Characterization of Active and Inactive Hydrothermal Alterations in the Ethiopian Rift Valley System

BARDHIPAN SEEVARATNAM February, 2013

SUPERVISORS: Dr. C.A. Hecker Prof. Dr. F. D. van der Meer

Characterization of Active and Inactive Hydrothermal Alterations in the Ethiopian Rift Valley System

BARDHIPAN SEEVARATNAM Enschede, the Netherlands, February, 2013

Thesis submitted to the Faculty of Geo-Information Science and Earth Observation of the University of Twente in partial fulfilment of the requirements for the degree of Master of Science in Geo-information Science and Earth Observation. Specialization: Applied Earth Sciences

SUPERVISORS: Dr. C. A. Hecker Prof. Dr. F. D. Van der Meer

THESIS ASSESSMENT BOARD: Prof. Dr. F. D. Van der Meer (Chair) Prof. Dr. S. M. (Steven) de Jong (External Examiner, Department of Physical Geography, University of Utrecht]

DISCLAIMER

This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the author, and do not necessarily represent those of the Faculty.

ABSTRACT

The characterization of active and inactive hydrothermal alteration provides information for geologists and stakeholders the recency of the system, thereby providing further knowledge about the geological phase a given hydrothermal alteration is in. Having this information is also crucial in making informed decisions for mining exploration, since it will illustrate the erosional processes of these two systems based on their exposed alteration zones.

The characterization of active and inactive hydrothermal alteration systems was studied using band ratios and corrected night-time TIR images from ASTER. Selected band ratios from literature were used to characterize the active and inactive alteration. The night-time thermal images were also used along with STcorr application to remove the artifacts, for better discriminate between active and inactive hydrothermal zones.

Band ratios on both inactive and active zones were inconclusive from both the dry and wet seasons. Band ratio values were high from using the Level 2 AST_07XT data product. The sensitivity issue was also studied in the results of the statistical tests and the results had shown statistical differences were found for areas that were visually similar in the box plots. This was due to the outliers in the data. Working with night-time imagery had also illustrated sensitivity to polynomial fits. The polynomial fit, which is user defined, results in different interpretation of active zones, while inactive zones, the polynomial fitting did not affect the discrimination. The study illustrate insight into the scale of temperature gradients, which are not localized to hydrothermal zones only, but actually have larger imprints that also influence other areas (active and inactive) in the Ethiopian Rift Valley system.

Keywords: Active Hydrothermal Alteration, Inactive Hydrothermal Alteration, ASTER, Ethiopian Rift Valley, Geothermal, Berecha, Tendaho

ACKNOWLEDGEMENTS

First and foremost, I would like to dedicate this thesis to my Father, who has always given me the love, support and knowledge for getting me through my tough times so that I could strive for my ambitions. It isn't often when two men find time to talk about research every weekend, especially if there is a quarter of a century of gap in our age and wisdom. But the time spent together as father and son will always be remembered. I would also like to take the opportunity to thank my mother and sister, for their unconditional love and support for keeping me grounded during these tough times.

I would like to express my gratefulness to both my supervisors, Dr. Freek van der Meer and Dr. Chris Hecker, for their support and **"patience"** in getting me through my graduate studies. It is an experience to remember, sitting in those weekly meetings with their dynamic personalities. In all honesty, I wouldn't have asked for better supervisors to really teach me what "science" really is and this token of enlightenment will always be with me. As the saying goes:

"Bardhi, your logic is like ... eating chicken in the moon .. "

Many thanks go out to the AES faculty for their academic support and advice. Without your time and hardwork, this would have not been possible. I wish you all the best for the years to come.

Lastly but not least, I would like to thank Angelo Meola, and the family of Angelo Gym for the relentless training and discipline for keeping me in order. The physical and mental training has been a gift and it will surely be continued when I return back home.

For those who are reading this, don't forget to reflect about yourself as a scientist. What I have learned is:

"Bad times have a scientific value. These are occasions a good learner would not miss." -Ralph Waldo Emerson

TABLE OF CONTENTS

1.	INTRODUCTION		1
	1.1	Research Problem	3
	1.2	Scientific Significance and Innovation Aspect	4
	1.3	Research Objectives and Questions	4
	1.4	Research Setup	4
	1.5	Organization of Thesis	5
	1.6	Research Methodology Framework	6
2.	LITERATURE REVIEW		
	2.1.	General Characteristics of Geothermal and Hydrothermal Systems	7
	2.2.	Geothermal Exploration in the East African Rift	9
	2.3.	Hydrothermal Alteration in the Geothermal Field of East African Rift	10
	2.4.	Remote Sensing for Hydrothermal and Geothermal Mapping	10
	2.5.	Hyperspectral Remote Sensing Applications in the Ethiopian Rift Valley	11
3.	STU	DY AREA REVIEW: BERECHA (ACTIVE) VS. TENDAHO (INACTIVE)	13
	3.1.	The East African Rift	13
	3.2.	Ethiopia (General Information)	14
	3.3.	The Ethiopian Rift	15
	3.4.	Study Area of Mount Berecha (Active)	16
	3.5.	Study Area of Tendaho (Inactive)	17
4.	SPEC	TRAL MINERAL INDICES for ACTIVE & INACTIVE HYDROTHERMAL ZONES	20
	4.1.	Data Preparation and Rationalization of Data Selection	20
	4.2.	Data Processing: Removal of Vegetation and Selected Band Ratio (s)	21
	4.3.	Defining Regions of Interest (ROI) and Buffer Zones	22
	4.4.	Plotting Band Ratios DN Values using Box-and-Whisker and Statistical Tests	24
	4.5.	Results	26
5.	NIG	HT-TIME TIR IMAGERY FOR ACTIVE & INACTIVE HYDROTHERMAL ZONES	33
	5.1.	Code of IDL of Methodology of STcorr: Topographic Correction of ASTER Images	33
	5.2.	Data Selection and Preparation	35
	5.3.	Regression Computation for Corrections	36
	5.4.	Methodology for Analysis of Thermal Anomalies	36
	5.5.	Results	36
6.	DISC	CUSSION	41
	6.1.	Characterization of Hydrothermal Zones using Mineral Indices.	41
	6.2.	Issues of Sensitivity of Band Ratios and Methodological Framework	42
	6.3.	Characterization of Hydrothermal Zones using Night-time TIR and its Sensitivity	43
	6.4.	Optimal Method for correcting night-time TIR	44
7.	CON	CLUSION AND RECOMMENDATIONS	45
	7.1.	Recommendations	45
8.	APP	ENDICES A	48
9.	APPENDICES B		

LIST OF FIGURES

Figure 2: Framework of the Research6Figure 3: The Eastern African Rift shows two branches the Eastern Branch and the Western13Branch14Figure 4: Model of the Last Stage of the Continental Rift14Figure 5: Wonji Fault (axis of the rift) is a region of Quaternary crustal extension15Figure 6: Location of Mount Berecha in Ethiopia16Figure 7: Mount Berecha Study Area (Active Hydrothermal System)17Figure 8: Location of Tendaho Graben in Ethiopia18Figure 9: Tendaho Study Area (Inactive Hydrothermal System)19Figure 10. ROI, 100 m, and 200 m Buffer Zones in the Tendaho Study Area22Figure 11. ROI, 100 m, and 200 m Buffer Zones in the Mount Berecha Study Area23Figure 12. Example of a Box-and-Whisker Plot for for the hydrothermal zone (ROI) and the two buffer zones24two buffer zones27Jan 25, 2002, Oct 11, 2003 and Jan 1, 200527Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery23Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery35Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Figure 1: System Diagram of the geothermal setting in the Ethiopian Rift Valley	3
Figure 3: The Eastern African Rift shows two branches the Eastern Branch and the Western13Branch14Figure 4: Model of the Last Stage of the Continental Rift14Figure 5: Wonji Fault (axis of the rift) is a region of Quaternary crustal extension15Figure 6: Location of Mount Berecha in Ethiopia16Figure 7: Mount Berecha Study Area (Active Hydrothermal System)17Figure 8: Location of Tendaho Graben in Ethiopia18Figure 9: Tendaho Study Area (Inactive Hydrothermal System)19Figure 10. ROI, 100 m, and 200 m Buffer Zones in the Tendaho Study Area22Figure 11. ROI, 100 m, and 200 m Buffer Zones in the Mount Berecha Study Area23Figure 12. Example of a Box-and-Whisker Plot for for the hydrothermal zone (ROI) and the24two buffer zones27Jan 25, 2002, Oct 11, 2003 and Jan 1, 200527Figure 15. Low lying areas with surface manifestations of kaolinite.28Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery32Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38 <td>Figure 2: Framework of the Research</td> <td>6</td>	Figure 2: Framework of the Research	6
Branch14Figure 4: Model of the Last Stage of the Continental Rift14Figure 5: Wonji Fault (axis of the rift) is a region of Quaternary crustal extension15Figure 6: Location of Mount Berecha in Ethiopia16Figure 7: Mount Berecha Study Area (Active Hydrothermal System)17Figure 8: Location of Tendaho Graben in Ethiopia18Figure 9: Tendaho Study Area (Inactive Hydrothermal System)19Figure 10. ROI, 100 m, and 200 m Buffer Zones in the Tendaho Study Area22Figure 11. ROI, 100 m, and 200 m Buffer Zones in the Mount Berecha Study Area23Figure 12. Example of a Box-and-Whisker Plot for for the hydrothermal zone (ROI) and the two buffer zones26Figure 13. Results of the Alunite/Kaolinite/Pyrophyllite Mineral Index applied to Berecha.26Figure 14. Silica mineral index (B11/B10) on the Tendaho images for the following dates:27Jan 25, 2002, Oct 11, 2003 and Jan 1, 200528Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery22Figure 16. Data Preparation of Tendaho for STcorr Correction37Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Figure 3: The Eastern African Rift shows two branches the Eastern Branch and the Western	13
Figure 4: Model of the Last Stage of the Continental Rift14Figure 5: Wonji Fault (axis of the rift) is a region of Quaternary crustal extension15Figure 6: Location of Mount Berecha in Ethiopia16Figure 7: Mount Berecha Study Area (Active Hydrothermal System)17Figure 8: Location of Tendaho Graben in Ethiopia18Figure 9: Tendaho Study Area (Inactive Hydrothermal System)19Figure 10. ROI, 100 m, and 200 m Buffer Zones in the Tendaho Study Area22Figure 11. ROI, 100 m, and 200 m Buffer Zones in the Mount Berecha Study Area23Figure 12. Example of a Box-and-Whisker Plot for for the hydrothermal zone (ROI) and the two buffer zones26Figure 13. Results of the Alunite/Kaolinite/Pyrophyllite Mineral Index applied to Berecha. Jan 25, 2002, Oct 11, 2003 and Jan 1, 200527Figure 15. Low lying areas with surface manifestations of kaolinite.28Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery32Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Branch	
Figure 5: Wonji Fault (axis of the rift) is a region of Quaternary crustal extension15Figure 6: Location of Mount Berecha in Ethiopia16Figure 7: Mount Berecha Study Area (Active Hydrothermal System)17Figure 8: Location of Tendaho Graben in Ethiopia18Figure 9: Tendaho Study Area (Inactive Hydrothermal System)19Figure 10. ROI, 100 m, and 200 m Buffer Zones in the Tendaho Study Area22Figure 11. ROI, 100 m, and 200 m Buffer Zones in the Mount Berecha Study Area23Figure 12. Example of a Box-and-Whisker Plot for for the hydrothermal zone (ROI) and the two buffer zones24Figure 13. Results of the Alunite/Kaolinite/Pyrophyllite Mineral Index applied to Berecha. Figure 14. Silica mineral index (B11/B10) on the Tendaho images for the following dates: Jan 25, 2002, Oct 11, 2003 and Jan 1, 200527Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery22Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Figure 4: Model of the Last Stage of the Continental Rift	14
Figure 6: Location of Mount Berecha in Ethiopia16Figure 7: Mount Berecha Study Area (Active Hydrothermal System)17Figure 8: Location of Tendaho Graben in Ethiopia18Figure 9: Tendaho Study Area (Inactive Hydrothermal System)19Figure 10. ROI, 100 m, and 200 m Buffer Zones in the Tendaho Study Area22Figure 11. ROI, 100 m, and 200 m Buffer Zones in the Mount Berecha Study Area23Figure 12. Example of a Box-and-Whisker Plot for for the hydrothermal zone (ROI) and the24two buffer zones26Figure 13. Results of the Alunite/Kaolinite/Pyrophyllite Mineral Index applied to Berecha.26Figure 14. Silica mineral index (B11/B10) on the Tendaho images for the following dates:27Jan 25, 2002, Oct 11, 2003 and Jan 1, 200527Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery32Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Figure 5: Wonji Fault (axis of the rift) is a region of Quaternary crustal extension	15
Figure 7: Mount Berecha Study Area (Active Hydrothermal System)17Figure 8: Location of Tendaho Graben in Ethiopia18Figure 9: Tendaho Study Area (Inactive Hydrothermal System)19Figure 10. ROI, 100 m, and 200 m Buffer Zones in the Tendaho Study Area22Figure 11. ROI, 100 m, and 200 m Buffer Zones in the Mount Berecha Study Area23Figure 12. Example of a Box-and-Whisker Plot for for the hydrothermal zone (ROI) and the two buffer zones24Figure 13. Results of the Alunite/Kaolinite/Pyrophyllite Mineral Index applied to Berecha.26Figure 14. Silica mineral index (B11/B10) on the Tendaho images for the following dates:27Jan 25, 2002, Oct 11, 2003 and Jan 1, 200528Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery32Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Figure 6: Location of Mount Berecha in Ethiopia	16
Figure 8: Location of Tendaho Graben in Ethiopia18Figure 9: Tendaho Study Area (Inactive Hydrothermal System)19Figure 10. ROI, 100 m, and 200 m Buffer Zones in the Tendaho Study Area23Figure 11. ROI, 100 m, and 200 m Buffer Zones in the Mount Berecha Study Area23Figure 12. Example of a Box-and-Whisker Plot for for the hydrothermal zone (ROI) and the two buffer zones24Figure 13. Results of the Alunite/Kaolinite/Pyrophyllite Mineral Index applied to Berecha.26Figure 14. Silica mineral index (B11/B10) on the Tendaho images for the following dates:27Jan 25, 2002, Oct 11, 2003 and Jan 1, 200528Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery32Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Figure 7: Mount Berecha Study Area (Active Hydrothermal System)	17
Figure 9: Tendaho Study Area (Inactive Hydrothermal System)19Figure 10. ROI, 100 m, and 200 m Buffer Zones in the Tendaho Study Area22Figure 11. ROI, 100 m, and 200 m Buffer Zones in the Mount Berecha Study Area23Figure 12. Example of a Box-and-Whisker Plot for for the hydrothermal zone (ROI) and the two buffer zones24Figure 13. Results of the Alunite/Kaolinite/Pyrophyllite Mineral Index applied to Berecha.26Figure 14. Silica mineral index (B11/B10) on the Tendaho images for the following dates:27Jan 25, 2002, Oct 11, 2003 and Jan 1, 200528Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery32Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Figure 8: Location of Tendaho Graben in Ethiopia	18
Figure 10. ROI, 100 m, and 200 m Buffer Zones in the Tendaho Study Area22Figure 11. ROI, 100 m, and 200 m Buffer Zones in the Mount Berecha Study Area23Figure 12. Example of a Box-and-Whisker Plot for for the hydrothermal zone (ROI) and the two buffer zones24Figure 13. Results of the Alunite/Kaolinite/Pyrophyllite Mineral Index applied to Berecha.26Figure 14. Silica mineral index (B11/B10) on the Tendaho images for the following dates:27Jan 25, 2002, Oct 11, 2003 and Jan 1, 200528Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery32Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Figure 9: Tendaho Study Area (Inactive Hydrothermal System)	19
Figure 11. ROI, 100 m, and 200 m Buffer Zones in the Mount Berecha Study Area23Figure 12. Example of a Box-and-Whisker Plot for for the hydrothermal zone (ROI) and the two buffer zones24Figure 13. Results of the Alunite/Kaolinite/Pyrophyllite Mineral Index applied to Berecha.26Figure 14. Silica mineral index (B11/B10) on the Tendaho images for the following dates:27Jan 25, 2002, Oct 11, 2003 and Jan 1, 200528Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery32Figure 16. Data Preparation of Tendaho for STcorr Correction35Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Figure 10. ROI, 100 m, and 200 m Buffer Zones in the Tendaho Study Area	22
Figure 12. Example of a Box-and-Whisker Plot for for the hydrothermal zone (ROI) and the two buffer zones24Figure 13. Results of the Alunite/Kaolinite/Pyrophyllite Mineral Index applied to Berecha.26Figure 14. Silica mineral index (B11/B10) on the Tendaho images for the following dates:27Jan 25, 2002, Oct 11, 2003 and Jan 1, 200528Figure 15. Low lying areas with surface manifestations of kaolinite.28Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery32Figure 16. Data Preparation of Tendaho for STcorr Correction35Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Figure 11. ROI, 100 m, and 200 m Buffer Zones in the Mount Berecha Study Area	23
two buffer zones26Figure 13. Results of the Alunite/Kaolinite/Pyrophyllite Mineral Index applied to Berecha.26Figure 14. Silica mineral index (B11/B10) on the Tendaho images for the following dates:27Jan 25, 2002, Oct 11, 2003 and Jan 1, 200528Figure 15. Low lying areas with surface manifestations of kaolinite.28Figure 16. Steps Involved in ST corr Correction of ASTER Night TIR Imagery32Figure 16. Data Preparation of Tendaho for ST corr Correction35Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Figure 12. Example of a Box-and-Whisker Plot for for the hydrothermal zone (ROI) and the	24
Figure 13. Results of the Alunite/Kaolinite/Pyrophyllite Mineral Index applied to Berecha.26Figure 14. Silica mineral index (B11/B10) on the Tendaho images for the following dates:27Jan 25, 2002, Oct 11, 2003 and Jan 1, 200528Figure 15. Low lying areas with surface manifestations of kaolinite.28Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery32Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	two buffer zones	
Figure 14. Silica mineral index (B11/B10) on the Tendaho images for the following dates:27Jan 25, 2002, Oct 11, 2003 and Jan 1, 200528Figure 15. Low lying areas with surface manifestations of kaolinite.28Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery32Figure 16. Data Preparation of Tendaho for STcorr Correction35Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Figure 13. Results of the Alunite/Kaolinite/Pyrophyllite Mineral Index applied to Berecha.	26
Jan 25, 2002, Oct 11, 2003 and Jan 1, 200528Figure 15. Low lying areas with surface manifestations of kaolinite.28Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery32Figure 16. Data Preparation of Tendaho for STcorr Correction35Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Figure 14. Silica mineral index (B11/B10) on the Tendaho images for the following dates:	27
Figure 15. Low lying areas with surface manifestations of kaolinite.28Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery32Figure 16. Data Preparation of Tendaho for STcorr Correction35Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Jan 25, 2002, Oct 11, 2003 and Jan 1, 2005	
Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery32Figure 16. Data Preparation of Tendaho for STcorr Correction35Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Figure 15. Low lying areas with surface manifestations of kaolinite.	28
Figure 16. Data Preparation of Tendaho for STcorr Correction35Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Figure 16. Steps Involved in STcorr Correction of ASTER Night TIR Imagery	32
Figure 17. Mount Berecha the Image Extraction37Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope38	Figure 16. Data Preparation of Tendaho for STcorr Correction	35
Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope 38	Figure 17. Mount Berecha the Image Extraction	37
	Figure 18. Illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope	38

LIST OF TABLES

Table 1. ASTER Level 2 Image Processing			
Table 2. Selection of ASTER Imagery			
Table 3. Several band ratios have been proposed to map mineral indices in a hydrothermal	21		
setting			
Table 4. Results of the ANOVA Post Hoc test on the Alunite/Kaolinite/Pyrophyllite	29		
Table 5. Summary of the Band Ratio and Statistical test discrimination between the HZ and			
buffered zones.			
Table 6. The data used for the thermal correction	35		
Table 5. Summary of the Thermal test discrimination between the HZ and buffered zones.	40		

1. INTRODUCTION

The presence and types of hydrothermal alterations under a geothermal setting have been recognized as key factors in modelling favourable areas for many mineral deposits types (Elder, 1981) and have long served as areas of interest for mining and mineral mapping purposes. Rift systems like the Ethiopian Rift Valley System (Oluwadebi, 2011) are a good prospective for hydrothermally altered rocks. Mineral commodities like gold, copper, and lead that occur in alterations have been prospected using conventional methods such as field-based surveying and drill-holes (Hemley et al., 1992; Stratex International, 2012; White, 1974). Advances in remote sensing have offered improved methods in detecting mineral deposits in hydrothermal alteration zones such as multispectral and hyperspectral remote sensing (Abrams et al., 1977; Omenda, 2005; Rowan et al., 2003; Yang et al., 1999). However, such studies have overlooked the importance of detecting between active and inactive hydrothermal systems. Such information for geologists and stakeholders is important in understanding the recency of the system, thereby providing further knowledge about the geological phase a given hydrothermal alteration is in. Having this information is crucial in making informed decisions for mining exploration. Despite the abundance of field knowledge, a systematic and unbiased method of detecting hydrothermal zones and characterizing active and inactive hydrothermal systems is a present necessity. In doing so, an enhancement of the methods in exploring as well as understanding the complexities of geological systems can be achieved in a methodological manner.

Remote sensing has played an important role in the identification of surface mineralogical composition(Van der Meer et al., 2012). In particular, the 0.45- to 2.5 µm region of the electromagnetic spectrum provides mineralogical information for differentiating iron, carbonate, hydrate and hydroxide minerals (Abrams et al., 1977; Rowan et al., 2003). Remote sensing datasets such as the Landsat Thematic Mapper (LTM) satellite images are widely used to interpret mineral composition (Abrams et al., 1977; Carranza & Hale, 2002). However, its broad spectral resolution limits the proper identification of hydrothermal rocks that have distinctive absorption features at the 2.2 µm region (Van der Meer et al., 2012). For this reason, the Advanced Spaceborne Thermal Emissions and reflectance Radiometer (ASTER) with its higher spectral resolution in the shortwave infrared (SWIR) as well as in the thermal infrared (TIR) regions offers more spectral leverage and has, in fact, become a very common multispectral optical sensor used for mapping hydrothermal alterations (Mars & Rowan, 2010; Van der Meer et al., 2012). By utilizing spectral enhancement techniques such as band ratios, ASTER imagery has proven useful in retrieving mineralogical information (Van der Meer et al., 2012). ASTER's night-time TIR is also capable of providing vital information on surface temperatures for studies related to volcanism, differences in surface energies, and geothermal mapping (Ulusoy et al., 2012).

Before delving deeper into remote sensing applications for hydrothermal alteration mapping, one must have a clear definition of the topic at hand. Hydrothermal alteration is a "change in the mineralogy as a result of interaction of the rock with hot water fluids, called 'hydrothermal fluids"" (Lagat, 2009, p. 2). An understanding of hydrothermal alterations is of great interest scientifically because it provides insight to how minerals are altered based on temperature, permeability, pressure, and other factors related to the hydrothermal activity of a given area (Lagat, 2009), thus also providing evidence whether a hydrothermal system is active or inactive (fossil). For this study, Mount Berecha and Tendaho, two hydrothermal alteration areas in the Ethiopian Rift Valley (ERV), are given particular attention. Both regions have shown similar alteration mineral assemblages but the former is characteristically described to be active while the latter inactive (Gianelli et al., 1998; Oluwadebi, 2011).

This thesis will focus on the unbiased characterization of active and inactive hydrothermal alterations in the Ethiopian Rift Valley, based on two known areas (Mount Berecha and Tendaho). The study will employ spectral indices in the form of ASTER-specific band ratios to investigate the spectral differences between active and inactive hydrothermal alterations and between altered and un-altered zones (Figure 1). This is important for understanding the erosional processes of these two systems based on their exposed alteration zones. Moreover, in doing so, the usefulness of band ratios can also be further examined in relation to their sensitivity to reflectance anomalies (Mars & Rowan, 2010). This study will also explore the differences in surface temperature between active and inactive systems using ASTER night-time thermal data. Since the Ethiopian Rift Valley has a thermal gradient that may influence hydrothermal alterations, characterization is vital to understanding not only the paleotemperature but also the localized differences in mineral assemblages between active and inactive systems. Overall, the study aims to not only reveal the complexities of characterizing alterations in the Ethiopian Rift Valley, but also to critically assess the use of multispectral sensors such as ASTER in producing relevant geological information.

system co-exist of each other.

1.1 Research Problem

Up to the present, characterizing between active and inactive hydrothermal systems, especially those in the Ethiopian Rift Valley, has not been done, as the underlying factors in the development of these two systems is still quite unclear. For instance, the difference in the problem behaviour of surface temperatures between active and inactive systems is not known. Such dilemmas are difficult to solve, given that there has been no methodological framework in place to address such inquiries. Previous remote sensing applications have explored the use of a single multispectral dataset to detect hydrothermal systems, but are restricted due to the limitations of using a single dataset (Carranza & Hale, 2002; Rajesh, 2004). This leads to the question: Is there a methodological framework that integrates multiple remote sensing datasets and gives the ability to detect and differentiate between active and inactive systems in an unbiased manner? It is on these grounds that this study is undertaken and is by which the reliability of analyzing both ASTER day and night imagery through a systematic protocol, is tested.

1.2 Scientific Significance and Innovation Aspect

The scientific significance of this study can be partitioned into three aspects: (1) the task of characterizing between active and inactive hydrothermal systems within a geothermal setting (Ethiopian Rift Valley system); (2) undergoing this task using multiple remote sensing datasets; and (3) operating in an unbiased manner to produce a methodological framework. These three aspects constitute novelty; critical assessment and improvement of existing methods; and objectivity and repeatability—all these are hoped to achieved or demonstrated throughout the course of the study.

1.3 Research Objectives and Questions

The overall objective of this research is to investigate the applicability of using several multispectral datasets (ASTER both day and night) to characterize active and inactive hydrothermal alteration areas in the Ethiopian Rift Valley, and undertaking this through a systematic and unbiased approach. The following specific objectives and corresponding research questions are as follows:

Objective 1

To *spectrally* differentiate between known (a) active and inactive hydrothermal alteration areas and (b) altered and their surrounding unaltered zones using selected Day ASTER scenes.

- Can active and inactive hydrothermal zones be differentiated using *existing mineral indices*? If so, which of these indices are useful for discriminating between active and inactive hydrothermal alterations?
- 2. Can mineral indices also be used to discriminate between altered and unaltered zones?

Objective 2

To *thermally* differentiate between (a) active and inactive hydrothermal alteration areas and (b) altered zones and their surrounding unaltered zones using selected night-time ASTER-TIR scenes.

- 1. Can surface temperatures of active and inactive hydrothermal zones be differentiated using night-time-TIR?
- 2. What is the optimal method for correcting temperature anomalies of night-time TIR imagery? How sensitive are thermal images in response to different regression techniques and how do these techniques affect the discrimination between active and inactive zones?
- 3. Can the correction between a small subset image and whole image show influence in the ability of thermal data to discriminate between active and inactive hydrothermal systems?

1.4 Research Setup

In order to answer the research questions, the following steps were made:

- Literature Review A review of the geology of the area was done to gain background knowledge on the relationship between geology and hydrothermally altered mineral assemblages in the area. An assessment of state-of-the-art in remote sensing applications in mineral and geothermal mapping was also done.
- 2. Selection and ordering of pre-processed ASTER scenes of the Mount Berecha and Tendaho (For both the Day and Night images)
- 3. Image processing, analysis and interpretation of the results of the mineral indices and surface temperature discrimination.
- 4. Discussion and outlook of the expected problems

1.5 Organization of Thesis

The thesis consists of seven chapters:

- Chapter one describes the research problem, the general and specific objectives (and questions) of the research.
- Chapter two gives a literature review of the characteristics between geothermal vs. hydrothermal systems as well as relevant literature on remote sensing applications in mineral and geothermal mapping.
- Chapter three offers an overview of the two study areas, their geologic setting and a brief review of exploration studies conducted in both areas.
- Chapter four discusses the methods and results for achieving Objective 1.
- Chapter five discusses the methods and results for achieving Objective 2.
- Chapter six is a chapter dedicated for the discussion of the outputs resulting from Objectives 1 and 2 and the problems encountered therewith.
- Chapter seven provides the conclusion and recommendations of the study.

