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Abstract 

The high small-scale diversity of plant species in semi-natural grasslands 
can be seen as a function of environmental conditions and land use 
history. This study explores the potential of using Worldview-2 spectral 
imagery and accessible GIS data to identify a set of vegetation 
characteristics known to influence biodiversity in semi-natural 
grasslands. Field sampling was done in 52 grassland sites, with presence 
and frequency of plant species and vegetation structural composition 
recorded in 4 m x 4 m plots. Plant species data were used to calculate 
overall species richness, grassland specialist richness, grassland 
generalist richness and Ellenberg indicator values for reaction (R), 
nutrients (N), soil moisture (M) and light (L). Generalized Additive 
models (GAM) were constructed to explain observed vegetation 
variables, predicted by mean values and standard deviations of  
WordView-2 satellite spectral reflectance and GIS data of grassland 
habitat area, soil type and land use history. The study was carried out on 
two spatial scales: 4m x 4m plots and grassland sites (0.25 ha - 14 ha).  
The results show that high resolution satellite imagery has potential of 
characterizing species diversity indirectly by the habitat productivity and 
heterogeneity. Grassland habitats with high small-scale species diversity 
had relatively low spectral heterogeneity. It was difficult to measure 
species diversity on a fine spatial scale using only remote sensing 
variables. Grassland management history is a very good predictor of 
species composition and diversity, especially for specialized grassland 
species. Ellenberg values for soil moisture (M) and nutrients (N) were 
successfully modelled using remote sensing data. In grasslands where 
the species diversity is largely driven by environmental gradients like 
nutrients or soil moisture, ecological indicators can be used as an 
alternative to species diversity to assess habitat quality.  
 
Keywords: Grasslands, plant species diversity, remote sensing, 
Generalized Additive Modelling, Worldview-2 
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1. Introduction 
 

Semi-natural grasslands are among the most species rich habitats in 
Europe and are characterized by having a high species diversity on a 
small scale (Pärtel et al., 2005), with observed species densities of up to 
62 plant species in 1 m2 (e.g. Kull & Zobel, 1991).  
 
Developed over many centuries of continuous management, semi-
natural grasslands were once common but have gradually disappeared 
during the last centuries as a result of shifts in land use. Agricultural 
intensification and the introduction of modern cultivation methods 
(fertilizing) made it possible to transform meadows and grasslands to 
arable lands. Grasslands on fertile soils were primarily desired and as a 
consequence, most of the present-day semi-natural grasslands are 
located on coarse, infertile soils (Cousins, 2009). 
 
Due to low profitability in the last century, semi-natural grasslands are 
abandoned of traditional management such as mowing and grazing. 
When the management ceases the vegetation become denser and taller, 
eventually followed by shrub and forest succession and a loss of species 
diversity (Ekstam, 1992; Pärtel et al., 2005; Reitalu et al., 2009). The 
remaining semi-natural grasslands are often small and fragmented 
patches and the present-day species diversity is often related to habitat 
area and heterogeneity (Bruun, 2000; Reitalu et al., 2012; Öster et al., 
2007).  
 
Over the last 50 years, there has been a global and successive rise in the 
area of abandoned farmland (Cramer et al., 2008). In many European 
landscapes, abandoned cultivated fields are gradually transformed into 
grassland (Reger et al., 2009). For instance, in Sweden a majority of the 
current grazed grasslands are former cultivated fields (Öster et al., 
2009). The ongoing conversion of farmland into grassland is followed by 
dramatic changes in the pattern of landscapes (Reger et al., 2009). The 
present-day landscapes may be characterized by a mosaic of grassland 
patches representing different stages in the succession from arable fields 
to stable pasture (Reger et al., 2009).  
 
Several studies have examined the potential to re-introduce an historical 
grassland vegetation state on former arable fields (Hansson & Fogelfors, 
1998). The specialized plant communities in semi-natural grasslands are 
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very sensitive to changes in environmental conditions, especially 
increases in nutrients (Pärtel et al., 2005). Hence, as an effect of 
eutrophication, re-establishment of grassland habitats on abandoned 
arable land is documented to be a slow process (Hansson & Fogelfors, 
1998). It may take over a century for a former arable field to attain the 
typical species-rich plant composition of semi-natural grasslands (Ihse & 
Norderhaug, 1995). Conversely, the biological values are faster regained 
by restoring old abandoned grasslands (Ihse & Norderhaug, 1995). The 
land management over a century ago can still influence the present-day 
grassland species composition, if habitat is not seriously damaged such 
as by fertilization (Johansson et al., 2008). 
 
There is an increased demand of standardized monitoring schemes for 
semi-natural grasslands and remote sensing is increasingly being used 
as a monitoring tool to support or supplement vegetation field-based 
inventories (de Bello et al., 2010). 
Remote sensing has long been used as a fast and cost-effective and tool 
to monitor environmental changes at regional scales and the potential 
application increases in line with the development of new techniques and 
high-resolution satellite images (Gillespie et al., 2008). 
 
Remote sensing of vegetation is often carried out using vegetation 
indices; the most widely used index is the normalized difference 
vegetation index (NDVI). The concept of NDVI is based on the contrast 
between absorption by chlorophyll pigments in the red spectral 
wavelengths and scattering by leaf cellular structure in the near infrared 
(NIR) spectral wavelengths (Jones, 2010). The sharp transition between 
these two wavelengths is called the red edge, and reflectance in the red 
edge position is known to be particularly sensitive to differences in 
chlorophyll content (Jones, 2010). The recently launched multispectral 
satellite Worldview-2 provides high spatial resolution data (2 m) in eight 
spectral bands, with one narrow band in the red edge position (705-745 
nm). A study using Worldview-2 imagery showed that the red edge band 
improved models to predict wetland biomass (Mutanga et al., 2012). 
 
Detecting small-scale species diversity of semi-natural grassland habitats 
is a challenge for remote sensing. Spectral heterogeneity is affected by 
ground-cover heterogeneity, and can be used as a measure of habitat 
complexity to indirectly detect species diversity (Palmer et al., 2002). A 
relation between species diversity and spectral heterogeneity, called the 
spectral variation hypothesis (SVH), is supported by several studies (Hall 
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et al., 2012; Rocchini, 2007; Rocchini et al., 2004; Rocchini et al., 
2009). In a comparison between NDVI mean and NDVI heterogeneity for 
species diversity modelling, it was concluded that the best models were 
achieved by combining both NDVI mean and NDVI heterogeneity, i.e. a 
“hybrid model” (Parviainen et al., 2010). 
 
