
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Investigating
Approximate FPGA Multiplication

for Increased Power-Efficiency

Rick van Loo
M.Sc. Thesis

December 2022

Supervisors:
dr. ir. N. Alachiotis

dr. ir. S.G.A. Gillani
dr. ir. A.B.J. Kokkeler

Computer Architecture for Embedded Systems (CAES)
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Contents

1 Introduction 1

1.1 Outline . 2

2 Background 3

2.1 Approximate Computing . 3

2.2 Digital Multiplication . 4

2.3 FPGA and Design Flow . 5

2.3.1 VHDL . 6

2.3.2 Design Flow . 7

2.4 System Requirements . 10

2.4.1 Slices and Chip-area 10

2.4.2 Latency . 11

2.4.3 Power Consumption 15

2.4.4 Error Metrics . 16

2.5 Applications for Approximate Multipliers 19

2.5.1 Radio Astronomy . 20

2.5.2 Image Processing . 21

2.5.3 Neural Networks . 22

2.6 Go Programming Language 23

3 Methodology 26

3.1 Computer-Aided Design . 26

3.2 Approxy . 27

3.3 Approxy Model . 29

3.4 Verification . 33

3.5 Synthesis Design-Flow . 34

3.6 Analysis . 35

3.7 Case Study . 38

ii

CONTENTS iii

4 Implementation of Multiplier Models 41
4.1 RTL Multiplier Design . 41
4.2 Numeric Multipliers . 44
4.3 Behavioral Multipliers . 45
4.4 Recursive Multipliers . 50

4.4.1 Design Space Exploration, 4-bit 51
4.4.2 Results . 52

5 Evaluation 58
5.1 Comparing Literature Designs 58
5.2 SMApproxLib . 59

5.2.1 Approximate Multipliers 59
5.2.2 SMApproxLib Evaluation 61

5.3 lpACLib and Others . 62
5.4 Comparison of Investigated 4-bit Multipliers 63
5.5 Final Design . 66

6 Conclusion 69

7 Future Work 71
7.1 Multiply-Accumulate and Applications 71
7.2 Expanding to 8-bit and beyond 71

Appendix 77
A.1 Approxy Case Study . 77

iv CONTENTS

Chapter 1

Introduction

Opposed to general-purpose computer processing units (CPU), hardware ac-
celerators are specifically designed digital hardware to perform the same func-
tionality at a higher performance. Fields such as Radio Astronomy require
highly power-efficient digital computer systems to process big streams of
data. Neural Networks algorithms are being progressively more used, but
demand high computational power. Due to increasing complexity of these
signal processing applications and demand for performance, such hardware
accelerators are commonplace.

For these error-resilient applications, ”Approximate Computing” studies the
field of further improving performance at a loss of quality for digital systems.
Commonly, a reduction in chip-area or power consumption is investigated by
reducing accuracy of the signal processing system. For these fields, such a
loss in accuracy has to be acceptable for the approximate accelerator to be
of any use. Many of these accelerators are based upon common digital arith-
metic structures, such as multipliers and adders. Therefore, these approxi-
mate modules are commonly studied within literature. For example, Gillani
et al.[18] show in their work that building recursive multipliers using a set
of smaller components, can create approximate multiply-accumulators with
a near-to-zero mean error. In their case study, they apply these multiply-
accumulators to an accelerator for a Radio Astronomy Calibration Process-
ing algorithm and get favourable results in terms of power-efficiency. Other
papers, such as one by Rehman et al.[29] explore a vast design space of multi-
pliers and adders for ASIC 45nm technology using their automated tool-flow.

However, these aforementioned studies limit themselves to fine-grained ar-
chitectures such as ASICs technology. Papers studying these multipliers for
FPGA technology come to the conclusion that due to the architectural differ-

1

2 CHAPTER 1. INTRODUCTION

ences, comparable performance cannot be archived and they introduce new
approximate multiplier designs for FPGA architectures. [19]. While these
newly explored Approximate Multiplier configurations show mayor improve-
ments in area-efficiency, they show minimum to no improvement in terms of
power-efficiency. [19][32]. In conclusion, research aiming to improve power-
efficiency for approximate multipliers on the FPGA is sparse.

The objective of this thesis is to explore Approximate Multiplier models
on the FPGA and compare them on basis of power consumption and error
quality. Instead of putting the focus on reducing area, the internal architec-
ture of FPGA technology and their properties are investigated. The prop-
erties of this architecture are related to the resulting resource-area, power-
consumption and latency from implemented multiplier models found in liter-
ature, and a resulting approximate multiplier implementation for low power-
consumption is shown.

The main contributions this thesis are:

• A detailed design space exploration of 4-bit recursive multipliers on the
FPGA, using designs from Gillani et al.[18]

• An automated tool-flow, called ’Approxy’, is developed. This tool-
flow automates verification, synthesis, implementation and analysis for
Approximate Multiplier models on Xilinx FPGAs.

1.1 Outline

Chapter 2: Background will focus on the background of Approximate Com-
puting, FPGA technology and its resources. Furthermore, it will discuss sys-
tem requirements and error-resilient applications for approximate computing.
In Chapter 3: Methodology, a design workflow and experimental setup is in-
troduced that is used for comparing various Approximate Multiplier models.
After which in Chapter 4: Implementation of Multiplier Models, various mul-
tipliers models are discussed and implemented. The best performing models
are compared to other models found within literature in Chapter 5: Evalua-
tion. Finally, the thesis concludes in Chapter 6: Conclusion and future work
is suggested in Chapter 7: Future Work.

Chapter 2

Background

This Chapter will go through some general Approximate Computing tech-
niques in Section 2.1, after which an introduction to basic Digital Multipli-
cation is given in 2.2. From here on in Section 2.3, FPGA technology and
its Design Flow is explained. Section 2.4 ”System Requirements” explains
the relevant (FPGA) resources to quantify the performance of Approximate
Multiplication of the FPGA. In Section 2.5, a handful of fields where these
Approximate Multipliers could be applied to are investigated. Finally, in
Section 2.6 an introduction is given to the Go programming language that is
later used in the thesis to design CAD tooling.

2.1 Approximate Computing

Approximate Computing is an emerging field of research that aims to improve
energy-efficiency and/or performance of a digital system by introducing an
acceptable loss of quality to the overall result. Various methods and tech-
niques can be used to achieve this loss of quality, by for instance returning
an inaccurate result instead of the expected accurate one.

Generally, Approximate Computing techniques can be classified as appli-
cable on three layers, the Software/Program level, the Architectural level
and the Hardware/Circuit level. [1] In terms of software Approximate Com-
puting, these can range from techniques that reduce computational time
to techniques that reduce memory footprint. For instance, the technique
’loop-perforation’ reduces computational time by only executing a subset
of iterations within an iterative algorithm. This comes at a cost of gen-
eral accuracy. [2] A more classic computing technique that can be used for
approximate computing is called ’Memoization’, coined by Donald Michie

3

4 CHAPTER 2. BACKGROUND

in 1968. [3] Generally, this method is used by saving outputs of functions
for given inputs, to be reusable at a later time. This improves the com-
putational time of the function, at the cost of higher memory utilization.
However, ’Memoization’ can also be used to apply approximate computing.
If a function produces similar outputs for similar inputs, an earlier calculated
output could potentially be used for a range of inputs. [1]

Within Architectural Approximation, more recent research shows that neu-
ral networks can be used as a basis to replace approximable code segments
within systems to increase execution time performance by reducing accuracy.
Furthermore, Neural Networks itself ”can be architected and optimized in
various ways to maximize energy efficiency[4]”. Another technique that can
be either applied within both software and architecture is the reduction of
data precision. By reducing the precision of data within an application, ac-
curacy is reduced. Despite this, memory footprint and energy consumption
is reduced. Within architectural design on hardware level, this generally also
means lower footprint by for instance requiring smaller adder chains. [1]

Lastly, Approximation can be achieved on a hardware level by introduc-
ing faulty or inaccurate hardware. For instance by removing the carry chain
of an adder: the area, delay and power consumption can be reduced. This
means however that carry bits within addition get truncated, leading to a
non-accurate result. Similar results can be achieved within multiplication,
where within an NxN -multiplier, a collection of inputs result in non-accurate
results. Furthermore, approximate adders can be used within a multiplier to
sum up accurate partial products. Other commonly investigated operations
within approximate hardware is the Square(-Accumulate) operation [34] and
the Logarithmic Multiplier [26]. Both operations will be shortly discussed
in Section 2.5.1 and Section 2.5.3. This thesis however will only investigate
Approximate Computing within Digital Multiplication.

