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Executive Summary

Gradient Boosting Regressor (GBR), eXtreme Gradient Booster (XGB), Random Forest (RF) and Neural

Network (NN) with specified parameters do not improve or outperform Generalised Linear Model (GLM) when

following the frequency-severity method on vehicle insurance data. The four machine learning models are selected

due to their explainable results and outstanding performances in related areas (see Section 2). Feature importance

and partial dependence plots are made for GBR, XGB and RF to gain more insight into prediction explainability.

Furthermore, permutation importance and partial dependence plots are created for NN to acquire a better

understanding of prediction explainability. In a nutshell, this research consists of two experiments. The first

experiment is divided into four phases: pre-processing, training & testing, importance plot creation and evaluation of

risk premium predictions. The second research experiment is concerned with the generalisability of the

pre-processing. The generalisability of these phases is demonstrated by running the program on another data set

(California Housing Data [1]). By generalising these phases, the same machine learning models can be applied to a

range of other data sets within the working environment of company X. In conclusion, our study found that when

trained on vehicle insurance data, GBR, XGB, RF, and NN cannot outperform GLM. Nonetheless, when trained on

different data sets this approach has the potential of improving or replacing other models. Training the models on

new data is relatively easy due to the generalisability of the pre-processing and training & testing phase. Therefore, it

is strongly recommended to apply the program on different data sets.

University of Twente | IEM ii



University of Twente F. Tuininga

TABLE OF CONTENTS

List of Figures v

List of Tables vi

1 Introduction: Problem identification and the potential of improving risk premium prediction model
for Company X 1

2 Related Literature and Background: Identification of suitable machine learning models and tech-
niques 3
2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Generalised Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Suitable Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Overfitting and Underfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.6 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.7 K-Fold Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.8 Partial Dependence Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.9 Importance Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.10 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Research Design: Machine learning experiment and generalisability 10
3.1 First Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Second Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Results: A visualisation of parameter search results, model comparisons, distribution of model
predictions and importance plots 14

5 Discussion: The interpretation of experiment outcomes 21

6 Conclusion: Interpretation of results and opportunities of future research 25

References 26

A Generalised Linear Model (GLM) 28

B Variable Histograms 30

C Pie Charts 36

D Regression Tree 41

E Gradient Boosting Regressor (GBR) 44

F eXtreme Gradient Booster (XGB) 45

University of Twente | IEM iii



University of Twente F. Tuininga

G Random Forest (RF) 47

H Multi-Layer Perceptron (MLP) 48

I Gird Search Tables 51

J Partial Dependence Plots 53

University of Twente | IEM iv



University of Twente F. Tuininga

LIST OF FIGURES

1 Feature X1 types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Feature X2 types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Example: one-hot encoding [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Example: K-fold cross-valiation (k=5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Example: Feature impact on prediction [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 Example: Decision Tree [23] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

7 Example: Permutation Importance [24] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

8 First Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

9 Pre-Processing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

10 Training & Testing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

11 Performance Plots Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

12 Evaluation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

13 GBR Grid Search (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

14 XGB Grid Search (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

15 RF Grid Search (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

16 NN Grid Search (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

17 GBR Grid Search (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

18 XGB Grid Search (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

19 RF Grid Search (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

20 NN Grid Search (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

21 MAE scores (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

22 MAE scores (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

23 GBR predictions (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

24 XGB predictions (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

25 RF predictions (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

26 NN predictions (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

27 GLM predictions (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

28 GBR predictions (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

29 XGB predictions (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

30 RF predictions (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

31 NN predictions (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

32 GLM predictions (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

33 GBR Feature Importance (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

34 XGB Feature Importance (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

35 RF Feature Importance (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

36 NN Permutation Importance (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

37 GBR Feature Importance (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

38 XGB Feature Importance (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

39 RF Feature Importance (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

40 NN Permutation Importance (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

University of Twente | IEM v



University of Twente F. Tuininga

41 GBR X6 (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
42 XGB X6 (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
43 RF X6 (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
44 NN X6 (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
45 GBR X6 (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
46 RF X6 (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
47 NN X6 (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
48 GBR Grid Search (California Housing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
49 XGB Grid Search (California Housing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
50 RF Grid Search (California Housing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
51 NN Grid Search (California Housing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
52 MAE scores (California Housing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
53 Example: Ensemble Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
100 Regression Tree: one split example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
101 Regression Tree: multiple splits example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
102 MLP Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
103 MLP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

LIST OF TABLES

1 Example frequency data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Example severity data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Average Risk Premiums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 Parameter combinations selected by Grid Search . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Average Risk Premiums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Parameter combinations Califonia housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7 Feature Table Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8 Iris Data Set Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9 Iris Data Set Bootstrap Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10 GBR, XGB and RF Grid Search (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
11 NN Grid Search (Frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
12 GBR, XGB and RF Grid Search (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13 NN Grid Search (Severity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

University of Twente | IEM vi



University of Twente F. Tuininga

1 INTRODUCTION:
PROBLEM IDENTIFICATION AND THE POTEN-
TIAL OF IMPROVING RISK PREMIUM PREDIC-
TION MODEL FOR COMPANY X

In this chapter, the case is introduced, research prob-

lem is identified and primary objectives of this research

are elaborated upon. Moreover, research questions are

stated and the framework in which this research takes

place is described.

This study focuses on vehicle insurances and is con-
ducted at department A of Company X. Company X is
a large Dutch corporation which specialises in financial
services. Company X was born after a large series of
mergers. These mergers made Company X a large in-
surer. As of today, key operations of Company X include
insurance, asset management, and providing financial
services.
Company X issues a variety of insurance products, one
of which is vehicle insurance. If a customer has insured
his/her vehicle against damage, then risk and (in the case
of incidents) associated costs are transferred to Company
X. In return, the customer pays Company X a unique
risk premium based on customer characteristics. Conse-
quently, it is critical for Company X to determine suitable
risk premiums. A suitable risk premium equals expected
payout plus a profit margin. If profit margins are too
high, customers switch to competitors. If profit margins
are too low, Company X generates losses when actual
payouts exceed expected payouts. Hence, Company X
benefits greatly from a model which accurately predicts
cost of damages. This allows Company X to determine
risk premiums more accurately and, as a result, improve
its competitive position. At this moment, Company X
determines risk premiums based on historical data. In
the past, Company X has compared this approach with
simply setting all risk premiums equal to a constant (i.e.
average claim size of all customers plus a small profit
margin). The result was that the model based on his-
torical data functioned best (i.e. mean absolute error
was smallest). These findings suggest a relation between