Commonly used diversity measures such as species richness or 
abundance-based diversity indices do not take account to ecological 
differences between species. Dividing the present species subgroups with 
more distinct habitat requirements, such as dry grassland specialist and 
generalist species, makes species richness to reflect habitat quality 
(Johansson et al., 2008; Reitalu et al., 2012). 
 
Since dry grassland habitats are intolerant to high levels of 
eutrophication and soil moisture (Ekstam, 1992), ecological indicator 
values may be used to assess high quality grasslands. One of the most 
commonly used plant ecological indicator systems are Ellenberg values, 
developed since 1974 by the German botanist Heinz Ellenberg (Ellenberg 
et al., 1992). Based on the distribution in different environments, the 
plant species were ranked with ordinal-scale numbers from 0-9 for 
different environmental gradients. Calculating mean values from many 
plant species can thereby be used to indicate the habitat status in terms 
of environmental gradients such as nutrient content, soil moisture, pH 
and light (Diekmann, 2003). Studies have shown that Ellenberg indicator 
values, if limitations are recognized, have high reliability of measuring 
environmental variables also outside their central European origin 
(Diekmann, 1995, 2003; Dupre & Diekmann, 1998; Ekstam, 1992; Hill, 
1999). Ellenberg indicator values are widely used in ecological studies 
(c.f. Diekmann, 2003) and also successfully predicted using remote 
sensing data (Schmidtlein & Sassin, 2004). 
 
The present study sets out to explore the potential use of high resolution 
satellite data from the Worldview-2 satellite in the identification of a set 
of grassland vegetation characters known to influence the quality of dry 
grassland habitats. In addition to the remotely sensed data, the study 
will explore the effects of integrating accessible GIS data of important 
environmental factors (grassland site area, soil maps and land 
management history maps). The vegetation characters representing the 
species diversity, ecological indicators and vegetation structure are fitted 
as response variables in statistical models, using remote sensing data 
and GIS data as predictor variables. The interest of using a relatively 
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large set of vegetation characters is that they may be different in terms 
of (1) detectability of the models and (2) relevance for assessing high 
quality grassland habitats.  
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2. Materials and methods 

2.1 Study area 
 
The study area (fig. 1) is situated on the Baltic island of Öland, Sweden 
and covers around 22 km2 and is centered on 56.679359°N, 
16.557046°E. The area consists of a patchy landscape of semi-natural 
grasslands, arable fields, forests and small villages. During the last 
century, 80 % of the semi-natural grasslands in the area have 
disappeared, mainly as a result of agricultural intensification and forest 
and shrub succession after discontinued management, the remaining 
grasslands are grazed with varying intensities (Johansson et al., 2008). 
The bedrock consists of Cambro-Silurian limestone and the mean annual 
temperature is 7oC and annual precipitation is 468 mm (Forslund, 2001).  
 

2.2 Field sampling 
 
The field data was collected out between 15 May and 15 July 2011 to 
support research by Jonas Dalmayne and Thomas Möckel (c.f. Dalmayne 
et al., 2013) and is reused in the present study with their permission.  
 
In the study area, 299 dry grassland sites, separated by walls or fences, 
were identified with the help of earlier field inventories in combination 
with interpretation of aerial photos, satellite images and historical land 
use maps. The historical land-use maps with management history from 
1723 to 1997 in the study area were produced by Johansson et al. 
(2008), using historical cadastral maps and historical to recent aerial 
photos.  
 
The grassland sites were divided into three age classes - new (5 to 15 
years; 97 sites), intermediate (16 to 50 years; 95 sites), and old (older 
than 50 years; 107 sites) on the basis of their continuity of grazing 
management. 
          
Within each site, two point coordinates were randomly positioned in open 
areas (no trees/shrubs) with the following constraints: points must be at 
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least 25 m apart, 13.5 m from site border and 13.5 m from closest 
tree/shrub with a height exceeding 50 cm. 
 
 

 
 
Figure 1 a-b. The study area is situated on the Baltic island of Öland and consists of a mosaic of 
arable fields, semi-natural grasslands, forests and villages. The grassland sites used in the study (b) 
were separated in age classes depending on the management continuity; new: 5-15 years, 
intermediate: 15-50 years and old: > 50 years. Figure 1a is reprinted from Dalmayne et al. (2013). 

The set of sampling sites was restricted to include only dry grasslands 
characterized by low levels of eutrophication and soil moisture, by using 
a bioassay approach (cf. Prentice, 1990; Reitalu et al., 2009) based on 
presence/absence of indicator plant species such as dry grassland 
specialists, high soil nutrient and moisture indicators. From the 
remaining 239 grassland sites, 52 sites (17 new, 18 intermediate and 17 
old) containing 2 pairs of coordinates each were randomly selected for 
sampling.  The point coordinates were located in field using a hand-held 
differential global positioning system (DGPS) receiver (Topcon GRS-1 
GNSS, with a PG-A1 external antenna (Topcon Corporation, Japan)) 
connected to a real-time positioning service (SWEPOS) with an accuracy 
of ~1 cm. 

a. b. 
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Vegetation data were collected in 4 m × 4 m (16 m2) plots centered on 
each of the point coordinates. All 4 m × 4 m plots were divided into 16 
subplots (1 m × 1 m) and the presence/absence of all non-woody 
vascular plant species was recorded for each subplot, giving a plot 
frequency for all species between 0-16.  
 
Table 1. Response variables and predictor variables used in the analysis. 

 

  Extraction
Min Max Mean StD Min Max Mean StD on plot scale

R - reaction 5.28 7.69 6.63 0.46 5.28 7.67 6.62 0.47

M - moisture 3.22 6.18 4.26 0.48 3.22 5.43 4.24 0.46

N - nutrients 2.58 6.53 4.51 1.03 2.59 6.42 4.47 1.01

L - light 6.65 7.54 7.23 0.18 6.88 7.54 7.24 0.15

Species richness 13 57 37 12 13 69 39 13

Generalist richn. 6 25 13 4 7 26 14 5

Specialist richn. 3 42 20 11 4 44 21 11

Shannon-Wiener 
diversity index

Abundance-based
diversity: low to high

2.28 3.80 3.28 0.39 2.33 3.99 3.32 0.38
Species abundances 

in (4m x 4m) plots

Dead vegetation 0 100 8.51 17.81 0 100 9.52 19.52

Mosses 0 17.19 2.43 4.97 0 31.88 3.32 6.34

Grass/sedges 7.56 98.75 54.28 22.89 9.19 99.38 52.51 22.49

Herbs 2.31 84.00 35.43 17.48 0.63 86.44 36.74 17.32

Bare soil 0 33.25 5.60 7.07 0 36.56 6.08 7.46

Field layer height Height in cm 0.02 22.63 3.75 4.16 0.63 17.21 3.45 3.53 Measured in 1
(1m x 1m) subplot/plot