2. LITERATURE REVIEW

This chapter gives a review of literature pertaining to the Ethiopian Rift Valley—characteristics of geothermal and hydrothermal systems, geothermal explorations conducted in the area, and remote sensing applications in hydrothermal and geothermal mapping.

2.1. General Characteristics of Geothermal and Hydrothermal Systems

The term *Geothermal* and *Hydrothermal* have a specific definition for this study. Geothermal refers to a system that transfers heat from within the Earth to the surface, such examples Hot rocks, without water (Heasler et al., 2009). Hydrothermal is a subset of geothermal and means that the transfer of heat involve water (liquid or vapour)(Heasler et al., 2009).

The characteristics of geothermal systems are known to be non-uniform, varying from place to place due to thermal conductivity of rocks, igneous processes and structural setting (Elder, 1981). However, they can be described to possess three essential components (Elder, 1981):

- Subsurface heat source
- Fluid to transport the heat
- Faults, fractures or permeability within sub-surface (Allow heat source to reach to the surface).

The heat generated by the earth (heat flow) is one of the key factors that determine the temperature gradient of a given place (Elder, 1981). Another factor is the thermal conductivity of a certain rock type, or how well a rock insolates the generated heat (Elder, 1981). High heat flow will create higher temperature gradients, while an insulating blanket of sedimentary rocks over the heat source will trap that heat (Elder, 1981). Some rocks make better insulators than others, but in general, sedimentary rocks are generally good insulators (Denton, 1972; Elder, 1981). The East African Rift is an area well known for its high thermal gradients, where there is high heat flow with low thermal conductivity, making it a key area for hydrothermal alterations in a geothermal setting (Simmons & Browne, 2000).

There are several approaches for classifying geothermal system and this is based on the physical properties, convection versus non-convection, and permeable verse non-permeable formations (Denton, 1972; Elder, 1981).

Vapour-dominated geothermal systems (Hydrothermal system) produce superheated steam with little gases and with little or no water, with the steam acting as the controlling factor of temperature and phase (Denton, 1972). The heat from the rocks dries the fluid first to saturate the steam to a level of super-saturation (Denton, 1972). These steams can reach to 55°C superheat with pressure ranging from 4 to 5 km/cm² (Denton, 1972). Most steam reservoirs may "cap" for the up flowing part of a major liquid dominated convection of a hydrothermal system (Denton, 1972).

Liquid-dominated convection geothermal systems (Hydrothermal system) are thermally driven convection systems from meteoric water, where the transfer of heat is from deep igneous sources (Denton, 1972). The thermal energy is stored both in the solid rock and in the water and steam which fill the pores and fractures (Denton, 1972). Hot liquid geothermal systems contain water at temperatures that is far past boiling because of the effects of high pressure. For example, the major zones in the main Ethiopian Rift Valley experience up-flow with coexisting steam and water that extends to the surface and as a result, geysers and boiling hot springs are formed (Denton, 1972; Oluwadebi, 2011). Such zones may be easy to detect, the capacity of these liquid-dominated systems in producing hydrothermal alterations is not known (Denton, 1972). The water in most hot liquid geothermal systems is a dilute aqueous solution that contains sodium, potassium, lithium, chloride, bicarbonate, sulphate, borate and silica (Denton, 1972). The silica and potassium/sodium ratio is dependent on temperature reservoir, which as a result can calculate the subsurface temperatures of the hot fluid (Denton, 1972).

Geopressured systems are deep sediment basins filled with sand, clay or shale (Denton, 1972). Geopressured geothermal systems occur in regions of heat flow trapped by insulating impermeable clay beds(Denton, 1972). Water in the geopressured zones are produced by compaction and dehydration of marine sediments and the aquifer systems are stored in regional horizontal faults (Denton, 1972). Water temperatures can range from 150°C to 180°C, with pressures ranging from 27.579 kPa to 41.368 kPa (Denton, 1972). Compared to other geothermal systems, the geopressured system is controlled by water, which is a poor conductor of heat when compared to minerals and caps that are excellent thermal insulators (Denton, 1972).

In the case of the Ethiopian Rift Valley, characterization of active and inactive hydrothermal systems is not straightforward, as there are many kinds of geothermal systems present in the entire system. Moreover, these systems are governed by several elements. Elder (1981) identifies these as:

- 1. *Scale*: The scale, whether localized or broad, has an important effect on the behaviour of the system, which could ultimately define the type of system(Denton, 1972).
- 2. *Closed, Open System or Sub-system*: The net discharge of a matter depends through a system(Denton, 1972). For example, geothermal areas with mass discharge in steaming grounds, hot springs, fumaroles and volcanic systems along a rift, imply that the system is active.
- 3. *Steady, Quasi-steady, Unsteady or Pulsatory system*: This element describes the temporal behaviour of a system(Denton, 1972). For instance, the characteristic feature of a surface zone of a volcanic system is being pulsatory is not a system that is steady state(Denton, 1972).
- Change of State: Fluid elements within a system may experience one or more changes, or be in a continuous state of change(Denton, 1972). A dynamic system like this would have quite a different behaviour from a homogenous system(Denton, 1972).
- 5. Changes of System Geometry: A convection system may be capable of rearranging itself to such a degree that the system, from being active, becomes inactive(Denton, 1972). An example is a system undergoing lithosphere thinning due to interaction with the underlying mantle.

Tectonic geothermal systems in the East African Rift system is commonly occupied by lakes, where the hot mantle material is the primary driving energy source because of its high geothermal gradient (Prianjo, 2009). The deep-circulating meteoric waters have formed reservoirs in permeable stratigraph horizons (Prianjo, 2009). Fluids rise along graben faults and vents and resurface as hot springs or lakes. Such lakes as Lake Natron, Bogoria and Magadi have hot, saline springs discharging at 40-80°C (Prianjo, 2009). Prianjo (2009) also stated that geopressured systems are typically found in sedimentary basins, where deep burial of aquifers result in overpressure reservoirs.

In a region of high heat flow such as the Ethiopian Rift Valley, thermal convection dominates the behaviour of water in permeable areas and fractured crust, creating hydrothermal zones in a geothermal system (Prianjo, 2009). But even with this process, one cannot deduce simply that a system is active or not by just looking at the surfacial hydrothermal expressions.

2.2. Geothermal Exploration in the East African Rift

Geothermal exploration started in Ethiopia in 1969 through the collaboration between the Ethiopian Government and the United Nations Development Program (UNDP) (Kebede, 2011). The main purpose of the exploration was to study the geology, geochemistry and hydrology of hot springs of the East African Rift System within Ethiopia. The study covered 150,000 km² area of the Ethiopian Rift including the Afar Rift and the Main Ethiopian Rift (MER) (Kebede, 2011). All fields for geothermal exploration in Ethiopia were located within the Rift, but particular interest was given to two areas: Aluto-Langano and Tendaho. Aluto-Langano was studied in detail and promoted for deep exploration (Electroconsult, 1986). The drilling program revealed an active fault system (Wonji Fault Belt) with reservoirs containing fluids of high enthalpy and temperatures of 335°C (Electroconsult, 1986). The Tendaho geothermal field, on the other hand, also showed the high temperatures at 270°C, but with very low permeability, indicating that the area was located far from known active faults (Gebregziabher, 1998).

Moreover, the poor fluid circulation of the system proved that the system was inactive (Gebregziabher, 1998). The geothermal explorations demonstrated the importance of field investigations, as these reveal that geothermal elements such as high temperature, discharge/recharge of matter and permeability can differ within a geothermal system, and may even be localized to certain areas (Electroconsult, 1986; Gebregziabher, 1998; Kebede, 2011).

2.3. Hydrothermal Alteration in the Geothermal Field of East African Rift

Many geothermal fields in the East African Rift have revealed the presence of hydrothermal alterations through drill-hole samples. One of which is the Olkaria Domes geothermal field in Kenya (Lagat, 2009). The distribution and abundance of the hydrothermal minerals were obtained from the petrographic and XRD studies of drill cutting samples from exploration wells (Lagat, 2009). Hydrothermal minerals that were found include albite, amphibole, biotitie, calcite, chlorite, chalcedony, epidote, fluorite, garnet, illite, k-feldspar, sulphides, quartz, argillic and advanced argillic minerals (Lagat, 2009). Furthermore, the hydrothermal alteration was found to have undergone temporal changes from several drill sites, with some parts of the drill core indicating cooling whereas other parts indicated heating (Lagat, 2009). In other words, the system itself had been active and inactive over some geological time.

2.4. Remote Sensing for Hydrothermal and Geothermal Mapping

Past studies have used optical remote sensing for hydrothermal and geothermal mapping (Ulusoy et al., 2012; White, 1974). Today's state-of-the-art in mapping geothermal hotspots and hydrothermal alterations is slowly transitioning towards the use of hyperspectral remote sensing (Jones et al., 2010; Martini et al., 2004; Oluwadebi, 2011). Hyperspectral sensors have the ability to record surface reflectance in a large number of continuous spectral bands and "discriminate among earth surface features that have diagnostic absorption and reflection characteristics over narrow wavelength intervals" (Lillesand et al., 2004, pp. 384-385). Oluwadebi (2011) has demonstrated the potential of using hyperspectral datasets in identifying hydrothermal minerals. Furthermore, the detection of *active* hot spots, fumaroles, geothermal vents, mud pots, and thermal anomalies using the thermal infrared range of hyperspectral data was also illustrated byMartini et al. (2004).

Based on these studies, hyperspectral imagery has proved to be useful in mineral exploration, but there remains a need to further evaluate its potential, especially in detecting "certain target minerals, mineral assemblages and temperature data to deliver meaningful hyperspectral data products"(Jones et al., 2010, pp. 7).

2.5. Hyperspectral Remote Sensing Applications in the Ethiopian Rift Valley

Oluwadebi (2011) used Airborne Imaging Spectroradiometer for Application (AISA) Hawk Data to identify and map hydrothermal alteration minerals in Mount Berecha of the Main Ethiopian Rift Valley. Methods such as Wavelength of Minimum, Wavelength Mapping, Minimum Noise Fraction (MNF) and Spectral Angle Mapper (SAM) were applied to map alterations in the region (Oluwadebi, 2011). The study was able to successfully detect mineral assemblages in the study area, including Kaolinite, Halloysite, Opal, Montmorillonite, Nontronite, Calcite, K-alunite, and Illite (Oluwadebi, 2011). The methods applied showed a clear difference patterns between altered and unaltered areas as well as observable patterns within the altered areas (Oluwadebi, 2011). Moreover, the study was able to characterize Mount Berecha as an area of low sulfidation system that was active because of it high enthalpy (Oluwadebi, 2011). As a result, the widespread alteration essentially represented advanced argillic alteration assemblages which consisted of kaolinite, opal, smectite, and alunite minerals that could be traced back to steam-heated origins(Oluwadebi, 2011). Quartz veins and shallow silicifation was also reported in the area (Oluwadebi, 2011). The results showed to be very accurate when it was validated from field records. What the study did not detail is the neighbouring occurrences other alterations within Mount Berecha and failed to characterize if it was from the same or different alteration.

3. STUDY AREA REVIEW: BERECHA (ACTIVE) VS. TENDAHO (INACTIVE)

3.1. The East African Rift

The East African Rift System (EARS) is a series of complex rift systems that extends from Mozambique to the Afar depression in Ethiopia (Omenda, 2005). The EARS is split into two, forming the Eastern and the Western branches (Omenda, 2005) (Figure 3). For this study, the Eastern Branch is the area of interest. The Eastern branch includes the Afar, Ethiopian, Turkana and Kenya Rifts (Omenda, 2005).

Figure 3: The Eastern African Rift shows two branches the Eastern Branch and the Western Branch. This study will focus on the Ethiopian Rift and the Afar Depression in the Eastern Branch as shown in the black dashed line. Source: (Omenda, 2005) The Western Branch includes the Albert, Kivu, Tanganyika, Rukwa and Malawi Rifts (Omenda, 2005). The model for the active rift formation in the Ethiopian Rift involves lithospheric extension, along with upwelling of the asthenospheric mantle (Omenda, 2005) (Figure 4). The decompression of the asthenosphere created large magmatic bodies within the crust. Brittle extension of the crust resulted in the down-faulting and the formation of graben (Omenda, 2005).

3.2. Ethiopia (General Information)

The study areas are located in the Ethiopian Rift Valley in Ethiopia. Its topography is generally flat, covering 1.14 million km² of broad plateau and low lands (Berhanu, 2008; Kebede, 2011). Some highlands exist as high as 4,600 m, while some low lands are 120 m below sea level (Berhanu, 2008; Kebede, 2011). The average annual rainfall in the highlands is 1,200 mm in the north, and ~1,800 mm in the south (Berhanu, 2008; Kebede, 2011). Lowlands annually receive 600 mm of rainfall (Berhanu, 2008; Kebede, 2011). About 70-80% of rain falls during mid-June to mid-September (Berhanu, 2008). (Teum, 2013) explains the seasons of Ethiopia can be divided into the following:

- **Summer** June, July and August receive the heaviest rain falls throughout the year (Teum, 2013).
- Spring September, October and November also known as the harvest season (Teum, 2013).
- Winter December, January and February constitute the dry season, with morning frosts especially in January (Teum, 2013).
- Autumn March, April and May receive occasional showers, with May as the hottest month in Ethiopia (Teum, 2013).

In the highlands the maximum monthly average temperature ranges between 23-27°C and the minimum between 10-13°C (Berhanu, 2008; Kebede, 2011). In the lowlands, the temperature range is much higher when compared to the highlands (Berhanu, 2008; Kebede, 2011).

3.3. The Ethiopian Rift

The Main Ethiopian Rift (MER) and the Afar Rift started to form 30 million years ago through a series of volcanic activities, such as uplift and eruptions of basalt (Omenda, 2005). This activity had progressed to the Miocene (23 – 5 millions year ago), where "eruption of bimodal suite of basalts and alkaline silica lavas concentrated within the rift zones" (Omenda, 2005, pp 3). The axis of the rift which consists of rhyolite volcanoes, domes, ignimbrites and pyroclastics (Omenda, 2005). Along the Wonji Fault (axis of the rift) is a region of Quaternary crustal extension (Figure 5). The fault zone is offset along the Wonji Fault but the large volcanoes are located along the fault intersection (Omenda, 2005). The Afar Rift is an active segment of the Eastern African Rift, where large volcanoes of rhyolitic (in the south) and basaltic (in the north) nature are found (Omenda, 2005). The surface geology is ignimbrite (pyroclastic flow deposit) in the south and basalt sheet in the north (Omenda, 2005). The volcanic rocks overlie older sedimentary rocks (Omenda, 2005).

3.4. Study Area of Mount Berecha (Active)

The Mount Berecha area is located in the Main Ethiopian Rift (MER) near the Gademsa region (Figure 6).

The Berecha area consists of Pleistocene-Holocene volcanic complex with volcano-sedimentary rocks which are recent (Ayele et al., 2002). Berecha is mostly covered by ignimbrite rock, which are units of volcanic complex that belong to a bimodal magmatic suite that erupted between 830 ka and 20 ka (Ayele et al., 2002).

The tectonic and structural setting of Mount Berecha is mainly characterized by NNW-SSE and NW- transverse normal faults (Ayele et al., 2002). The Wonji Faults Belt trends in NNE-SSW which affects Gademsa caldera faulting and also the Mount Berecha region (Ayele et al., 2002).

Figure 7: Mount Berecha Study Area (Active Hydrothermal System)

The selected study area is in the active region of Mount Berecha, and has an area of approximately 71 hectares (0.714822 km²) (Figure 7). This area was selected because of the conducted gravity surveys that showed high gravity anomalies due to relatively shallow magmatic intrusions, suggesting a major heat source (Ayele et al., 2002). The recent study of Oluwadebi (2011) revealed that Mount Berecha hosts many hydrothermal alteration minerals such as kaolinite and calcite. This makes it an ideal location for further investigating altered zones and surface temperatures.

3.5. Study Area of Tendaho (Inactive)

The Tendaho area is located in the Afar Depression (Figure 8). This depression refers to a rifting activity that began during the lower Miocene (Gebregziabher, 1998). The first stage of the rift formation was characterized by a change in the magmatic product—from transitional basalt, peralkaline granite and rhyolites to a more alkali and undersaturated composition (Gebregziabher, 1998). The age of the graben is about 25-15 million years(Gebregziabher, 1998).

The second stage is characterized by the deposition of a large volume of acid volcanic with basaltic and intermediate lava dated between 15.3 and 3.3 million(Gebregziabher, 1998). The third stage consists of placement of basaltic Dalha series from 8.0 to 4.9 million years (Gebregziabher, 1998). The inner part of the depression became affected by tensional tectonics, with intense volcanic activity, mostly fissure type Afar stratoid series (Gebregziabher, 1998). It is believed that the Afar depression reached its present geological setting during the Pleistocene period (Gebregziabher, 1998). The intense tensional tectonics affected the entire depression and as a result, formed complex mosaics of horst and graben which are still active only in localized sedimentary basins (Gebregziabher, 1998).

Hydrothermal manifestations occur in various parts of the Tendaho rift, mainly in the form of steaming grounds in the northern parts (i.e., Aerobera), hot springs in Allalobeda, as well as mud pots and fumaroles (Gebregziabher, 1998). Drilling projects have revealed hydrothermal mineralogical assemblages consisting predominantly of clay, calcite, quartz, stilbite, laumonite, wairakite, prehnite and epidote(Gebregziabher, 1998).

Based on the distribution of the alteration minerals, the wells showed zones from low to high temperature zeolites and clay minerals concomitant with increasing temperate down to the bottom of the wells (Gebregziabher, 1998).

The study area selected is within the inactive region of Tendaho, in the inner part of the Afar Depression. The Tendaho graben is technically considered as part of an active structure. However, the selected study area of 64 hectares (0.644190 km²) has shown low enthalpy, making it a hydrothermal zone in an inactive site (Figure 9).

Figure 9. Tendaho Study Area (Inactive Hydrothermal System)

The area of study was selected because it was known to be the first low-sulphidation epithermal within the Afar Depression, according to Stratex International (2012), an international mining exploration and development company. Stratex International (2012) describes the site as having identified regional alterations with a number of feeder structures comprised of fine chalcedonic silica vein outcrops at the surface and the preservation of steam heated sinster at the top of the system, suggesting that the system was once active.

4. SPECTRAL MINERAL INDICES FOR ACTIVE & INACTIVE HYDROTHERMAL ZONES

The use of spectral mineral indices (also referred to as band ratios) is an effective means of detecting minerals based on their spectral reflectance/absorption (Van der Meer et al., 2012). In principle, applying a series of band ratios over known active and inactive hydrothermal systems is simple and easy. However, assessing how these band ratios can be used to differentiate between altered and unaltered rock *and* between active and inactive systems is a different and more challenging endeavor. Van der Meer et al. (2012) had suggested the use of several bands ratios for mapping various mineral assemblages in relation to different styles of alteration. As a response, this chapter will investigate the use of said band ratios and assess their usefulness in discrimination by using several different ASTER day images.

4.1. Data Preparation and Rationalization of Data Selection

Several multispectral datasets in the form of ASTER imagery were chosen for this study. As previously discussed, ASTER, compared to other available multispectral sensors, has higher spectral leverage (although certainly not as high as hyperspectral scanners), with 14 bands covering the Visible-Near Infrared, Shortwave Infrared and Thermal Infrared regions (3 bands in the VNIR, 6 bands in the SWIR, and 5 bands in the TIR) and in various spatial resolutions. Furthermore, ASTER imagery were ordered by the data provider (NASA), thus adding to its justification for use.

ASTER data products of processing level 2 were selected for the study (Table 1). Level 2 data products have been converted into absolute reflectance and went through the following processing steps:

Processing Level	Short Name	ASTER Product	Res (m)		
2	AST_07XT	Surface Reflectance – VNIR and Crosstrack Corrected SWIR: Surface reflectance containing atmospherically corrected data for both the Visible Near-Infrared (VNIR- 3 bands) and Shortwave Infrared (SWIR- 6 bands). The particular interest of using such a product is to differentiated minerals which can differentiate using SWIR. These minerals could include Carbonates, Silicates, and Kaolinite.	15, 30		
2	AST_05	Surface Emissivity: Generated using the five thermal infrared (I'IR) bands acquired during the day. It contains surface emissivity. The main goal of using this particular data is to accurately and precisely estimate mineral like silica in hydrothermal zones.	90		
Table 1. ASTER Level 2 Image Processing					

A total of six ASTER day scenes were selected for the task of investigating the potential of spectral mineral indices in differentiating between active/inactive systems and altered/unaltered rocks. These datasets have the following metadata:

Tendaho	Berecha		
Oct 11, 2003 (Wet Season)	Jan 12, 2003 (Dry Season)		
Jan 25, 2002 (Dry Season)	Feb 05, 2006 (Dry Season)		
Jan 01, 2005 (Dry Season)	Oct 16, 2005 (Wet Season)		
Table 2. Selection of ASTER Imagery			

The differences in the seasonality are expected to show variance that would, in turn, be useful for discrimination between the two systems. The different seasons may also help identify and eliminate the noise and variations that influence the result of the band ratios.

4.2. Data Processing: Removal of Vegetation and Selected Band Ratio (s)

Prior to image processing, the vegetation was masked from all the images. This was done by applying an NDVI and masking values that showed high NDVI index values. The cut-off values were determined from field images from Stratex and Google Map of where vegetation was occurring (The threshold cut-off were different for each season). This was done to enhance the spectral contrast of the mineral indices without the spectral influence of vegetation.

Several band ratios have been proposed to map mineral indices in a hydrothermal setting (see review by Van der Meer et al., 2012). Mineral band ratios were created by dividing the pixel values of the appropriate band by the same pixel values of another selected band. For this study, eight mineral indices as listed by Van der Meer et al. (2012) were used:

Carbonate/Mafic Minerals Common Ratio					
Carbonates/Chlorite/Epidote	(7+9)/(8)				
Silicates Common Ratio					
Sericite/Muscovite/Illite/Smectite (Phyllic Alteration)	(5+7)/(6)				
Alunite/Kaolinite/ Pyrophyllite	(4+6)/(5)				
Kaolinite	(7/5)				
Alteration	(4/5)				
Silica Common Ratio					
Silica	(11/10)				
Silica	(11/12)				
Silica	(13/10)				
Table 3. Several band ratios have been proposed to map mineral indices in a hydrothermal setting					

These ratios were what authors have found useful for mapping various mineral assemblages in relation to different styles of alteration (Van der Meer et al., 2012). Secondly, these indices correspond to minerals already found in Mount Berecha and Tendaho (see Review from Chapter 3).

4.3. Defining Regions of Interest (ROI) and Buffer Zones

ROI and buffer were used to extract pixel values from images for statistical analysis. To begin the unbiased discrimination of active and inactive alteration systems, a Region of Interest (ROI) was created and used as base for impending interpretation of results. Buffers of 100 m and 200 m were created around the ROI to assess possible differences between these buffer zones and the ROI. Both 100 m and 200 m buffers were selected to assess whether or not alterations occurred within those regions, but also investigate if differences can also be observed between the two buffer zones, as we move further away from the center of alteration.

Figures 10 and 11 illustrate the ROI set-up along with their corresponding buffer zones for both Mount Berecha and Tendaho. The green zone represents the known (active/inactive) hydrothermal alteration. The yellow and red zones represent the 100m and 200m buffers, respectively. The advantage of this arrangement is to understand the anomalies within these regions that can be plotted against hydrothermal zones and the buffer areas to see if patterns can be recognized. In this case, it would be the discrimination difference between the hydrothermal zones (ROI) and the unaltered zones (Buffer Zones).

4.4. Plotting Band Ratios DN Values using Box-and-Whisker and Statistical Tests

All pixel values from the various band ratios were plotted using the box-and-whisker for visual representation, which generally shows patterns and the spread of the values.

The groups that were evaluated on three requirements:

- 1. Hydrothermal Zone vs. 100m Buffer from the Hydrothermal Zone ROI
- 2. Hydrothermal Zone vs. 100m and 200m Buffer from the Hydrothermal Zone ROI
- 3. 100 m Buffer from Hydrothermal Zone ROI vs. 100m and 200m Buffer from Hydrothermal Zones ROI

This allows for easy assessment in the differences between the mean, median, extremes and quartiles of the hydrothermal zones and the buffer zones for each season/image. As a result, it was easy to establish the relationship between ratios that could be grouped to describe relationships between active and non-active hydrothermal alterations.

The grouping of results was based on the pixel values within the hydrothermal zones and the 100 m and 200 m buffer zones for each index for both Berecha and Tendaho. Figure 12 is an example of the boxand-whisker plots for the hydrothermal zone (ROI) and the two buffer zones for the carbonates, chlorite and epidote mineral indices for Berecha October 16, 2005. On the y-axis, the pixel values resulting from the said band ratios are plotted. The bottom and top of the box represent the lower and upper quartiles while the line inside the box represents the median. The ends of the whiskers are the minimum and maximum data values. The circles beyond the whiskers represent the outliers of the dataset.

Apart from visually displaying summary statistics of the data, statistical tests were conducted to quantify the level of discrimination between the hydrothermal zones and the buffered zones. The ANOVA Post Hoc test with unequal variance and sample size was computed. More specifically, the Tamhane's T2 and Dunnett's T3 test were used to calculate to allow for multiple comparisons among the hydrothermal and buffer zones wherein population variances are large and for different population sizes. The Tamhane's T2 test the conservative pair wise comparisons test based on the t test (SPSS, 2013). The test is appropriate when the variance is unequal (SPSS, 2013). The Dunnett's T3 test is a pair wise comparison test based on the Studentized maximum modulus(SPSS, 2013). This test is also appropriate when the variance is also unequal (SPSS, 2013).

4.5. Results

Two conditions were evaluated using the spectral mineral indices: (1) visual discrimination between the hydrothermal zones vs. buffer zones using box plots; and (2) statistical discrimination between the hydrothermal zones vs. the buffer zones using the ANOVA Post Hoc test.

Box plots were used to visualize the distribution of the pixel values of the hydrothermal zones and the buffer zones as obtained from each mineral index applied. Figure 13 is an example of a box plot showing the results of the Alunite/Kaolinite/Pyrophyllite mineral index (B4+B6/B5) applied to the images of Berecha for the following dates: Jan 12, 2003, Oct 16, 2005 and Feb 5, 2006:

In this figure, hydrothermal zones can be differentiated with the unaltered zones (100m and 200m buffer zones) during the dry season but not for the wet season. For example, for Jan 12, 2003 the hydrothermal zone shows a median value close to 2.4, while the buffer zones show a median value of 2.3. This suggests that the alunite, kaolinite, and/or pyrophyllite are better detected in the hydrothermal zones than in its corresponding buffer zones. In the case of the wet season (Oct 16, 2005), the median values between the hydrothermal zone and the buffer zones are different, but the overall spread of values for all three cases is similar. For example, the upper quartile of the 100m and 200 m buffer zones coincide with the median value of the hydrothermal zone. Moreover, the large values (outliers) are evident in all three zones. This indicates that their values are comparable, making it difficult to separate Alunite, Kaolinite, and/or Pyrophyllite during in the wet seasons.

Another example is the application of the Silica mineral index (B11/B10) on the Tendaho images for the following dates: Jan 25, 2002, Oct 11, 2003 and Jan 1, 2005 (Figure 14).