independent and dependent variables. The historical
data consists of customer characteristics, occurrence of
damages and cost of damages. Company X uses the so-
called frequency-severity method [2] to generate suitable
risk premiums. Frequency-severity method is an actu-
arial method for calculating expected number of claims
received by an insurer over a certain time period and
calculating average claim cost. Accordingly, Company
X splits its data set in a frequency data set which de-
scribes average number of annual claims per customer
and a severity data set which describes average cost of
damage per customer per year. Company X applies a
Generalised Linear Model [3] (Appendix A) to both his-
torical data sets in order to make predictions regarding
occurrence (frequency) and cost (severity) of damages.
Predictions of occurrence and cost of damages are mul-
tiplied and a small profit margin is added to obtain risk
premiums. A GLM fits probability distributions on fre-
quency and severity data to generate predictions. These
predictions are made based on customer characteristics.
In this study, customer characteristics are referred to as
features. Features are selected by applying Akaike’s In-
formation Criterion [4].
Company X believes their current risk models (GLM)
could be improved or replaced by a machine learning
models. Machine learning is the study of computer al-
gorithms that improve automatically through experience
[5]. These computer algorithms appear in various forms
and apply statistical models to optimise performance [6].
If a machine learning model is on average able to out-
perform GLM, then Company X could apply this model
to improve its competitive position. A better risk model
enables Company X to determine risk premiums more
accurately, which provides Company X with an competi-
tive edge.
The primary research aim is to explore and evaluate a
series of machine learning models that have the potential
to outperform GLM. Note that it is possible to identify
the current GLM as best predictive model.
GLM has the ability to generate explainable predictions.
From the perspective of Company X, explainability of
model predictions is extremely important. Afterall, if

University of Twente | IEM 1
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Company X cannot explain to its customers why their
risk premiums changed, then this leads to incomprehen-
sibility on side of the customer. As a result, customers
might leave or sue Company X. Company X does not
stand alone in the pursuit of explainable models. For
instance, the Dutch Council of State identified a series
of risks associated with machine learning models in-
cluding the issue of explainable results. In their report
"Digitalisering Wetgeving en Bestuursrechtspraak", the
Council of State pleads for protection of Dutch citizens
against algorithmic decision making in public domain
[7]. In addition, the Dutch government issued a series
of guidelines for application of algorithms by govern-
mental organisations [8]. Even though Company X is
not a governmental organisation, these examples do il-
lustrate developments and importance of explainable
results. Moreover, they highlight the relevance of this
research. Results are regarded as explainable if vari-
ables can be identified that contribute most to prediction.
Methods used to identify most contributing variables are
elaborated upon in Section 2. Hence, the secondary re-
search aim is to achieve explainable results. In addition,
Company X has identified a maximum risk premium
its customers are willing to pay. This premium equals
C3500 per year. So, models which generate risk premi-
ums that occasionally exceed C3500 must not be chosen
to improve or replace GLM.
In recent years, Company X has collected a large number
of data points which are used to calculate risk premiums
for a variety of different insurances. So, if a selection of
machine learning models has the potential to outperform
GLM on severity and frequency data sets, then these
models might outperform similar models when trained
on different data sets. Hence, Company X has a lot to
gain from applying machine learning models on all avail-
able data sets. For this reason, the tertiary research aim is
to automate preparation of data and to automate training
and testing machine learning models.
In summary, the three research aims are:

1. Model exploration: Explore and evaluate machine
learning models which hold the potential to improve
or replace the current GLM.

2. Explainability: Predictions made by machine
learning models must be explainable to the cus-
tomer (i.e. variables which contribute most to pre-
diction must be identified).

3. Generalisability: Pre-processing data, training
and testing machine learning models must be auto-
mated.

The primary and secondary research aim are combined
in the main research question:

To which extent can explainable machine learning

algorithms improve or outperform a Generalised Linear

Model when following the frequency-severity method on

vehicle insurance data?

The tertiary research aim is incorporated in the sub-
research question:

To which extent can pre-processing, training and

testing be automated for a set of machine learning mod-

els?

In Section 2, relevant papers and contribution to litera-
ture is described in more detail. In Data Description, an
in-depth analysis is given of data as provided by Com-
pany X. In Background, machine learning techniques are
discussed and most suitable machine learning models
(given data type) are discussed. In Research Design,
the research experiment is descripted and the case for
generalisation is made. In Results, a visualisation and
experiment outcomes are presented. In Discussion, an in-
terpretation of results is given and evaluated. In Conclu-

sion, the research question is answered and conclusions
are drawn based on results. Lastly, recommendations
for Company X and opportunities for future research are
stated.
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2 RELATED LITERATURE AND
BACKGROUND:
IDENTIFICATION OF SUITABLE MACHINE

LEARNING MODELS AND TECHNIQUES

In this chapter, a description is given of data as provided

by Company X. Furthermore, suitable machine learning

models are identified and important machine learning

techniques are discussed. In addition, the evaluation

metric is elaborated upon.

2.1 Data
As stated in Introduction, Company X must generate
risk premiums that are profitable and acceptable for
customers. To achieve this, Company X applies the
’frequency-severity method’ [2]. This method implies
that two data sets are formed: a frequency and severity
data set. Both data sets consist of the same independent
variables, but data sets differ in number of rows and
dependent variable. All insured vehicles appear in the
frequency data set (i.e. each row in frequency data refers
to an insured vehicle). In contrast, the severity data set
consists only of vehicles that suffered damage and for
which a claim was issued. As a result, the frequency
data set is far larger than the severity data set. Another
difference is that the dependent variable for frequency
data is average annual number of claims, whereas the
dependent variable for severity data is average annual
claim size (cost of damage). An example of frequency
and severity data is given in Tables 1 and 2 (Var. stands
for Variable).

Row Var. 1 Var. 2 ... Dependent Var.
1 Manual 10 ... 0.01
2 Manual 8 ... 0
... ... ... ... ...
901169 Automatic 11 ... 0

Table 1: Example frequency data

Row Var. 1 Var. 2 ... Dependent Var.
1 Manual 10 ... 1000
2 Manual 8 ... 300
... ... ... ...
48536 Automatic 2100 0

Table 2: Example severity data

For frequency some dependent variables display invalid
values. An example of such an invalid value is 365,
which would imply that a specific vehicle had 365 an-
nual accidents. Company X explained that this is due to
calculation errors. Hence, it was decided to remove all
outliers which are clearly invalid. The cutoff point was
set at 50 accidents per year. Severity and frequency data
sets used in this research were created by collecting data
starting from 2011 up and until 2019. The impact of the
Corona pandemic was not taken into account on request
of Company X.
Since the vast majority of vehicles have not suffered
any damages during insurance period, frequency data
is very unbalanced. Roughly 95% of all vehicles have
not suffered any damage and have therefore an average
annual occurrence of damage equal to zero. If a machine
learning model consistently estimates zero regardless of
vehicle insurance characteristics, then it would be right
in 95% of all cases. In that case, however, vehicle char-
acteristics are completely ignored which is exactly what
Company X tries to prevent. This problem is discussed
in more detail in Chapter 3.
To obtain more insight into feature distributions, for each
feature a histogram of unique observations is created. If
a unique observation forms 2% or less of all observa-
tions, then this observation is grouped under label Other.
Two histograms are highlighted in this section (Figures 1
and 2). These figures show the way in which observation
types could be distributed for a given feature. All re-
maining histograms and pie charts of the same variables
can be found in Appendices B and C respectively.
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Figure 1: Feature X1 types

Figure 2: Feature X2 types

Figure 1 shows two observation types for feature X1. As
can be seen, observation type ’0’ has a relative occur-
rence of 99%. This illustrates that the vast majority of
insured vehicles is quite unbalanced in feature X1. In Fig-
ure 2 it can be seen that feature X2 has a variety of unique
observations of which many haves a relative occurrence
of more than 3%. These two features are highlighted to
illustrate different ways in which observations could be
distributed per feature.