Band 1: Coastal 0.116 0.133 0.124 0.003 0.116 0.133 0.124 0.003

Band 2: Blue 0.091 0.123 0.106 0.006 0.091 0.122 0.107 0.006

Band 3: Green 0.078 0.116 0.098 0.007 0.080 0.119 0.098 0.007

Band 4: Yellow 0.047 0.095 0.073 0.009 0.049 0.097 0.073 0.009

Band 5: Red 0.039 0.114 0.076 0.014 0.040 0.113 0.077 0.015

Band 6: Red edge 0.146 0.218 0.176 0.017 0.151 0.224 0.177 0.017

Band 7: NIR1 0.254 0.507 0.332 0.055 0.252 0.486 0.325 0.051

Band 8: NIR2 0.230 0.416 0.288 0.041 0.223 0.406 0.282 0.040

NDVI NIR1,red 0.428 0.856 0.619 0.094 0.436 0.847 0.610 0.093

NDVI NIR1,red edge 0.237 0.471 0.301 0.042 0.234 0.431 0.292 0.037

NDVI red edge,red 0.213 0.644 0.399 0.100 0.225 0.654 0.394 0.104

Grassland age 
(continuity)

new: 5-15 years
intermediate: 15-50 years
old: > 50 years

Age class

Soil type Dominating class 
(from soil  map) Soil class

Habitat area Site polygon areas (ha) 0.25 13.6 1.4 1.9 Site area

Pr
ed

ic
tio

r v
ar

ia
bl

es

Spectral data
Worldview -2

Reflectance in 
2 x 2 m pixels

Mean 
&

Standard deviation 

 in plots 
(8m x 8m; 16 pixels)

in si tes
(0.25 – 14 ha;

 571 - 34079 pixels)

Environmental 
variables

Re
sp

on
se

 v
ar

ia
bl

es

Ellenberg 
indicator

values

Ordinal scale 
from 0 to 9

Weighted mean 
in (4m x 4m) plots

Validation dataset

Species 
diversity

Number of 
present species

Richness 
in (4m x 4m) plots 

Vegetation 
structure

Ground cover (%)
Mean 

in plots (4m x 4m)

  Variable Description Training dataset

ݔܫܸܦܰ , ݕ =
ݔ − ݕ
+ݔ ݕ
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In addition to the plant species survey six vegetation structure 
parameters were measured; the ground cover was estimated in all plots 
from 0 to 100 percent for each of the following five categories: (1) bare 
soil, (2) grasses/sedges, (3) herbs, (4) mosses and (5) dead vegetation. 
Mean (6) field layer height (FLH) was estimated in one subplot (1 m × 1 
m) per plot.  

2.3 Study scale 
 
The study was carried out on two spatial scales: (1) plot scale and (2) 
site scale, where sites are grassland patches of sizes reaching from 
~0.25 – 14 ha (mean~1.5 ha). On the plot scale, one of the two plots 
within each site was randomly assigned to a training dataset while the 
other plot was assigned to a validation dataset. Vegetation data for both 
plots within each site were pooled to represent the site scale; methods of 
pooling the data are described for each of the response variables. 

2.4 Response variables 
 
Three main groups of response variables were examined: Ellenberg 
indicator variables, species diversity variables, and vegetation structure 
variables (table 1). Ellenberg indicator values (Ellenberg et al., 1992) for 
nutrients (N), soil moisture (M), light (L) and reaction (R) were applied 
to the plant species data by calculating weighted averages for each plot, 
similarly to a majority of studies using indicator values (Diekmann, 
2003). First, the averaged Ellenberg indicator value of all present species 
was calculated for each 1 m x 1 m subplot. The indicator value on (1) 
the plot scale was then calculated as the mean value of all 16 subplots (1 
m x 1 m). Ellenberg indicator values representing (2) the site scale were 
calculated as the mean value of the two 4 × 4 m plots within each site. 
 
Plant species characterized by Ekstam (1992) as having their optimal 
habitat in grasslands with long management continuity were defined as 
‘grassland specialist species’. All other non-woody species were defined 
as ‘generalist species’ (Reitalu et al. (2012). 
 
Species richness, as well as richness of both grassland specialists and 
grassland generalists, was measured as the number of present species 
on (1) the plot scale and (2) the site scale. The Shannon-Wiener 
diversity index was computed using the vegan package (Oksanen et al., 
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2012) in R (R Core Team, 2013) to measure the diversity in species 
abundances on (1) the plot scale and on (2) the site scale by summing 
the species frequencies for both plots within each site. The Shannon-
Wiener index is calculated as: 

′ܪ = 	−෍݌௜

௡

௜ୀଵ

௫݃݋݈ 	 ∗  ௜݌	

 
where R is the number of species and p is the proportion of species i. 
The logarithm base x can be chosen freely, the vegan package uses 2 by 
default. 
 
The vegetation structure variables on the site scale were represented by 
the mean values from the two plots within each site. 

2.5 Predictor variables 
 
Two main groups of predictor variables were used in the analysis (table 
1). The remote sensing variables were derived from satellite sensors, 
while the environmental variables were other types or available GIS data 
with that could be useful for assessing the quality of grassland habitats. 

2.5.1 Remote sensing data 
 
The spectral data was acquired 21 May 2011 by the WorldView-2 
satellite launched by DigitalGlobe in 2007. WorldView-2 provides 
multispectral imagery in eight bands: coastal (400-450 nm), blue 
(450-510 nm), green (510-581 nm), yellow (585-625 nm), red 
(630-690 nm), red edge (705-745 nm), near infrared 1 (NIR1: 
770-895 nm) and near infrared 2 (NIR2: 860-1040 nm) with a 
spatial resolution of 2 m. The imagery was orthorectified and 
geometrically corrected by the satellite data providers. Pixel 
digital numbers (DN) were converted to top-of-atmosphere 
spectral reflectance according to Updike and Comp (2010).  
 
Normalized difference vegetation indices (NDVI) were calculated to be 
used for comparison to analysis with spectral bands, using the formula: 
 

NDVI Band x, Band y = (Band x – Band y) / (Band x + Band y) 
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Three sets of NDVI were computed for the following band combinations: 
NIR1/red, NIR1/red edge and red edge/red.  
 
