, with further elaboration in Section 4.2. This framework builds
upon groupings found in literature, as explored in Section 2.2.1. The result
is a clear and well-segmented grouping of anomaly types. The framework
supports four groups: data anomalies, kinematic anomalies, positional, and
routing anomalies. These groups have a clear description and have between
two and four anomaly types. However, the individual types will and should
have more types added as relevant for future works. This framework was
previously lacking in the field, although some attempts at grouping existed.

SQ2: How can we evaluate the effectiveness of maritime anomaly detec-
tion?

The possible evaluation techniques are first considered in the literature re-
view, Section 2.2.1. Section 3.3 discusses the choice of strategy and criteria
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for evaluation. The validation of the proof of concept results considers these
evaluation criteria, providing validation beyond single-point examples. The
effectiveness of maritime anomaly detection is challenging and absent in the
area. Due to the lack of concrete definitions for a maritime anomaly, most
evaluations are individual examples. This work used this approach by at-
tempting to sample scores and visualize them per vessel. With this, compar-
isons could be made within these vessels to understand what behavior the
model considers anomalous. This validation method allows the evaluation of
low probability density-based anomaly detection methods. However, it lacks
connection with real-world effectiveness since it can not prove the applica-
bility of the results or if these low probability density areas correspond to
actual anomalies. Future work should follow one of two paths: 1) Scope a
better definition of an anomaly, starting from what would be useful vessels
for VTS operators. 2) A large pilot study in real-time VTS systems to codify
expert input into a grouping or labeled data set.

SQ3: What effective methods exist to detect maritime anomalies?

A literature review discusses existing strategies, determining how these relate
to each other, found in Section 2.2.1. Unfortunately, the effectiveness of most
directions is unclear, and the strategies that come with concrete results tend
to have no reference material. This work selected two promising methods
from the literature review based on the importance of transparency and ex-
pandability. The Self-organizing map and Gaussian mixture model approach
shown in (Riveiro et al., 2008) served as the maritime anomaly detection
strategy for this work. It is also interesting to look into the recurrent neural
network approach from a more recent promising paper (Zhao & Shi, 2019).
Another exciting avenue is the ability to build expected tracks (Vespe et al.,
2012), possibly in combination with path prediction could combine anomaly
detection and deviations.

SQ4: What is the effectiveness of using self-organizing map and Gaussian
mixture models to detect maritime anomalies?

The self-organizing map (SOM) and Gaussian mixture model (GMM) are
effective tools for creating probability density functions in an unsupervised
manner. The accuracy of the resulting model was primarily validated by
examining low-scoring vessels for outlier behaviour. In combination with the
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transparency models, the model determines the impact of specific features.
The combination of SOM and GMM allows the scoring of the problem space.
However, the tools also require high data quality in large quantities and have
some drawbacks. These drawbacks are that the approach requires continu-
ous features to correlate with location and can only detect the entire problem
space. As can be seen by the choices to exclude some features for the final
model and to filter non-moving vessels, some segmentation may be required
to ensure that the problem space does not have junk data points. Whether
or not a feature is continuous enough can be debugged during model build-
ing using the additional checks mentioned in Section 4.3. If the following
projects use the self-organizing map and Gaussian mixture model strategy,
they should incorporate vessel types. Training separate models is an option,
but this is resource-intensive and will require an even more extensive train-
ing data set. The Self-organizing map and Gaussian Mixture model strategy
performed well in detecting outliers, however whether the outliers consti-
tute maritime anomalies is up to the maritime anomaly definition used. The
strategy also cannot incorporate previous data points into the model unless
it includes a feature referencing the previous state.

SQ5: What level of transparency can be achieved using self-organizing
maps and Gaussian mixture models to detect maritime anomalies?

The level of transparency achieved using separate models, combining the self-
organizing map and Gaussian mixture model, is high, as found by comparing
the transparency models to a reference tool leveraging re-scoring using the
overall model. However, the nature of specific features in every model makes
it difficult to distinguish these. Primarily location is an essential factor for
all subsets and the overall model. Since location anomalies indicate a lack
of data in that area, other features are unlikely to have distributions that fit
these areas. As such, the location is somewhat over-represented. Assuming
an expert is looking at the bar graph designed to fit with the transparency
strategy, it aligns well with a different more resource-intensive strategy to
determine what would make the point more normal. The transparency mod-
els and the overall model have difficulty perfectly aligning because they are
separately trained models, and matching their clustering density or even
clusters is thus impossible. Using the transparency models as a subset of
the trained self-organizing map was unsuccessful due to the clustering no
longer aligning accurately with the test data and thus lacking accuracy. The
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field of maritime anomaly detection does not yet recognize the importance
of transparency. The promising avenue toward adoption appears to be for
VTS operators to trust the systems by providing insight into the reason for
the detection.