2.2 Digital Multiplication

Almost universally, when representing numbers within a digital system, a
radix-2 or binary system is chosen. The individual digits within such a
number system are called ’bits’. Our general number representation is called
the decimal system or radix-10. When for instance representing the decimal
integer number ’342’ both in a radix-10 and radix-2 system, we can use the

2.3. FPGA AND DESIGN FLOW 5

following equation:

Ab =
n−1∑︂
i=0

xib
i (2.1)

Here A is the number, xi the individual digits of this number, and b is the
base. By setting the base for both sides of the equation differently, e.g. 34210
and b = 2, the binary representation of the number 34210 can be found:

34210 = 3 ∗ 102 + 4 ∗ 101 + 2 ∗ 100 (2.2)

34210 = 1010101102 (2.3)

1010101102 = 1∗28+0∗27+1∗26+0∗25+1∗24+0∗23+1∗22+1∗21+0∗20 (2.4)

This number can thus be represented using 9 bits. Which means that to
multiply this integer, at least a 9-bit or 9x9 multiplier is needed. This sim-
ple binary integer representation is also called ’unsigned’, since it does not
represent negative numbers. Given that the rest of this thesis will only focus
on unsigned digital multipliers, going into detail in the various ways of how
negative number representations (sign-magnitude, ones’ complement, two’s
complement) work is out of scope.

When looking at pure combinational logic multipliers, unlike sequential mul-
tipliers that take multiple clock cycles for one calculation, one of the most
basic methods to multiply binary numbers is shown in Listing 2.1. Essen-
tially it is very similar to standard decimal ’long multiplication’, whereas
for multiplying two four-bit input values, sixteen partial products are cre-
ated. Each individual digit within the partial products can be realized with
an ”AND” gate, which means this multiplier can be realized with just AND-
gates and adders. However, there are various ways outside this multiplication
algorithm to design digital multiplications. The rest of this thesis will cover
more types, and apply approximations to it.

2.3 FPGA and Design Flow

One example of a technology where digital multiplication can be applied to
are FPGAs. This thesis will heavily focus on FPGA technology.

FPGAs are Field Programmable Gate Arrays. Effectively, these are inte-
grated circuits of inter-connectable ’logic blocks’ that can be programmed

6 CHAPTER 2. BACKGROUND

1 X3 X2 X1 X0
2 ∗ Y3 Y2 Y1 Y0
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−
4 X3Y0 X2Y0 X1Y0 X0Y0
5 + X3Y1 X2Y1 X1Y1 X0Y1
6 + X3Y2 X2Y2 X1Y2 X0Y2
7 + X3Y3 X2Y3 X1Y3 X0Y3
8 −−−
9 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

Listing 2.1: Binary long multiplication of two 4-bit numbers, showing all
partial products

after manufacturing of the chip. Commonly, these ICs are seen as an al-
ternative to ASICs (application-specific integrated circuits), a fine-coarse
integrated circuit technology, where gates are the smallest building block.
While ASICs generally perform better in terms of capacity, performance and
cost per chip, FPGAs time-to-market and upfront production costs are sub-
stantially lower. Furthermore, the reprogrammability of FPGA introduces
abilities as in-system programming or in-field updating of existing hardware,
that ASICs lack. [6]

2.3.1 VHDL

Similar as to designing ASICs, FPGAs are generally programmed using Hard-
ware Description Languages such as VHDL or Verilog. For instance, VHDL
describes a piece of hardware using an ’Entity’ and the ’Architecture’. A
basic example of a 2-bit VHDL multiplier is shown in Listing 2.2. Here, the
Entity describes the multiplier by assigning it two inputs (a, b) and an out-
put (prod), with datatype ’STD LOGIC VECTOR’. These are essentially
vectors or arrays of individual bits. The generic ’word size’ is used to de-
scribe the size of the multiplier by changing the width of the logic vectors.

In the Architecture, here named ’Behavioral’, the functionality of the multi-
plier is described. The outputs are converted to unsigned integers, multiplied
and the outcome is converted again to a logic vector. This vector is assigned
to the output vector ’prod’. The multiplication operator ’*’ is defined in the
’IEEE.NUMERIC STD’ library, and thus is not part of the default VHDL
specification. This way of describing the multiplier is very abstract . Besides
the in- and output ports, this piece of VHDL code does not describe any
structural aspects of the multiplier and leaves the ’synthesizing’ tool free to
implement the multiplication operator in any way possible. Section 4.2 will

2.3. FPGA AND DESIGN FLOW 7

look into this way of describing multipliers in more detail. VHDL is not
limited to only this way of describing multipliers. It is perfectly possible to
describe a multiplier like in Section 2.2 consisting of AND-gates and adders
instead.

1 l i b r a r y IEEE ;
2 use IEEE . STD LOGIC 1164 .ALL;
3 use i e e e . numer ic std . a l l ;
4
5 en t i t y mult i s
6 g en e r i c (word s i z e : i n t e g e r := 2 ;
7 Port (
8 a : in STD LOGIC VECTOR (word s ize −1 downto 0) ;
9 b : in STD LOGIC VECTOR (word s ize −1 downto 0) ;
10 prod : out STD LOGIC VECTOR (word s i z e ∗ 2 − 1 downto 0)) ;
11 end mult ;
12
13 a r c h i t e c t u r e Behav iora l o f mult i s
14 begin
15 prod <= STD LOGIC VECTOR(unsigned (a) ∗ unsigned (b)) ;
16 end Behaviora l ;

Listing 2.2: Accurate Multiplier VHDL

2.3.2 Design Flow

After designing the digital circuit, generally a commonly used design flow
is adopted before it is implemented on the actual FPGA hardware. Gen-
erally after designing a digital circuit, it is necessary to verify the result.
In VHDL this is done my making testbenches. This testbench is generally
a non-implementable VHDL file that ’connects’ to the VHDL entity that
is about to be verified. By supplying the Entity with known input/output
combinations, the architecture can be tested.

After the design is verified, the synthesis tool needs to convert the HDL into
logic. For ASICs this means gate-level representation, however FPGAs are
not such a fine-grained architecture. Combinational logic is mostly limited
to be applied to Lookup-table structures or LUTs with defined inputs and
outputs. Depending on the FPGA manufacturer or FPGA series, extra func-
tionality can be added such as internal MUX structures, fast chain-adders
or DSP slices. Sequential logic is implemented using flip-flops. During the
implementation stage, or also called Place and Route (P+R), the synthesis
design is implemented using the logic primitives available on the FPGA and
paths between them are routed. After the implementation is completed, a

8 CHAPTER 2. BACKGROUND

bitstream can be generated to program the FPGA hardware. After each step
within this design flow, is possible to validate functionality, power-estimation,
area-estimation and timing of the design. However, the reliability of of these
validations is dependent on the step in the design process. Early estimations
for power-consumption do not have the necessary information available to
make an accurate guess, and thus are only relevant very early in the design
process.

An example of such an FPGA Design Flow is seen in Figure 2.1. Here
external tooling is presented in the form of debugging tools, VHDL coverage
and MATLAB/Simulink models. The design flow presented in this thesis,
and further explained in Section 3.2, is based upon this flow but other ex-
ternal tooling is used. The tooling ”Approxy” goes through the same steps
towards implementation for the chip, and allows simulation at all steps of
the process. However in this thesis, post-synthesis simulation is not being
done. Behavioral Simulation is applied to early detect any mismatches be-
tween the VHDL and the multiplier model, without having to wait on the
time-intensive steps of Synthesis and P+R. Post-Implementation Simulation
is used for the most accurate simulation of power consumption. Here also
timing values and utilization will be analyzed. These requirements will be
discussed in the following section.

2.3. FPGA AND DESIGN FLOW 9

Figure 2.1: Default Xilinx Design Flow [7]

10 CHAPTER 2. BACKGROUND

2.4 System Requirements

In this Section, the System Requirements are discussed that are applicable
to Approximate Computing on the FPGA.

2.4.1 Slices and Chip-area

System requirements in terms of Chip-area for FPGAs are often expressed in
terms of Slices, LUTs, CARRY4 adders and Flip-flops. These are essentially
the programmable buildings blocks of the FPGA, on which the designed
logic gets implemented. The programmable logic of a Xilinx FPGA consists
of ’Configurable Logic Blocks’ or CLB for short. The Xilinx CLBs consist of
two identical ’Slices’.

In Figure 2.2a, a simplified overview of the Xilinx 7-Series Slice is shown.
One slice is an interconnected collection of four look-up tables, three mul-
tiplexers, one CARRY4 adder and eight flip-flops. Figure 2.2b shows the
arrangement of the slices within one CLB. Inputs and outputs are generally
routed via the Switch Matrix. One exception being the CARRY4 adders
that can be chained via their CIN/COUT pins. The internal connections
between elements within the slices, and how the slices connect to each other
constraint the design possibilities. For instance, the multiplexers do not ac-
cept inputs from the Switch Matrix, given they are directly connected to
the LUT outputs. Two of the multiplexers are called ’MUX F7’, these are
directly connected to two LUT outputs. The other multiplexer, ’MUX F8’,
connects directly to the output of the two ’F7’ multiplexers. LUTs within
these FPGAs have 6 inputs and 2 outputs. A LUT like this can implement a
6-input logic function. Combining these with the internal multiplexers, logic
functions up to 27-bit wide can be achieved within a single slice. More in-
detail limitations of the LUTs used within the Xilinx 7-Series, the LUT6 2, is
shown in Section 4.1. The CARRY4 adders, flip-flops and the LUTs accept
inputs from the Switch Matrix. It has to be noted that internal latency is
lower than data that flows over the Switch Matrix, i.e. a flip-flop connected
to a LUT within its own slice experiences less delay than a flip-flop input
connected to a LUT from another slice. Hence, the slices have 2:1 ratio of
flip-flops to LUT.