Reflectance mean values and standard deviations (StD) representing the 
plot scale were extracted by associating each 4 m × 4 m plot with a 4 × 
4 pixel window (each pixel was 2 m × 2 m) centered over the plot 
center. The larger pixel window (8 m× 8 m) than the in-field plot size (4 
m × 4 m) was chosen to compensate for spatial miss-matches between 
plots and pixels, and to give a better measurement of spectral 
heterogeneity on the plot scale. The extraction on site scale was done 
using site polygons, ranging between 571 - 34079 pixels per polygon. All 
processing with geographical data was done using ArcGIS 9.3.1. 

2.5.2 Environmental variables 
 
A soil map on a 1:50000 scale from the Geological Survey of Sweden 
(SGU), with an approximate mean positional error of 25 meters was 
overlaid on the study area. Soil type information was represented as the 
soil class spatially overlapping plots and sites. For sites overlapping with 
more than one class in the soil map (seven cases), the dominating soil 
type was chosen. The two most common soil types in the area are 
(fertile) clay-rich, sandy till and (non-fertile) grainy washed deposits. 
 
The grassland management continuity class (new: 5-15 years, 
intermediate: 15-50 years, and old: >50 years) was used as a factor in 
the modelling. The sites in classes ‘new’ and ‘intermediate’ are previous 
arable fields at different successional stages, as opposed to newly 
established grasslands on previous forests. 
 
Site polygon areas were calculated in ArcGIS 9.3.1. and used in the 
statistical models as a measure of grassland habitat size to predict 
species diversity variables.  

2.6 Statistical analysis 

2.6.1 Assessment of multicollinearity 
 
Strong correlations between covariates (multicollinearity) is a common 
problem in statistical analysis that may result in confusing and non-
significant models (Zuur et al., 2010). The remote sensing variables (the 
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mean values and the StD for all eight bands) were tested for collinearity 
using the variance inflation factor (VIF). The VIF values were calculated 
for each of the remote sensing variables as 1 ⁄ (1 - R2), where R2 is 
computed with multivariate linear regressions between one and all other 
remote sensing variables.  
 
The variable scoring the highest VIF value was dropped from the analysis 
and the VIF values were recalculated for remaining variables.To simplify 
the analysis, both mean and StD variables were excluded for the spectral 
bands causing collinearity problems. The procedure was repeated until all 
VIF values of remaining variables (VIFmax) was under 10, a somewhat 
high but still commonly used threshold value (Montgomery, 1982; Zuur 
et al., 2010). Because of their strong responses to vegetation, the 
spectral bands red, red edge and NIR1 were prioritized for the modelling 
and favored in the variable exclusion process,. If one of the three 
spectral bands received the highest VIF, the spectral band with second 
highest VIF was excluded instead. NIR1 was chosen before NIR2, since it 
better corresponds to NIR wavelengths provided by other commonly 
used satellites. 

2.6.2 Generalized Additive Models (GAMs) 
 
The chosen response and predictor variables were fitted in generalized 
additive models (GAMs)(Hastie & Tibshirani, 1986) using the mgcv 
package ver. 1.7-13 (Wood, 2011) in R ver. 2.14.2 (R, 2013). 
Likelihood-based models usually assume linear or other parametrical 
relationships between one or more predictor variables and a response 
variable. GAMs is a non-parametric extension of generalized linear 
models (GLMs), where the linear form is replaced by a sum of smooth 
functions (Hastie & Tibshirani, 1986). Every covariate in the model is 
fitted to a smoothing spline, making it possible to mix parametric and 
non-parametric variables (Hastie & Tibshirani, 1986). GAMs are useful 
for studies in plant ecology where response curves often take 
asymmetric and skewed hump-backed shapes, as opposed to GLMs 
where curves are constrained to symmetrical shapes (Yee & Mitchell, 
1991).  
 
Stepwise forward selection was chosen for model building instead of 
backwards, since it can deal better with collinearity (Zuur et al., 2007). 
The Akaike information criterion (AIC) was used as variable selection 
tool, with a lower AIC meaning a better fit of the model. In each step the 
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model scoring the lowest AIC was accepted, if AIC was lower than in 
previous steps and if all covariates were significant (p < 0.05).  
 
Gaussian (normal) distribution was selected for all response variables. 
The maximum degrees of freedom was set to four to simplify analysis 
and to avoid overfitting (Zuur et al., 2007). Models were constructed 
with two different sets of covariates, one only using remote sensing 
variables extracted from Worldview-2 (“remote sensing model”) and one 
using remote sensing variables and environmental variables (“integrated 
model”), to explore if adding information of soil type and management 
continuity improves the models. 
 
The GAMs were evaluated by examining the explained deviance 
(adjusted R2-value) and the normalized root mean square error 
(NRMSE1) between observed and predicted values. The validation 
dataset on plot scale was used to observe model stability and detect 
overfitting, by calculating NRMSE2 and Pearson correlation between 
predicted and observed values. Models were considered to be overfitted 
to the training dataset if NRMSE2 differed much from NRMSE1 and if the 
correlation between predicted and observed values was not significant or 
correlation coefficient close to zero. 
 
As an instrument for interpreting the resulting models, the interrelations 
between all response variables were explored in a scatterplot cross-
matrix with calculated Pearson correlation. In addition, a principal 
components analysis (PCA) was performed on response variables using 
the training data on the plot scale. The result was graphically displayed 
in a PCA biplot, with age class added to labels to explore relations 
between response variables and possible groupings of age classes. 
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3. Results 

3.1 Assessment of multicollinearity 
 
The collinearity of the mean reflectance variables was strong on both the 
plot scale and the site scale and the collinearity of the spectral 
heterogeneity (StD) variables were in general higher on the site scale 
than on the plot scale. As an example, the correlation coefficient (r) 
between standard deviations of spectral bands NIR1 and NIR2 was 0.845 
on the plot scale and 0.988 on the site scale.  
All spectral bands and NDVI-variables except red, red edge and NIR1 
had to be excluded before VIFmax was smaller than 10 on the plot scale. 
On the site scale VIFmax was still larger than 10, caused by collinearity 
between StD of red edge, StD of NIR1 and mean reflectance of NIR1. 
Excluding any of the three spectral variables made the VIFmax drop below 
10, so it was considered a minor issue as long as they were not 
combined in the same model. 
 
High collinearity prevented combinations of spectral bands and NDVI 
variables. Comparing the performance of the NDVI- variables with the 
spectral bands was still considered interesting, so separate models using 
NDVI-variables were built and compared with models using spectral 
bands, in terms of R2-values and AIC. Results of NDVI-based models are 
only discussed and not shown. 