Unlike the results of the Alunite/Kaolinite/Pyrophyllite mineral index on the Berecha zones, the results of the Silica band ratio showed no visible difference in the box plot values of the hydrothermal zone and the buffer zones. For both dry and wet seasons, the hydrothermal zone exhibited silica values ranging from 0.95 to 1.05. The values for the buffer zones were also in the same range, although having smaller variance. The similarity in the range of the three zones renders the silica band ratio useless for discriminating between altered and altered zones in Tendaho. More importantly, this similarity implies the presence of silica in the buffer zones.

As a further step in the analysis, the use of the ANOVA Post Hoc test was employed to find significant differences (if any) in the pixel values of the images, as derived from the application of band ratios. For instance, the Alunite/Kaolinite/Pyrophyllite mineral index was found to be useful in differentiating hydrothermal zones from unaltered zones in Berecha during the dry seasons, but not during the wet season. In the results of the ANOVA, however, the wet season values of the buffer zones were found to be statistically different from the values of the hydrothermal zone at a 0.05 level of significance (see table 4). No significant difference was found between the values of 100m and 200m buffer zones, as also visualized through the box plot, and as expected, since both characterize unaltered rock.
An explanation was sought for the disagreement between the box plot and ANOVA results for the wet season image of Berecha. It appears that the outliers in the box plots of the buffer zones may have influenced the statistical outcome. The values of these outliers were traced back in the image and it was found that these were actually representations of large manifestation of kaolinite in low lying fields within the buffer zones, as shown in Figure 15. This suggests that the buffer zones also have hydrothermal alterations.

Figure 15. Low lying areas with surface manifestations of kaolinite(White). Source: (Oluwadebi, 2011)

I APPENDENT APPENDENT	/ariable:Pixel_Values						
Dependent			1			95% Confid	ence Interval
	(I) HZ Zones	(J) HZ Zones	Mean Difference (I- J)	Std. Error	Siq.	ower Bound	Upper Bour
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00602286*	.00224767	.022	.0006493	.01139
		100m and 200m Buffer from Hydrothermal Zone ROI	.00894166*	.00196521	.000	.0042439	.01363
-	100m Buffer from	Hydrothermal Zones ROI	00602286	.00224767		0113964	00064
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00291880	.00194198	.348	0017244	.00756
	100m and 200m Buffer	Hydrothermal Zones ROI	00894166	.00196521	.000	0136395	00424
	ROI	100m Buffer from Hydrothermal Zone ROI	00291880	.00194198	.348	0075620	.00172
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00602286*	.00224767	.022	.0006495	.01139
		100m and 200m Buffer from Hydrothermal Zone ROI	.00894166	.00196521	.000	.0042440	.01363
	100m Buffer from	Hydrothermal Zones ROI	00602286 [*]	.00224767	.022	0113962	00064
	Hydrothermal 20ne RUI	100m and 200m Buffer from Hydrothermal Zone ROI	.00291880	.00194198	.348	0017242	.00756
	100m and 200m Buffer	Hydrothermal Zones ROI	00894166*	.00196521	.000	0136393	00424
	ROI	100m Buffer from Hydrothermal Zone ROI	00291880	.00194198	.348	0075618	.00172

*. The mean difference is significant at the 0.05 level.

Jan 12,2003

Multiple Co	mparisons
-------------	-----------

Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(I) HZ Zones	(J) HZ Zones	Mean Difference (I- J)	Std. Error	Siq.	.ower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.05475465	.00619122	.000	.0399340	.0695753
		100m and 200m Buffer from Hydrothermal Zone ROI	.05917970"	.00485343	.000	.0475789	.0707805
	100m Buffer from	Hydrothermal Zones ROI	05475465	.00619122		0695753	0399340
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00442504	.00678471	.886	0118061	.0206562
	100m and 200m Buffer	Hydrothermal Zones ROI	05917970 [*]	.00485343	.000	0707805	0475789
	ROI	100m Buffer from Hydrothermal Zone ROI	00442504	.00678471	.886	0206562	.0118061
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.05475465	.00619122	.000	.0399353	.0695740
		100m and 200m Buffer from Hydrothermal Zone ROI	.05917970"	.00485343	.000	.0475793	.0707801
	100m Buffer from	Hydrothermal Zones ROI	05475465	.00619122	.000	0695740	0399353
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00442504	.00678471	.885	0118050	.0206551
1		Hydrothermal Zones ROI	05917970 [*]	.00485343	.000	0707801	0475793
	ROI	100m Buffer from Hydrothermal Zone ROI	00442504	.00678471	.885	0206551	.0118050

*. The mean difference is significant at the 0.05 level.

Oct 16, 2005

Multiple Comparisons

						95% Confid	ence Interval
	(I) H7 Zones	(DHZ Zones	Mean Difference (I-	Std Error	Sig	Lower Bound	Unner Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.08009132	.00491777	.000	.0683240	.0918587
		100m and 200m Buffer from Hydrothermal Zone ROI	.08669644"	.00384234	.000	.0775129	.0958800
	100m Buffer from	Hydrothermal Zones ROI	08009132	.0049177	000	0918587	0683240
	100m Buffer from Hydrothermal Zone ROI 100m and 200m Buffer from Hydrothermal Zone ROI Hydrothermal Zones ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00660513	.0048743	.440	0050588	.0182691
	100m and 200m Buffer	Hydrothermal Zones ROI	08669644*	.00384234	.000	0958800	0775129
	rrom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	00660513	.00487438	.440	0182691	.0050588
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.08009132	.00491777	.000	.0683248	.0918578
		100m and 200m Buffer from Hydrothermal Zone ROI	.08669644*	.00384234	.000	.0775132	.0958797
	100m Buffer from	Hydrothermal Zones ROI	08009132	.00491777	.000	0918578	0683248
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00660513	.00487438	.440	0050580	.0182682
	100m and 200m Buffer	Hydrothermal Zones ROI	08669644	.00384234	.000	0958797	0775132
	rrom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	00660513	.00487438	.440	0182682	.0050580

*. The mean difference is significant at the 0.05 level.

Feb 5, 2006

Table 4. Results of the ANOVA Post Hoc test on the Alunite/Kaolinite/Pyrophyllite pixel values for the Berecha images. The red boxes explain the statistical significance, while the green represent not sig. Values that are not significant.

As previously discussed, the application of the Silica mineral index (B11/B10) for the Tendaho images showed no visual difference in the box plots. The statistical results of the same ratio, however, reveal the opposite. The ANOVA Post Hoc test results show a significant difference (at 0.05) between the band ratio values of hydrothermal zones and the buffer zones in both wet and dry seasons. When reflecting back on Figure 13, the box plot of the hydrothermal zone showed high variability in pixel values, compared to the pixel values of both the 100m and 200m buffer zones. Recall that the ANOVA Post Hoc test looks at the difference not only in sample means but also in sample variances. The pixel values for the hydrothermal zone for Jan 1, 2005, for instance, had values ranging from 0.985 to 1.05 but the buffer zones showed a different range, from 1.00 to 1.023. This subtle difference in the range of values between the altered and unaltered zones may have caused the statistical difference. The results of the visual test and the statistical test cannot be reconciled with each other, and as a consequence, the differentiation between altered and unaltered zones using this specific band ratio cannot be determined.

Next, the results from each index were summarized into a table, to distinguish when indices can be used to discriminate between active and inactive systems. The results showed that not all band ratios work and that the outcome of whether the site was active or inactive. For discriminating carbonate, chlorite and epidote, table 5 shows this that ratio would be difficult to use for discriminating between active and inactive sites, neither between altered vs. Unaltered.

On the contrary, band ratio's for discriminating sericite, muscovite, illite, smectite and general alteration can be use to discriminated for an active site like Berecha. Unfortunately, these band ratios do not apply for discriminating the inactive region of Tendaho. There are special cases where the discrimination is appealing. For instance, for discriminating kaolinite, alunite and pyrophyllite for an active region is possible only in the dry seasons and not for the wet season. Also for the silica, the results illustrate the discrimination is very difficult among both the active and inactive regions. Coincidently, the only scenario where Tendaho is possible to discriminate is the silica band ratio of (b13/b10) and (b11/b12) for Jan 25, 2002 (HZ vs. 100m and 200m), Oct 11, (HZ vs. 200m) and Jan 1, 2005 (HZ vs. 200m). The silica band ratio's (b11/b10) don't show convenient results for discrimination for Tendaho.

In general most band ratios showed some various sensitivity of discrimination in the active regions but not for the inactive regions. It is difficult to tabulate proper results for the inactive region, since the results did not correspond to the visual differences and the statistical results. The table 5 is a summary of the tabulated indication, where the red box describes the differentiation is no possible, while the green box illustrates differentiation is possible. The (*) is an indication of the mean difference being significant at 0.05 level. The tabulated results show a comparison between Hydrothermal Zones vs. 100m (HZ vs. 100m), Hydrothermal Zones vs. 200m buffer (HZ vs. 200m) and 100m Buffer vs. 200m Buffer (200m vs. 100m).

Table 5. Summary of the Band Ratio and Statistical test discrimination between the HZ and buffered zones. The tabulated indication, where the red box describes the differentiation is not possible, while the green box illustrates differentiation is possible. The (*) is an indication of the mean difference being significant at 0.05 level.

Mineral Feature					Berecha				
	Jan 12	,2003 (Dry Se	ason)	Oct 16	,2005 (Wet S	eason)	Feb 5,2006 (Dry Season)		
Carbonate/Chlorite/Epidote	HZ	HZ	100m	HZ	HZ	100m	HZ	HZ	100m
(b7 + b9 / b8)	vs. 100m	vs. 200m	vs.	vs. 100m	vs.	vs.	Vs. 100m	Vs. 200m	vs.
			200m		200m	200m			200m
Box Plot Visual Differences									
ANOVA Tamhane's Test					*	*			
ANOVA Dennett's Test					*	*			
					Tendaho				
	Jan 25	,2002 (Dry Se	ason)	Oct 11	,2003 (Wet S	eason)	Jan 1, 2005 (Dry Season)		
Box Plot Visual Differences									
ANOVA- Tamhane's Test	*	*		*	*		*	*	
ANOVA- Dennett's Test	*	*		*	*		*	*	

Mineral Feature					Berecha					
	Jan 12	2,2003 (Dry Se	ason)	Oct 16	Oct 16,2005 (Wet Season)			Feb 5,2006 (Dry Season)		
Sericite/ Muscovite/ Illite/	HZ	HZ HZ 100m			HZ vs.	100m	HZ	HZ	100m	
Smectite	vs. 100m	vs. 200m	vs.	vs. 100m	200m	vs.	Vs. 100m	Vs. 200m	vs.	
(b5 + b7 / b6)			200m			200m			200m	
Box Plot Visual Differences										
ANOVA Tamhane's Test	*	*	*	*	*	*	*	*	*	
ANOVA Dennett's Test	*	*	*	*	*	*	*	*	*	
					Tendaho					
	Jan 25	5,2002 (Dry Se	ason)	Oct 11	,2003 (Wet Se	eason)	Jan 1,	2005 (Dry Seas	on)	
Box Plot Visual Differences										
ANOVA- Tamhane's Test	*	*		*	*		*	*		
ANOVA- Dennett's Test	*	*		*	*		*	*		

Mineral Feature					Berecha				
	Jan 12	2,2003 (Dry Se	eason)	Oct 16	,2005 (Wet S	eason)	Feb 5,2006 (Dry Season)		
Alunite/ Kaolinite/	HZ	HZ	100m	HZ	HZ vs.	100m	HZ	HZ	100m
Pyrophyllite	vs. 100m	vs. 200m	vs.	vs. 100m	200m	vs.	Vs. 100m	Vs. 200m	vs.
(b4 + b6 / b5)			200m			200m			200m
Box Plot Visual Differences									
ANOVA Tamhane's Test	*	*		*	*		*	*	
ANOVA Dennett's Test	*	*		*	*		*	*	
					Tendaho				
	Jan 25	5,2002 (Dry Se	eason)	Oct 11	,2003 (Wet S	eason)	Jan 1,	2005 (Dry Seas	on)
Box Plot Visual Differences									
ANOVA- Tamhane's Test	*	*		*	*	*	*	*	
ANOVA- Dennett's Test	*	*		*	*	*	*	*	

Mineral Feature					Berecha					
	Jan 12	,2003 (Dry Se	ason)	Oct 16	Oct 16,2005 (Wet Season)			Feb 5,2006 (Dry Season)		
Kaolinite	HZvs.	HZvs. HZ 100m			HZ vs.	100m	HZ	HZ	100m	
(b7 / b5)	100m	vs. 200m	vs.	vs. 100m	200m	vs.	Vs. 100m	Vs. 200m	vs.	
			200m			200m			200m	
Box Plot Visual Differences										
ANOVA Tamhane's Test	*	*		*	*	*	*	*		
ANOVA Dennett's Test	*	*		*	*	*	*	*		
					Tendaho					
	Jan 25	Jan 25,2002 (Dry Season) Oct 11,2003 (Wet Season) Jan 1, 2005 (Dry Sea							on)	
Box Plot Visual Differences										
ANOVA- Tamhane's Test	*	*		*	*		*	*		

ANOVA- Dennett's Test

Mineral Feature					Berecha					
Milleral Feature					Dereena					
	Jan 12	2,2003 (Dry Se	ason)	Oct 16	Oct 16,2005 (Wet Season)			Feb 5,2006 (Dry Season)		
Alteration	HZ	HZ	100m	HZ	HZ vs.	100m	HZ	HZ	100m	
(b4 / b5)	vs. 100m	vs. 200m	vs.	vs. 100m	200m	vs.	Vs. 100m	Vs. 200m	vs.	
			200m			200m			200m	
Box Plot Visual Differences										
ANOVA Tamhane's Test	*	*	*	*	*		*	*	*	
ANOVA Dennett's Test	*	*	*	*	*		*	*	*	
					Tendaho					
	Jan 25	,2002 (Dry Se	ason)	Oct 11	,2003 (Wet S	eason)	Jan 1,	2005 (Dry Seas	on)	
Box Plot Visual Differences										
ANOVA- Tamhane's Test	*	*			*		*	*		
ANOVA- Dennett's Test	*	*			*		*	*		

Mineral Feature					Berecha					
	Jan 12	2,2003 (Dry Sea	ason)	Oct 16,	Oct 16,2005 (Wet Season)			Feb 5,2006 (Dry Season)		
Silica	HZ	HZ HZ 100m			HZ	100m	HZ	HZ	100m	
(b11 / b10)	vs. 100m	vs. 200m	vs.	vs. 100m	vs.	vs.	Vs. 100m	Vs. 200m	vs.	
			200m		200m	200m			200m	
Box Plot Visual Differences										
ANOVA Tamhane's Test		*		*	*					
ANOVA Dennett's Test		*		*	*					
					Tendaho					
	Jan 25	5,2002 (Dry Sea	ason)	Oct 11,	,2003 (Wet Se	eason)	Jan 1, 1	2005 (Dry Seas	on)	
Box Plot Visual Differences										
ANOVA- Tamhane's Test	*	*		*	*		*	*		
ANOVA- Dennett's Test	*	*		*	*		*	*		

Mineral Feature					Berecha					
	Jan 12	2,2003 (Dry Se	ason)	Oct 16	Oct 16,2005 (Wet Season)			Feb 5,2006 (Dry Season)		
Silica	HZ HZ 100m			HZ	HZ	100m	HZ	HZ	100m	
(b11 / b12)	vs. 100m	vs. 200m	vs.	vs. 100m	vs.	vs.	Vs. 100m	Vs. 200m	vs.	
			200m		200m	200m			200m	
Box Plot Visual Differences										
ANOVA Tamhane's Test							*	*		
ANOVA Dennett's Test							*	*		
					Tendaho					
	Jan 25	5,2002 (Dry Se	ason)	Oct 11	,2003 (Wet S	Season)	Jan 1,	2005 (Dry Seas	son)	
Box Plot Visual Differences										
ANOVA- Tamhane's Test	*	*		*	*		*	*		
ANOVA- Dennett's Test	*	*		*	*		*	*		

Mineral Feature					Berecha				
	Jan 12	2,2003 (Dry Se	ason)	Oct 16,	,2005 (Wet Se	eason)	Feb 5,2006 (Dry Season)		
Silica	HZ	HZ HZ 100m			HZ	100m	HZ	HZ	100m
(b13 / b10)	vs. 100m	vs. 200m	vs.	vs. 100m	vs.	vs.	Vs. 100m	Vs. 200m	vs.
			200m		200m	200m			200m
Box Plot Visual Differences									
ANOVA Tamhane's Test	*	*					*	*	
ANOVA Dennett's Test	*	*					*	*	
					Tendaho				
	Jan 25	5,2002 (Dry Se	ason)	Oct 11,	,2003 (Wet Se	eason)	Jan 1,	2005 (Dry Seas	on)
Box Plot Visual Differences									
ANOVA- Tamhane's Test	*	*		*	*		*	*	
ANOVA- Dennett's Test	*	*		*	*		*	*	

5. NIGHT-TIME TIR IMAGERY FOR ACTIVE & INACTIVE HYDROTHERMAL ZONES

This chapter aims to investigate the surface temperature differences between active and inactive hydrothermal zones. Night-TIR is utilized because it is less affected by solar irradiation during the day, thereby making it easier to identify possible anomalies. However, thermal effects due to differential solar heating and shadowing that are greatly dependent on the acquisition time may be present in the Night-TIR images. Hence, corrections for removing false anomalies such as lapse rate, slope and aspect effect, must be considered (Ulusoy et al., 2012).

Before going into the methods of processing the Night-TIR imagery used in this specific part of the research, an understanding of the above mentioned thermal effects must be made. Such knowledge is crucial for assessing image quality before even attempting image processing. One such effect is the lapse rate, which is the negative change of actual temperature with altitude (-dT/dz) (Ulusoy et al., 2012). Lapse rate is region- and season-specific. The two study areas in this research are geographically different, and would therefore need different lapse rate corrections. In particular, the lapse rate would have a strong effect on the TIR imagery because of the considerable difference in altitude for both study areas. For Berecha the elevation ranges from 1500m to 2500m, while Tendaho is from 350m to 650m.

Another correction that would need to be taken into account is the absorbed solar radiation, which is the function of surface albedo and the illumination effect (Ulusoy et al., 2012). This can be examined by looking at the aspect and the slope values of a pixel (Ulusoy et al., 2012). Different geological surface properties respond differently to solar radiation, resulting in various surface temperatures (Ulusoy et al., 2012). A demonstration of this effect is in the strong anomalies in uncorrected images caused by warmer sun-facing slopes (Ulusoy et al., 2012). Also, night-time images carry residual temperature differences from the day that are still visible and need to be corrected from the aspect and slope. In the case of the Ethiopian Rift valley where the topographic slopes are gradual, this effect may be minimal, but should still be taken into account in order to detect thermal anomalies.

5.1. Code of IDL of Methodology of STcorr: Topographic Correction of ASTER Images

STcorr is an Interactive Data Language (IDL) code for the correction of altitude, aspect and slope effects in the night-time thermal imagery using an image based polynomial regression analysis (Ulusoy et al., 2012). The code uses surface kinetic temperature image, digital elevation model (DEM), aspect image and the slope image to help remove lapse rate and illumination effects and generate an output image with actual thermal anomalies (Ulusoy et al., 2012).

Some of the limitation to this application; There is no albedo and thermal inertia corrections(Ulusoy et al., 2012). The albedo is important since the night-time images, the albedo affects are noticeable in the ASTER night images(Ulusoy et al., 2012). For the thermal inertia, the correction does not take into account the difference of geological material being heated and cooled off(Ulusoy et al., 2012).

The STcorr IDL code is implemented through a standalone application in ENVI is specifically designed to correct ASTER night time surface temperature images (Ulusoy et al., 2012). The application has important capabilities in detecting geothermal anomalies as. For further information on the regression algorithm used in STcorr, the reader is guided to the paper of Ulusoy et al. (2012). The steps involved in TIR image correction are as follows:

Step (s)	Image Normalization	Purpose of the Correction/Formula
1	Lapse rate image	Lapse Rate produced using the surface kinetic temperature and the DEM. This image represents the lapse rate according to the relationship between altitude and surface temperature.
2	Aspect gradient image	Aspect correction is achieved using the relation between altitude and the lapse rate corrected thermal image. This is a gradient image used to normalize the surface temperature anomaly to produce aspect-correct image.
3 Figure 16	Steps Involved in ST corr Correction	Slope correction, uses the aspect-corrected image and the slope image to generate a slope corrected image.

5.2. Data Selection and Preparation

ASTER night TIR imagery of level 2 processing was selected for the study. A total of four images were selected for the task of investigating the surface temperature differences between active/inactive systems and altered/unaltered rocks. These datasets have the following image processing steps and metadata:

Level	Short Name	ASTER Product	Res (m)
		Surface Kinetic Temperature: This specific data	90
2	AST_08	contains 1 band with surface temperature at 90m	
		spatial resolution. Surface kinetic Temperature was	
		selected because of it requirements with STcorr	
		application. Previous studies have used this specific	
		data to study volcanism, thermal inertia, and surface	
		temperature for geothermal studies.	
Data Product	Capture Resolution	Pixel Resolution	
SRTM – Filled	3 arc second	90m	
Table 6. The data	a used for the thermal cor	rection	

The AST_08 and the SRTM were basic requirements to run the STcorr application. The DEM was resampled to the AST_08 images resolution before any processing was executed. The STcorr also required aspect image and slope image from the resampled DEM. Aspect and slope images need to be between 1 and 360°. Figure 16 provides an overview of the data preparation of Berecha required for STcorr.

5.3. Regression Computation for Corrections

The initial corrections are based on regression fits to create the images related to lapse rate, gradient and the slope correction. The regression is based on polynomial fits to the image and these polynomials fits can be fitted from the 1st to 6th degree. These generate images of the lapse rate, slope and aspect image to help normalize the thermal anomalies and improve the quality of the true anomaly. The basic concept of this polynomial fit is to correct for the relict illumination (remove artifacts), which occurs during cooling at nights(Ulusoy et al., 2012).

5.4. Methodology for Analysis of Thermal Anomalies

The regions of interest and buffer zones used for the thermal imagery analysis are identical to those used in the analysis of mineral indices (see Section 4.3). Similar ROIs and buffer zones were required for this analysis in order to integrate later on the results of both the spectral mineral indices and the surface temperature differences. Likewise, the visual and statistical analyses for the surface temperature anomalies also follow the same procedure as described in Section 4.4. In this case, however, the analysis is conducted on the corrected thermal images of the STcorr.

Similar to section 4.5, two conditions of were evaluated; (1) visual discrimination between the hydrothermal zones vs. buffer zones using the box plot, (2) statistically discrimination between the hydrothermal zones vs. the buffer zones using the ANOVA Post Hoc test (Tamhane's and Dennett's because of unequal variance and sample size).

5.5. Results

The results of the differentiation between surface temperature of active and inactive sites are illustrated using scatter plots of Temperature vs. Altitude, Aspect and Slope was investigated (Figure 18).

An inverse relationship exists between temperature and altitude, with decreasing temperature as elevation increases. The Berecha area has varying altitudes, resulting in temperature gradients (see Figure 17). In Figure 17, the green areas represent thermal anomalies in the caldera area, suggesting that these areas are active. Meanwhile, the red areas depict surface temperatures caused by night-time katabatic winds, which take air from high elevation down slopes (Tucker & Pedgley, 1977). The corresponding scatter plot shows the "real" active areas as well as the cold areas.

When investigating the corrections for the "Temperature versus Aspect", the corrections show the aspect to have consistent temperature ranges from 5°C to -5°C (Figure 18). The altitude was corrected for extreme temperature anomalies for better contrast. The lapse rate is the main contributing factor for creating false anomalies due to the elevation. In the case of the "Temperature Anomaly verse Aspect", the plot reveals the aspect has less of a contributing factor for correction when compared to the elevation (Figure 18). For the "Temperature Anomaly verse Slope" graphs, the change of temperature anomaly with respect to slope shows a constant trend, indicating a constant temperature with varying slope conditions. The slope effect is relatively less when compared to the aspect and the altitude.

The end result is the anomalies corrected according to the user definitions and these can be used to discriminate between the hydrothermal zones and the buffer zones for both Berecha and Tendaho.

To better understand the sensitivity of the results from different settings, images of different seasons were experimented with several polynomial fits. Sensitivity to scale was also tested between small image subsets and the entire image.

Table 7 summarizes the results from the box plot and the ANOVA analysis. For the case of Berecha, using the 1st polynomial fit, the box plot showed that the active hydrothermal zone could not be differentiated from the 100m buffer zone but was differentiable from the 200m buffer zone. Statistically, however, the difference between the 100m buffer zone and the hydrothermal zone were found to be significant, thus, adding to the list of mixed results of the visual and statistical tests. Moreover, for the wet season (Aug 8, 2010), it is completely impossible to tell apart visually and statically the altered and unaltered zones.

For the 2nd polynomial fit, the box plot showed hardly noticeable differences between the hydrothermal zone and the buffer zones. Statistically, however, the difference between the altered zone and the 200 m buffer zone was significant in both wet and dry season images. In general, the box plots for Berecha region could not differentiate between altered and unaltered zones, either in wet or dry seasons, except in the isolated case of the first polynomial fit of HZ_ROI vs. 200 m.

For Tendaho (Inactive region), the surface temperatures could not be discriminated between the hydrothermal zone and the buffer zones visually or statistically, suggesting little or no contrast between the surface temperatures. This is expected since the hydrothermal zone is an inactive region and should not exhibit observable contrast in surface temperatures.

When investigating the sensitivity of the thermal image from that of a small subset versus the whole image, the sensitivity is less reliable when it comes to discriminating active regions. The small subset area, demonstrate discrimination is more receptive as compared to the entire image. This is due to the fact that the entire images have a higher effect of relict diurnal heat, making it difficult to discriminate from a framework of a known hydrothermal alteration. What this reveals is an issue correction if the study was to investigate surface temperature from **unknown** alterations. In that case for Tendaho, the results confirm there is no contrast between the masked subset image and the whole image since this is an inactive area.