The number of LUTs, FFs and Slices are physically limited. Improving a
design in terms of area can make a substantial difference. On FPGAs that
share multiple designs, a reduction in area can make the difference between
a design that fits or does not. Reducing the area of the design in a pre-

2.4. SYSTEM REQUIREMENTS 11

(a) Basic Overview Xilinx 7-series slice (b) Arrangement slices within the CLB[8]

Figure 2.2: Overview Xilinx 7-series FPGA

production stage could also mean that a tinier FPGA package can be cho-
sen, resulting in a less costly bill of materials. But FPGA utilization is also
a factor in the overall power consumption of the design.

While FPGA area might not directly correlate to lower power consumption,
bigger designs tend to consume more power than smaller ones. To fairly
compare different approximate multipliers and see what factors affect power
consumption, FPGA area should be investigated as well.

2.4.2 Latency

Another factor that should be considered is latency. Latency is caused by a
combination of factors. LUTs, for instance, cannot instantly produce the cor-
rect result when the inputs change. Although FPGAs are digital, the internal
hardware still has analogue behavior. This time before these combinational
logic elements settle on the correct output, is called the logic delay. The other
factor is routing delay. In Section 2.4.1 it was already established that the
Switch Matrix within the FPGA introduces delay. Often this is minimized
by correctly placing and routing the design, so paths are generally small, but
nevertheless this is a contributing factor to the experienced latency of the
design. Why this delay matters can be seen in Figure 2.3. Here a constant
clock signal is seen, but the input signal at D changes within the period.
The flip-flop ’holds’ the signal D at the rising edge of the clock cycle and
outputs this to Q. Any changes at D within a clock cycle, for instance due

12 CHAPTER 2. BACKGROUND

to combinational logic settling on new input are simply ignored. If the total
delay exceeds the clock cycle, outputs will be erroneous since the ’holding’
happens during the settling of the logic and the design should simply operate
at a lower clock speed.

Figure 2.3: Example of Flip-flop timing [9]

Figure 2.4: Example of Register-to-Register path

A more concrete example can be seen in Figure 2.4, showing a Register-
to-Register path. Here, the first flip-flop launches the data on the first
rising-edge. Data transfers through the logic, and gets captured on the next
rising-edge in the last flip-flop. The time period till the logic has settled, and
thus is ’ready’ to be captured by the next flip-flop is called the ’Data Arrival
Time’.

Definition 1 Data Arrival Time (setup) = Launch Edge Time + Source
Clock Path Delay + Data-path Delay [10]

The requirement within the system is dependent on when the second flip-
flop captures the data from the combinational logic. This is called the ’Data
Required Time’, and is besides the clock speed dependent on any delays
within the clock path, uncertainty and physical limitations of the flip-flop.

2.4. SYSTEM REQUIREMENTS 13

Definition 2 Data Required Time (Setup) = Capture Edge Time +
Destination Clock Path delay - Clock Uncertainty - Setup Time [10]

The difference between these two time values is called the ’slack’. Within
latency analysis, this is an often used value. Essentially, this is the ’leeway’
or ’clearance’ of a digital system.

Definition 3 Setup Slack = Data Required Time - Data Arrival Time [10]

When Vivado implements a design, the slack of each path can be calculated.
The ’Worst Negative Slack’ (WNS) corresponds to the critical path of the
design. If every path within a digital system produces a positive slack, the
timing holds. A negative slack or WNS directly results in a setup violation.
Design alterations or simply a slower clock speed are necessary for the correct
functionality of the design. However, if the WNS is positive this means that
the ’Data Required Time’ is sufficient for the Arrival Time for every internal
path. This means there is leeway within the constrained design to improve
clock speeds.

Definition 4 Worst Negative Slack (WNS) ”This value corresponds
to the worst slack of all the timing paths for max delay analysis. It can be
positive or negative.” [10]

tmin = tconstr −WNS (2.5)

Fmax = (tmin)
−1 (2.6)

Given that the functions of determining ’WNS’ require a set clock frequency,
first a ’dummy’ frequency has to be set: tconstr. For instance, a design is
synthesized using clock constraints. This clock constraint is set at 100MHz
(tconstr = 10ns). After synthesis and implementation, a WNS of +2ns in
seen, which is the leeway of the design. To reach a WNS of 0ns, tmin = 8ns
or Fmax = 125MHz can be used for this design without causing a setup
violation. This is the maximum frequency that still holds for this design.

Combinational Logic

Within purely combinational logic, it is difficult to properly investigate la-
tency and relate this value to something like a maximum frequency, given
any required data like ’Clock Path delays’ or ’Setup times’ are simply non-
existent. Vivado often interprets combinational logic, as logic being directly
connected to the input/output pins of the FPGA package. For small combi-
national logic designs this works, the in/out ports in the VHDL Entity are
simply connected to an internal buffer which is physically connected to one

14 CHAPTER 2. BACKGROUND

of the package pins. For bigger designs, this quickly becomes a problem since
the pins are physically limited. Out-of-Context (OOC) synthesis[10] removes
the connection to the input/output buffers, while keeping the entity ports
labelled as so. This means however another limitation to the accuracy of
the latency analysis. Generally, designs are placed closely to input/output
buffers to reduce path delays. This is not the case for OOC designs, given
this constraint does not exist. Another design choice to work around the
limitation of limited pins, is to design sequential logic around these bigger
combinational designs. For any actual design scenarios, this is most likely the
correct choice. However, for analysis of pure combinational logic on FPGA
technology this would add a design-specific factor that will influence latency
statistics, area usage and power consumption.

For combinational logic, Vivado provides functionality in terms of ’timing
constraints’, to be able to model the timing properties. Within the timing
constraints, the designer can set up a virtual clock speed. By constrain-
ing the input- and output-delay relating to this virtual clock, the designer
can simply replace the non-existent timing data from the flip-flops with a
specified value. By creating a model that has ideal flip-flops, no clock-path
delays or clock uncertainty, these delays can be set to 0ns. This results in
the following model:

Model 1 Data Arrival Time (setup) = Data-path Delay

Model 2 Data Required Time (Setup) = Capture Edge Time (Virtual
Clock)

Model 3 Setup Slack = Capture Edge Time (Virtual Clock) - Data-path
Delay

Model 4 WNS = Capture Edge Time (Virtual Clock) - Worst Data-path
Delay

tmin = tconstr −WNS = tconstr − (tconstr − tdelay) (2.7)

Fmax = (tmin)
−1 = (tdelay)

−1 (2.8)

Model 5 Combinational Logic Model: Fmax = (tdelay)
−1

This model creates a latency-model for combinational logic that is only de-
pendent on internal data-path delays of the design, specifically the delay of

2.4. SYSTEM REQUIREMENTS 15

the ’critical path’. The path with the highest logic delay will determine the
maximum achievable frequency. While this model will not show expected
maximum frequencies achievable for combinational logic designs used within
other bigger sequential designs, it does create a model where latency can
be compared between different configurations of combinational logic, such
as different approximate multiplier designs. During analysis within Vivado,
it’s not necessary to constraint the virtual clock, or set up the port de-
lays. The function report timing −nworst 1 −path type end will report the input-
output path delay of the critical path.

2.4.3 Power Consumption

To be able to understand FPGA Power Consumption, an investigation to
the actual hardware is needed. FPGAs, just like most digital technology, is
designed on basis of CMOS. CMOS power-consumption is well understood
and can be described using the following general formula:

Pavg = Pswitching + Pshort−circuit + Pleakage[11] (2.9)

Pavg = α0→1CLV
2
ddfclk + ISCVdd + IleakVdd[11] (2.10)

An example of a CMOS inverter, consisting of a PMOS and NMOS transistor
can be seen in Figure 2.5a. Out of these equations, a Static and Dynamic
contribution to the average power consumption can be seen. The Static
power consumption is due to short-circuit current that flows from Vdd to
ground at moments where both the PMOS and NMOS transistors within
a CMOS circuit are active. Leakage current is due to sub-threshold effects
which is a result of design consideration during fabrication of the chip. In
Equation 2.11, the dynamic or switching power consumption for a CMOS
gate is shown.

Pswitch = α0→1CLV
2
ddfclk (2.11)

This power consumption is dependent on the clock frequency fclk, voltage
Vdd, load capacitance CL and α0→1 which is ”the average number of times
the node makes a power consuming transition in one clock period.” [11] The
dynamic power happens due to the capacitive load of the CMOS circuit be-
ing charged when a transition from 0 to Vdd happens. If this happens every
clock cycle, the switching power is simply CLV

2
ddfclk, however it is fairly un-

likely within a circuit that every node makes this transition every cycle. This
transition can be modelled by using the logic function that the CMOS gate
performs. Given a known distribution of inputs connected to an AND-gate,

16 CHAPTER 2. BACKGROUND

for example, the probability that a 0 → 1 transition happens can be calcu-
lated. The possible inputs are (a, b) = (00), (01), (10), (11). Using a uniform
distribution, these inputs are equally likely. For an AND-gate, the chance
that the output is 0 is 3

4
making the probability α0→1 = p(0)p(1) = 3

4
1
4
= 3

16
.

