
Recognizing Roman Emperors By Hair Using
Several Machine Learning Methods

Pauline Lettinga
University of Twente

BSc. Electrical Engineering
p.e.lettinga@student.utwente.nl

Abstract—Paintings and sculptures of the ruler were every-
where in the Roman Empire. Many of these works have survived
until today and are being identified manually by experts. Re-
search into facial recognition of these emperors is quite effective
but struggles with missing facial parts. As parts of the hair have
higher survival rates, this paper looks into the recognition of
Roman emperors by hair. Images of emperors are reduced to
blocks of hair from which several features are extracted. These
features are then used to compare several classification methods.
These experiments showed the extracted features contain some
information to identify the emperors, but more research should
be done before recognition of Roman emperors by hair becomes
viable.

I. INTRODUCTION

From the Dutch House of Representatives to City Halls,
you can find portraits of the Dutch king in many places.
Those portraits and all other media available nowadays make
it almost impossible for citizens not to know what the king,
or the whole royal family, looks like. In ancient times with
less media available, people would only know the appearance
of rulers from portraits and sculptures, as empires such as the
Roman Empire were too big for an emperor to show himself
everywhere. These portraits and sculptures were everywhere,
with standardized versions having signature looks per emperor
[Ramesh et al., 2022]. Since many of these pieces have sur-
vived until now it is interesting to identify the emperors in
them. One of the problems with this identification is the state
of these works, with many having missing or damaged facial
parts. Parts of the hair seem to have a higher survival rate
than, for example, a nose. Thus, this paper will look into
recognition of ROman emperors using hair and try to answer
the research question: ”To what extent can statues of Roman
emperors be identified by hair using basic machine learning
methods?”. Before any experiments can be done, the data will
go through some preprocessing. To limit the effect of damages
to the statues, features related to the texture of the hair will
be extracted and compared to see which gives the best results.
These featues will then be used to test several classification
methods in different experiments.

II. RELATED WORK

A. Facial Recognition on Roman emperors

Research into the recognition of Roman emperors using
facial recognition has already been done by van Klink and
Ramesh et al. Sculptures might have scratches, broken-off

parts or textures might be wildly different causing false
identifications [van Klink, 2019]. Thus, the quality of the
preserved work greatly impacts the performance of a classifier.
With a large enough dataset, the most damaged pieces can
be disregarded from the training set for higher performance.
These works would still need to be identified manually in a real
setting. In his work, van Klink compared the performance of
existing facial recognition solutions on Roman emperors and
normal modern faces, thus a smaller dataset did not pose much
of a problem. While van Klink found that existing solutions
could sufficiently recognize Roman emperors, the performance
on normal human faces was quite a bit better. Most likely
due to the classifiers being trained on normal faces and not
sculptures causing it to be more effective on the former.
In the work of Ramesh et al, transfer learning is used to im-
prove performance. With transfer learning, an existing network
is retrained using a more relevant dataset. The network should
then be better at dealing with the specifics of Roman sculptures
like different textures, lighting and poses, damages and restora-
tions, standardized versus non-standardized portraits and the
varying skills of the sculptures [Ramesh et al., 2022]. In the
research done by Ramesh et al, a network that classified into
1000 classes was retrained to fit the needed 10. A problem
that arises with this method is that retraining requires a bigger
dataset than the original dataset to be effective, thus the dataset
was augmented to essentially make it bigger. By modifying
the images e.g., adjusting brightness, flipping or rotating, the
dataset was multiplied by six. This method was quite effective
at recognizing Roman emperors. The problem of missing facial
features did however remain. This makes it very interesting to
look into the possibilities of hair recognition.

III. METHOD

The whole classification process has several steps from
images of statues to the results. This pipeline is shown in
Figure 1. The pipeline can be divided into three main parts,
preprocessing, feature extraction and classification. These parts
will be further explained in the following sections.

Before we can dive into the methodology, it is important to
know what kind of data we are working with. The original
dataset contains 140 pictures of statues from 29 different
Roman emperors, with a varying number of pictures per



Fig. 1: Pipeline of Classification Process

emperor. All pictures are taken from a frontal perspective,
making sure the faces are fully visible.

A. Preprocessing

1) Landmark Detection: While this paper is about classifi-
cation using hair types, knowing where the hair is in the image
is done using facial landmark detection. Specifically, using
the face detector from DLIB [King, 2009]. This detector uses
a Histogram of Oriented Gradients (HOG) feature combined
with a linear classifier, an image pyramid and a sliding window
detection scheme to create a facial pose of 68 landmarks
[King, 2009]. The faces are then resized and aligned, making
sure roughly the same happens for the hair.

2) Hair Extraction and Segmentation: A standard region
above the face which contains hair in almost, if not all images,
is then selected for the rest of the research. It is important
to check the images after this step, to make sure all images
contain a block of hair of the same size and thus information.
Since the dataset is not very large, the chosen blocks can be
split into several smaller blocks, as long as the blocks remain
large enough to contain the shapes of the texture in the hair.