Table 7. The results is the summary of the thermal discrimination, where red boxes mean it can't be
discriminated, while the green box indicates that discrimination is possible. The (*) indicate there is statistical
significance at 0.05

Polynomial Fit Type			Berech	na (Active)				
(Small Extent)	Feb	2, 2003 (Dry Sea	ason)	Aug	g 8,2010 (Wet Sea	son)		
1 st Polynomial Fit	HZ_ROI	HZ_ROI	100m	HZ_ROI	HZ_ROI	100m		
	vs. 100m	vs. 200m	vs. 200m	vs. 100m	vs. 200m	vs. 200m		
Box Plot Visual Differences								
ANOVA Tamhane's Test	*	*						
ANOVA Dennett's Test	*	*						
			Berech	na (Active)				
2 nd Polynomial Fit	HZ_ROI	HZ_ROI	100m	HZ_ROI	HZ_ROI	100m		
-	vs. 100m	vs. 200m	vs. 200m	vs. 100m	vs. 200m	vs. 200m		
Box Plot Visual Differences								
ANOVA- Tamhane's Test		*		*				
ANOVA- Dennett's Test		*		*				

Polynomial Fit Type		Tendaho (Inactive)						
(Small Extent)	Sept	30, 2002 (Wet S	eason)	Ma	Mar 2,2010 (Dry Season)			
1 nd Polynomial Fit	HZ_ROI	HZ_ROI	100m	HZ_ROI	HZ_ROI	100m		
	vs. 100m	vs. 200m	vs. 200m	vs. 100m	vs. 200m	vs. 200m		
Box Plot Visual Differences								
ANOVA Tamhane's Test								
ANOVA Dennett's Test								
			Tendah	o (Inactive)				
2 rd Polynomial Fit	HZ_ROI	HZ_ROI	100m	HZ_ROI	HZ_ROI	100m		
-	vs. 100m	vs. 200m	vs. 200m	vs. 100m	vs. 200m	vs. 200m		
Box Plot Visual Differences								
ANOVA- Tamhane's Test								
ANOVA- Dennett's Test								

Imagery Difference		Berecha (Active)					
	Feb	2, 2003 (Dry Sea	ison)	Auş	g 8,2010 (Wet Sea	son)	
Small Subset Image	HZ_ROI	HZ_ROI	100m	HZ_ROI	HZ_ROI	100m	
	vs. 100m	vs. 200m	vs. 200m	vs. 100m	vs. 200m	vs. 200m	
Box Plot Visual Differences							
ANOVA Tamhane's Test	*	*					
ANOVA Dennett's Test	*	*					
			Berech	na (Active)			
Whole Image	HZ_ROI	HZ_ROI	100m	HZ_ROI	HZ_ROI	100m	
5	vs. 100m	vs. 200m	vs. 200m	vs. 100m	vs. 200m	vs. 200m	
Box Plot Visual Differences							
ANOVA- Tamhane's Test		*					
ANOVA- Dennett's Test		*					

Imagery Difference		Tendaho (Inactive)						
	Sept	30, 2002 (Wet Se	eason)	Ma	r 2,2010 (Dry Seas	son)		
Small Subset Image	HZ_ROI	HZ_ROI	100m	HZ_ROI	HZ_ROI	100m		
_	vs. 100m	vs. 200m	vs. 200m	vs. 100m	vs. 200m	vs. 200m		
Box Plot Visual Differences								
ANOVA Tamhane's Test								
ANOVA Dennett's Test								
			Tendah	o (Inactive)				
Whole Image	HZ_ROI	HZ_ROI	100m	HZ_ROI	HZ_ROI	100m		
_	vs. 100m	vs. 200m	vs. 200m	vs. 100m	vs. 200m	vs. 200m		
Box Plot Visual Differences								
ANOVA- Tamhane's Test								
ANOVA- Dennett's Test								

6. DISCUSSION

In this chapter, results from chapter 5 and 6 are discussed in the context of the original research objectives.

6.1. Characterization of Hydrothermal Zones using Mineral Indices.

The objective of Chapter 4 was to assess whether applying mineral indices on ASTER datasets would yield differences in the pixel values between hydrothermal zones and buffered zones for both the active and inactive systems. The results showed that the characterization of active and inactive hydrothermal alterations using band ratios is very difficult. The summary of the results of the 8 band ratios (Table 14) suggest that the use of the said band ratios in achieving its assigned purpose was inconclusive. Some band ratios were found to be efficient in distinguishing between a hydrothermal zone and an adjacent unaltered zone (e.g., 100 m buffer) in an active system (e.g., Kaolinite band ratio for Berecha), but not for an inactive system. Likewise, bands ratios such as silica were able to distinguish the hydrothermal zones from the unaltered buffer zone for Tendaho (inactive system) but not for Berecha. Regardless, there were also major inconsistencies for establishing which band ratios were useful, since the comparison between the visual box-plot and statistical analysis were not matching.

The statistical results also posed another complexity, especially in areas where discrimination was apparently difficult, as evidenced by the box plots where values of an ROI and a 100 m area were visually the same. The ANOVA test may, at certain instances, suggest that these two areas are statistically different at a 95% level of significance, despite hardly noticeable difference in the box plot. This was attributed to the fact that statistical tests such as the ANOVA post-hoc takes into account not only the means, but also the variance in the unequal sample size that it is analyzing. For example, for Tendaho the discrimination for several band ratios (e.g. Silica) illustrate no differences visually but the statistical test explains the hydrothermal zones and the buffer zones are statistically significant. Still, when looking back to the box plot it was clear that the number of outliers had numerically defined the test to be significant, while the visual observations showed no discrimination. In this circumstance, it would be best to accept the visual alterations and its surrounding. The results suggest that certain band ratios are ideal for discriminating between hydrothermal zones and unaltered zones in certain systems, but such results would need to be further investigated for clarification.

Many concerns have risen regarding the proper selection of mineral indices for discrimination between altered and unaltered rock. One factor is the selection of the buffer zones and if the buffers were optimally selected for discriminating between altered and unaltered rock.

From literature, it is known that these hydrothermal systems are much localized but are also scale dependent (Elder, 1981). Buffer zones of 100 meter and 200 m were selected in an unbiased manner. However, these sizes may not be sufficient for discriminating between altered and unaltered zones. For example, the results from the Alunite/Kaolonite/Porphyllite band ratio suggest that the buffer zones may still be actually be part of the designated hydrothermal zone. Determining the size of so-called localized alteration zones is unclear, much more the determination of the start of unaltered rock.

For the case of Berecha, the study area is situated in an active area beside a lake, where active hydrothermal alterations are occurring. But to truly discriminate in an "unbiased" manner, it would better to select several study sites in Berecha and test if the mineral indices show similar patterns. This also opens the idea of examining if possible classifications might be needed, if several study sites tend to show different mineral characteristic within an active system. This will also follow the same framework for differentiating inactive systems.

6.2. Issues of Sensitivity of Band Ratios and Methodological Framework

Using band ratios for the discrimination between altered and unaltered zones poses a lot of difficulties that further pose problems when reconciling the characterization of active and inactive systems. One issue is the "sensitivity" of band ratios to differences in seasonality, active and inactive systems, and to the selected regions (for altered and unaltered areas). This sensitivity issue was also evident in the statistical results, wherein differences were seemingly found for areas that visually, were clearly similar. This has to do with the outliers affecting the statistical significance for discrimination. In this case, the box plot illustrates a better representation of the true geological scenario, since the hydrothermal zones were selected from known sites.

Another concern was the standard AST_07XT data products used to compute the band ratios. Mars and Rowan (2010) have stated that the AST_07XT radiative transfer model was inaccurate, there is a wide spectral variation in the SWIR. The authors also addressed the concern for the low band 5 reflectance's in the AST_07XT, which affect the discrimination for minerals like alunite. Mars and Rowan (2010) then suggested the use of ASTER Refl1b data as this was more consistent and spectrally more correct than the AST_07XT. Since the latter was used for this study, the spectral discrimination between minerals such as alunite and kaolinite was not possible without proper spectral calibration. As a consequence, the results from band ratios could be inaccurate as the pixel values from the SWIR were higher than normal at values around 2.0 μ m.

Another concern is the framework for which discrimination was implemented. Only one sample study area was essentially used for both the active and inactive areas. Since the statistical tests are being sampled for different ratios, the concern is on the accuracy, let alone, the appropriateness of using one sample to represent for both active and inactive sites. Ideally, it would not be significant to conduct statistical tests under one site over numerous band ratios to accurately characterize a region. In the statistical context, this is a case of over-parameterizing, wherein one dependent variable (1 ROI = 1 sample) is being tested with numerous independent variables (which in this case, are the pixel values resulting from the band ratios). It is difficult to be convinced that the results gained from Mount Berecha can be conclusive for all other active hydrothermal systems; and the same premise goes for Tendaho for other inactive systems.

6.3. Characterization of Hydrothermal Zones using Night-time TIR and its Sensitivity

The objective was to assess whether applying corrected night-time images available with ASTER datasets would yield differences in surface temperatures between hydrothermal zones and unaltered zones for both the active and inactive systems. The results had shown that characterization is very sensitive to seasonalities for an active region (Berecha). The active hydrothermal zones shows some contrast during the dry season but is hindered during the wet season. For areas with contrast the box plot visualizations did not seem to agree with their statistical equivalents. This is particularly exemplified between the hydrothermal zone and the buffer zones for both the 1st and 2nd polynomial fits. For the case of Tendaho, the results showed no observable temperature contrasts between altered and unaltered zones. This is expected, since this is an area where there is very little enthalpy from a system that has been inactive. In conclusion, active and inactive hydrothermal zones can be differentiated using night-time TIR. However, for the active regions, two aspects need to be taken into account for discrimination.

The first aspect is that discrimination is largely dependent on the regression fitted to the image. The sensitivity is highly dependent on the regression fitted by the *user*. In this case for the 1st polynomial fit of Berecha at Feb 2, 2003, the visual distinction between the hydrothermal zone and the 100m buffer zone is not clear, but can be characterized between the 200m. What this suggests is the imprint of the surface temperature for an active system is larger, when compared to the hydrothermal zone outlined in the framework. For the case of a 2nd polynomial fit of Feb 2, 2003, the results show no visual difference between the box plot but the statistical results showed otherwise, due to outliers in both the 100m and 200m buffer zones. Overall, the sensitivity to different regression fits can hinder the conclusion of differentiation for active systems from inactive hydrothermal zones. Furthermore is the user-dependent selection of the proper fit, which is subjective.

The second circumstance is the sensitivity of discrimination between a small subset versus the entire image. Small image subsets yield better discrimination for active hydrothermal alterations. Moreover, working with entire images may hamper proper discrimination of active systems, due to the effects of diurnal heating on a large scale. For the Ethiopian Rift, a large area may also be largely influenced by the differential cooling rate of various lithology (sediments).

6.4. Optimal Method for correcting night-time TIR

Producing an optimal framework for correcting images was a very difficult task. Preferably working with images as a whole would be better with the justification that the masking out of large thermal anomalies such as water bodies, hot springs and correcting for the differential cooling for the various lithology in the Ethiopian Rift can be done for a large area. This was clear when investigating the difference between working with a mask subset as compared to the entire image. The mask subset images showed better discrimination between the active and inactive zones. However, selecting various seasons for correction is an excellent means for comparing differences in the image to and to suggest if a region is active or inactive. Again, it is important to note that the different fits can influence the sensitivity for an active system but more importantly, these can hinder the interpretation of an unknown area between active and inactive regions. It is apparent from a known hydrothermal framework that sensitivity is erratic to different polynomial fits. Basically, the different regression techniques can affect the sensitivity of the thermal images, and as a result can affect the discrimination between active zones.

7. CONCLUSION AND RECOMMENDATIONS

In this research the characterization of active and inactive hydrothermal alteration systems was studied using band ratios and corrected night-time TIR images. The results from the application of band ratios on both inactive and active zones and in different seasonality were inconclusive. Band ratio values were unusually high for AST_07XT images. The sensitivity issue was also reflected in the results of the statistical tests: statistical differences were found for areas that were visually similar in the box plots, and this was due to the outliers in the data.

Working with night-time imagery had also illustrated sensitivity to polynomial fits. Any chosen polynomial fit, which is user defined, results in different interpretation of active zones. For inactive zones, however, the polynomial fitting did not affect the discrimination, but this is expected since this is a region that is inactive.

Nevertheless, the study gave insight into the scale of temperature gradients, which are not localized to hydrothermal zones only, but actually have larger imprints that also influence other areas (active and inactive) in the Ethiopian Rift Valley system.

7.1. Recommendations

Based on the results and issues discussed in this research, certain precautious should be kept in mind when attempting characterization of active and inactive hydrothermal systems. The following points are recommended:

- Use of mineral band ratios and ANOVA Post Hoc tests or other statistical tests
- Select more than one sample site for both active and inactive regions in order to properly characterize active and inactive hydrothermal zones.
- The use of AST_07XT data is not recommended, rather, the use of ReL1b data (see Mars & Rowan, 2010) for the corrected spectra
- Create several ROI and buffer zones for active and inactive zones; use the corrected thermal images to see if discrimination is possible.
- Look at the profiles of the corrected surface temperature images and establish possible markers for active and inactive zones
- Test the accuracy of the characterizations of active and inactive regions by applying it to an entire (larger) image.

LIST OF REFERENCES

- Abrams, M. J., Ashley, R. P., Rowan, L. C., Goetz, A. F. H., & Kahle, A. B. (1977). Mapping of hydrothermal alteration in the Cuprite mining district, Nevada, using aircraft scanner images for the spectral region 0.46 to 2.36µm. *Geology*, 5(12), 713-718. doi: 10.1130/0091-7613(1977)5<713:mohait>2.0.co;2
- Ayele, A., Teklemariam, M., & Kebede, S. (2002). Geothermal Resource Exploration in The Abaya and Tulu Moye-Gedemsa Geothermal Prospects, Main Ethiopian Rift (H.-E. G. a. G. Department, Trans.): Geological Survey of Ethiopia.
- Berhanu, G. (2008). Geothermal Exploration and Development in Ethiopia *Geothermal Training Programme*. Reykjavik, Iceland: United Nations University.
- Carranza, E. J. M., & Hale, M. (2002). Mineral imaging with Landsat Thematic Mapper data for hydrothermal alteration mapping in heavily vegetated terrane. *International Journal of Remote Sensing*, 23(22), 4827-4852. doi: 10.1080/01431160110115014
- Denton, J. C. (1972). Geothermal energy : a national proposal for geothermal resources research : final report of the geothermal resources research conference, 18 20 September, Seattle, Washington. . University of Alaska.
- Elder, J. (1981). Geothermal systems. London etc.: Academic Press.
- Electroconsult, E. (1986). Exploration of Aluto-Langano Geothermal Resources, feasibility report *Geothermal Exploration Project*: Ethiopian Institue of Geological Survey.
- Gebregziabher, Z. (1998). Geology and hydrothermal alteration in wells TD-5 and TD-6, Tendaho geotheraml field, Ethiopia. *Geothermal Training Programme*. Reykjavik, Iceland: The United Nations University.
- Gianelli, G., Mekuria, N., Battaglia, S., Chersicla, A., Garofalo, P., Ruggieri, G., . . . Gebregziabher, Z. (1998). Water–rock interaction and hydrothermal mineral equilibria in the Tendaho geothermal system. *Journal of Volcanology and Geothermal Research, 86*(1–4), 253-276. doi: http://dx.doi.org/10.1016/S0377-0273(98)00073-0
- Heasler, H. R., Jaworowski, C., & Foley, D. (2009). Geothermal System and monitoring hydrothermal features. Colorado: Geological Society of America.
- Hemley, J. J., Cygan, G. L., Fein, J. B., Robinson, G. R., & d'Angelo, W. M. (1992). Hydrothermal oreforming processes in the light of studies in rock-buffered systems; I, Iron-copper-zinc-lead sulfide solubility relations. *Economic Geology*, 87(1), 1-22. doi: 10.2113/gsecongeo.87.1.1
- Jones, K. L., Schulenburg, N. W., & Wright, C. (2010). Hyperspectral remote sensing techniques for locating geothermal areas. 76870J-76870J. doi: 10.1117/12.855444
- Kebede, S. (2011). Status of geothermal exploration and development in Ethiopia. In U. N. U. G. T. Programme (Ed.). Geological Survey of Ethiopia.
- Lagat, J. (2009). Hydrothermal Alteration Mineralogy in Geothermal Fields with case examples from Olkaria Domes Geothermal Field, Kenya. In U. N. U. G. T. Programme (Ed.), (Vol. 1). Geological Survey of Ethiopia.
- Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (Eds.). (2004). Remote sensing and image interpretation (5th ed.). New York, NY: Wiley & Sons.
- Mars, J. C., & Rowan, L. C. (2010). Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. *Remote Sensing of Environment*, 114(9), 2011-2025. doi: <u>http://dx.doi.org/10.1016/j.rse.2010.04.008</u>
- Martini, B. A., Cocks, T. D., Cocks, P. A., & Pickles, W. L. (2004, 20-24 Sept. 2004). Operational airborne hyperspectral remote sensing for global geothermal exploration. Paper presented at the Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE International.
- Oluwadebi, A. G. (2011). Characterization of hydrothermal alteration in mount Berecha area of main Ethiopian rift using hyperspectral data. University of Twente Faculty of Geo-Information and Earth Observation (ITC), Enschede. Retrieved from

http://www.itc.nl/library/papers 2011/msc/aes/oluwadebi.pdf

Omenda, P. A. (2005). The Geology and Geothermal Activity of the East African Rift System. In U.-G. a. KengGen (Ed.), *Workshop for Decision Makers on Geothermal Projects Management*. Kenya.

Prianjo, F. (2009). Hydrothermal processes and mineral systems : e-book. Dordrecht: Springer

Geological Survey of Western Australia.

Rajesh, H. M. (2004). Application of remote sensing and GIS in mineral resource mapping - An overview. Journal of Mineralogical and Petrological Sciences, 99(3), 83-103.

- Rowan, L. C., Hook, S. J., Abrams, M. J., & Mars, J. C. (2003). Mapping hydrothermally altered rocks at Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection radiometer (Aster), a new satellite-imaging system. *Economic Geology*, 98(5), 1019-1027.
- Simmons, S. F., & Browne, P. R. L. (2000). Hydrothermal Minerals and Precious Metals in the Broadlands-Ohaaki Geothermal System: Implications for Understanding Low-Sulfidation Epithermal Environments. *Economic Geology*, 95(5), 971-999.
- SPSS. (2013). Anova Post Hoc Test (Version 17): IBM. Retrieved from <u>http://publib.boulder.ibm.com/infocenter/spssstat/v20r0m0/index.jsp?topic=%2Fcom.ibm.sps</u> <u>s.statistics.help%2Fovervw_auto_0.htm</u>
- Stratex International. (2012). Megenta, Tendaho, 2012, from <u>http://www.stratexinternational.com/operations/exploration/ethiopia-djibouti/afar-project/tendaho.aspx</u>
- Teum, T. (2013). Ethiopian Tresures- Climate Retrieved January 13,2013, 2013, from <u>http://www.ethiopiantreasures.co.uk/pages/climate.htm</u>
- Tucker, M. R., & Pedgley, D. E. (1977). Summer winds around the southern Red Sea. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B, 25(3), 221-231. doi: 10.1007/bf02243054
- Ulusoy, İ., Labazuy, P., & Aydar, E. (2012). STcorr: An IDL code for image based normalization of lapse rate and illumination effects on nighttime TIR imagery. *Computers & Geosciences*, 43(0), 63-72. doi: <u>http://dx.doi.org/10.1016/j.cageo.2012.02.012</u>
- Van der Meer, F. D., van der Werff, H. M. A., van Ruitenbeek, F. J. A., Hecker, C. A., Bakker, W. H., Noomen, M. F., . . . Woldai, T. (2012). Multi- and hyperspectral geologic remote sensing: A review. *International Journal of Applied Earth Observation and Geoinformation*, 14(1), 112-128. doi: <u>http://dx.doi.org/10.1016/j.jag.2011.08.002</u>
- White, D. E. (1974). Diverse Origins of Hydrothermal Ore Fluids. Economic Geology, 69(6), 954-973.
- Yang, K., Huntington, J. F., Boardman, J. W., & Mason, P. (1999). Mapping hydrothermal alteration in the Comstock mining district, Nevada, using simulated satellite-borne hyperspectral data. *Australian Journal of Earth Sciences*, 46(6), 915-922. doi: 10.1046/j.1440-0952.1999.00754.x

8. APPENDICES A

Berecha- Carbonate Mafic Minerals

Tendaho- Carbonate Mafic Minerals

Berecha- Sericite, Muscovite, Illite, Smectite

Tendaho- Sericite, Muscovite, Illite, Smectite

Tendaho- Alunite, Kaolinite, Pyrophyllite

Berecha- Kaolinite

Tendaho- Kaolinite

Berecha- Alteration

Tendaho- Alteration

Silica 11/10

Berecha- Silica

Tendaho-Silica

Tendaho-Silica

Tendaho-Silica

Berecha- Night-time Thermal Data

9. APPENDICES B

Berecha Carbonate

Carbonate (Jan 12, 2003)

Case Processing Summary										
	Cases									
		Valid Missing Total				tal				
	HZ Zones	N	Percent	N	Percent	N	Percent			
Pixel_Values	Hydrothermal Zones ROI	808	100.0%	0	.0%	808	100.0%			
	100m Buffer from Hydrothermal Zone ROI	413	100.0%	0	.0%	413	100.0%			
	100m and 200m Buffer from Hydrothermal Zone ROI	903	100.0%	0	.0%	903	100.0%			

ANOVA

_Pixel Values										
	Sum of Squares	df	Mean Square	F	Sig.					
Between Groups	.012	2	.006	2.643	.071					
Within Groups	4.807	2121	.002							
Total	4.819	2123								

Multiple Comparisons

Dependent Variable:Pixel_Values

						95% Confid	ence Interval
			Mean Difference (I-				
	(I) HZ Zones	(J) HZ Zones	J) È	Std. Error	Siq.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00128122	.00284026	.958	0055150	.0080774
		100m and 200m Buffer from Hydrothermal Zone ROI	00427957	.00229151	.175	0097565	.0011973
	100m Buffer from	Hydrothermal Zones ROI	00128122	.00284026	.958	0080774	.0055150
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00556080	.00287229	.151	0124330	.0013114
	100m and 200m Buffer	Hydrothermal Zones ROI	.00427957	.00229151	.175	0011973	.0097565
	from Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00556080	.00287229	.151	0013114	.0124330
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00128122	.00284026	.958	0055145	.0080769
		100m and 200m Buffer from Hydrothermal Zone ROI	00427957	.00229151	.175	0097563	.0011971
	100m Buffer from	Hydrothermal Zones ROI	00128122	.00284026	.958	0080769	.0055145
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00556080	.00287229	.151	0124325	.0013110
	100m and 200m Buffer	Hydrothermal Zones ROI	.00427957	.00229151	.175	0011971	.0097563
	from Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00556080	.00287229	.151	0013110	.0124325

Carbonate (Oct 16, 2005)

Case Processing Summary									
		Cases							
		Va	lid	Miss	sing	To	tal		
	HZ Zones	N	Percent	N	Percent	N	Percent		
Pixel_Values	Hydrothermal Zones ROI	791	100.0%	0	.0%	791	100.0%		
	100m Buffer from Hydrothermal Zone ROI	431	100.0%	0	.0%	431	100.0%		
	100m and 200m Buffer from Hydrothermal Zone ROI	921	100.0%	0	.0%	921	100.0%		
ANOVA									

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.114	2	.057	10.165	.000
Within Groups	11.967	2140	.006		
Total	12.081	2142			

Multiple Comparisons

	Dependent V	ariable:Pixel Values						
							95% Confide	ence Interval
		(I) HZ Zones	(J) HZ Zones	Mean Difference (I- J)	Std. Error	Sia.	Lower Bound	Upper Bound
	Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00480195	.00436499	.614	0152467	.0056428
			100m and 200m Buffer from Hydrothermal Zone ROI	01598429	.00355447	.000	0244798	0074888
		100m Buffer from	Hydrothermal Zones ROI	.00480195	.00436499	.614	0056428	.0152467
		Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	01118234*	.00453409	.041	0220291	0003356
\cdot		100m and 200m Buffer from Hydrothermal Zone	Hydrothermal Zones ROI	.01598429	.00355447	.000	.0074888	.0244798
	RC	rrom Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	.01118234*	.00453409	.041	.0003356	.0220291
	Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00480195	.00436499	.613	0152459	.0056420
			100m and 200m Buffer from Hydrothermal Zone ROI	01598429 [*]	.00355447	.000	0244795	0074891
		100m Buffer from	Hydrothermal Zones ROI	.00480195	.00436499	.613	0056420	.0152459
		Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	01118234 [*]	.00453409	.041	0220284	0003363
		100m and 200m Buffer	Hydrothermal Zones ROI	.01598429	.00355447	.000	.0074891	.0244795
		trom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	.01118234	.00453409	.041	.0003363	.0220284

Carbonate (Feb 5, 2006)

		Case Proces	ssing Summ	агу									
	Cases						ANC) (A						
	Valid Missing Total				ANOVA								
	HZ Zones	N	Percent	N	Percent	N	Percent	Pixel Values					
Pixel_Values	Hydrothermal Zones ROI	813	100.0%	0	.0%	813	100.0%		Sum of			-	
	100m Buffer from	411	100.0%	0	.0%	411	100.0%		squares	ατ	Mean Square	F	-
	Hydrothermal Zone ROI			-				Between Groups	.008	2	.004	1.849	
	100m and 200m Buffer	895	100.0%	0	.0%	895	100.0%	Within Groups	4.488	2116	.002		
	from Hydrothermal Zone ROI							Total	4.496	2118			

Multiple Comparisons

_Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(I) HZ Zones	(J) HZ Zones	Mean Difference (I- J)	Std. Error	Siq.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00051406	.00282018	.997	0072633	.0062352
		100m and 200m Buffer from Hydrothermal Zone ROI	00404924	.00218840	.181	0092797	.0011812
	100m Buffer from	Hydrothermal Zones ROI	.00051406	.00282018	.997	0062352	.0072633
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00353518	.00288185	.526	0104310	.0033606
	100m and 200m Buffer	Hydrothermal Zones ROI	.00404924	.00218840	.181	0011812	.0092797
	ROI	100m Buffer from Hydrothermal Zone ROI	.00353518	.00288185	.526	0033606	.0104310
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00051406	.00282018	.997	0072628	.0062347
		100m and 200m Buffer from Hydrothermal Zone ROI	00404924	.00218840	.181	0092795	.0011810
	100m Buffer from	Hydrothermal Zones ROI	.00051406	.00282018	.997	0062347	.0072628
	Hydrothermai Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00353518	.00288185	.526	0104305	.0033601
	100m and 200m Buffer	Hydrothermal Zones ROI	.00404924	.00218840	.181	0011810	.0092795
	ROI	100m Buffer from Hydrothermal Zone ROI	.00353518	.00288185	.526	0033601	.0104305

Tendaho Carbonate

Carbonate (Jan 25, 2002)

	Case Processing Summary									ANOVA				
	Cases					Pivel Values								
		Va	lid	Mis	sing	To	ital	l						
	HZ Zones	N	Percent	N	Percent	N	Percent			Sum of			-	
Pixel_Values	Hydrothermal Zones ROI	743	100.0%	0	.0%	743	100.0%	0%		Squares	<u>dt</u>	Mean Square	F	SIG.
_	100m Buffer from	608	100.0%	0	.0%	608	100.0%		Between Groups	.479	2	.239	37.274	.000
	Hydrothermal Zone ROI								Within Groups	16.451	2562	.006		
	100m and 200m Buffer from Hydrothermal Zone	1214	100.0%	0	.0%	1214	100.0%		Total	16.930	2564			

Multiple Comparisons

 Dependent V	ariable:Pixel Values						
						95% Confide	ence Interval
	(I) HZ Zones	(J) HZ Zones	Mean Difference (I- J)	Std. Error	Sia.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	03098480*	.00440467	.000	0415156	0204540
		100m and 200m Buffer from Hydrothermal Zone ROI	02964776 [*]	.00374328	.000	0385954	0207001
	100m Buffer from	Hydrothermal Zones ROI	.03098480*	.00440467	.000	.0204540	.0415156
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00133704	.00397897	.982	0081769	.0108510
	100m and 200m Buffer	Hydrothermal Zones ROI	.02964776*	.00374328	.000	.0207001	.0385954
	ROI	100m Buffer from Hydrothermal Zone ROI	00133704	.00397897	.982	0108510	.0081769
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	03098480 [*]	.00440467	.000	0415151	0204545
		100m and 200m Buffer from Hydrothermal Zone ROI	02964776 [*]	.00374328	.000	0385951	0207005
	100m Buffer from	Hydrothermal Zones ROI	.03098480*	.00440467	.000	.0204545	.0415151
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00133704	.00397897	.982	0081765	.0108506
	100m and 200m Buffer	Hydrothermal Zones ROI	.02964776	.00374328	.000	.0207005	.0385951
	ROI	100m Buffer from Hydrothermal Zone ROI	00133704	.00397897	.982	0108506	.0081765

Carbonate (Oct 11, 2003)

Case Processing Summary											
Cases											
		Valid Missing Total									
	HZ Zones N Percent N Percent N Percent										
Pixel_Values	Hydrothermal Zones ROI	742	100.0%	0	.0%	742	100.0%				
	100m Buffer from Hydrothermal Zone ROI	606	100.0%	0	.0%	606	100.0%				
	100m and 200m Buffer from Hydrothermal Zone ROI	1211	100.0%	0	.0%	1211	100.0%				
ANOVA											
Pixel Va	Pixel Values										