When using a non-uniform distribution for the input-values, which is com-
mon for various applications, this probability does not hold. [11]

FPGAs however, do not have the flexibility that CMOS designs such as
ASICs hold and have a predetermined structure. Most FPGAs are SRAM-
based, seen in Figure 2.5b. One Static Random-Access Memory structure
consisting of 6 MOSFETs can hold one bit, and are generally in FPGA used
within the LUT as seen in Figure 2.6. The Figure shows a 4-bit LUT with
a single output, any 4-bit input logic function can be executed by this LUT.
When programming the FPGA, a bit-mask gets written to the SRAM cir-
cuits within the LUT, whereas the inputs of the FPGA are connected to
the various MUX structures to select the desired output during operation.
For instance, the input of ”0000”, produces the result of the top SRAM
structure within the Figure. Every combination of input bits connects to
a single SRAM source. Given that the FPGA has many of these general
purpose structures, the dynamic power consumption for a single FPGA can
be described using a different formula:

Pswitch = V 2
ddfclk

∑︂
CiUiSi[12] (2.12)

Here the factor α0→1CL is replaced by a summation over all FPGA resources
consisting of the effective capacitance Ci, the utilization for each resource Ui

and the switching activity Si. [12] When estimating power consumption for
an FPGA design, it is possible to do a post-placement analysis to determine
this switching behavior. By writing a test bench that supplies the design
with accurate real-life data with the correct distribution, the tooling can es-
timate power consumption for production. Together with the proprietary
power model used by Xilinx Vivado, the power consumption of the FPGA
can be estimated.

2.4.4 Error Metrics

To be able to signify the quality of an error-prone system, various error met-
rics have been developed within literature. The field of approximate com-
puter therefore also uses a set of error metrics to be able to compare designs.

2.4. SYSTEM REQUIREMENTS 17

(a) Basic CMOS Inverter[13] (b) SRAM Circuit Diagram[14]

Figure 2.5: Circuit Diagrams of CMOS and SRAM

These metrics can be application-specific such as Peak Signal-to-Noise Ra-
tios, where approximate computing modules are compared within a system,
such as image compression. Alternatively, various metrics exist within liter-
ature that depend only on the digital design. [1]

In the article by Han et al. [15], about various Approximate Computing
paradigms, they investigate in Chapter 4, various error metrics used in lit-
erature. The Error Rate shows the frequency of incorrect outputs and the
Error Magnitude shows the maximum magnitude of the erroneous outputs
within an approximate design. One quite simple approximate multiplier, that
will also be investigated in this thesis, is M1[16]. This multiplier is like an
accurate 2-bit multiplier with one modification: 3 ∗ 3 → 7. Given there are
22n = 16 possible outcomes, the Error Rate is 1/16, the Error Magnitude is 2.

Another way to define these errors is the Error Distance, which is simply
the distance between the correct output and the inexact output: |yi − xi|.
For M1, the Error Distance of 3 ∗ 3 → 7 is simply 2. By taking the mean
over this distance for various pairs of inputs and outputs, the Mean Error
Distance or Mean Absolute Error metric is formed:

MAE =

∑︁
∀i |yi − xi|

N
(2.13)

This metric is useful to define the accuracy of an approximate multiplier with-
out having to define every individual inaccuracy. Often within literature[17],
the Mean Absolute Error is generalized to a form where the mean is taken
over all input/output pairs, and therefore the MAE over a uniform distribu-

18 CHAPTER 2. BACKGROUND

Figure 2.6: Circuit Diagram of SRAM-based 4-bit LUT

2.5. APPLICATIONS FOR APPROXIMATE MULTIPLIERS 19

tion:

MAEuni =

∑︁
∀i |yi − xi|
22n

(2.14)

Where n is the width of the multipliers operands. For example, a 4-bit mul-
tiplier has 28 possible outputs. This generalization is however not necessary,
and any distribution of input/output pairs can be chosen. Various ways ex-
ist to normalize this mean, such as normalizing by using the mean of the
accurate values, or over the range. This is the Normalized Mean Absolute
Error that is used in this thesis, and has as a feature that the normaliza-
tion removes the factor of the multipliers’ width from the metric, making
comparisons of approximate multipliers of different sizes possible:

NMAE =
MAE

22n
(2.15)

Another used metric by various papers such as the paper by Ullah et al. in-
vestigating an FPGA library of multipliers[19], is the Average Relative Error
or also named Mean Relative Error [17]:

ARE =
1

N

N∑︂
i=1

|yi − xi

xi

| (2.16)

This metric is essentially the same as the MAE normalized over the mean of
the accurate values. Another used metric is the Mean Squared Error. Given
that it squares the Error Distance, bigger but incidental errors within an
approximate multiplier are heavier punished.

MSE =
1

N

N∑︂
i=1

(yi − xi)
2 (2.17)

2.5 Applications for Approximate Multipli-

ers

In Section 2.1, a short overview was given to the various Approximate Com-
puting techniques which were generalized as aiming ”to improve energy-
efficiency and/or performance of a digital system by introducing a loss of
quality to the overall result”. In the last section, various metrics have been
discussed to signify this loss of quality in terms of accuracy. Approximate
Computing cannot be applied to every generic application; the loss of quality
needs to be acceptable within the system. This section will discuss various
applications within literature where this intrinsic imprecision of approximate
computing can create acceptable results, in exchange for lower power con-
sumption or FPGA resource use.

20 CHAPTER 2. BACKGROUND

2.5.1 Radio Astronomy

Radio Astronomy is a field that is dominated by power-intensive digital sys-
tems, and input signals can be regarded as Gaussian noise, making it an
attractive field for the application of Approximate Computing. For instance,
the power consumption of a modern computer processing system utilized by
the SKA1-MID is 7.2MW [20]. In the PhD Thesis from Gillani[21], a case
study is presented for the Radio Astronomy Calibration Algorithm ’StEF-
Cal’, an iterative algorithm that estimates the individual gains of the antenna
array. This calibration algorithm makes use of the Least-Squares (LS) algo-
rithm. Here, an accelerator is presented where an Accurate and Approximate
Core is used, where the algorithm uses the Approximate Core for the initial
iterations.

One common used structure within general signal processing is the Multiply-
Accumulate (MAC) function as described in the next equation:

z(t) = a(t)b(t) + z(t− 1) (2.18)

MAC operations are commonly used within applications that use mathemat-
ical functions like the Dot Product, Matrix Multiplication or Convolutions.
For floating point numbers, often devices such as CPUs or GPUs have their
own dedicated solution. The Least-Squares algorithm makes usage of such
MAC operations. In Figure 2.7, part of the calibration signal-flow is shown,
where the yellow square represents the MAC operation. Next to the MAC op-

Figure 2.7: Signal Flow Graph of Least Squares Operation

eration, the Least-square algorithm also makes use of the Square-Accumulate
(SAC) operation. While the SAC operation could potentially also be imple-
mented using general multipliers, more power-efficient implementations that
purely calculate the square are available. Radio Astronomy signals are rep-
resented by complex numbers, expanding general multiplication to:

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc) (2.19)

2.5. APPLICATIONS FOR APPROXIMATE MULTIPLIERS 21

This means that the MAC operation for complex numbers requires four mul-
tipliers. For comparison the square operation only requires two square func-
tions, making the Least Square operation dominated by the MAC operation:

(a+ ib)(a− ib) = a2 + iab− iab+ b2 = a2 + b2 (2.20)

In the thesis, an LS accelerator is proposed where these four multipliers and
two square operation are approximated. For the LS approximate core they
claim a power reduction of 41% resulting in an efficiency gain of 23.4% of
the whole LS accelerator, while reaching satisfactory results. [21]

2.5.2 Image Processing

Another field where Approximate Computing can be used, due to its inher-
ent error-tolerance, is Image Processing. In the paper by Ullah et al. [19],
demonstrating a library of approximate FPGA multipliers, a Gaussian noise
removal filter is applied to an image to analyze the effect of the approxi-
mate multipliers. Here the PSNR (Peak Signal-to-Noise Ratio) is used, an
application-specific error metric. Similarly, in a paper by Niemann et al. [22]
a Gaussian smoothing filter is applied. Both papers report favorable results,
but unfortunately do not report on the overall FPGA filter architecture and
simulate the filtering operation externally using the behavioral model of the
multipliers.

However, to explain how approximate multipliers can help increase power
efficiency for applying filters, we can look at the convolution integral and its
discrete version:

(f ∗ g)(t) =
∫︂ ∞

−∞
f(τ)g(t− τ)dτ (2.21)

(f ∗ g)[n] =
∞∑︂

m=−∞

f [m]g[n−m] (2.22)

This integral can be extended to a two-dimensional version, suitable for the
application of filter kernels to 2D images:

r(i, j) =
∞∑︂

i=−∞

∞∑︂
j=−∞

I(x− i, y − i)H(i, j) (2.23)

Where r(i, j) is the output image, I(x, y) is the original image and H(i, j)
is the filter kernel. From this 2D Convolution operation, it can be quickly
seen that these types of image filtering applications make heavy usage of

22 CHAPTER 2. BACKGROUND

multipliers and adders.