2.2 Generalised Linear Model
Company X uses a Generalised Linear Model (GLM)
to predict average annual number of claims based on
frequency data and average annual claim size (cost of
damage) based on severity data. To generate the best
possible predictions, GLM bases predictions on probabil-
ity distributions. Hence, it is key to fit the most suitable

probability distribution on frequency and severity data to
generate predictions. For mathematical background of
GLM see Appendix A. Omari [9] states that a Gamma
distribution is often used as a predictive model for claim
severity. In addition, Erdemir shows that a Poisson distri-
bution is often used for modelling claim frequency [10].
The idea that severity data often follows a Gamma distri-
bution and that frequency data often follows a Poisson
distribution is substantiated by Ohlsson and Johnson in
their book Non-Life Insurance Pricing with Generalized

Linear Models [11]. Company X follows this approach
by assuming that frequency and severity data follow a
Poisson and Gamma distribution respectively. Frequency
and severity predictions made by GLM are multiplied to
obtain suitable risk premiums.

2.3 Suitable Machine Learning Models
It is important to determine which type of machine
learning models are applicable given frequency and
severity data. As stated previously, both frequency
and severity data include dependent variables. Since
supervised models use target/dependent observations to
evaluate and adjust predictions, these type of machine
learning models must be used to model frequency and
severity data.
Another important aspect of machine learning is the
type of target variable. If target variables can be
divided in classes, then classification algorithms must
be used. In contrast, if target variables are numerical,
then regression algorithms must be applied. In both
frequency and severity data, target variables are
numerical. This implies that regression models must be
applied to the data. Note that GLM as used by Company
X is a regression model. In summary, only supervised
regression models are considered in this research.
In this chapter, an argumentation is given as to which
machine learning models are most applicable given the
data. Random Forest (RF) makes decisions based on
a ’forest’ of regression trees. Neural Network (NN)
is a collection of nodes called neurons, which model
neurons in a biological brain. Staudt and Wagner [12]
studied pricing of car insurance contracts by applying
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RF, NN and GLM. The aim of this study was to compare
these machine learning models to more traditional
frequency-severity regression models for car insurance
pricing. The study found that RF and NN generated
results similar to GLM and could therefore be consid-
ered as alternatives to GLM. Furthermore, Gradient
Boosting (GB) can be used to make valuable predictions.
Similar to RF, GB makes predictions based on a ’forest’
of regression trees. The difference lies in how these
regression trees are constructed. For more information
about construction of regression trees within a GBR
or RF model, see Appendices E and G respectively.
Guelman [13] presents the theory of Gradient Boosting
(GB) and its application to the problem of predicting
auto ‘at-fault’ accident loss cost using data from a
major Canadian insurer. The predictive accuracy of GB
model is compared to conventional Generalised Linear
Model (GLM) approach. Guelman found that GB
significantly outperformed GLM in terms of accuracy.
In addition, GB produced interpretable results. GB is
an umbrella term for a variety of models, but in his
research Guelman applied standard GB. Another GB
model which must be discussed is eXtreme Gradient
Boosting [14]. As described in the book Gradient

Boosting with XGBoost and scikit-learn [15], this type
of Gradient Boosting has outperformed many models in
a variety of machine learning competitions. This study
applies both eXtreme Gradient Boosting (XGB) and
standard Gradient Boosting (GBR) due to impressive
results generated by both models.
In the scientific body of knowledge, GBR, XGB, RF and
NN are not yet trained and tested on vehicle insurance
data (actual name of this data set is censured), and
subsequently compared to GLM. Furthermore, this
approach is not yet generalised for GBR, XGB, RF
and NN. This study aims to extent the scientific body
of knowledge by applying GBR, XGB, RF and NN on
vehicle insurance data and comparing results to GLM,
and standardising this approach to prevent duplication
of work. A more in-depth explanation of each machine
learning model is given in Appendices E, F, G and H.

2.4 Overfitting and Underfitting
The bias and variance are important tools to evaluate
model performance. The bias is an error which refers
to average absolute difference between predictions and
targets. A model with high bias performs quite poorly
on both training and test data. The variance is an error
which describes prediction variability [6]. A model with
high variance tends to predict training targets very well,
but performs extremely poor on test data. Overfitting is
the phenomenon where a model performs excellent on
train data, but extremely poor on test data (low bias, high
variance). Underfitting refers to a situation in which a
model performs equally poor on both train and test data
(high bias, low variance). Both bias and variance can be
influenced by selecting model parameters, which implies
a sweet spot that minimises combined error. Further-
more, parameters can be adjusted to prevent over- and
underfitting.

2.5 Pre-processing
Data must be pre-processed before being fed to machine
learning models. In this study, three pre-processing tech-
niques are implemented: removal of non-contributing
features, data type transformation and data normalisation.
Regarding non-contributing features, it is fairly possi-
ble that certain features consist of only one observation
type (each row has the same value). Since no correlation
between these features and target variable exists, these
features increase computation time but do not contribute
to predictions. Hence, these features must be removed
from the data set. Furthermore, some features have a
categorical data type. Machine learning models cannot
interpret categorical data directly. Hence, categorical
data must be transformed to another data type which
can be understood by machine learning models. In this
research, one-hot encoding transformation is applied.

As shown by Figure 3, observation types are transformed
from a one-column structure to a multi-column structure.
Note that by one-hot encoding data, categorical data is
transformed to binary data which makes it readable for
machine learning models.// Normalisation improves both
convergence and generalisation in most tasks for Neural
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Figure 3: Example: one-hot encoding [16]

Networks [17]. Hence, normalisation is an important
part of training Neural Networks (Equation 1).

Xnorm
i =

Xi −Xmin

Xmax −Xmin
(1)

In here, Xi represents the original observation. Xmin

and Xmax refer to minimum and maximum observation
value. By applying normalisation, relative differences
between observations are preserved but the problem of
large observations exists no longer.