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.210	2	.105	39.037	.000
Within Groups	6.868	2556	.003		
Total	7.077	2558			

Multiple Comparisons

Dependent V:	ariable:Pixel Values						
						95% Confide	ence Interval
	(I) HZ Zones	(1) HZ Zones	Mean Difference (I- .D	Std Error	Sia	Lower Bound	Unner Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROL	01912980*	.00280561	.000	0258376	0124220
		100m and 200m Buffer from Hydrothermal Zone ROI	02032513	.00240504	.000	0260737	0145765
	100m Buffer from	Hydrothermal Zones ROI	.01912980	.00280561	.000	.0124220	.0258376
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00119533	.00257786	.954	0073589	.0049683
	100m and 200m Buffer	Hydrothermal Zones ROI	.02032513	.00240504	.000	.0145765	.0260737
	from Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00119533	.00257786	.954	0049683	.0073589
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	01912980 [*]	.00280561	.000	0258373	0124223
		100m and 200m Buffer from Hydrothermal Zone ROI	02032513	.00240504	.000	0260735	0145767
	100m Buffer from	Hydrothermal Zones ROI	.01912980	.00280561	.000	.0124223	.0258373
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00119533	.00257786	.954	0073587	.0049680
	100m and 200m Buffer	Hydrothermal Zones ROI	.02032513	.00240504	.000	.0145767	.0260735
	from Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00119533	.00257786	.954	0049680	.0073587

Carbonate (Jan 1, 2005)

Case Processing Summary										
	Cases									
		Va	lid	Mis	sing	To	tal			
	HZ Zones	N	Percent	N	Percent	N	Percent			
Pixel_Values	Hydrothermal Zones ROI	747	100.0%	0	.0%	747	100.0%			
	100m Buffer from Hydrothermal Zone ROI	609	100.0%	0	.0%	609	100.0%			
	100m and 200m Buffer from Hydrothermal Zone ROI	1207	100.0%	0	.0%	1207	100.0%			

ANOVA

Pixel Values									
	Sum of Squares	df	Mean Square	F	Sig.				
Between Groups	.181	2	.090	35.035	.000				
Within Groups	6.604	2560	.003						
Total	6.784	2562							

Multiple Comparisons

<u>Dependent V</u>	ariable:Pixel Values						
						95% Confide	ence Interval
			Mean Difference (l-	Obd. Emer	Oʻr.	L anna Dannal	Line - Down
	(I) HZ_Zones	(J) HZ Zones		Sta. Error	Siq.	Lower Bound	Opper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	01675821	.00276973	.000	0233799	0101365
		100m and 200m Buffer from Hydrothermal Zone ROI	01916701*	.00241496	.000	0249396	0133944
	100m Buffer from	Hydrothermal Zones ROI	.01675821*	.00276973	.000	.0101365	.0233799
	Hydrothermai Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00240880	.00246022	.696	0082910	.0034734
	100m and 200m Buffer from Hydrothermal Zone	Hydrothermal Zones ROI	.01916701*	.00241496	.000	.0133944	.0249396
	ROI	100m Buffer from Hydrothermal Zone ROI	.00240880	.00246022	.696	0034734	.0082910
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	01675821*	.00276973	.000	0233797	0101368
		100m and 200m Buffer from Hydrothermal Zone ROI	01916701*	.00241496	.000	0249394	0133946
	100m Buffer from	Hydrothermal Zones ROI	.01675821*	.00276973	.000	.0101368	.0233797
	Hydrothermai Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00240880	.00246022	.696	0082908	.0034732
	100m and 200m Buffer	Hydrothermal Zones ROI	.01916701*	.00241496	.000	.0133946	.0249394
	ROI	100m Buffer from Hydrothermal Zone ROI	.00240880	.00246022	.696	0034732	.0082908
Berecha Sericite/Muscovite/Illite/Smectite

Sericite/Muscovite/Illite/Smectite (Jan 12, 2003)

Case Processing Summary

			Cases							
		Valid		Missing		To	tal			
	HZ Zones	N	Percent	N	Percent	N	Percent			
Pixel_Values	Hydrothermal Zones ROI	808	100.0%	0	.0%	808	100.0%			
	100m Buffer from Hydrothermal Zone ROI	413	100.0%	0	.0%	413	100.0%			
	100m and 200m Buffer from Hydrothermal Zone ROI	903	100.0%	0	.0%	903	100.0%			

ANOVA

Pixel Values					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.923	2	.461	248.687	.000
Within Groups	3.935	2121	.002		
Total	4.858	2123			

Multiple Comparisons

_Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(I) HZ Zones	(J) HZ Zones	Mean Difference (I- J)	Std. Error	Siq.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.03646477*	.00255931	.000	.0303422	.0425873
		100m and 200m Buffer from Hydrothermal Zone ROI	.04516089 [*]	.00211005	.000	.0401176	.0502042
	100m Buffer from	Hydrothermal Zones ROI	03646477*	.00255931	.000	0425873	0303422
Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00869613*	.00248127	.001	.0027595	.0146328	
	100m and 200m Buffer	Hydrothermal Zones ROI	04516089	.00211005	.000	0502042	0401176
	ROI	100m Buffer from Hydrothermal Zone ROI	00869613*	.00248127	.001	0146328	0027595
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.03646477*	.00255931	.000	.0303426	.0425869
		100m and 200m Buffer from Hydrothermal Zone ROI	.04516089 [*]	.00211005	.000	.0401178	.0502040
	100m Buffer from	Hydrothermal Zones ROI	03646477*	.00255931	.000	0425869	0303426
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00869613*	.00248127	.001	.0027599	.0146324
	100m and 200m Buffer	Hydrothermal Zones ROI	04516089	.00211005	.000	0502040	0401178
	trom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	00869613	.00248127	.001	0146324	0027599

Sericite/Muscovite/Illite/Smectite (Oct 16, 2005)

	Case Processing Summary									ANOVA			
				Ca	ses			Pixel Values					
		Va	lid	Mis	sing	Тс	tal		Qum of				
	HZ Zones	N	Percent	N	Percent	N	Percent		Squares	df	Mean Square	F	Sia
Pixel_Values	Hydrothermal Zones ROI	791	100.0%	0	.0%	791	100.0%	Datus an Orauna	0000000		100	404.040	0.9.
	100m Buffer from	431	100.0%	0	.0%	431	100.0%	Between Groups	.971	2	.485	191.049	.000
	Hydrothermal Zone ROI 100m and 200m Buffer	0.21	100.0%	0	0%	921	100.0%	Within Groups	5.436	2140	.003		
	from Hydrothermal Zone ROI	521	100.070	Ů	.070	321	100.0 %	Total	6.406	2142			

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confide	ence Interval
	WILL Tanaa		Mean Difference (I-	Ptd Error	Ria	Lower Bound	Linner Bound
	UD HZ ZUNES		J)		<u> </u>		
Tamnane	Hydrothermai Zones ROI	100m Buffer from Hydrothermal Zone ROI	.03699351	.00302436	.000	.0297581	.0442289
		100m and 200m Buffer from Hydrothermal Zone ROI	.04652904*	.00243186	.000	.0407166	.0523415
	100m Buffer from	Hydrothermal Zones ROI	03699351*	.00302436	.000	0442289	0297581
Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00953552*	.00297133	.004	.0024265	.0166445	
	100m and 200m Buffer	Hydrothermal Zones ROI	04652904*	.00243186	.000	0523415	0407166
	ROI	100m Buffer from Hydrothermal Zone ROI	00953552*	.00297133	.004	0166445	0024265
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.03699351*	.00302436	.000	.0297586	.0442285
		100m and 200m Buffer from Hydrothermal Zone ROI	.04652904*	.00243186	.000	.0407168	.0523413
	100m Buffer from	Hydrothermal Zones ROI	03699351*	.00302436	.000	0442285	0297586
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00953552 [*]	.00297133	.004	.0024270	.0166440
	100m and 200m Buffer	Hydrothermal Zones ROI	04652904*	.00243186	.000	0523413	0407168
	ROI	100m Buffer from Hydrothermal Zone ROI	00953552*	.00297133	.004	0166440	0024270

Sericite/Muscovite/Illite/Smectite (Feb 5, 2005)

	Case Processing Summary										ANOVA			
				Ca	ses			ANOTA						
		Va	lid	Mis	sing	To	tal	Ι.	Pixel Values					
	HZ Zones	N	Percent	N	Percent	N	Percent			Sum of				
Pixel_Values	Hydrothermal Zones ROI	813	100.0%	0	.0%	813	100.0%	II		Squares	df	Mean Square	F	Sig.
	100m Buffer from Hydrothermal Zone ROI	411	100.0%	0	.0%	411	100.0%		Between Groups	.925	2	.462	247.826	.000
	100m and 200m Buffer	895	100.0%	0	.0%	895	100.0%		Within Groups	3.948	2116	.002		
	from Hydrothermal Zone ROI								Total	4.873	2118			

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confide	ence Interval
	(I) H7 Zones	(1) HZ Zones	Mean Difference (I- J)	Std Error	Sia	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.03711845*	.00266418	.000	.0307440	.0434929
		100m and 200m Buffer from Hydrothermal Zone ROI	.04504253 [*]	.00208535	.000	.0400583	.0500268
	100m Buffer from	Hydrothermal Zones ROI	03711845	.00266418	.000	0434929	0307440
Hydrothermal Zone ROI		100m and 200m Buffer from Hydrothermal Zone ROI	.00792408*	.00259441	.007	.0017157	.0141324
	100m and 200m Buffer	Hydrothermal Zones ROI	04504253	.00208535	.000	0500268	0400583
	ROI	100m Buffer from Hydrothermal Zone ROI	00792408*	.00259441	.007	0141324	0017157
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.03711845 [*]	.00266418	.000	.0307445	.0434925
		100m and 200m Buffer from Hydrothermal Zone ROI	.04504253 [*]	.00208535	.000	.0400585	.0500266
	100m Buffer from	Hydrothermal Zones ROI	03711845	.00266418	.000	0434925	0307445
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00792408*	.00259441	.007	.0017162	.0141320
	100m and 200m Buffer	Hydrothermal Zones ROI	04504253	.00208535	.000	0500266	0400585
	ROI	100m Buffer from Hydrothermal Zone ROI	00792408*	.00259441	.007	0141320	0017162

Tendaho Sericite/Muscovite/Illite/Smectite Sericite/Muscovite/Illite/Smectite (Jan 25, 2002)

	Case Processing Summary										
		Cases									
		Valid Missing Total									
	HZ Zones	N	Percent	N	Percent	N	Percent				
Pixel_Values	Hydrothermal Zones ROI	747	100.0%	0	.0%	747	100.0%				
	100m Buffer from Hydrothermal Zone ROI	609	100.0%	0	.0%	609	100.0%				
	100m and 200m Buffer from Hydrothermal Zone ROI	1207	100.0%	0	.0%	1207	100.0%				

ANOVA

Pixel Values											
	Sum of Squares	df	Mean Square	F	Sig.						
Between Groups	.037	2	.019	11.198	.000						
Within Groups	4.230	2560	.002								
Total	4.267	2562									

Multiple Comparisons

_Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(I) HZ Zones	(J) HZ Zones	Mean Difference (I- J)	Std. Error	Siq.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00602286*	.00224767	.022	.0006493	.0113964
		100m and 200m Buffer from Hydrothermal Zone ROI	.00894166*	.00196521	.000	.0042439	.0136395
	100m Buffer from	Hydrothermal Zones ROI	00602286*	.00224767	.022	0113964	0006493
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00291880	.00194198	.348	0017244	.0075620
	100m and 200m Buffer	Hydrothermal Zones ROI	00894166*	.00196521	.000	0136395	0042439
	ROI	100m Buffer from Hydrothermal Zone ROI	00291880	.00194198	.348	0075620	.0017244
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00602286	.00224767	.022	.0006495	.0113962
		100m and 200m Buffer from Hydrothermal Zone ROI	.00894166*	.00196521	.000	.0042440	.0136393
	100m Buffer from	Hydrothermal Zones ROI	00602286	.00224767	.022	0113962	0006495
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00291880	.00194198	.348	0017242	.0075618
	100m and 200m Buffer	Hydrothermal Zones ROI	00894166*	.00196521	.000	0136393	0042440
	ROI	100m Buffer from Hydrothermal Zone ROI	00291880	.00194198	.348	0075618	.0017242

Sericite/Muscovite/Illite/Smectite (Oct 11, 2003)

	, i	Jase Proces	ssing summ	ау						
				Ca]					
		Va	ilid	Mis	sing	To	tal	1		
	HZ Zones	N	Percent	N	Percent	N	Percent		Pixel Values	
Pixel_Values	Hydrothermal Zones ROI	742	100.0%	0	.0%	742	100.0%	1		Sum of
	100m Buffer from	606	100.0%	0	.0%	606	100.0%			Squares
	Hydrothermal Zone ROI								Between Groups	.048
	100m and 200m Buffer	1211	100.0%	0	.0%	1211	100.0%		Within Groups	3.961
	from Hydrothermal Zone ROI								Total	4.009

	ANOVA											
Pixel Values												
	Sum of Squares	df	Mean Square	F	Sig.							
Between Groups	.048	2	.024	15.644	.000							
Within Groups	3.961	2556	.002									
Total	4.009	2558										

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(1) HZ Zones	(1) HZ Zones	Mean Difference (I-	Std Error	Sia	Lower Bound	Unner Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00562647*	.00217794	.029	.0004195	.0108335
-	100m Buffer from	100m and 200m Buffer from Hydrothermal Zone ROI	.01023960*	.00186224	.000	.0057881	.0146911
	100m Buffer from	Hydrothermal Zones ROI	00562647*	.00217794	.029	0108335	0004195
-	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00461313	.00193645	.051	0000171	.0092433
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	01023960*	.00186224	.000	0146911	0057881
		100m Buffer from Hydrothermal Zone ROI	00461313	.00193645	.051	0092433	.0000171
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00562647*	.00217794	.029	.0004197	.0108333
		100m and 200m Buffer from Hydrothermal Zone ROI	.01023960*	.00186224	.000	.0057883	.0146909
	100m Buffer from	Hydrothermal Zones ROI	00562647*	.00217794	.029	0108333	0004197
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00461313	.00193645	.051	0000168	.0092431
	100m and 200m Buffer	Hydrothermal Zones ROI	01023960*	.00186224	.000	0146909	0057883
	from Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	00461313	.00193645	.051	0092431	.0000168

Sericite/Muscovite/Illite/Smectite (Jan 1, 2003) Case Processing Summary

				Cas	ses		
		Valid		Missing		Total	
	HZ Zones	N	Percent	N	Percent	N	Percent
Pixel_Values	Hydrothermal Zones ROI	747	100.0%	0	.0%	747	100.0%
	100m Buffer from Hydrothermal Zone ROI	609	100.0%	0	.0%	609	100.0%
	100m and 200m Buffer from Hydrothermal Zone ROI	1207	100.0%	0	.0%	1207	100.0%

ANOVA

Pixel Values										
	Sum of Squares	df	Mean Square	F	Sig.					
Between Groups	.037	2	.019	11.198	.000					
Within Groups	4.230	2560	.002							
Total	4.267	2562								

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confide	ence Interval
			Mean Difference (l-				
	(I) HZ Zones	(J) HZ Zones	J)	Std. Error	Siq.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00602286*	.00224767	.022	.0006493	.0113964
		100m and 200m Buffer from Hydrothermal Zone ROI	.00894166*	.00196521	.000	.0042439	.0136395
	100m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	00602286*	.00224767	.022	0113964	0006493
-		100m and 200m Buffer from Hydrothermal Zone ROI	.00291880	.00194198	.348	0017244	.0075620
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	00894166*	.00196521	.000	0136395	0042439
		100m Buffer from Hydrothermal Zone ROI	00291880	.00194198	.348	0075620	.0017244
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00602286*	.00224767	.022	.0006495	.0113962
		100m and 200m Buffer from Hydrothermal Zone ROI	.00894166*	.00196521	.000	.0042440	.0136393
	100m Buffer from	Hydrothermal Zones ROI	00602286*	.00224767	.022	0113962	0006495
	Hydrothermai Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00291880	.00194198	.348	0017242	.0075618
	100m and 200m Buffer	Hydrothermal Zones ROI	00894166*	.00196521	.000	0136393	0042440
	ROI	100m Buffer from Hydrothermal Zone ROI	00291880	.00194198	.348	0075618	.0017242

Berecha Alunite/ Kaolinite/ Pyrophyllite Alunite/ Kaolinite/ Pyrophyllite (Jan 12, 2003)

Case Processing Summary										
		Cases								
		Valid Missing Total				tal				
	HZ Zones	N	Percent	N	Percent	N	Percent			
Pixel_Values	Hydrothermal Zones ROI	808	100.0%	0	.0%	808	100.0%			
	100m Buffer from Hydrothermal Zone ROI	413	100.0%	0	.0%	413	100.0%			
	100m and 200m Buffer from Hydrothermal Zone ROI	903	100.0%	0	.0%	903	100.0%			

ANOVA

Pixel Values										
	Sum of Squares	df	Mean Square	F	Sig.					
Between Groups	5.466	2	2.733	463.337	.000					
Within Groups	12.510	2121	.006							
Total	17.975	2123								

Multiple Comparisons

Dependent Variable:Pixel Values

						95% Confide	ence Interval
			Mean Difference (l-				
	(I) HZ Zones	(J) HZ Zones	J)	Std. Error	Siq.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.09662683*	.00467467	.000	.0854453	.1078084
		100m and 200m Buffer from Hydrothermal Zone ROI	.10760429*	.00380435	.000	.0985108	.1166978
	100m Buffer from	Hydrothermal Zones ROI	09662683 [*]	.00467467	.000	1078084	0854453
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.01097746 [*]	.00427827	.031	.0007399	.0212150
	100m and 200m Buffer	Hydrothermal Zones ROI	10760429 [*]	.00380435	.000	1166978	0985108
	ROI	100m Buffer from Hydrothermal Zone ROI	01097746 [*]	.00427827	.031	0212150	0007399
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.09662683	.00467467	.000	.0854460	.1078077
		100m and 200m Buffer from Hydrothermal Zone ROI	.10760429*	.00380435	.000	.0985111	.1166975
	100m Buffer from	Hydrothermal Zones ROI	09662683	.00467467	.000	1078077	0854460
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.01097746*	.00427827	.031	.0007406	.0212143
	100m and 200m Buffer	Hydrothermal Zones ROI	10760429	.00380435	.000	1166975	0985111
	ROI	100m Buffer from Hydrothermal Zone ROI	01097746*	.00427827	.031	0212143	0007406

Alunite/ Kaolinite/ Pyrophyllite (Oct 16, 2005)

Case Processing Summary									
		Cases							
		Va	lid	Missing		Total			
	HZ Zones	N	Percent	N	Percent	N	Percent		
Pixel_Values	Hydrothermal Zones ROI	791	100.0%	0	.0%	791	100.0%		
	100m Buffer from Hydrothermal Zone ROI	431	100.0%	0	.0%	431	100.0%		
	100m and 200m Buffer from Hydrothermal Zone ROI	921	100.0%	0	.0%	921	100.0%		

ANOVA

Pixel Values									
	Sum of Squares	df	Mean Square	F	Sig.				
Between Groups	1.671	2	.836	75.035	.000				
Within Groups	23.831	2140	.011						
Total	25.502	2142							

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confide	ence Interval
			Mean Difference (I-	Std Error	Sig	Lower Bound	Upper Bound
Tombono	Ludrothermel Zenee DOL	100m Buffer from	05475485	00640400	019.	0200240	0005750
ramnane	Hydrothermal Zones ROI	Hydrothermal Zone ROI	.05475465	.00019122	.000	.0399340	.0695753
-		100m and 200m Buffer from Hydrothermal Zone ROI	.05917970*	.00485343	.000	.0475789	.0707805
	100m Buffer from	Hydrothermal Zones ROI	05475465	.00619122	.000	0695753	0399340
-	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00442504	.00678471	.886	0118061	.0206562
	100m and 200m Buffer	Hydrothermal Zones ROI	05917970*	.00485343	.000	0707805	0475789
	from Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	00442504	.00678471	.886	0206562	.0118061
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.05475465 [*]	.00619122	.000	.0399353	.0695740
		100m and 200m Buffer from Hydrothermal Zone ROI	.05917970 [*]	.00485343	.000	.0475793	.0707801
	100m Buffer from	Hydrothermal Zones ROI	05475465	.00619122	.000	0695740	0399353
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00442504	.00678471	.885	0118050	.0206551
	100m and 200m Buffer	Hydrothermal Zones ROI	05917970	.00485343	.000	0707801	0475793
	from Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	00442504	.00678471	.885	0206551	.0118050

Alunite/ Kaolinite/ Pyrophyllite (Feb 5, 2006) case Processing Summary

				Cas	ses		
		Valid		Missing		Total	
	HZ Zones	N	Percent	N	Percent	N	Percent
Pixel_Values	Hydrothermal Zones ROI	813	100.0%	0	.0%	813	100.0%
	100m Buffer from Hydrothermal Zone ROI	411	100.0%	0	.0%	411	100.0%
	100m and 200m Buffer from Hydrothermal Zone ROI	895	100.0%	0	.0%	895	100.0%

ANOVA

Pixel Values										
	Sum of Squares	df	Mean Square	F	Sig.					
Between Groups	3.600	2	1.800	281.193	.000					
Within Groups	13.545	2116	.006							
Total	17.145	2118								

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(I) HZ Zones	(1) HZ Zones	Mean Difference (I- ان	Std Error	Sia.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.08009132*	.00491777	.000	.0683240	.0918587
		100m and 200m Buffer from Hydrothermal Zone ROI	.08669644*	.00384234	.000	.0775129	.0958800
	100m Buffer from	Hydrothermal Zones ROI	08009132*	.00491777	.000	0918587	0683240
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00660513	.00487438	.440	0050588	.0182691
	100m and 200m Buffer	Hydrothermal Zones ROI	08669644*	.00384234	.000	0958800	0775129
	ROI	100m Buffer from Hydrothermal Zone ROI	00660513	.00487438	.440	0182691	.0050588
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.08009132*	.00491777	.000	.0683248	.0918578
		100m and 200m Buffer from Hydrothermal Zone ROI	.08669644*	.00384234	.000	.0775132	.0958797
	100m Buffer from	Hydrothermal Zones ROI	08009132*	.00491777	.000	0918578	0683248
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00660513	.00487438	.440	0050580	.0182682
	100m and 200m Buffer	Hydrothermal Zones ROI	08669644	.00384234	.000	0958797	0775132
	rrom Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	00660513	.00487438	.440	0182682	.0050580

Tendaho Alunite/ Kaolinite/ Pyrophyllite Alunite/ Kaolinite/ Pyrophyllite (Jan 25, 2002)

		Case Proces	sing Summ	агу							ANOVA			
	Cases Valid Missing Total								Pixel Values					
		Va		Mis	sing	10	tai	- 1		Rum of				
Direl Velues	HZ Zones	N 740	Percent	N	Percent	N 740	Percent	.		Squares	df	Mean Square	F	Sig
Pixel_values	100m Buffer from	608	100.0%	0	.0%	608	100.0%		Between Groups	.133	2	.067	26.127	.000
	Hydrothermal Zone ROI 100m and 200m Buffer	1214	100.0%		0%	1214	100.0%		Within Groups	6.543	2562	.003		
	from Hydrothermal Zone ROI	1214	100.010		.0.0	1214	100.0 %		Total	6.677	2564			

Multiple Comparisons

Dependent V:	ariable:Pixel Values						
						95% Confide	ence Interval
	(1) HZ Zones	(1) HZ Zones	Mean Difference (I-	Std Error	Sia	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	01394389	.00276572	.000	0205560	0073318
		100m and 200m Buffer from Hydrothermal Zone ROI	01662108 [*]	.00244405	.000	0224635	0107787
	100m Buffer from	Hydrothermal Zones ROI	.01394389	.00276572	.000	.0073318	.0205560
	Hydrothermal Zone RUI	100m and 200m Buffer from Hydrothermal Zone ROI	00267719	.00239890	.602	0084127	.0030584
	100m and 200m Buffer	Hydrothermal Zones ROI	.01662108	.00244405	.000	.0107787	.0224635
	from Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00267719	.00239890	.602	0030584	.0084127
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	01394389*	.00276572	.000	0205557	0073321
		100m and 200m Buffer from Hydrothermal Zone ROI	01662108 [*]	.00244405	.000	0224633	0107789
	100m Buffer from	Hydrothermal Zones ROI	.01394389*	.00276572	.000	.0073321	.0205557
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00267719	.00239890	.602	0084125	.0030581
	100m and 200m Buffer	Hydrothermal Zones ROI	.01662108	.00244405	.000	.0107789	.0224633
	rrom Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00267719	.00239890	.602	0030581	.0084125

Alunite/ Kaolinite/ Pyrophyllite (Oct 11, 2003)

		Case Proces	ssing Summ	ary								
				Са	ses]				
		Va	Valid Missing Total									
	HZ Zones	N	Percent	N	Percent	N	Percent	Pix				
Pixel_Values	Hydrothermal Zones ROI	742	100.0%	0	.0%	742	100.0%	ΙI				
	100m Buffer from Hydrothermal Zone ROI	606	100.0%	0	.0%	606	100.0%	Be				
	100m and 200m Buffer from Hydrothermal Zone ROI	1211	100.0%	0	.0%	1211	100.0%	Wi To				

		ANOVA			
Pixel Values					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.108	2	.054	26.154	.000
Within Groups	5.300	2556	.002		
Total	5.409	2558			

Multiple Comparisons

_Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
		(1) H7 Zonos	Mean Difference (I-	Std Error	Sig	Lower Bound	Linner Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00990007*	.00250336	.000	0158850	0039151
		100m and 200m Buffer from Hydrothermal Zone ROI	01534957*	.00216007	.000	0205130	0101862
	100m Buffer from	Hydrothermal Zones ROI	.00990007*	.00250336	.000	.0039151	.0158850
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00544951 [*]	.00222520	.043	0107700	0001290
	100m and 200m Buffer	Hydrothermal Zones ROI	.01534957*	.00216007	.000	.0101862	.0205130
	from Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00544951*	.00222520	.043	.0001290	.0107700
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00990007*	.00250336	.000	0158848	0039153
		100m and 200m Buffer from Hydrothermal Zone ROI	01534957 [*]	.00216007	.000	0205128	0101864
	100m Buffer from	Hydrothermal Zones ROI	.00990007*	.00250336	.000	.0039153	.0158848
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00544951*	.00222520	.043	0107697	0001293
	100m and 200m Buffer	Hydrothermal Zones ROI	.01534957*	.00216007	.000	.0101864	.0205128
	rrom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00544951*	.00222520	.043	.0001293	.0107697

Alunite/ Kaolinite/ Pyrophyllite (Jan 1, 2003)

	(Case Proces	ssing Summ	агу									
				Ca	ses								
		Va	lid	Mis	sing	To	tal		ANOVA	/Α			
	HZ Zones	N	Percent	N	Percent	N	Percent	Pixel Values					
Pixel_Values	Hydrothermal Zones ROI	747	100.0%	0	.0%	747	100.0%		Sum of				
	100m Buffer from	609	100.0%	0	.0%	609	100.0%		Squares	df	Mean Square	F	Sig.
	Hydrothermal Zone ROI							Between Groups	.190	2	.095	34.537	.000
	100m and 200m Buffer	1207	100.0%	0	.0%	1207	100.0%	Within Groups	7.026	2560	.003		
	from Hydrothermal Zone ROI							Total	7.216	2562			