In the journal article ”Implementation of a Fixed-Point 2D Gaussian Filter
for Image Processing based on FPGA” by Cabello et al. a possible imple-
mentation is shown, where a [512 x 512] image is convolved with an [3 x 3]
kernel, shown in Figure 2.8. This [512 x 512] image is extracted into a one
dimensional vector, after which each element is multiplied with kernel image
w using a sliding window. The circuit makes heavy usage of MAC operations.

Figure 2.8: ”Extraction of a [3 x 3] sub-image and MAC operations”[23]

2.5.3 Neural Networks

The last field this Section will be looking into is Artificial Intelligence. In a
journal paper by Torres-Huitzil et al. [24] a study is done to review the Er-
ror, Fault and Failure tolerance of Artificial Neural Networks (ANN), where
they claim that while ANNs have no inherent Fault Tolerance unless properly
designed, the Error Resilience of Neural Networks can be used to implement
Approximate Computing: ”The tolerance to approximation, for instance,
can be leveraged for substantial performance and energy gains through the
design of custom low-precision neural accelerators that operate on sensory
input streams[24]”.

At its basis, a Neural Network is a designed network of elementary com-
puting units called ’Neurons’. A Figure of such a single ’Neuron’ can be seen
in Figure 2.9, which implements the following function:

Oi = Φ(
∑︂
i

wixi + bi) (2.24)

2.6. GO PROGRAMMING LANGUAGE 23

Where xi are the inputs, wi the weights, bi the bias, and Φ is an Activa-
tion Function, such as the Sigmoid function. Using a learning algorithm, the
weights and biases of such a network can be calculated. A state-of-the-art
Convolutional Neural Network (CNN) is highly complex, and could be using
millions of Multiply-Accumulate operations to process. [25]

Figure 2.9: Artificial Neural Network(ANN) Neuron

In a conference paper byWang et al.[25] an ”Approximate Multiply-Accumulate
Array” architecture is presented to implement a Convolutional Neural Net-
work (CNN) on an FPGA. In this design, they replace the MAC units with
their own ”Approximate Multiply-Accumulators” based upon a logarithmic
multiplier algorithm by J. Mitchell [26] which introduces error. The multi-
plier is iterative, meaning the accuracy of the multiplier can be increased by
increasing the amount of iterative steps taken. For a two-iteration imple-
mentation, they claim an improvement of Fmax in Post-Synthesis Analysis
of 10.7% compared to using exact multipliers while having a loss of 1.6% in
terms of accuracy for 8-bit, and 0.001% for 12-bit. [25]

2.6 Go Programming Language

Part of the tooling used in this thesis, described in Section 3.2, is written in
the programming language Go. In this section, some key elements of the lan-
guage Go are explained to get an understanding of the framework ’Approxy’.
Go is a statically typed, compiled language influenced by C but with an em-
phasis on simplicity. A distinct difference between classic Object-Oriented
Programming languages such as C++/Java, and Go can be seen in the way
inheritance is defined. While C++/Java define inheritance by classes that
can ’inherit’ the methods and thus the functionality of other classes, Go does
not use classes or this form of inheritance.

24 CHAPTER 2. BACKGROUND

In Go, methods are added to types. A similar structure like a Class would
then be implemented in Go by using a ’Struct’. These Structs look very
similar to a C struct. An example of such a Struct and a method is seen
in Listing 2.3. When defining such a Struct, only the fields are explicitly
defined when declaring the type. Methods can afterwards be added to the
Struct. Inheritance is applied to these Structs by using Interfaces. These
interfaces describe a collection of methods. Every Struct that implements
these collections of methods implicitly inferences this Interface. An example
is shown in Listing 2.4.

When looking at both the Struct ’Recursive4’ in Listing 2.3 and the In-
terface ’Multiplier’ in Listing 2.4: If ’Recursive4’ would next to the Overflow
method also implement ReturnVal and MeanAbsoluteError, it would inherit
the ’Multiplier’ type interface implicitly. This would mean that for any func-
tion that requests the ’Multiplier’ type as input, ’Recursive4’ can be used as
well.

Another clear difference between Go and a lot of other programming lan-
guages is it sizeable standard library. ’Approxy’ is only using this standard
library, and does not import any online libraries from third-parties. For ’Ap-
proxy’ to be able to generate VHDL, it uses the templating engine provided
by the standard library.

The templating package from Go is often used for serving dynamic HTML
within web-services by importing the ’html/template’ library, but Go also
provides a ’text/template’ library that can be used for VHDL and TCL files.
This library provides a templating system with its own functions and syntax
to generate files. An Example is shown in Listing 2.5. This VHDL template
shows a simple VHDL multiplier using the IEEE NUMERIC STD Library.
All the templating syntax is encapsulated using the ”{}” accolades or curly
brackets. Given the simplicity of this multiplier, the template only allows
the EntityName and the BitSize to be modified. These variable names are
preceded by a ’dot’ to denote a field. When a Go Struct is passed to the tem-
plating engine, the value of these fields are filled into the template. Further-
more, the templating system also provides methods to apply simple boolean
logic within if/else structures. It is also possible to range over Go arrays and
thus generate blocks of VHDL code over the length of the array. Calls to Go
functions can also be made. [27]

2.6. GO PROGRAMMING LANGUAGE 25

1 type Recurs ive4 s t r u c t {
2 EntityName s t r i n g
3 B i tS i z e u int // De fau l t to 4
4 OutputSize u int // De fau l t to 8
5 LUTArray [4] VHDLEntityMultiplier // S i z e o f 4
6 VHDLFile s t r i n g
7 Tes tF i l e s t r i n g
8 Overf lowError bool
9 }
10
11 func (r4 ∗Recurs ive4) Overflow () bool {
12 return r4 . Overf lowError
13 }

Listing 2.3: Recursive4 Struct, and Overflow() method

1 type Mu l t i p l i e r i n t e r f a c e {
2 ReturnVal (uint , u int) u int
3 Overflow () bool
4 MeanAbsoluteError () f l o a t 6 4
5 }

Listing 2.4: Multiplier Interface

1 l i b r a r y IEEE ;
2 use IEEE . STD LOGIC 1164 .ALL;
3 use i e e e . numer ic std . a l l ;
4
5 en t i t y {{ . EntityName}} i s
6 g en e r i c (word s i z e : i n t e g e r :={{ . B i tS i z e }}) ;
7 Port (
8 a : in STD LOGIC VECTOR (word s ize −1 downto 0) ;
9 b : in STD LOGIC VECTOR (word s ize −1 downto 0) ;
10 prod : out STD LOGIC VECTOR (word s i z e ∗ 2 − 1 downto 0)) ;
11 end {{ . EntityName }} ;
12
13 a r c h i t e c t u r e Behav iora l o f {{ . EntityName}} i s
14 begin
15 prod <= STD LOGIC VECTOR(unsigned (a) ∗ unsigned (b)) ;
16 end Behaviora l ;

Listing 2.5: Accurate Multiplier Template

Chapter 3

Methodology

In this chapter, the method of comparing FPGA multiplier models is dis-
cussed. In Section 3.1, the current state of affairs of available automated
computer tooling for Xilinx FPGAs is discussed. Furthermore, a couple arti-
cles are discussed that developed their own tooling to perform analysis on a
sizeable design space. In Section 3.2 an overview to the Approxy framework
is given. Section 3.3 till Section 3.6, explain the general Approxy multiplier
model, how a model is verified, implemented and analyzed. Finally, in Sec-
tion 3.7, the full workflow to analyze a recursive multiplier is shown in terms
of code and analysis data.

3.1 Computer-Aided Design

Chapter 4 explains various multiplier models to investigate on the FPGA.
While some are fairly simple, and require one generic VHDL file, some de-
signs greatly expand the design-space to a point where a manual workflow is
not feasible anymore. Software such as Vivado has the ability to automate
this workflow using TCL. This scripting language, when executed by Vivado,
has the possibility to automatize steps described in Section 2.3 in a way that
the FPGA workflow can be integrated into the developers’ environment. Fur-
thermore, it is possible to extract information such as used FPGA resources,
timing and power consumption. Next to this ’batch’ option, Vivado also has
an interactive command-line interface where the designer can execute these
TCL commands, without the need of a GUI.

In projects where the scope expands beyond a couple of Vivado project files
however, it might be interesting to design a completely automated workflow.
In a paper by Ullah et al.[19], a design-space of 545 ’8x8’ multipliers are

26

3.2. APPROXY 27

explored using their own automated tool flow which they have made publicly
available. Unfortunately it has to be noted that the publicly available tool-
ing differs from the tool flow described in their paper. In their paper they
describe using MATLAB for their behavioral modeling, in the online tooling
this behavioral module is a generic script in Python that uses supplied text
files describing all the possible input/output combinations of the individual
multiplier. The hardware is described in VHDL, but these files are generated
using a Python script utilizing a collection of for-loops and string manipu-
lation. Neither do they supply the tooling that is used for creating the 545
multipliers, only their final designs are supplied. Applying this tooling to
other models described in the rest of this thesis would require an extensive
overhaul of the code and the generation of new text files describing the mul-
tipliers. Furthermore the Synthesis and P+R is not automated.