2.6 Parameter Selection
Grid search is a method to identify best parameters for a
machine learning model [18]. Machine learning model
performance is highly dependent on its parameters.
Since no straight-forward exact method to determine
optimal parameters exists, a search method must be
applied. Grid search is an exhaustive search method
which evaluates a pre-determined number of combina-
tions of parameters for a given machine learning model.
The parameter combination which minimises total er-
ror is identified as best (given the set of parameters used).

The Neural Network, Random Forest, Gradient Boosting
Regressor and eXtreme Gradient Booster are dependent
on a series of parameters. For a Neural Network three
parameters are important. These are learning rate, num-
ber of neurons per layer and number of layers. As shown
by Yu and Lui [19], an adaptive learning rate with mo-
mentum generates highly accurate results while reducing
computational time. For these reasons, an adaptive learn-
ing rate is applied for the Neural Network. The best
combination of number of neurons per layer and number
of layers is derived by grid search.

For Random Forest maximum number of trees and max-
imum tree depth are the most important parameters for
prediction. A larger maximum tree depth, increases both
complexity and computational cost. To balance both,
often a maximum tree depth of 8 is used [20]. For this
reason, this research also applies a maximum tree depth
of 8. The best maximum number of trees is determined
by grid search.
For Gradient Boosting Regressor and eXtreme Gradi-
ent Booster, maximum number of trees, maximum tree
depth and learning rate are the most important param-
eters. As stated previously, to balance complexity and
computational cost a maximum tree depth of 8 is most
suitable. The best combination of maximum tree depth
and learning rate is determined by grid search.

2.7 K-Fold Cross-Validation
In machine learning research, data is split into a train
and test set. A machine learning model uses train set to
establish a mathematical relationship between features
and targets. The test set is used for evaluation purposes.
Generally, the train set is larger than the test set. A
problem that arises is that of an unrepresentative test set
(i.e. models perform too well or too poor due to test
set structure). To counter this, K-fold cross-validation
can be applied. This method utilises the same data set
several times for training and testing (Figure 4).

Figure 4: Example: K-fold cross-valiation (k=5)

In the figure above an example is given of standard K-
fold cross-validation with k = 5. In here, k represents
number of times the same data set is used for training
and testing. In addition, k describes test set size. For
instance, consider a data set with 100 observations. If
k = 2, then the test set consists of 100%

k = 100%
2 = 50%

of data or 50 observations. If k = 4, then the test set
consists of 100%

k = 100%
4 = 25% of data or 25 observa-

tions. Standard K-fold cross-validation works well for
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severity data, but not for frequency data. The reason is
that frequency data is unbalanced. In total 95% of tar-
gets equal 0, whereas 5% of targets are strictly positive.
This was expected since most customers of Company
X have not suffered any damages. As a result, average
number of damages equals 0 for most customers. An
unbalanced data set can result in an unrepresentative test
set. After all, it is quite possible that one test set con-
sists of a lot of strictly positive targets whereas another
test set has little strictly positive targets. This paints a
distorted picture of reality and could result in an inef-
fective model evaluation. This problem can be solved
by applying stratified K-fold cross-validation. In strati-
fied K-fold cross-validation, it is ensured that each test
set for each fold consists of an equal number of strictly
positive observations. Hence, for severity data standard
K-fold cross-validation is used, whereas for frequency
data stratified K-fold cross-validation is applied.

2.8 Partial Dependence Plots
Partial dependence plots show dependence between one
feature and predictions generated by a given model. On
x-axis of a partial dependence plot, all unique observa-
tions of a particular feature are displayed. On y-axis
corresponding change in average prediction is displayed
(Figure 5).

Figure 5: Example: Feature impact on prediction [21]

In the Figure above three examples of partial dependence
plots are given. Consider a data set which includes a
feature called MedInc (Figure 5 left). Suppose this data
set is fed to a machine learning algorithm and the goal
is to construct a partial dependence plot. In that case,
all unique observations of MedInc must be gathered and
minimum unique observation must be identified. In case

of MedInc, this minimum is 2 (see Figure 5). Next, an
adjusted data set is created by setting all observations
of feature MedInc equal to this minimum unique obser-
vation (i.e. all observations are set equal to 2). Lastly,
the data set is fed to the machine learning algorithm and
average prediction is registered. This average is the start-
ing point for the partial dependence plot. In other words,
all changes in prediction are measured in comparison to
this average. Suppose this average equals 100. Let the
second lowest unique observation of MedInc equal 2.5.
Now, a data set is constructed in which all observations
for MedInc are set equal to 2.5. This adjusted data set is
fed to the machine learning algorithm and a set of pre-
dictions are generated. The average of these predictions
is taken and suppose that this average prediction equals
100.5. The difference between average predictions is 0.5
which is shown in the plot (i.e. 100.5− 100). In this
manner, the partial dependence plot is constructed for all
possible unique observations. The dashed line in Figure
5 represents this average prediction and the blue lines
represent individual predictions. By constructing partial
dependence plots, the impact a feature has on predic-
tion can be measured. This makes it easier to interpret
(machine learning) models.

2.9 Importance Plots
Importance plots show which features are most impor-
tant for a given model. Roughly, there are two types of
importance plots: feature importance and permutation
importance plots. Feature importance plots are solely
used for tree based models [22], whereas permutation
importance plots are applicable to all models. Feature
importance plots rely on GINI importance. To illustrate
this idea, consider a decision tree (Figure 6).

In here, there are three parent nodes: ’Has features?’,
’Can fly?’ and ’Has finns?’. The remaining nodes are
referred to as child nodes. For each parent node GINI
impurity is calculated (Equation 2).

GINI(A) = 1−
k

∑
i=1

p2
i (2)

Here, A refers to a parent node and k refers to total num-
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Figure 6: Example: Decision Tree [23]

ber of child nodes. pi refers to number of observations
in child node i divided by total number of observations
in all child nodes. In this manner, GINI impurity is
calculated for each parent node in the decision tree. A
feature could appear multiple times in the same decision
tree. Hence, this should be taken into account when
calculating feature importance (3).

fx =
∑ j∈x GINI( j)

∑ j∈Sx GINI( j)
(3)

fx refers to feature importance of feature x. Sx is the set
of all features and GINI( j) is GINI impurity of parent
node j. Hence, ∑ j∈x GINI( j) refers to summed GINI
importance of all parent nodes in a decision tree cor-
responding to feature x. If multiple decision trees are
used in a model, then average feature importance of all
decision trees in model is taken. As can be seen, feature
importance shows relative importance of each feature
given a tree based model.
Suppose a data set is fed to a machine learning model.
For each observation in the data set a prediction is gen-
erated. These predictions are compared to actual target
values. The average difference is taken between all pre-
dictions and target values. This difference is referred to
as accuracy score. To create a permutation importance
plot for a feature x, a new data set must be constructed.
To achieve this, the original data set is slightly adjusted.
To be more precise, all features in the data set remain
the same with exception of feature x. This feature is ran-
domly shuffled (observations are swapped at random).
This newly created data set is fed to the same machine

learning model. Once again average difference is taken
between all predictions and target values. As a result,
in total two accuracy scores are obtained: an accuracy
score based on the original data set and an accuracy
score based on slightly adjusted data set. To understand
the impact of feature x on predictive capabilities of the
machine learning model, the difference between two
accuracy scores is taken. This procedure is executed a
given number of times and each time the difference be-
tween original accuracy score and accuracy score based
on a slightly adjusted data set is taken. Lastly, these
differences are averaged and this final result is called per-
mutation importance. Similarly to feature importance,
permutation importance shows the impact of a feature
on predictive capabilities of a model. Whereas the fea-
ture importance plot show relative feature importance,
permutation plots show absolute impact of a feature on
predictions made. An example of a permutation impor-
tance plot is given in Figure 7.