3.2 GAMs - Remote sensing models 
 
Remote sensing GAMs with one to three spectral variables were built 
through stepwise forward variable selection for 11 response variables on 
the plot scale (table 2) and for 10 response variables on the site scale 
(table 3).  
 
The most frequently selected spectral variable on both spatial scales was 
mean NIR1. The red-edge band was the least selected spectral band on 
both spatial scales, on the plot scale only significant as second predicting 
variable for bare soil with only a slightly higher R2-value than NIR1 (0.39 
and 0.32 respectively). On the site scale, the mean red-edge was 
significant as a second variable for grass cover and as a second variable 
in the integrated model for specialist richness. 
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 Remote sensing models
Response var. Var. 1 Var. 2 Var. 3 R2 (adj) NRMSE1 (%) NRMSE2 (%) corr. p-value

R - reaction mean Red 0.19 16.9 19.6 0.22 0.12

M - moisture mean NIR1 StD NIR1 mean Red 0.64 10.4 14.6 0.73 0.00

N - nutrients mean NIR1 StD NIR1 0.51 17.9 23.5 0.50 0.00

L - light mean NIR1 0.22 18.3 22.4 0.36 0.01

Species richness mean NIR1 0.11 25.7 22.3 0.24 0.10

Generalists
Specialists mean NIR1 0.12 25.5 27.0 0.28 0.05

Shannon - Wiener StD Red mean NIR1 0.23 21.9 23.9 0.15 0.31

Dead veg.
Mosses
Grass mean Red 0.26 22.6 24.1 0.35 0.01

Herbs mean Red 0.08 21.0 21.7 -0.04 0.77

Bare soil StD Red mean R-E 0.39 15.9 21.3 0.23 0.11

Field Layer Height StD NIR1 StD Red StD R-E 0.40 13.9 26.3 0.01 0.96

Integrated models
Response var. Var. 1 Var. 2 Var. 3 R2 (adj) NRMSE1 (%) NRMSE2 (%) corr. p-value

E I N - nutrients Age mean Red StD Red 0.71 13.5 17.5 0.75 0.00

Specialists Age StD Red 0.62 15.8 23.5 0.60 0.00

Shannon - Wiener Age StD Red 0.44 18.2 20.4 0.53 0.00

V s Bare soil StD Red mean R-E Age 0.47 14.2 19.9 0.36 0.01
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  Plot scale GAMs
Training dataset Validation dataset

n.s.

n.s.

n.s.

 
The heterogeneity variables had in general higher significance than the 
mean reflectance variables and were more frequently selected on the 
site scale (remote sensing models: 4; red edge: 0; NIR1: 5) than on the 
plot scale (remote sensing models: red: 3; red edge: 1; NIR1: 3). On 
the plot scale, single-variable models using mean reflectance variables 
had higher stability than models using spectral heterogeneity variables, 
judged by the performance on the validation dataset. 
 
Table 2. Generalized Additive Models (GAMs) on the plot scale, with predictor variables ordered as 
they were added in the stepwise procedure. Remote sensing models are GAMs using only spectral 
data from Worldview-2 (red band, red edge band and NIR1 band) as predictor variables. Response 
variables generating non-significant models are marked with “n.s.”. Integrated models are the 
significant models using spectral data and environmental variables. The normalized mean square 
error (NRMSE1) shows the deviation of observed values from the model. Model performance was 
evaluated using a validation dataset, by computing NRSME2 and Pearson’s correlation (corr. and p-
values) between predicted and observed values.  
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NDVI-based models did not differ prominently from spectral band-based 
models; differences in explained deviance were mostly below 5% 
(average 2% higher for spectral band-based models). None of the three 
NDVI combinations tested (NIR1/red; NIR1/red edge; red edge/red) 
were dominant. Heterogeneity of NDVI on site scale was less significant 
than heterogeneity in spectral bands. 
 

3.2.1 Ellenberg indicator values 
The models for indicators of moisture (M) and n (N) had the highest 
explained deviance of all models on both spatial scales, and both 
performed well on the validation dataset on plot scale (table 2). Spectral 
heterogeneity had U-shaped or positive response curves to nutrient and 
moisture indicators (table 4a-b and figure 2). Models of reaction (R) and 
light (L) had moderate R2-values, around 0.2 on the plot scale and 0.3 
on the site scale. 

3.2.2 Species diversity 
The models for species and specialist richness on the plot scale explained 
a low portion of the variation (R2=0.11 and R2=0.12). The model for 
Shannon-Wiener on the plot scale selected StD of red reflectance 
resulting in a higher R2-value than for species and specialist richness, but 
performed poorly on the validation dataset (table 2). The models for 
generalist species were not significant on any of the spatial scales. The 
models of species richness and specialist richness were overall very 
similar in structure on both spatial scales, with a marginally higher R2 
and a better performance on the validation dataset for specialist richness 
(table 2 & 3). All species diversity models on the site scale had higher 
explained deviance (R2 ≈ 0.50) than on the plot scale and a higher 
preference for the heterogeneity variables (table 3). The relation 
between spectral heterogeneity and species diversity variables showed 
negative or hump-backed curves (table 4a-b).  
 

3.2.3 Vegetation structure 
 
The models for bare soil were the best of the vegetation structure 
response variables with explained deviances around 40% on both spatial 
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 Remote sensing models
Response Var. Var. 1 Var. 2 Var. 3 R2 (adj) NRMSE (%)

R - reaction StD NIR1 mean NIR1 0.30 16.0

M - moisture mean NIR1 mean Red 0.55 12.3

N - nutrients mean NIR1 StD Red StD NIR1 0.52 16.9

L - light mean NIR1 0.28 18.5

Species richness StD NIR1 StD Red mean NIR1 0.49 16.5

Generalists
Specialists StD NIR1 StD Red mean NIR1 0.50 18.5

Shannon - Wiener StD NIR1 StD Red 0.47 16.6

Dead veg.
Mosses StD NIR1 0.12 23.1

Grass mean NIR1 mean R-E 0.22 21.4

Herbs
Bare soil mean NIR1 StD Red 0.41 18.7

FLH
 Integrated models
Response Var. Var. 1 Var. 2 Var. 3 Var. 4 R2 (adj) NRMSE (%)

E I N - nutrients Age StD NIR1 0.69 14.3

Species richness Age StD NIR1 StD Red 0.49 16.6

Specialists Age StD NIR StD Red StD R-E 0.69 14.8

Shannon - Wiener Age StD NIR1 StD Red 0.57 14.8

V s Grass Age 0.16 21.9

  Site scale GAMs

S d

n.s.

n.s.

n.s.

n.s.
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scales, even if validation proved the plot scale model to have a low 
stability (table 2). In field, bare soil in “new” and “intermediate” age 
classes was mostly caused by heavy grazing and trampling by cattle, 
while bare soil in “old” plots could be a combination of grazing and 
drought. 
 