SQ6: How can a maritime anomaly scoring tool aid VTS operators?

This work uses one-on-one expert sessions to determine how maritime anomaly
scoring can benefit VTS operators, with the resulting proof of concept as a
reference. Further elaboration on the expert sessions can be found in Section
4.5. The feedback gathered from these sessions and lessons during the pro-
cess aim to provide information on how maritime anomaly scoring can aid
VTS operators in live systems. Maritime anomaly scoring has a few different
avenues. With no classification of an anomaly currently existing in current
literature, no system can gauge the accuracy of their strategy. With this, the
most likely use case would be to have a priority list that does not provide
warnings. With the priority list approach, the model highlights and reasons
why a vessel requires the attention of a VTS operator. More extensive user
testing would be required for an implementation to determine whether such
a priority list would have a positive effect on their workflow rather than a
distraction.

RQ: What is the viability of anomaly detection aid for VTS operators?

The field of maritime anomaly detection, especially concerning the real-world
application, is in its infancy. The most promising short-term avenue would
consist of a priority list that allows the VTS operator to have guidance on
areas or vessels that require their attention. More intricate systems would
require a real-time deployment to monitor what users consider worthwhile
anomalies. Alternatively, a concerted effort to define what may be considered
anomalous does not rely on detection tools. Transparency should be a consid-
eration for future projects since products in this area are unlikely to achieve
adoption without being able to represent what makes detected anomalies
anomalous accurately. Data quality is also a significant factor for viability.
Since erroneous data are considered outliers by a probability density-based
model, causing false positives for anomalies. This work has various con-
tributions in defining a maritime anomaly, working towards transparency,
evaluation techniques, and even considerations regarding actual implemen-
tation and an expert validation of strategies. There are still many gaps to be
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filled to achieve a product that can aid VTS operators. Sessions with field
experts identified promising directions for a viable priority list. For this, the
importance of vessel interaction and early warnings is evident. Further, more
open areas could also be interesting since it provides the VTS operators more
time to respond to maritime anomalies.

6.1 Contributions and limitations

This work contributes in various aspects by looking at the entire maritime
anomaly detection field, resulting in recommendations for the whole field.
This section discusses the various contributions by relating them to existing
literature and continues by discussing the limitations of this work.
The contributions of this work consist of the framework, validation strategies,
transparency importance, transparency strategy, visualization principles, and
the steps for the maritime anomaly detection field toward practical viability.
The maritime anomaly framework outlines specific groupings, building upon
existing work to better differentiate detectable and viable anomaly detection.
The validation strategies improve upon lacking validation strategies in the
literature to provide better insight into the effectiveness of maritime anomaly
detection models. Transparency was identified as an essential aspect of the
maritime anomaly detection field in the role of adoption and trust. With
this transparency focus, a strategy is proposed building upon existing self-
organizing maps, and Gaussian mixture models approach to enable trans-
parency for anomaly types identified in the maritime anomaly framework.
To interact with the proof of concept, an accompanying visualization pro-
vided the interface for the transparency and incorporated maritime anomaly
detection components highlighted by the literature. Finally, the main con-
tribution of this work is the recommendations for the future of the maritime
anomaly detection field consisting of shortcomings that will help the field
mature toward practical applicability.
The study has limitations, primarily imposed by taking a broad view of
the process. This expansive view restricts the depth of different aspects.
As such, only a single maritime anomaly detection strategy provides the
basis for enabling transparent maritime anomaly detection. Further, while
validation is improved, it still lacks comparison between various systems and
more interpretation besides the researcher. This work also treats the data as-
is without improving the existing data quality. Earlier feedback sessions with
vessel traffic management experts may have enhanced focus on the relevant
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anomaly types for the end-users of maritime anomaly detection systems.
Lastly, another important limitation is the approach to expert validation.
While the expert sessions provide valuable information, these do not serve
as sufficient validation for the viability of the proof of concept of this work.
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Praetorius, G., & Lützhöft, M. (2012). Decision support for vessel traffic
service (vts): User needs for dynamic risk management in the vts.
Work, 41, 4866–4872. https://doi.org/10.3233/wor-2012-0779-4866