B. Feature extraction

Information about the images is stored in a feature vector.
At this point, the images are grayscale blocks. Thus, the
interesting information to look at are the textures. Both Local
Binary Pattern (LBP) and Histogram of Oriented Gradients
(HOG) will create a feature vector based on the textures.

1) Local Binary Pattern (LBP): LBP detects texture by
comparing a pixel with its surroundings. These surrounding
pixels then get a binary label. When all these labels are the

same, the area is flat. Different labels next to each other means
the pattern is non-uniform showing there is texture. Several
LBP’s are measured over the whole image. The distribution
creates the feature vector for texture [scikit image, 2022b].

2) Histogram of Oriented Gradients (HOG): The HOG
descriptor is used a lot for object detection, but the different
gradients also show texture. The HOG is made in several
stages making it robust and invariant to illumination, shad-
owing and edge contrast. This will be very helpful, especially
with a dataset that has great differences in these parts like the
pictures of Roman emperors, this will be very helpful. Like
LBP, HOG divides the image into smaller parts to compute
local histograms. The local histograms are again normalised
and put together in the feature vector [scikit image, 2022a].

3) Gabor filter: Another commonly used method in texture
analysis is the use of a Gabor filter. These filters are band-
pass filters that can have a certain direction [Shah, 2018]. The
frequencies and angles can be changed in several filter banks
to create different responses for different textures. The power
of these responses can be combined into a feature vector.

4) Principal Component Analysis (PCA): Instead of a fea-
ture vector, PCA takes the images of a train set and reduces it
to the most crucial information. With Deep Learning a model
can then be made that captures a specified variance. PCA
essentially lowers the dimensionality of the data. This speeds
up the Deep Learning process and achieves a higher accuracy
than using original training data [Sharma, 2020].

C. Classification methods

Using the feature vector of either LBP or HOG a classifi-
cation method can be fitted and used to classify the emperors.
The following classifiers were used.

1) Logistic Regression (LRlib): Given the data points, this
algorithm makes a regression line. The values are clipped
at zero and one and follow a sigmoid curve. New values
are then compared to the curve to form the classification.
While it works best when the data is linearly separable, a
big advantage of logistic regression is that it does not require
many computational resources [Banoula, 2022].

2) Linear Discriminant Analysis (LDA): LDA is most often
used for feature extraction in pattern classification problems.
The method performs best for binary classification, but still
handles multiple classification problems quite well. Especially
with flexible boundaries. LDA projects data points on a line
to maximize the scatter between classes and minimize them
within a class [Dash, 2021].

3) K Nearest Neighbour (KNN): Instead of setting bound-
aries, K nearest neighbour looks at the surrounding data points
to classify. Most often, K is set to three or five, meaning it
will look at the classification of that number of neighbours to
decide the new classification [Simplilearn, 2022].

4) Random Forest (RFOR): A decision tree makes advan-
tages splits in a dataset to determine a classification. This
process is quite simple, yet prone to overfitting and they can
be quite unstable. The benefits of a decision tree can be used



with fewer disadvantages by combining the outcome of several
singular trees, creating a random forest [IBM, 2020].

5) Multi-layer Perceptron (MLP): MLP consists of multi-
ple (hidden) layers of neurons. When features pass through
this network, the neurons transform the values with a linear
summation and a non-linear activation function. They also add
weights to the data. The algorithm uses backpropagation to fit
to the training data [scikit learn, 2022b].

6) Gaussian Naive Bayes (NB): Naive Bayes assumes
all features are independent. Furthermore Gaussian NB all
classes follow a Gaussian distribution. A big difference
with LDA is that the decision boundary is not linear
[Hrouda-Rasmussen, 2021].

7) Support Vector Machine (SVM): Last but not least, the
SVM algorithm aims to find hyperplanes in a N-dimensional
space that classify the data. These planes should have
maximum distance between data points of different classes
[Gandhi, 2018].

IV. EXPERIMENTS AND RESULTS

A. Preprocessing

Not all original 140 images of 29 emperors were suitable
for the preprocessing steps. Figure 2 shows the facial
landmarks working correctly for Figure 2a, but identifying a
face in the hair of Figure 2b.

(a) Caracella (b) Lucius Verus

Fig. 2: Facial landmarks on two images

An attempt was made to extract the hair completely au-
tomatically using the difference in entropy between the hair
and face and by the ’activecontour’ function in Python. This
showed that the statues have too many imperfections in the
facial parts of the emperors that the distinction with the hair
was nearly impossible to make. This can be seen in Figure 3b.