Table 3. Generalized Additive Models (GAMs) on the site scale, with predictor variables ordered as 
they were added in the stepwise procedure. Remote sensing models are GAMs using only spectral 
data from Worldview-2 (red band, red edge band and NIR1 band) as predictor variables Response 
variables generating non-significant remote sensing models are marked with “n.s.”. Integrated 
models are significant models using spectral data and environmental variables. The normalized 
mean square error (NRMSE) shows the deviation of observed values from the model. No validation 
dataset was available for the site scale. 
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Grass cover models explained around 25% of the variation on both 
spatial scales. The response variables dead vegetation, field layer height 
(FLH), moss cover and herbs were all non-significant or poor performing. 
The high R2-value of the FLH model on plot scale was clearly a result 
from overfitting, because of (1) the large difference NRMSE between the 
training and validation datasets and (2) poor correlation (coefficient 
close to zero and p-value almost 1) between observed and predicted 
values on the validation dataset (table 2). The variables for moss cover 
and dead vegetation both contained high proportions of zero values 
(~50%) and was considered a possible explanation for poor performing 
models. One method of analyzing zero-inflated data is by combining 
binomial models (presence/absence) with models of the abundance 
(based on values in plots with non-zero values) (Fletcher et al., 2005). 
This approach was tested by building binomial models of the skewed 
variables, but since resulting models did not substantially improve the 
result the method was not pursued.  
 

3.3 GAMs - Integrated models 
 
The soil type variable was not significant in any model. However, visual 
observations of the soil map showed similarities in the distributional 
patterns between the non-fertile marine deposits and dry grasslands, 
especially for grasslands older than 50 years. 
 
Grassland age was significant for five response variables respectively on 
both the plot and the site scale (table 2 & 3). Both explained deviation 
(R2) and model stability were clearly increased for the integrated models 
compared to the remote sensing models, especially for Ellenberg N and 
species diversity measures (species richness, specialist richness and 
Shannon-Wiener diversity index). Age had negative response on 
Ellenberg N and positive responses on species diversity, with the “old” 
class showing strongest significance. 
 
Species and specialist richness but not Shannon-Wiener diversity, had 
weak but significant positive relations with habitat area, though not 
strong enough to be selected in any of the models. 
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Figure 2. Plotted response curves of the final GAM for Ellenberg moisture indicator on the plot 
scale. The shaded areas display 95% confidence-intervals and points show residuals of observed 
values. The Y-axis represents effect of the respective spectral variable. The tickmarks along the X-
axis show the distribution of the observed values. 

3.3 Relations between response variables 
 
Ellenberg indicator values for nutrients and soil moisture were positively 
correlated, showing a strict linear shape at low values of moisture 
(Appendix 1). The species diversity variables were internally highly 
correlated, as expected. The relation between species richness and 
Shannon-Wiener diversity had a close to straight linear shape. Both 
species richness and Shannon-Wiener diversity showed hump-backed 
relationships with generalist species, and positive exponential 
relationships with specialist species. Specialists, species richness and 
Shannon-Wiener diversity were strongly negatively correlated with 
Ellenberg indicators for nutrients (r ≈ -0.8) and soil moisture (r ≈ -0.5). 
Nutrients and moisture were also correlated positively with grass and 
negatively with herbs cover. 
 
The first axis in the principal components analysis (PCA) explained 38% 
of the variation the second axis 16 %. In the PCA biplot the “old” plots 
formed a group while other age classes were scattered (Appendix 2). The 
position of the group of “old” plots coincides well with the directions of 
the most important response variables in the first PC axis: species 
richness, specialist richness, Shannon-Wiener diversity, Ellenberg 
nutrients and moisture, grass and herbs cover. Soil cover and Ellenberg 
light and reaction (pH) explained the variation of on the second axis. 
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Because specialist richness was strongly negatively correlated with 
nutrients (r = -0.85) and model of indicator values for nutrients was 
better performing than the specialist model, the potential of this relation 
for modelling was explored on plot scale with Pearson-correlation 
between: predicted nutrients for the validation dataset and specialist 
richness in validation dataset. The correlation was significant, both when 
using the remote sensing model (r = -0.34, p= 0.015) and the 
integrated model (r = -0.63, p= 0.000). In fact, the correlations were 
stronger than when using the specialist richness model (table 2 & 3).  
 
Table 4 a-b. Summary of significant response shapes in single variable GAMs on (a) plot scale and 
(b) site scale. NDVI of band combination NIR1/red displayed for comparison. Models with p-values 
in range 0.05-0.1 are displayed with brackets. Symbols indicate overall shapes (+= positive linear 
relation, -= negative linear relation, ∩= non-linear hump-backed relation, U= non-linear U-shaped 
relation). 

 

 
 
 
 
 
 
 
 

Red R - E NIR1 NDVI Red R - E NIR1 NDVI

Ellenberg R - + +

Ellenberg M - + + + + (U) + +

Ellenberg N - + + + + ∩ +

Ellenberg L  + - ∩ - +

Species (∩) - (∩) (∩)

Generalists (∩)

Specialists (∩) - (∩) (-)

Shannon W. (∩) - (∩) ∩ (-) (∩)

Dead veg. (-)

Mosses

Grass - (+) + + -

Herbs + - - (∩)

Bare Soil + - - - U (∩) ∩

Field L. Height - (+) + -

Plot 
scale

Mean St.Dev
Red R - E NIR1 NDVI Red R - E NIR1 NDVI

Ellenberg R (U) ∩ ∩ + - U U

Ellenberg M U + + U U

Ellenberg N U + + U U U

Ellenberg L  (∩) U ∩ ∩ (+)

Species ∩ ∩ ∩ ∩ ∩

Generalists (+)

Specialists ∩ (-) - ∩ ∩ ∩ ∩

Shannon W. ∩ ∩ ∩ ∩ ∩ (-)

Dead veg.