Figure 7: Example: Permutation Importance [24]

In here, the x-axis shows the impact of each feature on
rediction accuracy and the y-axis shows each feature.

2.10 Evaluation Metric
Suitable performance metrics must be identified to eval-
uate which machine learning model and combination
of parameters generates the best result. Since the prob-
lem at hand is a regression problem, three types of per-
formance metrics could be used: Mean Squared Error
(MSE), Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE). Both MSE and RMSE empha-
sise larger errors. Consequently when using MSE or
RMSE, models do not focus solely on reducing average
error during training. Instead models are incentified to
reduce large errors partly at the expense of average er-
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rors. In the context of this study, reducing large errors
is irrelevant and the focus must lie on reducing average
error. Hence, it was decided to apply Mean Absolute Er-
ror (MAE). The MAE refers to mean absolute difference
between predictions and targets (Equation 4).

MAE =
1

|Stest | ∑
i∈Stest

|yi − ŷi| (4)

In here, Stest refers to the test set, yi to the target cor-
responding to observation i, and ŷi refers to prediction.
During grid search, MAE is applied to identify the best
combination of parameters per machine learning model.
Given the best combination of parameters, each model
generates a set of predictions for frequency and severity
data. Each set of frequency predictions is multiplied by
each set of severity predictions. From this result, the
average can be taken. This number is the average risk
premium which is used to compare the best combination
of predictive models. Therefore, MAE is an excellent
performance metric to determine whether models have
improved or outperformed GLM.
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3 RESEARCH DESIGN:
MACHINE LEARNING EXPERIMENT AND GEN-
ERALISABILITY

The research design consists of a research approach

and an argumentation as to why certain steps are taken.

The research approach is divided into two distinct ex-

periments. The first experiment follows four phases:

pre-processing, training & testing, creating performance

plots, and evaluation. The second experiment focusses

on generalisability of the pre-processing and training &

testing phases.

The first experiment consists of four distinct phases:
pre-processing, training & testing, creating performance
plots, and evaluation. Figure 8 provides an overview of
the (first) experiment setup.

Figure 8: First Experiment Setup

As can be seen, the first three phases (pre-processing,
training & testing, and creating performance plots) are
executed for both the frequency and severity data set.
The last phase (evaluation) is applied on both data sets
simultaneously. In the future, Company X wishes to
execute similar research for different data sets. In other
words, Company X wants to evaluate and compare ma-
chine learning models with other models currently in use.
Evaluation and comparisons are made based on Mean
Absolute Error (MAE) scores. Company X wants to
ensure that predictions are made based on customer char-
acteristics. In other words, if models converge to simply
predicting averages regardless of inputs, then these mod-
els are not useful for Company X. Hence, models are
compared on MAE scores but models that learn to pre-
dict averages must be excluded. To make the process
of evaluation and comparison easier, pre-processing and
training & testing phases are standardised.
At the end of this chapter, the second research exper-
iment is discussed in order to show that standardised
approach works on another (unrelated) data set and is,
hence, applicable to more data sets than solely frequency
and severity vehicle insurance data sets. In this research,
performance plots are applied to gain insight in impor-
tance of attributes. As shown by various studies [25],
[26], [27], importance plots are an excellent way to gain
insight in attribute importance.

3.1 First Experiment
As shown in Figure 8, the first phase is the pre-processing
phase. This phase is visualised in Figure 9 and consists
of three actions. First, a set of variables could be re-
moved since these variables are not useful for generating
predictions. These variables do not have a negative effect
on predictions, but they slow down the training process.
For instance, if all observations of a given variable are
equal (e.g. only one unique observation exists), then
this variable increases computational time but does not
contribute to final prediction. Second, categorical vari-
ables must be transformed to numeric variables. The
reason is that categorical variables are not understood by
machine learning models. Frequency and severity data
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include several categorical variables. Third, "unscaled
input variables [for a Neural Network] can result in a
slow or unstable learning process" [17] and, therefore,
input variables must be normalised to ensure a stable
learning process. Note that normalising data has no im-
pact on tree-based model predictions (such as Gradient
Boosting Regressor, eXtreme Gradient Booster or Ran-
dom Forest).
In summary, the pre-processing phase removes unneces-
sary variables and adjusts the data set to make it under-
standable for machine learning models.

Figure 9: Pre-Processing Phase

As shown in Figure 10, the training & testing phase
consists of four actions. First, K-fold cross validation
is applied for both data sets. For frequency stratified
K-fold cross validation is applied, whereas for severity
normal K-fold cross validation is applied. Stratified K-
fold cross validation prevents problems which are caused
by unbalanced data. For more information on this matter
see Section 2. Second, all four machine learning models
are trained and tested. During testing, performance is
measured with MAE scores. In addition, grid search is
applied to generate an overview of the impact of model
parameters on predictions made (measured in MAE).
Third, GLM is trained and tested. Parameters for GLM
are determined with the maximum likelihood estimator

(Appendix A). Hence, grid search is unnecessary for
this model. During testing performance is measured
in MAE scores for GLM. For argumentation as to why
MAE scores are used as measurement, see Section 2.
The previously discussed steps are executed for both
frequency and severity data. As a result of grid search
the best performing parameters are identified (given the
set of parameters used for grid search).
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Figure 10: Training & Testing Phase

As shown in Figure 11, creation of performance plots
consists of 5 actions.

Figure 11: Performance Plots Phase

A grid search plot is created by visualising all possible
parameter combinations per model. Predictive accuracy
is expressed in MAE scores. These type of plots show in
which area there is potential for improvement and which
parameter combination generated lowest MAE score.
Furthermore, given the best combination of parameters,
for each model minimum MAE score is expressed in a
bar plot.
For tree-based models (Gradient Boosting Regressor,
eXtreme Gradient Booster and Random Forest), feature
importance plots are generated. For Neural Network, a
permutation importance plot is constructed. Both types
of plots give a lot of insight into the impact of individual
features on final predictions. Consequently, a ranking of
most important to least important features can be made.
Lastly, a partial dependence plot is constructed for each
model. Similarly to feature and permutation importance
plots, partial dependence plots show the impact of a fea-
ture on predictive abilities. In contrast to feature and
permutation plots, partial dependence plots provide an
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understanding of the impact of each unique observation
on predictions. For more information regarding these
plots, see Section 2. As shown in Figure 12, the evalua-
tion phase consists of 3 actions.