In the article ”MACISH: Designing Approximate MAC Accelerators With
Internal-Self-Healing” by Gillani et al.[18], a similar setup is introduced where
ASIC synthesis is done in Synopsis on basis of VHDL Models, however verifi-
cation is implemented between the Questasim simulation and the MATLAB
behavioral models.

Due to the lack of available generic open-source tooling that help with the
design-exploration of multiplier models, tooling has been developed, aimed
at designing FPGA multipliers, which generates VHDL models, combines
the behavioral modelling and FPGA workflow into a single workflow and has
integrated verification. The previous two pointed out articles have been an
inspiration to the general workflow. This tooling is explained in Section 3.2.

3.2 Approxy

This section and the following discuss the framework ’Approxy’ written
in Go that has been developed for this thesis to further investigate ap-
proximate multipliers on the FPGA. The project can be downloaded at
https://github.com/RickvanLoo/Approxy.
The following features are currently implemented:

• Using models written in Go:

– Pre-synthesis behavioral analysis of multipliers models

– Generation of VHDL Multipliers

– Verification of VHDL Files

https://github.com/RickvanLoo/Approxy

28 CHAPTER 3. METHODOLOGY

• Automated Synthesis/P+R using Xilinx Vivado

• Automated Analysis Post-Placement+Route

Given the various existing models and parameters going into Approximate
Multiplier design, Approxy has been designed to develop an automated ap-
proach to compare these various implementations in VHDL in a controlled
and identical setup.

Using a collection of created libraries and interfaces, Approxy provides an
approach for the automated design and analysis of approximate multipliers
on Xilinx FPGAs. In Figure 3.1, an overview of the Approxy design flow is
seen. Every multiplier requires an user-provided multiplier Approxy Model
and VHDL template, shown with a light-blue background in the Design Flow.
All other steps of the design flow has been taken in account for by the pro-
vided tooling within Approxy, ’xsim’ and Xilinx Vivado.

Approxy has been written in Go. While this programming language is fairly
new compared to programming languages most FPGA engineers could be
familiar with, its syntax should be familiar to people having worked with
languages such as C(++) or Java. Go is a statically typed language, but
compiling times are negligibly short. This means that many programming
errors, relating to mismatched types, while using ’Approxy’ can already be
caught quickly before runtime. Another attractive feature is its extensible
standard library. Approxy only builds on its own libraries and the Go stan-
dard library, making it independent of quickly-changing third-party libraries.
The only existing main Go version, v1.x, guarantees library compatibility, en-
suring the functionality of this software in the future. The main reason for
writing it in Go, has been the ’text/template’ library. Syntax for this li-
brary is encapsulated using the ”{}” accolades, which VHDL does not use
itself, separating the VHDL syntax from the syntax used for Approxy VHDL
generation. This means that during runtime, this library can be used to
generate VHDL files on basis of Go functions and data structures.The Go
compiler is available for many different operating systems and computing
architectures, making Vivado itself the limiting factor on where this appli-
cation can be used. A disadvantage to the language is its class inheritance
system in the form of ”Interfaces”. While still being an ”Object-Oriented
Programming Language”, Go’s inheritance system is nothing like traditional
OOP languages. This might make it confusing for programmers newly using
Go. This system has been explained in Section 2.6.

3.3. APPROXY MODEL 29

Figure 3.1: Approxy Design Flow

The next paragraphs will discuss the various implemented stages of the Ap-
proxy workflow.

3.3 Approxy Model

As described in the previous Section, the Approxy Design Flow requires two
user-provided inputs. The Approxy Model is a Go file, that has a main
datatype or ’struct’ containing information for generation of the VHDL Mul-
tiplier. It has general methods that for instance return error metrics, a
function that models the multiplication or provided functions that generate
VHDL files. These will be later in detail described. Together with this model
a VHDL Template has to be supplied. This is a non-synthesizable VHDL
file describing either the behavior or architecture of the digital multiplier but
provides data-inputs within the template using the ’text/template’ syntax.
These can be ’filled in’ by the Approxy model, generating a synthesizable
design using data-driven VHDL templates. There is no real limit in how a
Approxy model is described. It is possible for instance to create a purely
architectural Approxy model that incorporates other Approxy models to get
a final multiplier result. One exception to these earlier described Approxy
models that use VHDL templates, is the Approxy model called ’External’.

30 CHAPTER 3. METHODOLOGY

This model does not use templates, but instead uses synthesizable VHDL
files as a basis to create a behavioral model. More about this is explained in
Section 5.1.

The general ’Approxy’ multiplier model is based around the idea that in
its most simple form, the multiplier is nothing more than a combinational
entity that performs the function c = a ∗ b, whereas the bit-width of the
output is twice as large as the input. A simple extension which expands this
model to be usable for approximate computing is the deterministic function:
c = f(a, b). The usage of this model results in a general VHDL Entity that
is usable for automated verification and integration, shown in Listing 3.1.

1 en t i t y {{ . EntityName}} i s
2 g en e r i c (word s i z e : i n t e g e r :={{ . B i tS i z e }}) ;
3 Port (
4 A : in STD LOGIC VECTOR (word s ize −1 downto 0) ;
5 B : in STD LOGIC VECTOR (word s ize −1 downto 0) ;
6 prod : out STD LOGIC VECTOR (word s i z e ∗ 2 − 1 downto 0)) ;
7 end {{ . EntityName }} ;

Listing 3.1: Required VHDL Entity for VHDL Template of Approxy Model

Every multiplier model within Approxy inherits the VHDLEntityMultiplier in-
terface. This interface again inherits both the VHDLEntity and the Multiplier

interface. An overview of all generic Approxy types and interfaces can be
seen in Listing 3.3. Every Approxy Model should provide the methods seen
under the VHDLEntity and Multiplier interface.

The VHDLEntity interface encapsulates all methods for a generic VHDLmodel.
ReturnData() returns a struct containing basic information such as the VHDL
Entity Name, some VHDL Generics like bit-width and Filenames. This is the
minimum necessary information to be able to verify and synthesize the model,
and should be in every Approxy model. Method GenerateVHDLEntityArray()

is available to return information about port-mapped VHDL Entities. If
a certain VHDLEntity makes use of an Entity Port map in their template,
essentially importing external VHDL files, XSIM has to be able to verify
and load these VHDL files. The returned array has to be an array of all
EntityData structs that are necessary to perform VHDL verification. Func-
tions GenerateVHDL(string) and GenerateTestData(string) generate VHDL for syn-
thesizing and a TestData file for verification in the given project path. These
interfaces can be individually extended with methods or fields to be able
to provide extra information to the VHDL Template, however they are not
publicly accessible.

3.3. APPROXY MODEL 31

The model function is encapsulated within the method ReturnVal(uint, uint).
Since certain multiplier models can (internally) overflow, a method is im-
plemented to provided to show if a model shows this behavior. Other func-
tionality within this interface is dedicated to the functional analysis of the
multiplier, in terms of error-analysis.

A special case is the Multiply-Accumulate(MAC) operation, which is the
following sequential set of functions:

c(t+ 1) = c(t) + f(a, b) (3.1)

c(0) = 0 (3.2)

When comparing this in VHDL, the MAC operation is essentially a sequen-
tial extension of the earlier shown combinational model. This MAC model is
already implemented within Approxy, and thus does not require to be sup-
plied by the user. The implemented MAC model within Approxy essentially
’inherits’ a general non-sequential Approxy model as earlier described. How-
ever it uses a different testbench, analysis is different and some methods have
different functionality. The required VHDL Entity for this MAC model is
shown in Listing 3.2.

1 en t i t y {{ . EntityName}} i s
2 g en e r i c (word s i z e : i n t e g e r :={{ . B i tS i z e }} ;
3 ou tpu t s i z e : i n t e g e r :={{ . OutputSize }}) ;
4 Port (
5 c l k : in s t d l o g i c ;
6 r s t : in s t d l o g i c ;
7 A : in STD LOGIC VECTOR (word s ize −1 downto 0) ;
8 B : in STD LOGIC VECTOR (word s ize −1 downto 0) ;
9 prod : out STD LOGIC VECTOR (output s i z e −1 downto 0)) ;
10 end {{ . EntityName }} ;

Listing 3.2: Required VHDL Entity for VHDL Template of Approxy MAC
Model

While the standard Approxy Model has a pure function that returns al-
ways the same output on basis of two inputs. The MAC ReturnVal(uint, uint)

function in this case is an impure function. A call to this function, increases
time by one, so a subsequent call will return a different value. A Reset()

method is added to set t = 0.

Next to being able to implement single VHDL models, Approxy provides
a Scaler model to linearly scale VHDLEntityMultiplier interfaces or in other
words: other Approxy multiplier models. This scaler can be used to increase

32 CHAPTER 3. METHODOLOGY

FPGA area coverage by implementing an N amount of (approximate) mul-
tipliers to accurately model the dynamic power consumption. This is being
done by using a VHDL package including new types that create arrays of
the input and output vectors of a single multiplier. In combination with the
VHDL Generate statement, a positive integer amount of independent multi-
pliers can be realized.