Mosses (-) - -

Grass - + +

Herbs (∩) -

Bare Soil U U - U

Field L. Height (U)

Site
scale

Mean St.Dev
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3. Discussion 
 

In order to conserve and monitor semi-natural grasslands it is important 
to take into account the areal distribution and connectivity between 
habitats (Pärtel et al., 2005). Field-based inventories give a more precise 
and accurate description of the habitat status, but are expensive and 
more difficult to carry out over large areas. Remote sensing and GIS 
(Rocchini et al., 2009). 
 
Some of the resulting models of the chosen response variables are 
strong; the highest explained deviance using only remote sensing data is 
0.64 and 0.71 with integrated environmental data. The results should be 
useful for developing techniques for monitoring grassland habitats using 
remotely sensed data and GIS. 

 
4.1 GAMs - Remote sensing models  

4.1.1 Ellenberg indicator values 
 
The model for soil pH (Ellenberg R) was significant in this study, but the 
PCA agrees with previous studies (Prentice et al., 2007) suggesting that 
the main variation of the vegetation in the area is not related to soil pH. 
In a study evaluating the use of Ellenberg indicator values in Sweden, 
Diekmann (2003) states that weighted means of Ellenberg R respond 
weakly to variations in field measured pH where soil pH > 5 and is 
therefore inappropriate to use as a substitute for field measurements in 
areas where pH exceeds 5. The average pH in the majority of the study 
area is between 6.5 to 7 (Prentice et al., 2007) and since the present 
study lack field samples of soil pH, the results of Ellenberg R are difficult 
to interpret. 
 
The soil moisture indicator (Ellenberg M) resulted in the strongest 
remote sensing models on both spatial scales, indicating that even is 
moist plots were excluded from the sampling the soil moisture gradient 
still exist. The high explained deviance is supported by field studies 
suggesting that the soil moisture gradient explains a large proportion of 
the variations in plant community composition in semi-natural grasslands 
(Prentice et al., 2007). A higher explained deviance on plot scale than on 
site scale indicates that variation is high on a local scale. The positive 
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correlation and overall similarities in model composition with Ellenberg N 
suggest that high productivity in the study area coincide with high soil 
moisture, possibly explained by previous cultivation. The reliability of 
Ellenberg M is highest at low levels of soil moisture (Diekmann, 2003) 
which is true for semi-natural grasslands. 
 
The remote sensing models of the nutrient indicator (Ellenberg N) also 
performed well on both spatial scales. Studies show that Ellenberg N 
respond weakly to measurements of actual soil nutrient content while 
correlation with biomass is strong, and that weighted mean Ellenberg N 
are better referred to as “productivity values” (Diekmann, 2003). 
 
The light indicator (Ellenberg L) models were significant but difficult to 
interpret, contradicting results have been seen in previous studies in 
semi-natural grasslands (Wahlman & Milberg, 2002). Ellenberg L is 
shown to have low reliability when gradients are low (Diekmann, 2003) 
and in the present study, all plots are un-shaded and positioned in open 
grasslands. 
 

4.1.2 Species diversity 
 
Strong negative correlations between species diversity measures and 
Ellenberg N indicate that species diversity is mainly ruled by productivity. 
The remote sensing models of species richness and specialist richness 
are almost identical but with slightly higher performance for specialists, 
while generalist richness resulted in non-significant models. The effect of 
focusing on habitat-specialists rather than overall species richness is also 
seen in previous studies (Johansson et al., 2008). Generalist species 
were not significant in any model, but the scatter-plot cross-matrix 
(Appendix 2) show a shift in species composition at mid-level species 
richness, when generalists start decreasing and specialists increase. 
 
The results support previous studies showing that spectral heterogeneity 
has the potential to assess species diversity (Hall et al., 2012; Rocchini 
et al., 2004). However, the present study shows hump-backed response 
curves between spectral heterogeneity and species diversity on the site 
scale instead of strictly positive relationships (table 4b), suggesting that 
the grassland sites with the highest diversity were characterized by a 
lower spectral heterogeneity. 
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A low spectral heterogeneity at low levels of species diversity can be 
explained as previously cultivated grasslands having structural 
similarities to arable fields. The decrease in spectral heterogeneity at 
high levels of species diversity on the site scale may be an effect of small 
plant sizes as an adaption to dry and nutrient-poor environments (Löbel 
& Dengler, 2007; Pärtel et al., 2005), resulting in a short-growing plant 
community with a small-scale heterogeneity that appears structurally 
homogeneous in studied spatial resolution. A low structural 
heterogeneity may also be an effect of intensive present-day grazing, 
which has shown significantly positive effects on species diversity 
(Reitalu et al., 2009). Thus, the relationship between spectral 
heterogeneity and species heterogeneity depends on the studied scale 
and the characteristics of habitat and plant community. 
 
The strong relationships between spectral heterogeneity species diversity 
variables were only seen on the site scale. On both spatial scales the 
mean NIR1 had negative linear responses to species diversity variables, 
indicating a low biomass/ leaf area (Jones, 2010). The inverse 
relationships were seen for the Ellenberg indicators for nutrients and 
moisture. 
 
The predictions of nutrients (Ellenberg N) on the plot scale had higher 
correlations with observed specialists (in the validation dataset) than the 
predictions made with the specialists model. This suggests that in 
habitats where the species diversity is driven by environmental 
gradients, indicator-based models may be used as an alternative to 
assess species diversity. 

 

4.1.3 Vegetation structure 
 
The grass cover showed in weak to moderate models, compared with the 
models of nutrients and moisture, but still shows potential as a measure 
of productivity based on the correlations with Ellenberg N and the 
similarities in model structure. The main benefit of using estimated cover 
abundances instead of the plant species composition is the comparatively 
easy and fast sampling. Adjusting the sampling size and strategy could 
perhaps improve results. 
 
The red spectral heterogeneity has been shown to be directly influenced 
by variation in soil properties and is particularly high when the soil 
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properties are non-homogenous (Garrigues et al., 2008). In the present 
study red spectral heterogeneity was significant for bare soil on both 
spatial scales, showing U-shaped curves. The heterogeneity of red 
reflectance may be affected by patches with either high absorption in 
dense vegetation or high reflectance by bare soil (Jones, 2010). On both 
spatial scales the effect of the mean reflectance variables in the bare soil 
models is likely to be discrimination between sparse and dense 
vegetation. Even if the remote sensing models showed a potential of 
detecting bare soil in the present study, it represented a low proportion 
of the total variation and did not correlate with species diversity 
measures.  
 