After all preprocessing steps, the images are reduced to a
20 by 80 pixels block. Images the steps did work on correctly
were removed from the dataset. For some emperors, this meant
only one or two pictures remained. To improve the chances of

(a) Binary Entropy (b) Active Contour

Fig. 3: Other hair extraction techniques

the classification methods, emperors with less than 4 pictures
were removed. This meant 105 images of 13 Roman emperors
remained for the next parts of the classification process.

B. Features

1) LBP: Figure 4 shows two images of different statues of
the same emperor Augustus. Next to the hair, the correspond-
ing LBP’s are displayed. While the lower block seems to have
thicker strands of hair, the LBP shows thinner lines as it has
no difference between large or small texture changes. In both
cases, the directions of the hair are visible.

(a) Block 1 (b) LBP 1

(c) Block 2 (d) LBP 2

Fig. 4: Hair of Augustus with LBP

The hair of emperor Hadrian is shown in Figure 5. This hair
type has more curls causing the LBP to show different lines.
The thickness of the lines is comparable.

(a) Hair of Hadrian (b) LBP

Fig. 5: Hair of Hadrian with LBP

2) HOG: To get a comparison, the HOG images of the
same blocks as in Figure 4 are shown in Figure 6. Both images
of Augustus have clear directions with some slight deviations.
Contrarily, the image of Hadrian has no clear directions, due
to the curls. The intensity of the lines corresponds to the
histogram values.



(a) Augustus 1

(b) Augustus 2

(c) Hadrian

Fig. 6: HOG of the same blocks of hair

3) Gabor filter: The representations of LBP and HOG both
show a clear resemblance with the original image. For the
response to different Gabor filter kernels, this is not the case.
Figure 7 shows the different kernels on the left with the
responses of the same first picture of Augustus on the right.
The three different directions of the kernels can be seen in the
Figure. The four frequencies for each direction are from top
to bottom 20, 10, 6,67 and 5 pixels.
As these images are responses to a filter, the lighter parts
are the parts that pass through. This shows for this particular
image the highest power comes from the biggest filters. As the
hair is pretty vertical, the vertical kernel also has the highest
power.

4) PCA: As has been mentioned in the method section,
PCA gets the components from the images containing the most
information. Using the first two of these components, the plot
in Figure 8 is made. Ideally, all dots with the same colour and
thus label will be grouped. Clear groupings can however not
be found.

C. Classification methods

To see how well the classification of Roman Emporers
using their hair types works, several experiments are done
with the feature vectors. Using Python, all mentioned methods
can be tested at once. To optimally use the training data, k-
fold cross-validation is used. This eliminates the need for an
evaluation set and instead splits the training set into smaller
sets. For each fold, another part is used as the validation set
[scikit learn, 2022a]. The results are then shown in a boxplot.
For all boxplots holds that the box contains a line for the
median and extends from the first to the third quartile values

Fig. 7: Gabor filter

Fig. 8: Visualization of the dataset using PCA

of the cross-validation score. The whiskers contain 1.5 times
the inter-quartile range (IQR) with dots representing outliers
[Matplotlib, 2022]. Important to note is that the scaling of the
boxplots can be different.

1) Classification with different feature vectors: The pre-
vious section has described several ways to extract features
from the images. To test what feature works best to classify
the Roman emperors they are tested with different classifi-
cation methods. The boxplots are shown in Figure 9. With
13 different classes, a complete random classification would
have an accuracy of about 0.08. Looking at HOG the mean
accuracies lie around 0.20 and the highest mean accuracies
for LBP are around 0.12. Gabor works well with LDA with a
mean accuracy of 0.17, but other methods are closer to 0.10.



(a) HOG

(b) LBP

(c) Gabor filter

Fig. 9: Boxplots using different features

Interesting observations to note are the whiskers of LBP almost
all going up to 0.25 and the high outliers of the Gabor filter.

PCA did not generate a boxplot. Instead, it went through 20
epochs of deep learning. It heavily overfitted on the training
data. The highest accuracy on the validation set was achieved
after 13 epochs. The accuracy was 0.23, with a training
accuracy of 0.86. As HOG shows the most promise, only the
HOG feature is used for the rest of the experiments.

2) Groups with similar hair type: The dataset used has
many emperors, but only a few pictures per emperor. Looking
at the hair types they can roughly be divided into three
categories: straight, curly and something in between. The
boxplot of this experiment can be found in Figure 10. With
three labels, the accuracy automatically goes up to 0.33. The
mean accuracy with SVM is the highest with slightly over 0.6.
The whiskers of LRlib and SVM almost go up to 0.9.

Fig. 10: Boxplot using three classes

3) Smaller blocks: Another way to get more pictures per
class is by dividing each block into smaller blocks. To keep
large curl patterns intact, the blocks were split into 4 equally
sized smaller blocks. Figure 11 shows this gives slightly lower
accuracies than the normal blocks. Random Forest and Naive
Bayes do score higher.