Finally, when implementing an Approxy model one has to adhere to the re-
strictions within the framework. This means that every newly created model
must have the same VHDL entity description in its template and within Go
implement the required interface functions. Given that a lot of code can be
reused, and general functions are available, this means that integrating a new
model is quite a quick task.

1 type VHDLEntityMultiplier i n t e r f a c e {
2 VHDLEntity
3 Mu l t i p l i e r
4 }
5
6 type VHDLEntity i n t e r f a c e {
7 ReturnData () ∗EntityData
8 GenerateVHDL(s t r i n g)
9 GenerateTestData (s t r i n g)
10 GenerateVHDLEntityArray () [] VHDLEntity
11 St r ing () s t r i n g //MSB −> LSB
12 }
13
14 type Mu l t i p l i e r i n t e r f a c e {
15 ReturnVal (uint , u int) u int
16 Overflow () bool
17 MeanAbsoluteError () f l o a t 6 4
18 }
19
20 type EntityData s t r u c t {
21 EntityName s t r i n g
22 B i tS i z e u int
23 OutputSize u int
24 VHDLFile s t r i n g
25 Tes tF i l e s t r i n g
26 }

Listing 3.3: Approxy Types

3.4. VERIFICATION 33

3.4 Verification

The verification system is quite simple, and supports both the earlier de-
scribed standardized Approxy model and the MAC model. The VHDL test
bench loads the generated test file as specified in the EntityData struct. The
TestData file is generated in binary format. Every line is a new singular test
requiring input a, b and output c separated by a white space. The models
within Approxy export for verification the entire set of input and output
values possible to verify behavior for a single multiplier.

Matrix representations are shown in Equation 3.3, with the left most matrix
representing the verification data for an ideal multiplier, the middle repre-
senting an approximate multiplier, and the right matrix showing a model for
testing the multiply-accumulate(MAC) operation.⎡⎢⎢⎢⎢⎢⎣

0 0 0
0 1 0
0 2 0
...

...
...

2n − 1 2n − 1 (2n − 1)2

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
0 0 c0
0 1 c1
0 2 c2
...

...
...

2n − 1 2n − 1 c22n−1

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
R>0 R>0 c(0)
R>0 R>0 c(1)
R>0 R>0 c(2)
...

...
...

R>0 R>0 c(N)

⎤⎥⎥⎥⎥⎥⎦
(3.3)

While for an n-bit multiplier, 22n evaluations are needed to fully compare
and verify the Go model to the VHDL file, this is not the case for the MAC
unit. It would not be computational efficient to exhaust all possible input
and output combinations of the MAC. Since the MAC unit is an extension
of an existing (approximate) multiplier, the multiplier can be separately ver-
ified using the non-sequential verification model. The sequential evaluation
model can be used to verify the accumulative behavior. The MAC model
verification within ’Approxy’ keeps the inputs constant for the highest out-
put value, e.g. A = B = 2n − 1 and extend the clock cycles N beyond what
the MAC-unit is designed for. By extending it, without resetting the MAC,
the expected accumulation and overflow behavior within the model can be
verified.

The template for the benchmark asserts if the expected result and the actual
result are the same. If this is not the case, an error will be exported to the
XSIM log file. Approxy provides functionality to parse this log file to be able
to handle this fault during runtime to prevent further program execution
and further Synthesis for a faulty model. If this fault does not happen, this
means that the Approxy model accurately describes the embedded VHDL
template behaviorally, and the program can safely continue.

34 CHAPTER 3. METHODOLOGY

3.5 Synthesis Design-Flow

Approxy provides a VivadoSetting type to be able to set various parameters
to adjust the Vivado project flow as seen in Listing 3.4. This in combina-
tion with the TCL template, automatically generates a script for Vivado to
execute a project from Synthesis, Place and Route to generating reports for
analysis. These reports show the utilization of the FPGA primitives and the
critical timing path. The various booleans within the section simply turn
on and off features. For instance setting the ’NO DSP’ parameter to ’True’,
forces Vivado to not use any DSP Slices and places the combinational logic
fully on Look-up tables, multiplexers and carry adders. The ’OOC’ parame-
ter, synthesizes the multiplier(s) out-of-context. This removes IO buffers in
the design, thus not connecting any input and output ports to the physical
pins of the FPGA chip. While this might not always be the most realistic
way to compare VHDL designs, FPGA pins are limited, giving the oppor-
tunity for ’OOC’-designs to be bigger without having to introduce overhead
to handle the IO connectivity. The other booleans simply enable or disable
various steps in the project flow.

In Listing 3.5, an extensive example of such a project script is seen. This
example links the design to a certain FPGA part number, after which it
synthesizes, places, and routes the design. For functional analysis, a new
VHDL file is created by Vivado, the CARRY primitive count is exported,
and various Vivado reports are written to a file.

1 type VivadoTCLSettings s t r u c t {
2 PartName s t r i n g
3 OOC bool
4 NO DSP bool
5 WriteCheckpoint bool
6 Placement bool
7 Route bool
8 Funcsim bool
9 U t i l i z a t i o n bool
10 H i e r a r c h i c a l bool
11 Clk bool
12 Timing bool
13 }

Listing 3.4: Approxy Vivado Settings

3.6. ANALYSIS 35

1 l i n k d e s i g n −part Xc7z030fbg676−3
2 read vhdl [g lob ∗ .vhd]
3 synth des i gn −mode ou t o f c on t ex t −max dsp 0 −top

r e c a c c 8 0 s c a l e r
4
5 wr i t e che ckpo in t − force r e c a c c 8 0 s c a l e r p o s t s yn t h . d cp
6 p l a c e d e s i gn
7 rou t e de s i gn
8 wr i t e vhd l −mode funcsim r e c a c c 8 0 s c a l e r f un c s im . vhd
9 wr i t e che ckpo in t − force r e c a c c 8 0 s c a l e r p o s t p l a c e . d c p
10 r e p o r t u t i l i z a t i o n −h i e r a r ch i c a l − f i l e

r e c a c c 8 0 s c a l e r p o s t p l a c e u l t . r p t
11 s e t f o [open r e c a c c 8 0 s c a l e r p r im i t i v e . r p t a]
12 puts $ f o [l l e n g t h [g e t c e l l s −hier − f i l t e r {PRIMITIVE GROUP ==

CARRY}]]
13 c l o s e $ f o
14
15 r epo r t t im ing −nworst 1 −path type end − f i l e

r e c a c c 8 0 s c a l e r p o s t p l a c e t im e . r p t
16
17 c l o s e p r o j e c t

Listing 3.5: Example of a generated Project File

3.6 Analysis

Analysis within Approxy can be divided into static and dynamic analysis.
After the Synthesis/P+R stage, all reports relating to primitive usage, area
usage and timing are available. Approxy provides functionality to be able to
parse these static reports. This is not possible for the power measurement,
which requires functional analysis post P+R. This means that a simulation
of the exported ’funcsim’ VHDL file has to be performed after placement and
route.

Given that in cases such as scaled VHDLEntityMultiplier interfaces, the test
bench from the behavioral analysis cannot be directly used for the functional
analysis due to the automatic unrolling of user-provided VHDL array types,
Approxy provides extra functionality on top of the Go template library to be
able to use the same template file. Functionally this is similar to the #ifdef

preprocessor in C.

To be able to simulate real-life scenarios, the test-file from the validation-
stage can be regenerated to provide a distribution of input values for the
simulation, instead of an exhaustive analysis. Approxy can generate a test-

36 CHAPTER 3. METHODOLOGY

file consisting of i random values with either a Uniform or a Normal distri-
bution. These values are used to simulate the multiplier using the testbench
within XSIM, and a SAIF (Switching Activity Interchange Format) file is
generated. The earlier created project checkpoint is opened, and a Vivado
power report is generated using the SAIF file.

After the static and dynamic analysis, all reports are parsed, and a summary
is exported in the JSON format for easy parsing and graphing in MAT-
LAB/Anaconda. An example is shown in Listing 3.6. This single report
shows an accurate 8-bit multiplier that is linearly scaled(N = 500) using the
Scaling interface, i = 1000 input values are used in post-placement analy-
sis to determine dynamic power consumption. The JSON format does not
contain units, but uses similar units as Vivado reports use. Power is in W ,
timing in ns and frequency in MHz

To compare the influence of i on the reported power consumption, an Ap-
proxy Run is started to report the power consumption of an accurate 8-bit
multiplier 50 times, using new random normal distribution input values each
time, with N = 500 for i = {10, 100, 1000}. This results in a run exported to
a JSON file, consisting of 50 reports. The reports are parsed externally in a
Python script. A probability density graph of the normal distribution of the
results are shown in Figure 3.2. By increasing the amount of input values,
the mean shifts but the standard deviation gets smaller. Out of this data
can be concluded that while this analysis cannot directly say anything about
real-life accuracy in terms of power consumption, for high enough value i, the
precision of the measurements is high enough for comparative analysis as long
as N , i and the bit width stays the same. For instance, N = 500, i = 1000
for the 8-bit multiplier has a standard deviation of ≈ 5.7µW . Making the
results fall 95% of the time fall in the range of µ± 11.4 µW .