Rai, A. (2019). Explainable ai: From black box to glass box. Journal of the
Academy of Marketing Science, 48, 137–141. https://doi.org/10.1007/
s11747-019-00710-5

Riveiro, M., Falkman, G., & Ziemke, T. (2008). Improving maritime anomaly
detection and situation awareness through interactive visualization.
International Conference on Information Fusion, 11, 1–8. Retrieved
March 25, 2022, from https://ieeexplore.ieee.org/abstract/document/
4632191

Riveiro, M., Pallotta, G., & Vespe, M. (2018). Maritime anomaly detection:
A review. WIREs Data Mining and Knowledge Discovery, 8. https:
//doi.org/10.1002/widm.1266

Rossum, V., & Drake, F. L. (2009). Python 3 reference manual. CreateSpace.
Roy, J. (2010). Rule-based expert system for maritime anomaly detection

(E. M. Carapezza, Ed.). Sensors, and Command, Control, Commu-

52



nications, and Intelligence (C3I) Technologies for Homeland Security
and Homeland Defense IX, 7666. https://doi.org/10.1117/12.849131

Rzepka, C., & Berger, B. (2018). User interaction with ai-enabled systems:
A systematic review of is research. 39.

Shin, D. (2020). User perceptions of algorithmic decisions in the personal-
ized ai system:perceptual evaluation of fairness, accountability, trans-
parency, and explainability. Journal of Broadcasting & Electronic Me-
dia, 64, 1–25. https://doi.org/10.1080/08838151.2020.1843357

Shin, D., & Park, Y. J. (2019). Role of fairness, accountability, and trans-
parency in algorithmic affordance. Computers in Human Behavior,
98, 277–284. https://doi.org/10.1016/j.chb.2019.04.019
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A Appendix

A.1 Initial visualization design
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A.2 Complete overall statistics

Nr Warning Threshold Overall

1 72% 89% Anomaly
2 10% 19% Data
3 7% 16% Anomaly
4 17% 39% Data

5 6% 10% Anomaly
6 78% 92% Anomaly
7 9% 17% Anomaly
8 11% 20% Anomaly

9 17% 18% Anomaly
10 26% 37% Anomaly
11 14% 19% Anomaly
12 12% 25% Data

13 8% 13% Data
14 13% 44% Anomaly
15 24% 58% Anomaly
16 2% 5% Anomaly

17 1% 5% Anomaly
18 86% 95% Anomaly
19 3% 6% Anomaly
20 28% 31% Anomaly

21 3% 5% Anomaly
22 5% 6% Data
23 9% 24% Anomaly
24 4% 9% Anomaly

25 11% 28% Data
26 7% 11% Anomaly
27 5% 9% Anomaly
28 9% 16% Data

29 11% 19% Anomaly
30 5% 12% Anomaly
31 4% 12% Anomaly
32 2% 4% Data

33 10% 15% Anomaly
34 4% 9% Data
35 1% 1% Data
36 3% 8% Anomaly

37 14% 19% Anomaly
38 4% 11% Anomaly
39 5% 9% Data
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A.3 Complete transparency alignment

Nr Bar graph Alternative method

1 Location Location
2 Course delta Course delta
3 Course delta course delta, course
4 Course delta, course Course delta, course

5 Location Location
6 Location Course (Large), speed (Large)
7 Speed delta, course delta Course, Course delta, Speed
8 Speed delta Speed delta

9 Location Location
10 Course delta, course Course delta, speed or speed delta
11 Course delta Course delta, course
12 Course delta Course delta

13 Location Location
14 Course delta Course(large change), Course delta
15 Course delta, course Course
16 Speed, speed delta, location Speed delta, course (large change)

17 Course delta, speed delta Course delta, speed delta or course
18 Location Course
19 Course delta, course, speed Course delta, course or speed
20 Speed delta Course (large change), Speed (large change)

21 Speed delta, Location Location
22 Course Course
23 Speed delta, course Course, speed
24 Course delta Course delta

25 Location Location
26 Course Course
27 - Course
28 Course Course

29 Course delta Course delta (large change)
30 Course delta Course delta (large change)
31 Speed delta, course delta Course delta, course
32 Speed delta, course delta Speed delta(large change), course or course delta

33 Location, course delta, speed Course delta (large change)
34 Course delta Course delta
35 Course delta, speed, speed delta Course, speed delta, speed (large change)
36 Speed, course Course (large change)

37 Course Course (large change)
38 Course, speed Course(large change)
39 Course delta Course delta
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