4.2 GAMs - Integrated models 
 
 
In contrast to Ellenberg M, the explained deviance of Ellenberg N 
increased greatly in the integrated models with the grassland age 
variable. This can be explained either as: (1) land use history explains a 
large part of nutrient content that cannot be detected with only remotely 
sensed data or (2) the result is caused by advanced abiotic filtering 
(Purschke et al., 2013) of nutrient favored species at later successional 
stages and thus a dropped weighted mean value of Ellenberg N. This 
means that it is important remember that indicator values are functional 
characteristics of plant communities and not measurements.  
 
The results from the modelling support that grassland management 
continuity (age) is a good predictor of species diversity and composition, 
with a higher species richness in older grasslands (Johansson et al., 
2008; Prentice et al., 2007). The group formed by the old plots along the 
first axis in the PCA biplot suggests that the response variables 
dominating the first axis are relevant for assessing the grassland quality. 
The models of the diversity measures improved using the age variable 
supporting that colonization of species in grasslands is a slow process 
despite favorable habitat conditions (Cousins & Lindborg, 2008). The 
proportionally higher improvement of specialist models, compared to 
overall species richness and Shannon-Wiener diversity, indicate that 
species are replaced by functionally and phylogenetically more distinct 
species (Purschke et al., 2013). This also supports the second 
explanation of Ellenberg N response to grassland age. 
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The soil map was not significant in the models which could be explained 
by the spatial scale (1:50000) or as a result of the stratified sampling 
schedule to only include dry grasslands. The observed coinciding spatial 
distributions between dry grassland and non-fertile soils indicates that 
soil maps can be useful for discriminating semi-natural grasslands at 
coarser spatial scale, as have been demonstrated in previous studies 
(Cousins, 2009).  
 
Site area was positively correlated with species diversity, but not 
strongly enough to be selected in the models. Besides habitat area, the 
degree of fragmentation has been shown to have an important role, 
especially for small grassland patches (Bruun, 2000; Öster et al., 2007). 
The proximity to other grassland sites was not taken account for in this 
study, and it is possible that a high connectivity between grasslands in 
the study area could increase the regional species pool (Pärtel et al., 
1996) and drop the relative importance of individual grassland sizes. 
 
While soil maps are easily available, detailed data of land use history is 
rare and mapping land use by interpreting historical aerial photos is 
difficult and time-consuming. Historical cadastral maps on the other 
hand are often available, and information of land use during previous 
centuries has proven to be useful for assessing present-day species 
richness, since colonization rate of specialist species increase with 
proportion of surrounding habitats (Cousins, 2009; Reitalu et al., 2012). 

 
4.3 Modelling - technical discussion 
 
The overall better performance of the heterogeneity variables on the site 
scale may indicate that the 16 pixels used on the plot scale may have 
been too few to reliably measure the spectral heterogeneity. Scale 
dependence of spectral heterogeneity has been observed in previous 
studies (Palmer et al., 2002; Rocchini et al., 2004). Grasslands are often 
characterized by a small-scale spatial mosaic – with high and low 
vegetation cover/density, alternating with patches of bare soil 
(Söderström et al., 2001). Capturing the small-scale habitat 
heterogeneity is difficult when the spatial resolution of the remotely 
sensed imagery is too coarse to separate the land cover classes within a 
land cover mosaic. The scale dependence of spectral heterogeneity was 
also observed in the multicollinearity check, with higher correlations 
between heterogeneity variables at the site scale than on the plot scale. 
The correlations between standard deviations of different spectral bands 
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could possibly have potential as an instrument to define the optimal 
spatial scale; smallest possible pixel windows but large enough to 
capture the heterogeneity in spectral reflectance. 
 
The lack of a validation dataset on the site scale is a drawback which 
increases the risk of undetected overfitted models. On the plot scale 
models the heterogeneity variables were causing the most of the model 
instability and all heterogeneity variables were more consistent on site 
scale. The predictive performance of the site scale models remains 
unknown, but in general the results does not indicate high overfitting of 
the site scale models. 
 
Using mean NDVI did not differ much from using mean spectral bands in 
most of the models. In the present study the largest difference in 
performance between NDVI and spectral bands is in the heterogeneity. 
Standard deviations of NDVI were less significant than standard 
deviations of spectral bands, especially on the site scale. Using advanced 
models like GAMs where covariates are fitted to individual smooth 
functions reduce the need for transformations or construction of artificial 
variables (Hastie & Tibshirani, 1986). The results of the present study 
supports studies (Garrigues et al., 2008) suggesting that the 
heterogeneity in spectral bands have a higher potential than 
heterogeneity in NDVI for capturing landscape variations.  
 
By being the least selected of the three spectral bands used, the red-
edge band did not contribute to the models. Studies of the red-edge 
band have shown that it is mainly useful for biomass estimations in 
dense vegetation habitats where normal NDVI have saturation problems 
(Mutanga et al., 2012). In the study area where conditions are roughly 
the opposite with low levels of biomass production, differences may be 
easier to observe in bands with more homogeneous responses to 
chlorophyll content and leaf area (Jones, 2010). Another mentioned 
advantage with the red edge band is a minimized influence from soil 
background (Mutanga et al., 2012), and it is possible that the relative 
soil reflectance has high influence for discriminating different dry 
grassland habitats. 

 
4.4 Conclusions 
 
The study shows that high resolution satellite data has potential of 
detecting species diversity in grassland habitats, indirectly determined 
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by the habitat productivity and structure. There is a relationship between 
spectral heterogeneity and species diversity but the response shape 
depends on the characteristics of the grassland habitat. Spectral 
heterogeneity is scale dependent. It is more difficult to measure species 
diversity on a fine spatial scale. Ecological indicator values like Ellenberg 
values provide sensitive measures of plant functional responses and can 
be successfully modeled using remote sensing data. In grasslands where 
species diversity is largely driven by environmental gradients like 
nutrients or soil moisture, indicator-based models can be used as an 
alternative to diversity-based models to assess habitat quality. Grassland 
management history is a very good predictor of species composition and 
diversity, especially for grassland specialist species.  
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5. Appendix 
 

Appendix 1. PCA biplot showing strength and directions of response variables along the first two 
axis. Variable labels (in red): Species=species richness, Shannon= Shannon-Wiener diversity, 
Special= grassland specialists, General= grassland generalists; Ellenberg values: R=reaction, 
N=nutrients, M= soil moisture, L=light; Dead= dead vegetation, Mosses= moss cover, Grass= grass 
cover, Herbs= herb cover, Soil= bare soil, FLH = mean field layer height. Plots are labeled by age 
class (“O”= old, “I”= intermediate and “N”= new).  
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Appendix 2. Scatterplot cross-matrix of the response variables with calculated Pearson correlation 
coefficients. 

 
 
 