Figure 12: Evaluation Phase

As stated previously, the evaluation phase uses both
frequency and severity data simultaneously. This works
as follows. From previous phases, four machine learning
models and the current GLM generated two sets of pre-
dictions. The first set of predictions refers to frequency
data and the second set of predictions refers to severity
data. Hence, in total ten sets of predictions are gen-
erated (5 models ∗ 2 data sets = 10 sets of predictions).
Currently, a GLM is used to generate predictions based
on frequency and severity data. These predictions
are combined into risk premium predictions. To
discover whether or not machine learning models may
outperform GLM in either frequency, severity or both
types of prediction, all combinations of prediction
sets must be evaluated. Hence, five prediction sets
corresponding with severity data must be combined
with five prediction sets corresponding with frequency
data. This results in 25 sets of risk premium predictions
(e.g. 5 frequency predictions ∗ 5 severity predictions =
25 sets of risk premiums). Since actual cost and
frequency of damages is known, 25 risk premium predic-
tion sets can be compared to the actual situation. In other

words, one can take the difference between the set of risk
premiums in an ideal situation (all predictions are exactly
correct) and the set of risk premium predictions gener-
ated by a combination of two given models. The best
combination of two models has the lowest absolute error.

3.2 Second Experiment
To illustrate that the pre-processing and training & test-
ing phase can be applied to other data sets, the same
program used for Company X is applied on an unre-
lated data set. The data set selected for this purpose is
California housing dataset (obtained from scikit-learn
[1]). The data contains information from 1990 California
census. In California housing dataset, a clear relation
between independent and dependent variables. In ad-
dition, this data set is often used for machine learning
purposes. For these reasons California housing data is
selected as an unrelated data set to show generalisability
of the pre-processing and training & testing phase. MAE
scores obtained by applying this standardised approach
are included in results.
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4 RESULTS:
A VISUALISATIONOF PARAMETER SEARCH RE-
SULTS, MODEL COMPARISONS, DISTRIBUTION

OF MODEL PREDICTIONS AND IMPORTANCE

PLOTS

In this chapter, an overview of all experiment outcomes is

given. This implies 8 grid search plots, 2 visualisations

of MAE scores (one for frequency and one for severity),

10 histograms which show the distribution of predictions

made, 8 importance plots and 7 partial dependence plots

are highlighted.

In following Figures and Tables, Gradient Boosting Re-
gressor, eXtreme Gradient Booster, Random Forest, Neu-
ral Network and Generalised Linear Model are referred
to as GBR, XGB, RF, NN and GLM respectively. Grid
search plots are shown in Figures 13-20. These plots
show in which area best results are obtained given the set
of parameter combinations. For instance, in Figure 14 it
becomes clear that the best combination of parameters
for XGB, when trained on frequency data, is achieved
when a learning rate of 0.100 is selected in combina-
tion with 150 estimators (trees). This combination of
parameters results in minimum MAE score given the
search space. In Appendix I-13 give a detailed overview
of grid search outcomes for frequency and severity data.
Given the best combination of parameters, models can
be compared based on MAE scores. These results are
shown in Figures 21 and 22. Note that the aim is to
minimise MAE scores, meaning that GBR and GLM ap-
pear to outperform remaining models for frequency and
severity data respectively. In addition, based on the best
combination of parameters, a histogram is constructed
for each model and data set. This histogram shows the
prediction distribution per model (Figures 23-32). These
histograms show on the x-axis the prediction made by
the model and on the y-axis number of times this predic-
tion was made. Hence, these plots give a clear overview
of prediction distribution per model. Feature importance
plots are displayed in Figures 33-39, whereas permu-
tation importance plots are shown in Figures 36 and

40. Feature importance and permutation plots are con-
structed to show which features are most important for
generating predictions. On the x-axis five most impor-
tant features are shown and on the y-axis corresponding
relative importance is displayed. Figure 33, shows that
this feature has a relative importance of 20%. This im-
plies that this feature is the most important feature in
20% of all frequency predictions made by GBR.
Highlights of partial dependence plots are expressed
in Figures 41- 47 (for all partial dependence plots see
Appendix J). Dependence plots show the impact of ob-
servation types on predictions made. For example, in
Figure 42 it is shown that changing this feature from 0
to 20 translates to a reduction in frequency predictions
by roughly 0.06. Table 3, shows all combinations of fre-
quency and severity models, their average risk premium
and error measured. In this table, low errors indicate
strong performing models. Lastly, to illustrate gener-
alisability of the pre-processing and training & testing
phase, the four machine learning models were fitted to
California housing data set [1]. In Figures 48-51, grid
search outcomes given California housing data set is
given. In Figure 52, accuracy measured in MAE scores
of the four machine learning models is displayed.

University of Twente | IEM 14



University of Twente F. Tuininga

Figure 13: GBR Grid Search (Frequency)

Figure 14: XGB Grid Search (Frequency)

Figure 15: RF Grid Search (Frequency)

Figure 16: NN Grid Search (Frequency)

Figure 17: GBR Grid Search (Severity)

Figure 18: XGB Grid Search (Severity)

Figure 19: RF Grid Search (Severity)

Figure 20: NN Grid Search (Severity)
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Figure 21: MAE scores (Frequency)

Figure 22: MAE scores (Severity)

Figure 23: GBR predictions (Frequency)

Figure 24: XGB predictions (Frequency)

Figure 25: RF predictions (Frequency)

Figure 26: NN predictions (Frequency)

Figure 27: GLM predictions (Frequency)

Figure 28: GBR predictions (Severity)
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Figure 29: XGB predictions (Severity)

Figure 30: RF predictions (Severity)

Figure 31: NN predictions (Severity)

Figure 32: GLM predictions (Severity)

Figure 33: GBR Feature Importance (Frequency)

Figure 34: XGB Feature Importance (Frequency)

Figure 35: RF Feature Importance (Frequency)

Figure 36: NN Permutation Importance (Frequency)
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Figure 37: GBR Feature Importance (Severity)

Figure 38: XGB Feature Importance (Severity)

Figure 39: RF Feature Importance (Severity)

Figure 40: NN Permutation Importance (Severity)

Figure 41: GBR X6 (Frequency)

Figure 42: XGB X6 (Frequency)

Figure 43: RF X6 (Frequency)

Figure 44: NN X6 (Frequency)
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Figure 45: GBR X6 (Severity)

Figure 46: RF X6 (Severity)

Figure 47: NN X6 (Severity)