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(1) HZ Zones	(1) HZ Zones	Mean Difference (I-	Std Error	Sia	Lower Bound	Unner Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	01656163	.00290548	.000	0235079	0096154
		100m and 200m Buffer from Hydrothermal Zone ROI	01979853*	.00251175	.000	0258028	0137943
	100m Buffer from	Hydrothermal Zones ROI	.01656163	.00290548	.000	.0096154	.0235079
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00323691	.00253422	.491	0092963	.0028225
	100m and 200m Buffer	Hydrothermal Zones ROI	.01979853	.00251175	.000	.0137943	.0258028
	from Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00323691	.00253422	.491	0028225	.0092963
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	01656163 [*]	.00290548	.000	0235076	0096157
		100m and 200m Buffer from Hydrothermal Zone ROI	01979853 [*]	.00251175	.000	0258025	0137945
	100m Buffer from	Hydrothermal Zones ROI	.01656163	.00290548	.000	.0096157	.0235076
	Hydrothermai Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00323691	.00253422	.491	0092960	.0028222
	100m and 200m Buffer	Hydrothermal Zones ROI	.01979853	.00251175	.000	.0137945	.0258025
	rrom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00323691	.00253422	.491	0028222	.0092960

Berecha Kaolinite

Kaolinite (Jan 12, 2003)

		Case Proces	ssing Summ	ary										
	Cases										ANOVA			
		Va	lid	Mis	sing	To	tal	Į –	Pixel Values					
	HZ Zones	N	Percent	N	Percent	N	Percent	lſ		Ourse of				
Pixel_Values	Hydrothermal Zones ROI	808	100.0%	0	.0%	808	100.0%			Squares	df	Mean Square	F	Sia.
	100m Buffer from Hydrothermal Zone ROI	413	100.0%	0	.0%	413	100.0%		Between Groups	.295	2	.148	214.815	.000
	100m and 200m Buffer	903	100.0%	0	.0%	903	100.0%		Within Groups	1.458	2121	.001		
	from Hydrothermal Zone ROI								Total	1.754	2123			

Multiple Comparisons

_Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(1) H7 Zones	(1) HZ Zones	Mean Difference (I-	Std Error	Sia	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.02359251*	.00155826	.000	.0198658	.0273192
		100m and 200m Buffer from Hydrothermal Zone ROI	.02459549*	.00132293	.000	.0214332	.0277578
	100m Buffer from	Hydrothermal Zones ROI	02359251	.00155826	.000	0273192	0198658
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00100298	.00137558	.848	0022884	.0042943
	100m and 200m Buffer	Hydrothermal Zones ROI	02459549*	.00132293	.000	0277578	0214332
	from Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	00100298	.00137558	.848	0042943	.0022884
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.02359251*	.00155826	.000	.0198660	.0273190
		100m and 200m Buffer from Hydrothermal Zone ROI	.02459549*	.00132293	.000	.0214333	.0277577
	100m Buffer from	Hydrothermal Zones ROI	02359251	.00155826	.000	0273190	0198660
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00100298	.00137558	.848	0022881	.0042941
	100m and 200m Buffer	Hydrothermal Zones ROI	02459549	.00132293	.000	0277577	0214333
	rrom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	00100298	.00137558	.848	0042941	.0022881

Kaolinite (Oct 16, 2005)

	(Case Proces	sing Summ	ary							ANOVA			
	Cases								Pixel Values					
		Va	lid	Miss	sing	To	tal			Sum of				
	HZ Zones	N	Percent	N	Percent	N	Percent			Squares	df	Mean Square	F	Sia
Pixel_Values	Hydrothermal Zones ROI	791	100.0%	0	.0%	791	100.0%		Potwoon Groupe	462		226	126 102	000
	100m Buffer from	431	100.0%	0	.0%	431	100.0%		Between Oroups	.432	2	.220	130.102	.000
	Hydrothermal ∠one ROI								Within Groups	3.550	2140	.002		
	100m and 200m Buffer from Hydrothermal Zone ROI	921	100.0%	0	.0%	921	100.0%		Total	4.002	2142			

Multiple Comparisons

Dependent V:	ariable:Pixel Values						
						95% Confid	ence Interval
	(1) HZ Zones	(1) HZ Zones	Mean Difference (I- .I)	Std Error	Sia	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.02452007*	.00246071	.000	.0186346	.0304055
		100m and 200m Buffer from Hydrothermal Zone ROI	.03190524*	.00202327	.000	.0270690	.0367415
	100m Buffer from	Hydrothermal Zones ROI	02452007*	.00246071	.000	0304055	0186346
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00738517*	.00224567	.003	.0020121	.0127583
	100m and 200m Buffer	Hydrothermal Zones ROI	03190524	.00202327	.000	0367415	0270690
	rrom Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	00738517*	.00224567	.003	0127583	0020121
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.02452007*	.00246071	.000	.0186350	.0304052
		100m and 200m Buffer from Hydrothermal Zone ROI	.03190524 [*]	.00202327	.000	.0270691	.0367413
	100m Buffer from	Hydrothermal Zones ROI	02452007*	.00246071	.000	0304052	0186350
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00738517*	.00224567	.003	.0020125	.0127579
	100m and 200m Buffer	Hydrothermal Zones ROI	03190524	.00202327	.000	0367413	0270691
	rrom Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	00738517*	.00224567	.003	0127579	0020125

Kaolinite (Feb 5, 2006)

	(Case Proces	sing Summ	ary				
				Ca	ses			
		Va	lid	Mis	sing	To	tal	
	HZ Zones	N	Percent	N	Percent	N	Percent	
Pixel_Values	Hydrothermal Zones ROI	813	100.0%	0	.0%	813	100.0%	
	100m Buffer from Hydrothermal Zone ROI	411	100.0%	0	.0%	411	100.0%	
	100m and 200m Buffer from Hydrothermal Zone ROI	895	100.0%	0	.0%	895	100.0%	

1	Pixel Values					
$\frac{1}{2}$		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	.333	2	.166	275.139	.000
	Within Groups	1.279	2116	.001		
	Total	1.612	2118			

Multiple Comparisons

_Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(I) H7 Zones	(1) HZ Zones	Mean Difference (I-	Std Error	Sia	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.02563128	.00147013	.000	.0221150	.0291475
		100m and 200m Buffer from Hydrothermal Zone ROI	.02582667*	.00122778	.000	.0228919	.0287614
	100m Buffer from	Hydrothermal Zones ROI	02563128	.00147013	.000	0291475	0221150
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00019540	.00133442	.998	0029975	.0033883
	100m and 200m Buffer	Hydrothermal Zones ROI	02582667*	.00122778	.000	0287614	0228919
	from Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	00019540	.00133442	.998	0033883	.0029975
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.02563128 [*]	.00147013	.000	.0221152	.0291473
		100m and 200m Buffer from Hydrothermal Zone ROI	.02582667 [*]	.00122778	.000	.0228920	.0287613
	100m Buffer from	Hydrothermal Zones ROI	02563128	.00147013	.000	0291473	0221152
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00019540	.00133442	.998	0029973	.0033881
	100m and 200m Buffer	Hydrothermal Zones ROI	02582667*	.00122778	.000	0287613	0228920
	ROI	100m Buffer from Hydrothermal Zone ROI	00019540	.00133442	.998	0033881	.0029973

Tendaho Kaolinite

Cases Missing Percent 0% Case Processing Summary ANOVA Pixel Values Total Percent 43 100.0% 08 100.0% Valid Sum of Squares .163 HZ Zones Hydrothermal Zones ROI 100m Buffer from Hydrothermal Zone ROI 100m and 200m Buffer from Hydrothermal Zone ROI Percent 100.0% 100.0% N 743 608 N 743 608 <u>Mean Square</u> .081 .003 Sig. .000 Pixel_Values df Between Groups Within Groups 24.005 2 2562 2564 8.678 1214 100.0% 0 .0% 1214 100.0% Total 8.841

Kaolinite (Jan 25, 2002)

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
			Mean Difference (I-	Std Error	Sig	Lower Pound	Upper Pound
Tombono	United Annual Tanac POL	100m Puffor from	0, *coaooa1n	00222660	000	0275007	0121750
Tannane	Hydrothermal Zones Rol	Hydrothermal Zone ROI	01900003	.00322559	.000	0270907	0121750
		100m and 200m Buffer from Hydrothermal Zone ROI	01584308 [*]	.00271787	.000	0223397	0093464
	100m Buffer from	Hydrothermal Zones ROI	.01988683	.00322559	.000	.0121750	.0275987
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00404375	.00290353	.416	0028989	.0109864
	100m and 200m Buffer	Hydrothermal Zones ROI	.01584308	.00271787	.000	.0093464	.0223397
	ROI	100m Buffer from Hydrothermal Zone ROI	00404375	.00290353	.416	0109864	.0028989
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	01988683 [*]	.00322559	.000	0275983	0121753
		100m and 200m Buffer from Hydrothermal Zone ROI	01584308 [*]	.00271787	.000	0223395	0093467
	100m Buffer from	Hydrothermal Zones ROI	.01988683*	.00322559	.000	.0121753	.0275983
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00404375	.00290353	.415	0028986	.0109861
	100m and 200m Buffer	Hydrothermal Zones ROI	.01584308	.00271787	.000	.0093467	.0223395
	ROI	100m Buffer from Hydrothermal Zone ROI	00404375	.00290353	.415	0109861	.0028986

*. The mean difference is significant at the 0.05 level.

Kaolinite (Oct 11, 2003)

ANOVA

		Case Proces	ssing Summ	агу				Pixel Values					
		Va	lid	Ca: Mis:	ses sing	To	tal		Sum of Squares	df	Mean Square	F	Sig.
Pixel_Values	HZ Zones Hydrothermal Zones ROI	N 742	100.0%	N 0	.0%	N 742	100.0%	Between Groups	.025	2	.012	25.423	.000
	100m Buffer from Hydrothermal Zone ROI	606	100.0%	0	.0%	606	100.0%	Within Groups	1.238	2556	.000		
	100m and 200m Buffer from Hydrothermal Zone ROI	1211	100.0%	0	.0%	1211	100.0%	Total	1.262	2558			

Multiple Comparisons

_Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(NH7 Zones	(1) H7 Zones	Mean Difference (I-	Std Error	Sig	Lower Bound	Linner Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00612723	.00122706	.000	0090609	0031935
		100m and 200m Buffer from Hydrothermal Zone ROI	00710987 [*]	.00103251	.000	0095780	0046418
	100m Buffer from	Hydrothermal Zones ROI	.00612723	.00122706	.000	.0031935	.0090609
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00098264	.00109762	.751	0036072	.0016419
100m and 200m Buffer		Hydrothermal Zones ROI	.00710987*	.00103251	.000	.0046418	.0095780
	rrom Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00098264	.00109762	.751	0016419	.0036072
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00612723 [*]	.00122706	.000	0090608	0031937
		100m and 200m Buffer from Hydrothermal Zone ROI	00710987*	.00103251	.000	0095779	0046419
	100m Buffer from	Hydrothermal Zones ROI	.00612723	.00122706	.000	.0031937	.0090608
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00098264	.00109762	.751	0036071	.0016418
	100m and 200m Buffer	Hydrothermal Zones ROI	.00710987*	.00103251	.000	.0046419	.0095779
	ROI	100m Buffer from Hydrothermal Zone ROI	.00098264	.00109762	.751	0016418	.0036071

Kaolinite (Jan 1, 2005)

		Case Proces	ssing Summ	ary										
				Ca	ses						ANOVA			
		Valid Missing Total							Pixel Values					
	HZ Zones	N	Percent	N	Percent	N	Percent			0				
Pixel_Values	Hydrothermal Zones ROI	747	100.0%	0	.0%	747	100.0%			Sum of Squares	df	Mean Square	F	Sia.
	100m Buffer from Hydrothermal Zone ROI	609	100.0%	0	.0%	609	100.0%		Between Groups	.045	2	.022	31.595	.000
	100m and 200m Buffer	1207	100.0%	0	.0%	1207	100.0%		Within Groups	1.803	2560	.001		
	from Hydrothermal Zone ROI								Total	1.848	2562			

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confide	ence Interval
	(1) HZ Zones	(J) HZ Zones	Mean Difference (I- ان	Std. Error	Sia.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00827320*	.00145940	.000	0117623	0047841
		100m and 200m Buffer from Hydrothermal Zone ROI	00952467 [*]	.00124751	.000	0125066	0065427
	100m Buffer from	Hydrothermal Zones ROI	.00827320	.00145940	.000	.0047841	.0117623
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00125147	.00130936	.712	0043822	.0018793
	100m and 200m Buffer	Hydrothermal Zones ROI	.00952467*	.00124751	.000	.0065427	.0125066
	ROI	100m Buffer from Hydrothermal Zone ROI	.00125147	.00130936	.712	0018793	.0043822
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00827320 [*]	.00145940	.000	0117622	0047842
		100m and 200m Buffer from Hydrothermal Zone ROI	00952467 [*]	.00124751	.000	0125065	0065428
	100m Buffer from	Hydrothermal Zones ROI	.00827320*	.00145940	.000	.0047842	.0117622
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00125147	.00130936	.711	0043821	.0018791
	100m and 200m Buffer	Hydrothermal Zones ROI	.00952467*	.00124751	.000	.0065428	.0125065
	ROI	100m Buffer from Hydrothermal Zone ROI	.00125147	.00130936	.711	0018791	.0043821

Berecha Alteration

Alteration (Jan 12, 2003)

							0	/					
		Case Proces	ssing Summ	агу						ANOVA			
				Ca	ses			Pixel Values					
		Va	lid	Mis	sing	To	tal		0				
	HZ Zones	N	Percent	N	Percent	N	Percent		Sum of	df	Moon Causes	-	Cia
Pixel_Values	Hydrothermal Zones ROI	808	100.0%	0	.0%	808	100.0%		oquares	ui	weari oquare	г	oiy.
	100m Buffer from	413	100.0%	0	.0%	413	100.0%	Between Groups	6.467	2	3.234	702.026	.000
	Hydrothermal Zone ROI							Within Groups	9 7 6 9	2121	005		
	100m and 200m Buffer from Hydrothermal Zone ROI	903	100.0%	0	.0%	903	100.0%	Total	16.236	2123			

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
			Mean Difference (l-				
	(I) HZ_Zones	(J) HZ Zones	J)	Std. Error	Siq.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.10289139	.00415644	.000	.0929510	.1128318
		100m and 200m Buffer from Hydrothermal Zone ROI	.11777533 [*]	.00341905	.000	.1096020	.1259487
	100m Buffer from	Hydrothermal Zones ROI	10289139	.00415644	.000	1128318	0929510
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.01488394*	.00357491	.000	.0063288	.0234391
	100m and 200m Buffer	Hydrothermal Zones ROI	11777533	.00341905	.000	1259487	1096020
	ROI	100m Buffer from Hydrothermal Zone ROI	01488394*	.00357491	.000	0234391	0063288
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.10289139*	.00415644	.000	.0929515	.1128313
		100m and 200m Buffer from Hydrothermal Zone ROI	.11777533 [*]	.00341905	.000	.1096023	.1259484
	100m Buffer from	Hydrothermal Zones ROI	10289139	.00415644	.000	1128313	0929515
	Hydrothermai Zone RUI	100m and 200m Buffer from Hydrothermal Zone ROI	.01488394*	.00357491	.000	.0063294	.0234385
	100m and 200m Buffer	Hydrothermal Zones ROI	11777533	.00341905	.000	1259484	1096023
	ROI	01488394 [*]	.00357491	.000	0234385	0063294	

Alteration (Oct 16, 2005)

	(Case Proces	ssing Summ	ary									
				Ca	ses								
	Valid Missing Total									ANOVA			
	HZ Zones	N	Percent	N	Percent	N	Percent	Pixel Values					
Pixel_Values	Hydrothermal Zones ROI	791	100.0%	0	.0%	791	100.0%		Sum of				
	100m Buffer from	431	100.0%	0	.0%	431	100.0%		Squares	df	Mean Square	F	Sig.
	Hydrothermal Zone ROI							Between Groups	2.148	2	1.074	113.077	.000
	100m and 200m Buffer	921	100.0%	0	.0%	921	100.0%	Within Groups	20.327	2140	.009		
	from Hydrothermal Zone ROI							Total	22.475	2142			

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confide	ence Interval
	(I) HZ Zones	(J) HZ Zones	Mean Difference (I- J)	Std. Error	Siq.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.06158695 [*]	.00575059	.000	.0478204	.0753535
		100m and 200m Buffer from Hydrothermal Zone ROI	.06727776 [*]	.00446091	.000	.0566151	.0779404
	100m Buffer from	Hydrothermal Zones ROI	06158695	.00575059	.000	0753535	0478204
Hydrothermal Zone ROI		100m and 200m Buffer from Hydrothermal Zone ROI	.00569081	.00631707	.747	0094218	.0208034
	100m and 200m Buffer	Hydrothermal Zones ROI	06727776*	.00446091	.000	0779404	0566151
	ROI	100m Buffer from Hydrothermal Zone ROI	00569081	.00631707	.747	0208034	.0094218
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.06158695 [*]	.00575059	.000	.0478216	.0753523
		100m and 200m Buffer from Hydrothermal Zone ROI	.06727776 [*]	.00446091	.000	.0566155	.0779401
	100m Buffer from	Hydrothermal Zones ROI	06158695	.00575059	.000	0753523	0478216
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00569081	.00631707	.747	0094208	.0208025
	100m and 200m Buffer	Hydrothermal Zones ROI	06727776*	.00446091	.000	0779401	0566155
	ROI	100m Buffer from Hydrothermal Zone ROI	00569081	.00631707	.747	0208025	.0094208

Alteration (Feb 5, 2006)

	Case Processing Summary												
		Cases Valid Missing Total N Percent N Percent											
	HZ Zones												
Pixel_Values	Hydrothermal Zones ROI	813	100.0%	0	.0%	813	100.0%						
	100m Buffer from Hydrothermal Zone ROI	411	100.0%	0	.0%	411	100.0%						
	100m and 200m Buffer from Hydrothermal Zone ROI	895	100.0%	0	.0%	895	100.0%						

		ANOVA			
Pixel Values					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	4.377	2	2.188	439.798	.000
Within Groups	10.528	2116	.005		
Total	14.905	2118			

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
			Mean Difference (I-	Std Error	Sig	Lower Bound	Upper Bound
Tamhana	Hydrothermal Zones ROL	100m Buffer from	07	00433968		0755632	000000000000000000000000000000000000000
Tannane	nyarothermar zoneo rror	Hydrothermal Zone ROI	.00334430	.00400000	.000	.0733032	.0303201
		100m and 200m Buffer from Hydrothermal Zone ROI	.09642459 [*]	.00344656	.000	.0881866	.1046625
	100m Buffer from	Hydrothermal Zones ROI	08594496*	.00433968	.000	0963267	0755632
	Hydrothermal Zone ROI	100m and 200m Buffer	.01047964	.00409571	.032	.0006786	.0202807
		from Hydrothermal Zone ROI					
	100m and 200m Buffer	Hydrothermal Zones ROI	09642459*	.00344656	.000	1046625	0881866
	from Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	01047964*	.00409571	.032	0202807	0006786
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.08594496 [*]	.00433968	.000	.0755638	.0963261
		100m and 200m Buffer from Hydrothermal Zone ROI	.09642459*	.00344656	.000	.0881869	.1046622
	100m Buffer from	Hydrothermal Zones ROI	08594496*	.00433968	.000	0963261	0755638
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.01047964*	.00409571	.032	.0006793	.0202800
	100m and 200m Buffer	Hydrothermal Zones ROI	09642459*	.00344656	.000	1046622	0881869
	from Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	01047964*	.00409571	.032	0202800	0006793

Tendaho Alteration

Alteration (Jan 25, 2002)

	Case Processing Summary												
		Cases Valid Misşing Total											
	HZ Zones	N	Percent	N	Percent	N	Percent						
Pixel_Values	Hydrothermal Zones ROI	743	100.0%	0	.0%	743	100.0%						
	100m Buffer from Hydrothermal Zone ROI	608	100.0%	0	.0%	608	100.0%						
	100m and 200m Buffer from Hydrothermal Zone ROI	1214	100.0%	0	.0%	1214	100.0%						

ANOVA

_Pixel_Values					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.030	2	.015	9.869	.000
Within Groups	3.910	2562	.002		
Total	3.940	2564			

Multiple Comparisons

_Dependent V	'ariable:Pixel Values						
						95% Confid	ence Interval
	(I) HZ Zones	(J) HZ Zones	Mean Difference (I- ل)	Std. Error	Sia.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00601864*	.00223288	.021	0113569	0006804
		100m and 200m Buffer from Hydrothermal Zone ROI	00801613 [*]	.00199550	.000	0127872	0032451
	100m Buffer from	Hydrothermal Zones ROI	.00601864	.00223288	.021	.0006804	.0113569
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00199749	.00175714	.588	0061988	.0022038
	100m and 200m Buffer	Hydrothermal Zones ROI	.00801613	.00199550	.000	.0032451	.0127872
	ROI	100m Buffer from Hydrothermal Zone ROI	.00199749	.00175714	.588	0022038	.0061988
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00601864 [*]	.00223288	.021	0113566	0006807
		100m and 200m Buffer from Hydrothermal Zone ROI	00801613 [*]	.00199550	.000	0127870	0032453
	100m Buffer from	Hydrothermal Zones ROI	.00601864	.00223288	.021	.0006807	.0113566
	Hydrothermai Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00199749	.00175714	.588	0061986	.0022037
	100m and 200m Buffer	Hydrothermal Zones ROI	.00801613	.00199550	.000	.0032453	.0127870
	rrom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00199749	.00175714	.588	0022037	.0061986

Alteration (Oct 11, 2003)

		`										
	(Case Proces	sing Summ	ary								
		Cases										
	Valid Missing Total											
	HZ Zones	N	Percent	N	Percent	N	Percent					
Pixel_Values	Hydrothermal Zones ROI	742	100.0%	0	.0%	742	100.0%					
	100m Buffer from Hydrothermal Zone ROI	606	100.0%	0	.0%	606	100.0%					
	100m and 200m Buffer from Hydrothermal Zone ROI	1211	100.0%	0	.0%	1211	100.0%					
		-										

ANOVA

Pixel Values												
	Sum of Squares	df	Mean Square	F	Sig.							
Between Groups	.020	2	.010	8.439	.000							
Within Groups	3.069	2556	.001									
Total	3.090	2558										

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(I) HZ Zones	(J) HZ Zones	Mean Difference (I- J)	Std. Error	Siq.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00401206	.00197188	.121	0087263	.0007021
		100m and 200m Buffer from Hydrothermal Zone ROI	00663643*	.00173675	.000	0107886	0024842
	100m Buffer from	Hydrothermal Zones ROI	.00401206	.00197188	.121	0007021	.0087263
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00262437	.00160441	.276	0064606	.0012119
	100m and 200m Buffer	Hydrothermal Zones ROI	.00663643	.00173675	.000	.0024842	.0107886
	rrom Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00262437	.00160441	.276	0012119	.0064606
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00401206	.00197188	.121	0087261	.0007019
		100m and 200m Buffer from Hydrothermal Zone ROI	00663643*	.00173675	.000	0107884	0024844
	100m Buffer from	Hydrothermal Zones ROI	.00401206	.00197188	.121	0007019	.0087261
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00262437	.00160441	.276	0064604	.0012117
	100m and 200m Buffer	Hydrothermal Zones ROI	.00663643	.00173675	.000	.0024844	.0107884
	rrom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00262437	.00160441	.276	0012117	.0064604

Alteration (Jan 1, 2005)

	(Case Proces	ssing Summ	ary									
				Ca	ses					ANOVA			
		Va	lid	Mis	sing	To	tal	Direl Velvee					
	HZ Zones	N	Percent	N	Percent	N	Percent	Pixel values					
Pixel_Values	Hydrothermal Zones ROI	747	100.0%	0	.0%	747	100.0%		Sum of	df	Meen Cauero	-	0ia
	100m Buffer from	609	100.0%	0	.0%	609	100.0%	D-1	aquares	u	Mean Square	F 47.400	aiy.
	Hydrothermal Zone ROI							Between Groups	.056	2	.028	17.463	.000
	100m and 200m Buffer	1207	100.0%	0	.0%	1207	100.0%	Within Groups	4.136	2560	.002		
	ROI							Total	4.193	2562			

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(1) HZ Zones	(I) HZ Zones	Mean Difference (I- ال	Std. Error	Sia.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00953089*	.00231717	.000	0150705	0039912
		100m and 200m Buffer from Hydrothermal Zone ROI	01065603*	.00202489	.000	0154973	0058148
	100m Buffer from	Hydrothermal Zones ROI	.00953089	.00231717	.000	.0039912	.0150705
	Hydrothermal Zone RUI	100m and 200m Buffer from Hydrothermal Zone ROI	00112514	.00185666	.906	0055647	.0033144
	100m and 200m Buffer	Hydrothermal Zones ROI	.01065603	.00202489	.000	.0058148	.0154973
	from Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00112514	.00185666	.906	0033144	.0055647
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00953089*	.00231717	.000	0150703	0039915
		100m and 200m Buffer from Hydrothermal Zone ROI	01065603	.00202489	.000	0154971	0058150
	100m Buffer from	Hydrothermal Zones ROI	.00953089	.00231717	.000	.0039915	.0150703
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00112514	.00185666	.905	0055645	.0033142
	100m and 200m Buffer	Hydrothermal Zones ROI	.01065603	.00202489	.000	.0058150	.0154971
	from Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00112514	.00185666	.905	0033142	.0055645

Berecha Silica

Silica (11/10) (Jan 12, 2003)

		Case Proces	ssing Summ	агу							ANOVA			
	Cases Valid Missing Total]	Pixel Values					
		Va	ilid	Mis	sing	To	tal	1						
	HZ Zones	N	Percent	N	Percent	N	Percent	1		Sum of Squares	df	Mean Square	F	Sig
Pixel_Values	Hydrothermal Zones ROI	96	100.0%	0	.0%	96	100.0%	L 1		Uquales		wean oquare		oig.
	100m Buffer from	46	100.0%	0	.0%	46	100.0%		Between Groups	.000	2	.000	6.821	.001
	Hydrothermal Zone ROI								Within Groups	.005	239	.000		
	100m and 200m Buffer from Hydrothermal Zone	100	100.0%	0	.0%	100	100.0%		Total	.005	241			
	ROI													

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confide	ence Interval
	() 117 - F	()) , , , , , , , , , , , , , , , , , , ,	Mean Difference (l-		01-	Laura David	Linnen Deursch
	(I) HZ Zones	(J) HZ Zones	J)	Sta. Error	<u>siq.</u>	Lower Bound	Opper Bound
Tamnane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00140788	.00075260	.182	0004234	.0032392
		100m and 200m Buffer from Hydrothermal Zone ROI	.00236975 [*]	.00065134	.001	.0008008	.0039387
	100m Buffer from	Hydrothermal Zones ROI	00140788	.00075260	.182	0032392	.0004234
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00096187	.00078757	.534	0009503	.0028740
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	00236975	.00065134	.001	0039387	0008008
		100m Buffer from Hydrothermal Zone ROI	00096187	.00078757	.534	0028740	.0009503
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00140788	.00075260	.181	0004222	.0032379
		100m and 200m Buffer from Hydrothermal Zone ROI	.00236975 [*]	.00065134	.001	.0008013	.0039382
	100m Buffer from	Hydrothermal Zones ROI	00140788	.00075260	.181	0032379	.0004222
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00096187	.00078757	.532	0009492	.0028729
	100m and 200m Buffer	Hydrothermal Zones ROI	00236975	.00065134	.001	0039382	0008013
	rrom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	00096187	.00078757	.532	0028729	.0009492

Silica (11/10) (Oct 16, 2005)