Fig. 11: Boxplot with smaller blocks

V. DISCUSSION

This paper aimed to answer the main question: ”To what ex-
tent can statues of Roman emperors be identified by hair using
basic machine learning methods?” Looking at the accuracies of
the different experiments the outcomes are suboptimal. While
experts can identify emperors by eye quite accurately, the
different classification methods are only right in a fifth of
the cases with 13 emperors, and two out of three times with
emperors divided into three classes of hair types. Meanwhile,
the research on facial recognition on Roman emperors reached
accuracies of 81.1% and 89.2% using 9 emperors and a non-
emperor class [Ramesh et al., 2022]. The dataset used in that
research was bigger, but very similar.
Looking at the confusion matrices in Figure 12 of KNN
and SVM gives some insight into the shortcoming of the
classification. The number of pictures per emperor is not
uniform in the dataset, the biggest outlier is Augustus (label
1) with 17 pictures. This causes the algorithms to have a bias
towards these outliers. For the remaining emperors, this also
means many of them only have five or six pictures which is



Fig. 12: Confusion matrices for KNN and SVM

very little to fit a model on. That being said, the classification
methods did give results indicating there is some recognition
going on.

VI. FUTURE RESEARCH

To improve these results, a couple of things could still be
tried. The different features are all texture based, but all imple-
ment it differently. Combining these features before classifying
could give the model more data to make distinctions.
Another experiment that could be expanded is augmenting
the data to essentially create more. Cutting the data into
smaller blocks did slightly lower the results in most cases
however, more research could be done on the outcomes of
the classifications of these blocks. Perhaps smartly combining
these results could improve the overall outcome.
In the preprocessing steps, there might also be some room
for improvement. Using landmark detection has caused some
otherwise fine pictures to be discarded from the dataset. Either
finding a different way to get these blocks or creating them
by hand would save some of the images. Especially in cases
where facial recognition, which otherwise works better, has
it’s limitations.

VII. CONCLUSION

The aim of this paper was to recognize pictures of statues
of Roman emperors by their hair. After some preprocessing,
blocks of hair were extracted. From these blocks features
mostly regarding texture were created using Histogram of
Oriented Gradients (HOG), Local Binary Pattern (LBP), Gabor
filter and Principal Component Analysis (PCA). Except for
PCA, the features clearly resembled the original image, indi-
cating some information was gathered. After classification, re-
sults were significantly better than random guessing however,
paled in comparison to existing facial recognition research.
The research done in this paper could still be a nice stepping
stone to further research into combining more features and
possibly making more use of deep learning methods.

REFERENCES

[Banoula, 2022] Banoula, M. (2022). An introduction to logistic regression
in python.

[Dash, 2021] Dash, S. K. (2021). A brief introduction to linear discriminant
analysis. Accessed:14-11-2022.

[Gandhi, 2018] Gandhi, R. (2018). Support vector machine — introduction
to machine learning algorithms. Accessed:14-11-2022.

[Hrouda-Rasmussen, 2021] Hrouda-Rasmussen, S. (2021). (gaussian) naive
bayes. Accessed:14-11-2022.

[IBM, 2020] IBM (2020). Random forest. Accessed:14-11-2022.
[King, 2009] King, D. E. (2009). Dlib-ml: A machine learning toolkit.

Journal of Machine Learning Research, 10:1755–1758.
[Matplotlib, 2022] Matplotlib (2022). Matplotlib.pyplot.boxplot - matplotlib

3.6.2 documentation.
[Ramesh et al., 2022] Ramesh, D. S., Heijnen, S., Hekster, O., Spreeuwers,

L., and de Wit, F. (2022). Facial recognition as a tool to identify roman
emperors: towards a new methodology. Humanities and Social Sciences
Communications 2022 9:1, 9:1–10.

[scikit image, 2022a] scikit image (2022a). Histogram of oriented gradients
- skimage vo.20.0.dev0 docs. Accessed:10-11-2022.

[scikit image, 2022b] scikit image (2022b). Local binary pattern for texture
classification - skimage v0.19.2 docs. Accessed:10-11-2022.

[scikit learn, 2022a] scikit learn (2022a). Cross-validation: evaluating esti-
mator performanc. Accessed:10-11-2022.

[scikit learn, 2022b] scikit learn (2022b). Neural network models (super-
vised). Accessed:14-11-2022.

[Shah, 2018] Shah, A. (2018). Through the eyes of gabor filter. Accessed:14-
11-2022.

[Sharma, 2020] Sharma, A. (2020). Principal component analysis (pca) in
python tutorial. Accessed:10-11-2022.

[Simplilearn, 2022] Simplilearn (2022). How to leverage knn algorithm in
machine learning? Accessed:14-11-2022.

[van Klink, 2019] van Klink, K. (2019). Detection and identification of
roman emperors using facial recognition.