Frequency Severity Min. RP. Max. RP. Avg. RP. Error
GBR GBR 0.33 408.64 126.16 31.19
GBR XGB 0.11 4374.53 120.59 36.75
GBR RF 0.21 2359.01 124.88 32.47
GBR NN 0.14 1714.39 127.35 30.00
GBR GLM 0.14 448.77 124.85 32.50
XGB GBR 0.07 1928.17 129.87 27.48
XGB XGB 0.03 6466.76 125.76 31.58
XGB RF 0.05 4671.85 129.07 28.27
XGB NN 0.05 2773.46 131.01 26.33
XGB GLM 0.04 1784.78 129.06 28.28
RF GBR 0.12 1399.30 127.40 29.95
RF XGB 0.04 6847.95 123.71 33.63
RF RF 0.08 4433.98 127.02 30.32
RF NN 0.06 2192.84 128.65 28.69
RF GLM 0.06 1996.16 127.20 30.14
NN GBR 0.00 789.85 151.81 5.53
NN XGB 0.00 7068.14 148.58 8.76
NN RF 0.00 4511.51 152.22 5.13
NN NN 0.00 3548.98 153.12 4.22
NN GLM 0.00 1115.16 152.63 4.72
GLM GBR 0.06 1175.01 151.47 5.87
GLM XGB 0.04 7545.33 147.36 9.98
GLM RF 0.07 7243.77 151.74 5.61
GLM NN 0.06 3677.12 152.86 4.48
GLM GLM

Table 3: Average Risk Premiums
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Figure 48: GBR Grid Search (California Housing)

Figure 49: XGB Grid Search (California Housing)

Figure 50: RF Grid Search (California Housing)

Figure 51: NN Grid Search (California Housing)

Figure 52: MAE scores (California Housing)
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5 DISCUSSION:
THE INTERPRETATION OF EXPERIMENT OUT-
COMES

In this chapter, an interpretation of all experiment out-

comes is given. Best parameter combinations, best fre-

quency and severity models, and best risk premium pre-

dictors are identified. Furthermore, certain model flaws

are discussed.

The four machine learning models cannot improve or
outperform GLM. In Figures 13-20, grid search results
are visualised per model and data set. These results are
summarised in Table 4, which provides an overview of
best parameter combinations. These parameter combi-
nations were evaluated based on Mean Absolute Error
(MAE) scores.

Name L.Rate Trees Layers MAE
GBR (Freq.) 0.001 50 x 0.158
GBR (Sev.) 0.001 50 x 1573
XGB (Freq.) 0.100 150 x 0.323
XGB (Sev.) 0.200 300 x 1586
RF (Freq.) x 200 x 0.346
RF (Sev.) x 200 x 1622
NN (Freq.) x x (5,5) 0.271
NN (Sev.) x x (5,5) 1604

Table 4: Parameter combinations selected by Grid Search

Given these parameters, models were evaluated and com-
pared based on MAE scores (Figure 21 and 22). For fre-
quency data, GBR and GLM outperform other models,
whereas for severity data GLM slightly outperforms all
other models.

In Figures 23-32, histograms are displayed which show
prediction distribution per model. In here, x-axis repre-
sents prediction and y-axis represents number of times a
prediction was generated. Most models have a prediction
distribution which roughly represents a (skewed) normal
distribution. Two models must, however, be highlighted.
The first is GBR model trained on frequency data. In con-
trast to other models, this model consistently predicts
low target values. As shown by Figure 21, this strat-

egy allows GBR to outperform all other models when
trained on frequency data. Recall that the frequency
data set is unbalanced. In other words, 95% of all target
observations equal zero. Hence, a model which pre-
dicts values close to zero yields a very impressive MAE
score. As shown by Figure 23, GBR predictions do not
vary a lot which implies that features have little impact
on predictions made. This is substantiated by the best
combination of parameters found by grid search (Figure
13). This combination of parameters leads to most basic
GBR model (low number of trees and a low learning
rate). Consequently, the model predicts an average and
deviates little from this prediction. This is exactly what
Company X wishes to prevent. Risk premiums should be
calculated based on customer characteristics and should
not be an average that has no relation to customer char-
acteristics. Hence, GBR model trained on frequency
data might generate impressive MAE scores, it does go
against the wishes of Company X and should therefore
not be used.
In addition to this model, NN trained on severity data
(Figure 31) shows similar behaviour. As stated in Section
2, models that converge to predicting average regardless
of inputs are not deemed useful by Company X. For this
reason, NN must not be used.
The problem of estimating averages regardless of input
is caused by unbalanced data. Liu et al [28] showed that
this problem can be solved by applying the ensemble
algorithm.
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Figure 53: Example: Ensemble Algorithm

In Figure 53, the left side represents the entire data set.
Subset A represents non-zero target rows and subsets
B − H represent zero target rows. As demonstrated,
subset A is combined with each zero target row sub-
set. Hence, subset A is used multiple times to construct,
in this example, seven balanced subsets (AB, AC, ...,
AH). Each balanced subset, has approximately an equal
number of non-zero and zero target rows. A machine
learning model can now be trained on each balanced
subset. Predictions based on each balanced subset are
averaged into one prediction. This prediction does not
suffer from the consequences of unbalanced data. This
is what the ensemble method implies and it is recom-
mended to Company X utilise this algorithm in future
research.

From Figures 33-40, it becomes apparent that feature X6

is seen by most models as an important feature. This
feature refers to As stated in Chapter
1, Company X applied Akaike’s Information Criterion
to select suitable features for GLM. The most impor-
tant feature was X6 which is reflected by feature and
permutation importance plots.

In Figures 41- 47, one feature is highlighted for each
model. A problem that arises here is that of model ex-

plainability. For instance, consider Figure 34. In this
Figure, feature X6 is used. These
sudden price hikes and falls cannot be explained to the
customer and appear quite often for GBR, XGB and RF.
NN does not suffer from this problem. The reason is
that this particular NN has only two layers. This implies
that it resembles a polynomial of degree 2. As a result,
sudden price hikes/falls cannot occur in this structure.
GLM also applies a second order polynomial which does
not capture sudden price hikes or falls.
In Table 3, an overview is given of maximum risk pre-
mium (Max. RP.), average risk premium (Avg. RP.),
and difference between predicted average risk premium
and desired risk premium as indicated by Company X
(Error). As shown, only model combinations in which
an NN or a GLM is used for frequency prediction gen-
erate a relatively accurate average risk premiums (low
error). Note that if XGB, RF or NN is used for severity
prediction, then their maximum risk premium is greater
than price ceiling of C3500 set by Company X (Chapter
1). This is unacceptable for individual customers and
therefore Company X has indicated not to use XGB, RF
or NN for severity prediction. Hence, solely based on
this table, combinations in Table 5 seem viable.