Case Processing Summary					ANOVA								
Cases													
	Va	ilid	Missing Total		Pixel Values								
HZ Zones	N	Percent	N	Percent	N	Percent			Sum of				
Hydrothermal Zones ROI	95	100.0%	0	.0%	95	100.0%	I		Squares	df	Mean Square	F	Sig.
100m Buffer from	44	100.0%	0	.0%	44	100.0%		Between Groups	.000	2	.000	7.401	.001
Hydrothermal Zone ROI								Within Groups	.008	236	.000		
100m and 200m Buffer from Hydrothermal Zone ROI	100	100.0%	0	.0%	100	100.0%		Total	.008	238			
	HZ Zones Hydrothermal Zones ROI 100m Buffer from Hydrothermal Zone ROI 100m and Zone Buffer from Hydrothermal Zone ROI	Case Proces Value Value HZ Zones N Hydrothermal Zones ROI 95 100m Buffer from Hydrothermal Zone ROI 44 100m and Zone Buffer from Hydrothermal Zone ROI 100	Case Processing Summ Valid Valid Valid HZ Zones N Percent Hydrothermal Zones ROI 95 100.0% 100m Buffer from Hydrothermal Zone ROI 44 100.% 100m and 200m Buffer from Hydrothermal Zone ROI 100 100.0%	Case Processing Summary Ca Valid Mis HZ Zones N Percent N Hydrothermal Zones ROI 95 100.0% 0 100m Buffer from Hydrothermal Zone ROI 44 100.0% 0 100m and Zono Buffer from Hydrothermal Zone ROI 100 100.0% 0	Case Processing Summary Valid Missing HZ Zones N Percent N Percent Hydrothermal Zones ROI 95 100.0% 0 0% Hydrothermal Zone ROI 44 100.0% 0 .0% Hydrothermal Zone ROI 100 100.0% 0 .0%	Case Processing Summary Valid Cases Valid Missing To HZ Zones N Percent N Percent N Hydrothermal Zones ROI 95 100.0% 0 .0% 95 100m Buffer from Hydrothermal Zone ROI 44 100.0% 0 .0% 44 100m and 200m Buffer from Hydrothermal Zone 100 100.0% 0 .0% 100	Case Processing Summary Valid Missing Total HZ Zones N Percent N Percent N Percent Hydrothermal Zones ROI 95 100.0% 0 .0% 95 100.0% 100m Buffer from Hydrothermal Zone ROI 44 100.0% 0 .0% 44 100.0% 100m and 200m Buffer from Hydrothermal Zone 100 100.0% 0 .0% 100 100.0%	Case Processing Summary Cases Valid Missing Total HZ Zones N Percent N Percent N Percent HJZ Zones N Percent N Percent N Percent Hydrothermal Zone ROI 95 100.0% 0 .0% 44 100.0% Hydrothermal Zone ROI 100 100.0% 0 .0% 100 100.0%	Case Processing Summary Cases Valid Missing Total Pixel Values HZ Zones N Percent N Percent N Percent Hydrothermal Zones ROI 95 100.0% 0 .0% 95 100.0% Between Groups Hydrothermal Zone ROI 44 100.0% 0 .0% 100 100.0% Between Groups Uom and Zone Multer 100 100.0% 0 .0% 100 Total	Case Processing Summary Vaild Total Pixel Values Vaild Missing Total Pixel Values Vaild Missing Total Pixel Values N Percent N Percent Sum of automotive Squares Hydrothermal Zone Roll 44 100.0% O Within Groups Sour of automotive Squares Toom and 200m Buffer 100 100.0% 0 .0% 100 100.0% Within Groups .000 Total .008 .008 .008 .008 .008 .008 .008	Case Processing Summary ANOVA Cases Pixel Values Valid Missing Total HZ Zones N Percent N Percent Pixel Values HZ Zones ROI 95 100.0% G Valid N Percent N Percent Pixel Values DOM Buffer from Hydrothermal Zone ROI 100 100.0% 2 Within Groups 0.000 2 FOIL Hydrothermal Zone ROI 100 100.0% 2 Within Groups 0.008 2.36 Total 1000 2 Within Groups 0.008 2.36 Total 0.008 2.36 FOIL Hydrothermal Zone ROI Pixel Values <td>Case Processing Summary ANOVA Cases ANOVA Valid Missing Total Valid Missing Total HZ Zones N Percent N Percent HZ Zones ROI 95 100.0% O 0.0% Sum of Squares Mean Square Journ and Zone ROI 100 0.0% d4 100.0% O 0.000 Q 0.000 Journ and Zone ROI 100 0.0% d4 100.0% O 0.000 Q 0.000 Journ and Zone ROI 100 0.0% Journ and Zone ROI Journ and Zone ROI<!--</td--><td>Case Processing Summary Samulary ANOVA Valid Missing Total Pixel Values Valid Missing Total Pixel Values HZ Zones N Percent Sum of Squares df Mean Square F 100m and 20m Buffer 100 100.% 0 0.% 100 100.% Within Groups 0.008 2.38 0.000 7.401 Notes Notes<!--</td--></td></td>	Case Processing Summary ANOVA Cases ANOVA Valid Missing Total Valid Missing Total HZ Zones N Percent N Percent HZ Zones ROI 95 100.0% O 0.0% Sum of Squares Mean Square Journ and Zone ROI 100 0.0% d4 100.0% O 0.000 Q 0.000 Journ and Zone ROI 100 0.0% d4 100.0% O 0.000 Q 0.000 Journ and Zone ROI 100 0.0% Journ and Zone ROI Journ and Zone ROI </td <td>Case Processing Summary Samulary ANOVA Valid Missing Total Pixel Values Valid Missing Total Pixel Values HZ Zones N Percent Sum of Squares df Mean Square F 100m and 20m Buffer 100 100.% 0 0.% 100 100.% Within Groups 0.008 2.38 0.000 7.401 Notes Notes<!--</td--></td>	Case Processing Summary Samulary ANOVA Valid Missing Total Pixel Values Valid Missing Total Pixel Values HZ Zones N Percent Sum of Squares df Mean Square F 100m and 20m Buffer 100 100.% 0 0.% 100 100.% Within Groups 0.008 2.38 0.000 7.401 Notes Notes </td

Multiple Comparisons

Dependent Variable:Pixel_Values										
						95% Confid	ence Interval			
			Mean Difference (I-	Ptd Error	Rig	Lower Bound	Linner Bound			
— ·			J)		<u> </u>					
Tamnane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00271031	.00105673	.036	.0001302	.0052905			
		100m and 200m Buffer from Hydrothermal Zone ROI	.00298995*	.00080929	.001	.0010406	.0049393			
	100m Buffer from	Hydrothermal Zones ROI	00271031*	.00105673	.036	0052905	0001302			
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00027964	.00108187	.992	0023576	.0029169			
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	00298995	.00080929	.001	0049393	0010406			
		100m Buffer from Hydrothermal Zone ROI	00027964	.00108187	.992	0029169	.0023576			
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00271031*	.00105673	.036	.0001323	.0052883			
		100m and 200m Buffer from Hydrothermal Zone ROI	.00298995 [*]	.00080929	.001	.0010412	.0049387			
	100m Buffer from	Hydrothermal Zones ROI	00271031*	.00105673	.036	0052883	0001323			
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00027964	.00108187	.991	0023556	.0029149			
	100m and 200m Buffer	Hydrothermal Zones ROI	00298995	.00080929	.001	0049387	0010412			
	trom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	00027964	.00108187	.991	0029149	.0023556			

Silica (11/10) (Feb 5, 2006)

Case Processing Summary											
		Cases									
		Valid Missing Total									
	HZ Zones N Percent N Percent N Percent										
Pixel_Values	Hydrothermal Zones ROI	93	100.0%	0	.0%	93	100.0%				
	100m Buffer from Hydrothermal Zone ROI	49	100.0%	0	.0%	49	100.0%				
	100m and 200m Buffer from Hydrothermal Zone R01	98	100.0%	0	.0%	98	100.0%				

ANOVA

Pixel Values										
	Sum of Squares	df	Mean Square	F	Sig.					
Between Groups	.000	2	.000	1.503	.225					
Within Groups	.008	237	.000							
Total	.008	239								

Multiple Comparisons

_Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(I) HZ Zones	(J) HZ Zones	Mean Difference (I- J)	Std. Error	Sia.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00018508	.00104694	.997	0027353	.0023651
		100m and 200m Buffer from Hydrothermal Zone ROI	00137896	.00082085	.258	0033566	.0005987
	100m Buffer from	Hydrothermal Zones ROI	.00018508	.00104694	.997	0023651	.0027353
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00119388	.00108138	.615	0038230	.0014353
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	.00137896	.00082085	.258	0005987	.0033566
		100m Buffer from Hydrothermal Zone ROI	.00119388	.00108138	.615	0014353	.0038230
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00018508	.00104694	.997	0027334	.0023632
		100m and 200m Buffer from Hydrothermal Zone ROI	00137896	.00082085	.257	0033560	.0005980
	100m Buffer from	Hydrothermal Zones ROI	.00018508	.00104694	.997	0023632	.0027334
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00119388	.00108138	.612	0038213	.0014335
	100m and 200m Buffer	Hydrothermal Zones ROI	.00137896	.00082085	.257	0005980	.0033560
	ROI	100m Buffer from Hydrothermal Zone ROI	.00119388	.00108138	.612	0014335	.0038213

Tendaho Silica

Silica (11/10) (Jan 25, 2002) Case Processing Summary

	Case Processing Summary										
		Cases									
		Valid Missing Total									
HZ Zones N Percent N Percent N Perc											
Pixel_Values	Hydrothermal Zones ROI	91	100.0%	0	.0%	91	100.0%				
	100m Buffer from Hydrothermal Zone ROI	62	100.0%	0	.0%	62	100.0%				
	100m and 200m Buffer from Hydrothermal Zone ROI	130	100.0%	0	.0%	130	100.0%				

ANOVA

Pixel Values										
	Sum of Squares	df	Mean Square	F	Sig.					
Between Groups	.000	2	.000	6.499	.002					
Within Groups	.010	280	.000							
Total	.010	282								

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(I) HZ. Zones	(J) HZ Zones	Mean Difference (I- ل)	Std. Error	Sia.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00266111*	.00097102	.021	.0003163	.0050059
		100m and 200m Buffer from Hydrothermal Zone ROI	.00274791*	.00086743	.005	.0006559	.0048399
	100m Buffer from	Hydrothermal Zones ROI	00266111*	.00097102	.021	0050059	0003163
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00008680	.00081840	.999	0018930	.0020666
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	00274791*	.00086743	.005	0048399	0006559
		100m Buffer from Hydrothermal Zone ROI	00008680	.00081840	.999	0020666	.0018930
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00266111*	.00097102	.020	.0003172	.0050050
		100m and 200m Buffer from Hydrothermal Zone ROI	.00274791*	.00086743	.005	.0006566	.0048392
	100m Buffer from	Hydrothermal Zones ROI	00266111*	.00097102	.020	0050050	0003172
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00008680	.00081840	.999	0018921	.0020657
	100m and 200m Buffer	Hydrothermal Zones ROI	00274791*	.00086743	.005	0048392	0006566
	trom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	00008680	.00081840	.999	0020657	.0018921

Silica (11/10) (Oct 11, 2003)

	Case Processing Summary										
	Cases										
		Valid Missing Total									
	HZ Zones N Percent N Percent N Percent										
Pixel_Values	Hydrothermal Zones ROI	88	100.0%	0	.0%	88	100.0%				
	100m Buffer from Hydrothermal Zone ROI	63	100.0%	0	.0%	63	100.0%				
	100m and 200m Buffer from Hydrothermal Zone ROI	133	100.0%	0	.0%	133	100.0%				

ANOVA									
Pixel Values									
	Sum of Squares	df	Mean Square	F	Sig.				
Between Groups	.004	2	.002	23.454	.000				
Within Groups	.024	281	.000						
Total	.028	283							

Multiple Comparisons

_Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(1) H7 Zones	(1) HZ Zones	Mean Difference (I- بال	Std. Error	Sia.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00674738*	.00164210	.000	.0027814	.0107133
		100m and 200m Buffer from Hydrothermal Zone ROI	.00851689*	.00137323	.000	.0051985	.0118353
	100m Buffer from	Hydrothermal Zones ROI	00674738	.00164210	.000	0107133	0027814
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00176951	.00130620	.445	0013987	.0049377
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	00851689*	.00137323	.000	0118353	0051985
		100m Buffer from Hydrothermal Zone ROI	00176951	.00130620	.445	0049377	.0013987
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00674738 [*]	.00164210	.000	.0027830	.0107117
		100m and 200m Buffer from Hydrothermal Zone ROI	.00851689 [*]	.00137323	.000	.0051999	.0118339
	100m Buffer from	Hydrothermal Zones ROI	00674738	.00164210	.000	0107117	0027830
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00176951	.00130620	.443	0013969	.0049359
	100m and 200m Buffer	Hydrothermal Zones ROI	00851689	.00137323	.000	0118339	0051999
	ROI	100m Buffer from Hydrothermal Zone ROI	00176951	.00130620	.443	0049359	.0013969

Case Processing	Summary
outorrootooning	o anninoi y

ANOVA

				Ca	ses			Pivel Values					
		Va	ilid	Mis	sing	To	tal						
	HZ Zones	N	Percent	N	Percent	N	Percent		Sum of			_	
Pixel_Values	Hydrothermal Zones ROI	92	100.0%	0	.0%	92	100.0%		Squares	df	Mean Square	F	Sig.
	100m Buffer from Hydrothermal Zone ROI	62	100.0%	0	.0%	62	100.0%	Between Groups	.003	2	.002	18.519	.000
	100m and 200m Buffer	127	100.0%	0	.0%	127	100.0%	Within Groups	.026	278	.000		
	from Hydrothermal Zone ROI							Total	.029	280			

Multiple Comparisons

Dependent V:	ariable:Pixel Values						
						95% Confide	ence Interval
	(1) H7 Janes	(1) H7 7apes	Mean Difference (I-	Std Error	Sia	Lower Bound	Unner Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00579516	.00171055	.003	.0016647	.0099256
		100m and 200m Buffer from Hydrothermal Zone ROI	.00791969*	.00142917	.000	.0044666	.0113728
	100m Buffer from	Hydrothermal Zones ROI	00579516	.00171055	.003	0099256	0016647
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00212452	.00133964	.309	0011266	.0053757
_	100m and 200m Buffer	Hydrothermal Zones ROI	00791969*	.00142917	.000	0113728	0044666
	from Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	00212452	.00133964	.309	0053757	.0011266
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00579516 [*]	.00171055	.003	.0016663	.0099240
		100m and 200m Buffer from Hydrothermal Zone ROI	.00791969 [*]	.00142917	.000	.0044680	.0113714
	100m Buffer from	Hydrothermal Zones ROI	00579516	.00171055	.003	0099240	0016663
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00212452	.00133964	.307	0011247	.0053738
	100m and 200m Buffer	Hydrothermal Zones ROI	00791969*	.00142917	.000	0113714	0044680
	from Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	00212452	.00133964	.307	0053738	.0011247

*. The mean difference is significant at the 0.05 level.

Berecha (Silica (11/12))

(Silica (11/12)) (Jan 12, 2003)

	,	5430110000	Joing Junin	ury										
				Ca	ses			l			ANOVA			
		Va	Valid Missing Total			tal	Į.	Pixel Values						
	HZ Zones	N	Percent	N	Percent	N	Percent	l		Current of				
Pixel_Values	Hydrothermal Zones ROI	92	100.0%	0	.0%	92	100.0%	I		Squares	df	Mean Square	F	Sia.
	100m Buffer from Hydrothermal Zone ROI	62	100.0%	0	.0%	62	100.0%		Between Groups	.000	2	.000	1.122	.327
	100m and 200m Buffer from Hydrothermal Zone ROI	127	100.0%	0	.0%	127	100.0%		Within Groups Total	.007 .007	278 280	.000		

Multiple Comparisons

_Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(I) HZ Zones	(J) HZ Zones	Mean Difference (I- J)	Std. Error	Siq.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00097447	.00083853	.574	0030032	.0010542
		100m and 200m Buffer from Hydrothermal Zone ROI	00091231	.00066791	.436	0025214	.0006968
	100m Buffer from	Hydrothermal Zones ROI	.00097447	.00083853	.574	0010542	.0030032
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00006217	.00077736	1.000	0018223	.0019466
-	100m and 200m Buffer	Hydrothermal Zones ROI	.00091231	.00066791	.436	0006968	.0025214
	ROI	100m Buffer from Hydrothermal Zone ROI	00006217	.00077736	1.000	0019466	.0018223
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00097447	.00083853	.572	0030022	.0010533
		100m and 200m Buffer from Hydrothermal Zone ROI	00091231	.00066791	.434	0025209	.0006963
	100m Buffer from	Hydrothermal Zones ROI	.00097447	.00083853	.572	0010533	.0030022
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00006217	.00077736	1.000	0018213	.0019456
	100m and 200m Buffer	Hydrothermal Zones ROI	.00091231	.00066791	.434	0006963	.0025209
	rrom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	00006217	.00077736	1.000	0019456	.0018213

(Silica (11/12)) (Oct 16, 2005)

		Case Proces	ssing Summ	агу				_
				Ca	ses			1
		Va	ilid Missing				tal	Pi
	HZ Zones	N	Percent	N	Percent	N	Percent	
Pixel_Values	Hydrothermal Zones ROI	95	100.0%	0	.0%	95	100.0%	
	100m Buffer from Hydrothermal Zone ROI	44	100.0%	0	.0%	44	100.0%	В
	100m and 200m Buffer from Hydrothermal Zone ROI	100	100.0%	0	.0%	100	100.0%	T T

ANOVA

_											
a	lid	Mis	sing	To	tal	Pixel Values					
	Percent	N	Percent	N	Percent		Sum of				
	100.0%	0	.0%	95	100.0%		Squares	df	Mean Square	F	Sig.
	100.0%	0	.0%	44	100.0%	Between Groups	.000	2	.000	2.456	.088
	100.0%	0	.0%	100	100.0%	Within Groups	.011	236	.000		
						Total	.011	238			

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confide	ence Interval
			Mean Difference (l-		01-	Laura David	Linnen Devind
	(I) HZ_Zones	(J) HZ Zones	J)	Sta. Error	Siq.	Lower Bound	Opper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00215964	.00128338	.264	0053031	.0009838
		100m and 200m Buffer from Hydrothermal Zone ROI	00192537	.00094890	.126	0042118	.0003611
	100m Buffer from	Hydrothermal Zones ROI	.00215964	.00128338	.264	0009838	.0053031
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00023427	.00136405	.997	0030913	.0035598
_	100m and 200m Buffer	Hydrothermal Zones ROI	.00192537	.00094890	.126	0003611	.0042118
	ROI	100m Buffer from Hydrothermal Zone ROI	00023427	.00136405	.997	0035598	.0030913
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00215964	.00128338	.262	0053001	.0009808
		100m and 200m Buffer from Hydrothermal Zone ROI	00192537	.00094890	.126	0042111	.0003603
	100m Buffer from	Hydrothermal Zones ROI	.00215964	.00128338	.262	0009808	.0053001
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00023427	.00136405	.997	0030888	.0035573
	100m and 200m Buffer	Hydrothermal Zones ROI	.00192537	.00094890	.126	0003603	.0042111
	ROI	100m Buffer from Hydrothermal Zone ROI	00023427	.00136405	.997	0035573	.0030888

Case Processing Summary

			Cases						
		Va	lid	Miss	sing	Total			
	HZ Zones	N	Percent	N	Percent	N	Percent		
Pixel_Values	Hydrothermal Zones ROI	93	100.0%	0	.0%	93	100.0%		
	100m Buffer from Hydrothermal Zone ROI	49	100.0%	0	.0%	49	100.0%		
	100m and 200m Buffer from Hydrothermal Zone ROI	98	100.0%	0	.0%	98	100.0%		

	ANOVA											
Pixel Values												
	Sum of Squares	df	Mean Square	F	Sig.							
Between Groups	.000	2	.000	7.287	.001							
Within Groups	.005	237	.000									
Total	.006	239										

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
			Mean Difference (I-	Otd Error	Qia	Lower Pound	Linner Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hvdrothermal Zone ROI	.00248710*	.00080395	.007	.0005387	.0044355
		100m and 200m Buffer from Hydrothermal Zone ROI	.00230546*	.00069531	.003	.0006300	.0039809
	100m Buffer from	Hydrothermal Zones ROI	00248710 [*]	.00080395	.007	0044355	0005387
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00018163	.00075962	.993	0020260	.0016627
_	100m and 200m Buffer	Hydrothermal Zones ROI	00230546	.00069531	.003	0039809	0006300
	from Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00018163	.00075962	.993	0016627	.0020260
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00248710 [*]	.00080395	.007	.0005398	.0044344
		100m and 200m Buffer from Hydrothermal Zone ROI	.00230546*	.00069531	.003	.0006305	.0039804
	100m Buffer from	Hydrothermal Zones ROI	00248710 [*]	.00080395	.007	0044344	0005398
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	00018163	.00075962	.993	0020248	.0016616
	100m and 200m Buffer	Hydrothermal Zones ROI	00230546	.00069531	.003	0039804	0006305
	from Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	.00018163	.00075962	.993	0016616	.0020248

(Silica (11/12)) (Jan 25, 2002)

		Case Proces	ssing Summ	агу						ANOVA			
				Ca	ses			Pixel Values					
		Va	lid	Mis	sing	TO	tal						
	HZ Zones	N	Percent	N	Percent	N	Percent		Sum of				
Pixel_Values	Hydrothermal Zones ROI	91	100.0%	0	.0%	91	100.0%		Squares	df	Mean Square	F	Sig.
	100m Buffer from Hydrothermal Zone ROI	62	100.0%	0	.0%	62	100.0%	Between Groups	.000	2	.000	6.499	.002
	100m and 200m Buffer	130	100.0%	0	.0%	130	100.0%	Within Groups	.010	280	.000		
	from Hydrothermal Zone ROI							Total	.010	282			

Multiple Comparisons

 Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(I) HZ Zonec	(1) U7 7ones	Mean Difference (I-	Std Error	Sia	Lower Bound	Upper Bound
Tombono	Hydrothermel Zenec BOI	100m Puffer from	00266111	00007102	014.	0002162	0050050
rannane	Hydrothermal Zones ROI	Hydrothermal Zone ROI	.00200111	.00097102	.021	.0003103	.0050059
		100m and 200m Buffer from Hydrothermal Zone ROL	.00274791*	.00086743	.005	.0006559	.0048399
	100m D	Liver and Zamer DOI	00000444*	00007400	0.04	0050050	00004.00
	100m Butter from Hydrothermal Zone ROI	Hydrothermai Zones RUI	00266111	.00097102	.021	0050059	0003163
		100m and 200m Buffer from Hydrothermal Zone ROI	.00008680	.00081840	.999	0018930	.0020666
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	00274791*	.00086743	.005	0048399	0006559
		100m Buffer from Hydrothermal Zone ROI	00008680	.00081840	.999	0020666	.0018930
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00266111*	.00097102	.020	.0003172	.0050050
		100m and 200m Buffer from Hydrothermal Zone ROI	.00274791*	.00086743	.005	.0006566	.0048392
	100m Buffer from	Hydrothermal Zones ROI	00266111*	.00097102	.020	0050050	0003172
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00008680	.00081840	.999	0018921	.0020657
	100m and 200m Buffer	Hydrothermal Zones ROI	00274791*	.00086743	.005	0048392	0006566
	rrorri Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	00008680	.00081840	.999	0020657	.0018921

*. The mean difference is significant at the 0.05 level.

(Silica (11/12)) (Oct 11, 2003)

Case Processing Summary									
		Cases							
		Valid Missing Total							
	HZ Zones	N Percent N Percent				N	Percent		
Pixel_Values	Hydrothermal Zones ROI	88	100.0%	0	.0%	88	100.0%		
	100m Buffer from Hydrothermal Zone ROI	63	100.0%	0	.0%	63	100.0%		
	100m and 200m Buffer from Hydrothermal Zone ROI	133	100.0%	0	.0%	133	100.0%		

ANOVA

Pixel Values								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	.004	2	.002	23.454	.000			
Within Groups	.024	281	.000					
Total	.028	283						

Multiple Comparisons

 Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(1) HZ Zones	(1) HZ Zones	Mean Difference (I-	Std Error	Sia	Lower Bound	Unner Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00674738*	.00164210	.000	.0027814	.0107133
		100m and 200m Buffer from Hydrothermal Zone ROI	.00851689 [*]	.00137323	.000	.0051985	.0118353
	100m Buffer from	Hydrothermal Zones ROI	00674738 [*]	.00164210	.000	0107133	0027814
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00176951	.00130620	.445	0013987	.0049377
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	00851689	.00137323	.000	0118353	0051985
		100m Buffer from Hydrothermal Zone ROI	00176951	.00130620	.445	0049377	.0013987
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00674738 [*]	.00164210	.000	.0027830	.0107117
		100m and 200m Buffer from Hydrothermal Zone ROI	.00851689 [*]	.00137323	.000	.0051999	.0118339
	100m Buffer from	Hydrothermal Zones ROI	00674738 [*]	.00164210	.000	0107117	0027830
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00176951	.00130620	.443	0013969	.0049359
	100m and 200m Buffer	Hydrothermal Zones ROI	00851689*	.00137323	.000	0118339	0051999
	irom Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	00176951	.00130620	.443	0049359	.0013969

*. The mean difference is significant at the 0.05 level.

(Silica (11/12)) (Jan 1, 2005)

Case Processing Summary										
		Cases								
		Va	lid	Missing		To	tal			
	HZ Zones	N	Percent	N	Percent	N	Percent			
Pixel_Values	Hydrothermal Zones ROI	92	100.0%	0	.0%	92	100.0%			
	100m Buffer from Hydrothermal Zone ROI	62	100.0%	0	.0%	62	100.0%			
	100m and 200m Buffer from Hydrothermal Zone ROI	127	100.0%	0	.0%	127	100.0%			

ANOVA

Pixel Values								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	.003	2	.002	18.519	.000			
Within Groups	.026	278	.000					
Total	.029	280						

Multiple Comparisons

<u>Dependent V</u>	ariable:Pixel Values						
						95% Confid	ence Interval
			Mean Difference (I-	Std Error	Qia	Lower Bound	Linner Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00579516*	.00171055	.003	.0016647	.0099256
		100m and 200m Buffer from Hydrothermal Zone ROI	.00791969*	.00142917	.000	.0044666	.0113728
	100m Buffer from	Hydrothermal Zones ROI	00579516	.00171055	.003	0099256	0016647
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00212452	.00133964	.309	0011266	.0053757
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	00791969 [*]	.00142917	.000	0113728	0044666
		100m Buffer from Hydrothermal Zone ROI	00212452	.00133964	.309	0053757	.0011266
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00579516 [*]	.00171055	.003	.0016663	.0099240
		100m and 200m Buffer from Hydrothermal Zone ROI	.00791969*	.00142917	.000	.0044680	.0113714
	100m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	00579516	.00171055	.003	0099240	0016663
		100m and 200m Buffer from Hydrothermal Zone ROI	.00212452	.00133964	.307	0011247	.0053738
	100m and 200m Buffer	Hydrothermal Zones ROI	00791969*	.00142917	.000	0113714	0044680
	rrom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	00212452	.00133964	.307	0053738	.0011247

*. The mean difference is significant at the 0.05 level.