Frequency Severity Max. RP. Avg. RP. Error
NN GBR 789.85 151.81 5.53
NN GLM 1115.16 152.63 4.72
GLM GBR 1175.01 151.47 5.87
GLM GLM

Table 5: Average Risk Premiums

In Table 5, model combinations are shown which gener-
ate acceptable maximum and average risk premiums. As
discussed previously, GBR suffers from sudden prices
hikes and falls which are unexplainable to customers.
Furthermore, NN is vastly outperformed by GLM
when trained on frequency data and measured by MAE.
Consequently, the best combination of models is using
GLM for both frequency and severity. In conclusion,
given the best combination of parameters the four
machine learning models cannot be used to improve or
replace GLM. Hence, it is recommended to keep using
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GLM for both frequency and severity prediction.
In Figures 48, 49, 50 and 51 results of parameter
search are shown when models are trained and tested
on California housing data set. As can be seen, the
program has executed the pre-processing and training
& testing phase when applied on an unrelated data
set. The accuracy measured in MAE can be found in
Figure 52. As demonstrated, the program is able to
apply pre-processing on California housing data set,
to identify the best combination of parameters and to
compare models based on MAE scores. Hence, it is
shown that this program can be applied to other data sets
than solely data provided by Company X.

The primary research question is:

To which extent can explainable machine learning al-

gorithms improve or outperform a Generalised Linear

Model when following the frequency-severity method on

vehicle insurance data?

Four machine learning models were identified as being
explainable and having the potential to improve or re-
place the model used by Company X. These are: GBR,
XGB, RF and NN. The models can be fitted, evaluated
and compared with GLM by the four step approach as
shown in Figure 8. The result is that these four models
with specified parameters cannot improve or outperform
GLM when following the frequency-severity method on
vehicle insurance data. To be more specific GBR, XGB
and RF are unexplainable and NN is less accurate than
GLM.

The secondary research question is:

To which extent can pre-processing, training and testing

be automated for a set of machine learning models?

The pre-processing, training and testing phases can be
automated completely. For Company X, a program is
developed to standardise the pre-processing and training
& testing phase. This program can be applied on dif-
ferent data sets as illustrated by California housing data

set. In this example, XGB has generated lowest MAE
score. Best parameter combinations (given the set of
parameters) for GBR, XGB, RF and NN are shown in
Table 6.
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Name L.Rate Trees Layers MAE
GBR 0.10 300 x 19067
XGB 0.20 300 x 17477
RF x 500 x 19041
NN x x (20,20) 30120

Table 6: Parameter combinations Califonia housing
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6 CONCLUSION:
INTERPRETATION OF RESULTS AND OPPORTU-
NITIES OF FUTURE RESEARCH

In this chapter, a brief summary of results and findings

is given. Both research questions are answered, recom-

mendations regarding the future strategy of Company X

are made and the opportunities of future research are

discussed.

The four machine learning models with specified param-
eters cannot improve or outperform Generalised Linear
Model (GLM) when following the frequency-severity
method on vehicle insurance data. This study has three
research aims:

1. Model exploration: Explore and evaluate machine
learning models which hold the potential to improve
or replace the current GLM.

2. Explainability: Predictions made by machine
learning models must be explainable to the cus-
tomer (i.e. variables which contribute most to pre-
diction must be identified).

3. Generalisability: Pre-processing data, training
and testing machine learning models must be auto-
mated.

From literature search, it became apparent that four ma-
chine learning models held the potential to outperform
GLM in context of vehicle insurance data: Gradient
Boosting Regressor (GBR), eXtreme Gradient Booster
(XGB), Random Forest (RF) and Neural Network (NN).
Feature importance plots are used to evaluate explain-
ability of GBR, XGB and RF, whereas permutation im-
portance plots are used to evaluate explainability of NN.
The plots display most important features for each model.
Partial dependence plots are used to assess the impact
of most important features on predictions. Customers
perceive the machine learning model as unexplainable if
sudden price increases/falls occur. GBR, XGB, and RF
are subject to such sudden price fluctuations. As a result,
these models must not be used in place of GLM. Hence,

only combinations of GLM and NN are viable solutions.
NN is, however, outperformed by GLM when Mean Ab-
solute Error (MAE) scores are registered. Hence, GLM
must be used to predict both frequency and severity. As
a result, it is advised to continue using GLM for risk
premium calculation.

To illustrate generalisability, the program used for pre-
processing and training & testing phases is applied to
another dataset: California housing. Generalisability is
shown by applying the same program on different data
sets. The program is able to apply pre-processing on
California housing data, to identify the best combination
of parameters and to compare models based on MAE
scores. Hence, it is shown that this program can be
applied to other data sets than solely data provided by
Company X. Hence, to save time, it is recommended to
apply this program to other data sets within Company X
when similar research is conducted.

As stated in Section 2, frequency data set is unbalanced.
To mitigate problems associated with an unbalanced data
set, stratified K-fold cross validation is applied. As illus-
trated by GBR when trained on frequency data, it is still
possible for a machine learning model to systematically
estimate 0 regardless of the set of features. Hence, the
problem is not completely resolved. As stated in Section
2, stratified K-fold cross validation solves the problem
of unreliable train and test sets, but it does not guarantee
that models do not fall in the trap of estimating constants
regardless of inputs. Hence, for future research it is ad-
vised to solve this problem by implementing methods to
handle unbalanced data.
Another area in which results can be improved is pa-
rameter search. Once again due to time constraints and
acceptable results, the best parameters generated by grid
search were used. However, actual best combination
of parameters could lie around the point chosen. For
instance, instead of using a learning rate of 0.100 and
150 number of trees by XGB (severity) it could be that a
learning rate of 0.094 and 133 number of trees is optimal.
Hence, more in-depth grid search is advised for future
research. To be more specific, it is advised to apply a
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more fine-grained grid around the current minimum.
As discussed by Wu et al. [29], Deep Neural Networks
can be constructed and tuned in such a way that they mir-
ror GLMs. As stated by the author ’Neural Networks are

nothing more than recursive Canonical GLMs’. Hence,
applying a neural network on frequency and severity data
might generate more success when different activation
functions and layer structures are considered. Thus, it is
recommended to explore Deep Neural Networks in more
detail when applied to frequency and severity data. The
model can still be explainable by applying permutation
importance plots. Finally, predictions were made using
historical data, but there is no guarantee that the past
can always be used to predict the future accurately. For
example, if the Dutch government decides to invest sig-
nificantly less in infrastructure, accidents may become
more common. As a result, even though the model used
by Company X did not anticipate this, more customers
may file claims. This fact must not be overlooked. As
stated previously, the program developed is able to apply
the pre-processing and training & testing phase on mul-
tiple data sets. To truly demonstrate generalisability, it
is recommended to apply the program to a multitude of
different regression data sets. Furthermore, the program
could be expanded by including performance plots.
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