Berecha (Silica (13/10))
(Silica (13/10)) (Jan 12, 2003)

Case Processing Summary

		Cases							
		Va	lid	Mis	sing	Total			
	HZ Zones	N	Percent	N	Percent	N	Percent		
Pixel_Values	Hydrothermal Zones ROI	96	100.0%	0	.0%	96	100.0%		
	100m Buffer from Hydrothermal Zone ROI	46	100.0%	0	.0%	46	100.0%		
	100m and 200m Buffer from Hydrothermal Zone ROI	100	100.0%	0	.0%	100	100.0%		

ANOVA

Pixel Values											
	Sum of Squares	df	Mean Square	F	Sig.						
Between Groups	.001	2	.000	9.373	.000						
Within Groups	.009	239	.000								
Total	.010	241									

Multiple Comparisons

<u>Dependent V</u>	ariable:Pixel Values						
						95% Confid	ence Interval
			Mean Difference (I-	Std Error	Qia	Lower Bound	Linner Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00290784*	.00110610	.029	.0002261	.0055896
		100m and 200m Buffer from Hydrothermal Zone ROI	.00371079*	.00090320	.000	.0015334	.0058882
	100m Buffer from	Hydrothermal Zones ROI	00290784*	.00110610	.029	0055896	0002261
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00080296	.00098597	.803	0015997	.0032056
	100m and 200m Buffer	Hydrothermal Zones ROI	00371079 [*]	.00090320	.000	0058882	0015334
	ROI	100m Buffer from Hydrothermal Zone ROI	00080296	.00098597	.803	0032056	.0015997
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00290784*	.00110610	.029	.0002275	.0055881
		100m and 200m Buffer from Hydrothermal Zone ROI	.00371079*	.00090320	.000	.0015341	.0058875
	100m Buffer from	Hydrothermal Zones ROI	00290784*	.00110610	.029	0055881	0002275
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00080296	.00098597	.800	0015979	.0032038
	100m and 200m Buffer	Hydrothermal Zones ROI	00371079	.00090320	.000	0058875	0015341
	from Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	00080296	.00098597	.800	0032038	.0015979

*. The mean difference is significant at the 0.05 level.

(Silica (13/10)) (Oct 16, 2005)

ANOVA

		Cases						
		Va	lid	Mis	sing	Total		
	HZ Zones	N	Percent	N	Percent	N	Percent	
Pixel_Values	Hydrothermal Zones ROI	95	100.0%	0	.0%	95	100.0%	
	100m Buffer from Hydrothermal Zone ROI	44	100.0%	0	.0%	44	100.0%	
	100m and 200m Buffer from Hydrothermal Zone ROI	100	100.0%	0	.0%	100	100.0%	

4	Pixel Values					
		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	.000	2	.000	1.847	.160
	Within Groups	.023	236	.000		
Ί	Total	.024	238			

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
			Mean Difference (I-	Otd Error	Rig	Lower Pound	Linner Bound
Tombono	UI HZ ZUTIES	100m Puffer from	00041206	00102170	004	0040601	
ramnane	Hydrothermal Zones Rol	Hydrothermal Zone ROI	00041206	.00183179	.994	0048691	.0040450
		100m and 200m Buffer from Hydrothermal Zone ROI	.00235858	.00143351	.275	0010951	.0058122
	100m Buffer from	Hydrothermal Zones ROI	.00041206	.00183179	.994	0040450	.0048691
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00277064	.00175184	.313	0015026	.0070438
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	00235858	.00143351	.275	0058122	.0010951
		100m Buffer from Hydrothermal Zone ROI	00277064	.00175184	.313	0070438	.0015026
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	00041206	.00183179	.994	0048660	.0040419
		100m and 200m Buffer from Hydrothermal Zone ROI	.00235858	.00143351	.274	0010940	.0058111
	100m Buffer from	Hydrothermal Zones ROI	.00041206	.00183179	.994	0040419	.0048660
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00277064	.00175184	.311	0014992	.0070405
	100m and 200m Buffer	Hydrothermal Zones ROI	00235858	.00143351	.274	0058111	.0010940
	irom Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	00277064	.00175184	.311	0070405	.0014992

(Silica (13/10)) (Feb 5, 2006)

			Cases						
		Va	lid	Miss	sing	Total			
	HZ Zones	N	Percent	N	Percent	N	Percent		
Pixel_Values	Hydrothermal Zones ROI	93	100.0%	0	.0%	93	100.0%		
	100m Buffer from Hydrothermal Zone ROI	49	100.0%	0	.0%	49	100.0%		
	100m and 200m Buffer from Hydrothermal Zone ROI	98	100.0%	0	.0%	98	100.0%		

		ANOVA			
Pixel Values					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.001	2	.000	12.953	.000
Within Groups	.005	237	.000		
Total	.006	239			

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(I) HZ Zones	(J) HZ Zones	Mean Difference (I- J)	Std. Error	Siq.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00274648*	.00082126	.004	.0007465	.0047464
		100m and 200m Buffer from Hydrothermal Zone ROI	.00341689 [*]	.00068691	.000	.0017616	.0050722
	100m Buffer from	Hydrothermal Zones ROI	00274648*	.00082126	.004	0047464	0007465
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00067041	.00087683	.830	0014578	.0027986
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	00341689*	.00068691	.000	0050722	0017616
		100m Buffer from Hydrothermal Zone ROI	00067041	.00087683	.830	0027986	.0014578
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00274648 [*]	.00082126	.004	.0007480	.0047450
		100m and 200m Buffer from Hydrothermal Zone ROI	.00341689 [*]	.00068691	.000	.0017621	.0050716
	100m Buffer from	Hydrothermal Zones ROI	00274648*	.00082126	.004	0047450	0007480
	Hydrothermai Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00067041	.00087683	.829	0014566	.0027974
	100m and 200m Buffer	Hydrothermal Zones ROI	00341689*	.00068691	.000	0050716	0017621
	ROI	100m Buffer from Hydrothermal Zone ROI	00067041	.00087683	.829	0027974	.0014566

*. The mean difference is significant at the 0.05 level.

Tendaho (Silica (13/10))

(Silica (13/10)) (Jan 25, 2002)

		Case Proces	sing Summ	ary						ANOVA
				Ca	ses			Pixel Values		
		Va	lid	Mis	sing	To	tal		Sum of	
	HZ Zones	N	Percent	N	Percent	N	Percent		Squares	df
Pixel_Values	Hydrothermal Zones ROI	91	100.0%	0	.0%	91	100.0%	Between Groups	003	2
	100m Buffer from	62	100.0%	0	.0%	62	100.0%	Laght in One une	.000	
	100m and 200m Duffer	100	100.00			4.20	100.00	within Groups	.019	280
	from Hydrothermal Zone ROI	130	100.0%		.070	130	100.0%	Total	.022	282

Pixel Values					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.003	2	.002	22.788	.000
Within Groups	.019	280	.000		
Total	.022	282			

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confide	ence Interval
	(I) H7 Janac	(I) HZ Zapac	Mean Difference (I-	Std Error	Sia	Lower Bound	Linner Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00481611*	.00137087	.002	.0015024	.0081298
		100m and 200m Buffer from Hydrothermal Zone ROI	.00760495*	.00114975	.000	.0048344	.0103755
	100m Buffer from	Hydrothermal Zones ROI	00481611*	.00137087	.002	0081298	0015024
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00278883	.00124398	.078	0002237	.0058014
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	00760495	.00114975	.000	0103755	0048344
		100m Buffer from Hydrothermal Zone ROI	00278883	.00124398	.078	0058014	.0002237
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.00481611*	.00137087	.002	.0015038	.0081284
		100m and 200m Buffer from Hydrothermal Zone ROI	.00760495 [*]	.00114975	.000	.0048353	.0103746
	100m Buffer from	Hydrothermal Zones ROI	00481611*	.00137087	.002	0081284	0015038
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00278883	.00124398	.078	0002222	.0057998
	100m and 200m Buffer	Hydrothermal Zones ROI	00760495	.00114975	.000	0103746	0048353
	ROI	100m Buffer from Hydrothermal Zone ROI	00278883	.00124398	.078	0057998	.0002222

*. The mean difference is significant at the 0.05 level.

(Silica (13/10)) (Oct 11, 2003)

Case Processing Summary												
		Cases										
		Valid Missing Total										
	HZ Zones	N	Percent	N	Percent	N	Percent					
Pixel_Values	Hydrothermal Zones ROI	88	100.0%	0	.0%	88	100.0%					
	100m Buffer from Hydrothermal Zone ROI	63	100.0%	0	.0%	63	100.0%					
	100m and 200m Buffer from Hydrothermal Zone ROI	133	100.0%	0	.0%	133	100.0%					

ANOVA										
Pixel Values										
	Sum of Squares	df	Mean Square	F	Sig.					
Between Groups	.046	2	.023	50.027	.000					
Within Groups	.130	281	.000							
Total	.176	283								

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(N.1.7. Zanaa		Mean Difference (I-	Std Error	Qia	Lower Pound	Linner Pound
Tombono	United Points	100m Puffor from	0/	00201670	000	0124621	0210012
rannane	Hydrothermal Zones Rol	Hydrothermal Zone ROI	.02208220	.00381670	.000	.0134031	.0319013
		100m and 200m Buffer from Hydrothermal Zone ROI	.02915413 [*]	.00316598	.000	.0215069	.0368013
	100m Buffer from	Hydrothermal Zones ROI	02268220*	.00381670	.000	0319013	0134631
	Hydrothermal Zone ROI	100m and 200m Buffer	.00647193	.00311381	.115	0010797	.0140236
		from Hydrothermal Zone ROI					
	100m and 200m Buffer	Hydrothermal Zones ROI	02915413 [*]	.00316598	.000	0368013	0215069
	from Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	00647193	.00311381	.115	0140236	.0010797
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.02268220*	.00381670	.000	.0134668	.0318976
		100m and 200m Buffer from Hydrothermal Zone ROI	.02915413 [*]	.00316598	.000	.0215100	.0367982
	100m Buffer from	Hydrothermal Zones ROI	02268220*	.00381670	.000	0318976	0134668
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00647193	.00311381	.115	0010755	.0140194
	100m and 200m Buffer	Hydrothermal Zones ROI	02915413	.00316598	.000	0367982	0215100
	from Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	00647193	.00311381	.115	0140194	.0010755

*. The mean difference is significant at the 0.05 level.

	Case Processing Summary												
		Cases											
		Va	To	tal									
	HZ Zones	N	Percent	N	Percent	N	Percent						
Pixel_Values	Hydrothermal Zones ROI	92	100.0%	0	.0%	92	100.0%						
	100m Buffer from Hydrothermal Zone ROI	62	100.0%	0	.0%	62	100.0%						
	100m and 200m Buffer from Hydrothermal Zone ROL	127	100.0%	0	.0%	127	100.0%						

ANOVA

Pixel Values											
	Sum of Squares	df	Mean Square	F	Sig.						
Between Groups	.028	2	.014	28.251	.000						
Within Groups	.139	278	.000								
Total	.167	280									

Multiple Comparisons

<u>Dependent V</u>	ariable:Pixel_Values						
						95% Confid	ence Interval
			Mean Difference (l-				
	(I) HZ Zones	(J) HZ Zones	J)	Std. Error	Siq.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.01670687*	.00398660	.000	.0070754	.0263383
		100m and 200m Buffer from Hydrothermal Zone ROI	.02275409*	.00321565	.000	.0149916	.0305166
	100m Buffer from	Hydrothermal Zones ROI	01670687*	.00398660	.000	0263383	0070754
	Hydrothermai Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00604722	.00332165	.200	0020156	.0141101
	100m and 200m Buffer	Hydrothermal Zones ROI	02275409	.00321565	.000	0305166	0149916
	from Hydrothermai Zone ROI	100m Buffer from Hydrothermal Zone ROI	00604722	.00332165	.200	0141101	.0020156
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.01670687*	.00398660	.000	.0070794	.0263343
		100m and 200m Buffer from Hydrothermal Zone ROI	.02275409 [*]	.00321565	.000	.0149945	.0305136
	100m Buffer from	Hydrothermal Zones ROI	01670687*	.00398660	.000	0263343	0070794
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.00604722	.00332165	.199	0020108	.0141053
	100m and 200m Buffer	Hydrothermal Zones ROI	02275409*	.00321565	.000	0305136	0149945
	ROI	100m Buffer from Hydrothermal Zone ROI	00604722	.00332165	.199	0141053	.0020108

*. The mean difference is significant at the 0.05 level.

Berecha (Thermal) Feb 2

(Feb 2, 2003) 1st polynomial

ANOVA

		Case Proces	sing Summ	агу				Pixel Values					
		Va	lid	Ca: Mis:	ses sina	To	tal		Sum of Squares	Чf	Mean Square	F	Sig
	HZ Zones	N	Percent	N	Percent	N	Percent	Botwoon Groups	16 001	3	7.040	17106	0.00
Pixel_Values	Hydrothermal Zones ROI	95	100.0%	0	.0%	95	100.0%	Between Groups	10.001	2	7.940	17.180	.000
	100m Buffer from Hydrothermal Zone ROI	41	100.0%	0	.0%	41	100.0%	Within Groups	106.730	231	.462		
	100m and 200m Buffer from Hydrothermal Zone ROI	98	100.0%	0	.0%	98	100.0%	Total	122.611	233			

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	() 117 7	()) () 7 7	Mean Difference (I-		0in	Lauran Davin d	Linnen Deured
	(I) HZ Zones	(J) HZ Zones	J)	Sta. Error	5iq.	Lower Bound	Opper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.46120064	.13403702	.003	.1310599	.7913414
		100m and 200m Buffer from Hydrothermal Zone ROI	.55360639*	.09358618	.000	.3279019	.7793109
	100m Buffer from	Hydrothermal Zones ROI	46120064	.13403702	.003	7913414	1310599
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.09240575	.14600368	.895	2643598	.4491713
	100m and 200m Buffer	Hydrothermal Zones ROI	55360639*	.09358618	.000	7793109	3279019
	ROI	100m Buffer from Hydrothermal Zone ROI	09240575	.14600368	.895	4491713	.2643598
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.46120064*	.13403702	.003	.1314517	.7909495
		100m and 200m Buffer from Hydrothermal Zone ROI	.55360639	.09358618	.000	.3279808	.7792320
	100m Buffer from	Hydrothermal Zones ROI	46120064	.13403702	.003	7909495	1314517
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.09240575	.14600368	.894	2640549	.4488664
	100m and 200m Buffer	Hydrothermal Zones ROI	55360639	.09358618	.000	7792320	3279808
	rrom Hydrothermal 20ne ROI	100m Buffer from Hydrothermal Zone ROI	09240575	.14600368	.894	4488664	.2640549

*. The mean difference is significant at the 0.05 level.

		Cases										
		Va	lid	Mis	sing	To	tal					
	HZ Zones	N	Percent	N	Percent	N	Percent					
Pixel_Values	Hydrothermal Zones ROI	95	100.0%	0	.0%	95	100.0%					
	100m Buffer from Hydrothermal Zone ROI	41	100.0%	0	.0%	41	100.0%					
	100m and 200m Buffer from Hydrothermal Zone ROI	98	100.0%	0	.0%	98	100.0%					

ANOVA

Pixel Values					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	7.740	2	3.870	6.500	.002
Within Groups	137.538	231	.595		
Total	145.278	233			

Multiple Comparisons

Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
			Mean Difference (I-	etd Error	Qia	Lower Bound	Linner Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.26979422	.14885869	.209	0962784	.6358668
		100m and 200m Buffer from Hydrothermal Zone ROI	.39643840*	.10745021	.001	.1373780	.6554988
	100m Buffer from	Hydrothermal Zones ROI	26979422	.14885869	.209	6358668	.0962784
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.12664418	.16119567	.819	2670102	.5202986
	100m and 200m Buffer	Hydrothermal Zones ROI	39643840*	.10745021	.001	6554988	1373780
	ROI	100m Buffer from Hydrothermal Zone ROI	12664418	.16119567	.819	5202986	.2670102
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.26979422	.14885869	.207	0958685	.6354569
		100m and 200m Buffer from Hydrothermal Zone ROI	.39643840*	.10745021	.001	.1374656	.6554112
	100m Buffer from	Hydrothermal Zones ROI	26979422	.14885869	.207	6354569	.0958685
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	.12664418	.16119567	.817	2666833	.5199716
	100m and 200m Buffer	Hydrothermal Zones ROI	39643840*	.10745021	.001	6554112	1374656
	rrom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	12664418	.16119567	.817	5199716	.2666833

*. The mean difference is significant at the 0.05 level.

Berecha (Thermal) Aug 8

(Aug 8, 2010) 1st polynomial

ANOVA

	Case Processing Summary								Pixel Values					
		Va	alid	Ca Mis	ses	To	tal]		Sum of Squares	df	Mean Square	F	Sig.
	HZ Zones	N	Percent	N	Percent	N	Percent	Ι	Between Groups	2.676	2	1.338	3.079	.048
Pixel_Values	Hydrothermal Zones ROI	95	100.0%	0	.0%	95	100.0%	I						
	100m Buffer from	41	100.0%	0	.0%	41	100.0%		Within Groups	100.381	231	.435		
	100m and 200m Buffer from Hydrothermal Zone	98	100.0%	0	.0%	98	100.0%		Total	103.057	233			
	ROI													

_Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(I) HZ Zones	(J) HZ Zones	Mean Difference (l- J)	Std. Error	Siq.	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.28505651	.11996435	.057	0065533	.5766663
		100m and 200m Buffer from Hydrothermal Zone ROI	.16414466	.09714602	.253	0699983	.3982876
	100m Buffer from	Hydrothermal Zones ROI	28505651	.11996435	.057	5766663	.0065533
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	12091185	.11025834	.621	3901664	.1483427
	100m and 200m Buffer	Hydrothermal Zones ROI	16414466	.09714602	.253	3982876	.0699983
	ROI	100m Buffer from Hydrothermal Zone ROI	.12091185	.11025834	.621	1483427	.3901664
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.28505651	.11996435	.057	0063647	.5764777
		100m and 200m Buffer from Hydrothermal Zone ROI	.16414466	.09714602	.253	0699217	.3982111
	100m Buffer from	Hydrothermal Zones ROI	28505651	.11996435	.057	5764777	.0063647
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	12091185	.11025834	.618	3899430	.1481193
	100m and 200m Buffer	Hydrothermal Zones ROI	16414466	.09714602	.253	3982111	.0699217
	rrom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	.12091185	.11025834	.618	1481193	.3899430

		Cases							
		Va	lid	Miss	sing	Total			
	HZ Zones	N	Percent	N	Percent	N	Percent		
Pixel_Values	Hydrothermal Zones ROI	95	100.0%	0	.0%	95	100.0%		
	100m Buffer from Hydrothermal Zone ROI	41	100.0%	0	.0%	41	100.0%		
	100m and 200m Buffer from Hydrothermal Zone ROI	98	100.0%	O	.0%	98	100.0%		

Multiple Comparisons

Dependent Variable:Pixel_Values										
						95% Confide	ence Interval			
			Mean Difference (l-							
	(I) HZ Zones	(J) HZ Zones	J)	Std. Error	Siq.	Lower Bound	Upper Bound			
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.32221340	.11740516	.021	.0372660	.6071608			
		100m and 200m Buffer from Hydrothermal Zone ROI	.17570887	.09766705	.205	0597745	.4111922			
	100m Buffer from	Hydrothermal Zones ROI	32221340	.11740516	.021	6071608	0372660			
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	14650453	.10417355	.415	4007976	.1077885			
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	17570887	.09766705	.205	4111922	.0597745			
		100m Buffer from Hydrothermal Zone ROI	.14650453	.10417355	.415	1077885	.4007976			
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.32221340*	.11740516	.021	.0374332	.6069936			
		100m and 200m Buffer from Hydrothermal Zone ROI	.17570887	.09766705	.205	0596945	.4111122			
	100m Buffer from	Hydrothermal Zones ROI	32221340	.11740516	.021	6069936	0374332			
	Hydrothermai Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	14650453	.10417355	.412	4005907	.1075817			
	100m and 200m Buffer	Hydrothermal Zones ROI	17570887	.09766705	.205	4111122	.0596945			
	ROI	100m Buffer from Hydrothermal Zone ROI	.14650453	.10417355	.412	1075817	.4005907			

*. The mean difference is significant at the 0.05 level.

Tendaho (Thermal) Sept 30, 2002

(Sept 30, 2002) 1nd polynomial

ANOVA

	Case Processing Summary				Pixel Values								
		Va	lid	Ca Mis	ses sing	To	tal		Sum of			_	
	HZ Zones	N	Percent	N	Percent	N	Percent		Squares	df	Mean Square	F	Sig.
Pixel_Values	Hydrothermal Zones ROI	90	100.0%	0	.0%	90	100.0%	Between Groups	4.427	2	2.214	1.125	.326
	100m Buffer from Hydrothermal Zone ROI	66	100.0%	0	.0%	66	100.0%	Within Groups	553.090	281	1.968		
	100m and 200m Buffer from Hydrothermal Zone	128	100.0%	0	.0%	128	100.0%	Total	557.517	283			

_Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(1) H7 Zones	(1) HZ Zones	Mean Difference (I-	Std Error	Sia	Lower Bound	Upper Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.33046697	.21791368	.345	1961316	.8570655
		100m and 200m Buffer from Hydrothermal Zone ROI	.20164370	.19245030	.651	2617290	.6650164
	100m Buffer from	Hydrothermal Zones ROI	33046697	.21791368	.345	8570655	.1961316
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	12882327	.21025538	.903	6368352	.3791887
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	20164370	.19245030	.651	6650164	.2617290
		100m Buffer from Hydrothermal Zone ROI	.12882327	.21025538	.903	3791887	.6368352
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.33046697	.21791368	.344	1959088	.8568427
		100m and 200m Buffer from Hydrothermal Zone ROI	.20164370	.19245030	.650	2615947	.6648821
	100m Buffer from	Hydrothermal Zones ROI	33046697	.21791368	.344	8568427	.1959088
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	12882327	.21025538	.903	6366233	.3789767
	100m and 200m Buffer	Hydrothermal Zones ROI	20164370	.19245030	.650	6648821	.2615947
	ROI	100m Buffer from Hydrothermal Zone ROI	.12882327	.21025538	.903	3789767	.6366233

Case Processing Summary											
				Cas	ses						
		Va	lid	Missing		To	tal				
	HZ Zones	N	Percent	N	Percent	N	Percent				
Pixel_Values	Hydrothermal Zones ROI	90	100.0%	0	.0%	90	100.0%				
	100m Buffer from Hydrothermal Zone ROI	66	100.0%	0	.0%	66	100.0%				
	100m and 200m Buffer from Hydrothermal Zone ROI	128	100.0%	0	.0%	128	100.0%				

Pixel Values										
	Sum of Squares	df	Mean Square	F	Sig.					
Between Groups	2.131	2	1.066	.502	.606					
Within Groups	596.598	281	2.123							
Total	598.730	283								

ANOVA

Dependent Variable:Pixel_Values										
						95% Confid	ence Interval			
	(I) H7 Zones	(J) HZ Zones	Mean Difference (I- ار)	Std. Error	Sia.	Lower Bound	Upper Bound			
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.23650980	.22758987	.658	3132837	.7863033			
		100m and 200m Buffer from Hydrothermal Zone ROI	.09534936	.20265796	.953	3927163	.5834150			
	100m Buffer from	Hydrothermal Zones ROI	23650980	.22758987	.658	7863033	.3132837			
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	14116044	.21466767	.884	6598128	.3774919			
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	09534936	.20265796	.953	5834150	.3927163			
		100m Buffer from Hydrothermal Zone ROI	.14116044	.21466767	.884	3774919	.6598128			
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.23650980	.22758987	.656	3130581	.7860777			
		100m and 200m Buffer from Hydrothermal Zone ROI	.09534936	.20265796	.952	3925707	.5832694			
	100m Buffer from	Hydrothermal Zones ROI	23650980	.22758987	.656	7860777	.3130581			
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	14116044	.21466767	.883	6595971	.3772762			
	100m and 200m Buffer	Hydrothermal Zones ROI	09534936	.20265796	.952	5832694	.3925707			
	ROI	100m Buffer from Hydrothermal Zone ROI	.14116044	.21466767	.883	3772762	.6595971			

(March 2, 2010) 1nd polynomial

Case Processing Summary

		Cases							
		Va	lid	Mis	sing	Total			
	HZ Zones	N	Percent	N	Percent	N	Percent		
Pixel_Values	Hydrothermal Zones ROI	90	100.0%	0	.0%	90	100.0%		
	100m Buffer from Hydrothermal Zone ROI	66	100.0%	0	.0%	66	100.0%		
	100m and 200m Buffer from Hydrothermal Zone ROI	128	100.0%	0	.0%	128	100.0%		

ANOVA

Pixel Values										
	Sum of Squares	df	Mean Square	F	Sig.					
Between Groups	2.131	2	1.066	.502	.606					
Within Groups	596.598	281	2.123							
Total	598.730	283								

Multiple Comparisons

 Dependent V	ariable:Pixel Values						
						95% Confid	ence Interval
	(1) HZ Zones	(1) H7 Zones	Mean Difference (I-	Std Error	Sia	Lower Bound	Unner Bound
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.23650980	.22758987	.658	3132837	.7863033
		100m and 200m Buffer from Hydrothermal Zone ROI	.09534936	.20265796	.953	3927163	.5834150
	100m Buffer from	Hydrothermal Zones ROI	23650980	.22758987	.658	7863033	.3132837
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	14116044	.21466767	.884	6598128	.3774919
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	09534936	.20265796	.953	5834150	.3927163
		100m Buffer from Hydrothermal Zone ROI	.14116044	.21466767	.884	3774919	.6598128
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.23650980	.22758987	.656	3130581	.7860777
		100m and 200m Buffer from Hydrothermal Zone ROI	.09534936	.20265796	.952	3925707	.5832694
	100m Buffer from	Hydrothermal Zones ROI	23650980	.22758987	.656	7860777	.3130581
	Hydrothermal Zone ROI	100m and 200m Buffer from Hydrothermal Zone ROI	14116044	.21466767	.883	6595971	.3772762
	100m and 200m Buffer	Hydrothermal Zones ROI	09534936	.20265796	.952	5832694	.3925707
	rrom Hydrothermal Zone ROI	100m Buffer from Hydrothermal Zone ROI	.14116044	.21466767	.883	3772762	.6595971

(March 2, 2010) 2nd polynomial

		Cases							
		Valid		Missing		Total			
	HZ Zones	N	Percent	N	Percent	N	Percent		
Pixel_Values	Hydrothermal Zones ROI	90	100.0%	0	.0%	90	100.0%		
	100m Buffer from Hydrothermal Zone ROI	66	100.0%	0	.0%	66	100.0%		
	100m and 200m Buffer from Hydrothermal Zone ROI	128	100.0%	0	.0%	128	100.0%		

 Sum of Squares
 Mean Square
 F
 Sig.

 Between Groups
 2.042
 2
 1.021
 .479
 .620

 Within Groups
 598.574
 281
 2.130
 .
 .

 Total
 600.615
 283
 .
 .
 .

Dependent Variable:Pixel_Values											
						95% Confidence Interval					
	(1) HZ Zones	(1) HZ Zones	Mean Difference (I-	Std Error	Sia	Lower Bound	Unner Bound				
Tamhane	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.23127970	.22816640	.675	3199012	.7824606				
		100m and 200m Buffer from Hydrothermal Zone ROI	.08952510	.20309671	.961	3996047	.5786549				
	100m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	23127970	.22816640	.675	7824606	.3199012				
		100m and 200m Buffer from Hydrothermal Zone ROI	14175459	.21493402	.883	6610576	.3775484				
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	08952510	.20309671	.961	5786549	.3996047				
		100m Buffer from Hydrothermal Zone ROI	.14175459	.21493402	.883	3775484	.6610576				
Dunnett T3	Hydrothermal Zones ROI	100m Buffer from Hydrothermal Zone ROI	.23127970	.22816640	.673	3196752	.7822346				
		100m and 200m Buffer from Hydrothermal Zone ROI	.08952510	.20309671	.960	3994585	.5785087				
	100m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	23127970	.22816640	.673	7822346	.3196752				
		100m and 200m Buffer from Hydrothermal Zone ROI	14175459	.21493402	.882	6608414	.3773322				
	100m and 200m Buffer from Hydrothermal Zone ROI	Hydrothermal Zones ROI	08952510	.20309671	.960	5785087	.3994585				
		100m Buffer from Hydrothermal Zone ROI	.14175459	.21493402	.882	3773322	.6608414				