3.6. ANALYSIS 37

Figure 3.2: Probability Density, Normal Distribution of 50 times N=500 8-
bit accurate multipliers

1 {
2 "Name": "ErrorRun_500_1000",

3 "Reports": [

4 {
5 "EntityName": "Run0",

6 "Util": {
7 "TotalLUT": 35000,

8 "LogicLUT": 35000,

9 "LUTRAMs": 0,

10 "SRLs": 0,

11 "FFs": 0,

12 "RAMB36": 0,

13 "RAMB18": 0,

14 "DSP": 0,

15 "CARRY": 5000

16 },
17 "Power": {
18 "Total_Power": 0.408,

19 "Dynamic_Power": 0.286,

20 "Static_Power": 0.122,

21 "Confidence_Level": "High"

22 },
23 "Timing": {
24 "EndPoint": "prod[71][15]",

25 "WorstPath": 4.3,

26 "MaxFreq": 232.5581395348837

27 },
28 "Other": [

29 {
30 "Key": "Error",

31 "Value": "0"

32 },
33 {
34 "Key": "ElapsedTime",

35 "Value": "16m7.081299435s"

36 }
37]

38 }
39],

40 "Other": [

41 {
42 "Key": "Disc",

43 "Value": "Running 500 accurate 8-bit Multipliers to determine power error, i=1000"

44 }
45]

46 }

Listing 3.6: Example of an Approxy run consisting of a single report.

38 CHAPTER 3. METHODOLOGY

3.7 Case Study

A code example that shows the full workflow of Approxy can be seen in List-
ing A.1, as part of Appendix A.1. Here a Recursive Multiplier {M1;M2;M3;M4},
as described in Section 4.4, is investigated. The environment used is Xil-
inx Vivado ”v.2021.1 (lin64) Build 3247384” and Vivado Simulator v2021.1
(XSIM). The device running Approxy and Vivado is a desktop running Man-
jaro Linux, Linux Kernel: Linux 5.15.65-1-MANJARO, using an ”Intel(R)
Core(TM) i7-4770K CPU @ 3.50GHz (June 2013)” and 8 GB of RAM. The
FPGA targeted is the Xilinx Kintex-7 FPGA: Xc7z030fbg676−3.

First a ”Run” is generated and cleared. This refers to the generation of
a report JSON file to the ”ReportPath”. Output data is expected to be in
the ”OutputPath”.

A 4-bit Recursive Multiplier object is created on basis of {M1;M2;M3;M4},
after which validation test-data and a VHDL file for the Recursive Multiplier
are generated and exported to the ”OutputPath”. This latter function also
generates all individual VHDL files for the behavioral models of M1, M2, M3

and M4.

Next step is the optional verification, a testbench named ”prePR” is created
using the template for a standard multiplier. This testbench is executed us-
ing ’XSIM’ and parsed. If any validation errors are seen, the execution of
the run is terminated and logged to the command-line.

A scaler object is created to be able to synthesize multiple of these mul-
tipliers. N is set to 1000. New VHDL and test data is exported, after which
”main.tcl” is created. On basis of the global ”VivadoSettings”, a TCL is ex-
ported to synthesize, place and route the Scaler Object using Vivado. This
TCL is executed.

After P+R, a new test bench object is created, named ”postPR” for the
Scaler Object. The template needs to be set to the one for this Scaling ob-
ject, and a special PostPR testbench has to be created using the function
”CreateFile”. i = 1000 Normal Distributed values are created and exported
after which an XSIM Post-Placement simulation is run. ”PowerPostPlace-
mentGeneration” opens the project again in Vivado, uses simulation data
from the simulation to generate the required data for System Requirement
analysis as explained in Section 2.4. A report is created, which includes tim-
ing, resource and power data. Manually, the Mean Absolute Error for the

3.7. CASE STUDY 39

Uniform distribution and the Normal distribution is added, next to a boolean
marker to show if the multiplier internally overflows. These error metrics are
not normalized, this needs to be processed afterwards. The report is added
to the ”Run”.

In Listing 3.7, the final resulting report can be seen. The resulting data is
divided between a section ”Util”, listing Primitive usage, a section ”Power”
listing all power statistics for the FPGA and a summary listing ”Timing”
details. All manually added statistics are ”Key/Value” combinations, listed
under ”Other”. An analysis, showing the execution time of the Approxy
”Run” is shown in Table 3.1. Here can be seen that Approxy adds 5% over-
head to the workflow, and most execution time is due to processing power
needed for Vivado and XSIM.

Time Approxy Vivado/XSIM Time
Start till Analysis x 0.003s
Analysis x 36s
Analysis till SynthPR x 0.004s
SynthPR x 178s
SynthPR till Func x 0.046s
FunctionAnalysis x 282s
Report Generation x x 25s

8m41s or 521.053s

Table 3.1: Time Overview of Approxy workflow for 4-bit Rec4, N=1000,
i=1000

1 {
2 "Name": "Rec_1234",

3 "Reports": [

4 {
5 "EntityName": "Rec1234_scaler",

6 "Util": {
7 "TotalLUT": 22659,

8 "LogicLUT": 22659,

9 "LUTRAMs": 0,

10 "SRLs": 0,

11 "FFs": 0,

12 "RAMB36": 0,

13 "RAMB18": 0,

14 "DSP": 0,

15 "CARRY": 0

16 },
17 "Power": {
18 "Total_Power": 0.162,

19 "Dynamic_Power": 0.041,

20 "Static_Power": 0.121,

21 "Confidence_Level": "High"

22 },
23 "Timing": {
24 "EndPoint": "prod[444][2]",

40 CHAPTER 3. METHODOLOGY

25 "WorstPath": 1.698,

26 "MaxFreq": 588.9281507656065

27 },
28 "Other": [

29 {
30 "Key": "MAE_Uniform",

31 "Value": "3.09375E+00"

32 },
33 {
34 "Key": "MAE_Normal_1000",

35 "Value": "1.4000000000000001E+00"

36 },
37 {
38 "Key": "Overflow",

39 "Value": "false"

40 }
41]

42 }
43],

44 "Other": null

45 }

Listing 3.7: JSON Report for Rec1234 scaler

Chapter 4

Implementation of Multiplier
Models

In this chapter various VHDL and Approxy models are shown, explained
and compared on the FPGA for accurate and approximate multiplier design.
First, in Section 4.1, the RTL design of multipliers is compared to see what
factors change the size of the multipliers. When describing these multipliers,
a design approach is used where instead of describing multipliers by their
behavior, the synthesis step is essentially bypassed by describing the design
on the register-transfer level(RTL). Secondly a numeric benchmark is shown
in Section 4.2 to compare future approximate models to. These multipliers
are called ’Numeric’ within this thesis, because it makes usage of the IEEE
Numeric VHDL library. Multipliers are simply described using the multipli-
cation operator, so the tooling has full control over the implementation of
the multiplier. Afterwards in Section 4.3, behavioral models are introduced
that cover some smaller 2-bit approximate designs. What makes these mod-
els ’behavioral’, is that the VHDL only describes the expected output values
without describing any structure to the digital design. As long as the ex-
pected behavior holds, the tooling is free to implement the design in any way.
Finally, Recursive Multipliers are looked into in Section 4.4 and extensively
investigated. Here architectural structure is added to the designs.

4.1 RTL Multiplier Design

To create smaller multipliers, and thus by a some extents create more power
efficient multipliers, it might be helpful to look at the building blocks of the
FPGA to see how to make smaller multipliers from a bottom-up approach.
In Figure 4.1, the most fine-grain building block of a modern Xilinx FPGA

41

42 CHAPTER 4. IMPLEMENTATION OF MULTIPLIER MODELS

is shown, the ’LUT6 2’. This two-output LUT has six inputs of which five
are shared. This results in the ability to ”act as a dual asynchronous 32-bit
ROM (with 5-bit addressing), implementing any two 5-input logic functions
with shared inputs, or implementing a 6-input logic function and a 5-input
logic function with shared inputs and shared logic values.”[28] Extending
combinational logic beyond the capability of the LUT means that the syn-
thesis tools has to place the logic on extra LUT units, while less complicated
combinational logic may not show improvements in terms of LUT usage.

Figure 4.1: LUT6 2 [28]

An interesting example to inspect are the 2-bit multiplier and two approx-
imate designs (M1[16] and M2[29]), as seen in Figure 4.2. Both seen by
Equation 4.1 and the RTL drawing, there are four outputs. A two bit mul-
tiplier being only dependent on four independent inputs, means that due to
the design of the LUT6 2, one multiplier can be placed upon two of these
LUTs. A single modification (3 ∗ 3 =⇒ 7) to this multiplier, creates M1
in Equation 4.2. This reduces the amount of boolean functions, and thus
the output ports to three. A possible design placement would be to have o0
and o1 on a single LUT, whereas the second LUT is shared by the o2 of two
M1 multipliers. This effectively reduces the theoretical minimum LUTs per
multiplier from 2 to 1.5.

Another different version, M2, designed for an ASIC using Synopsis on a

4.1. RTL MULTIPLIER DESIGN 43

TSMC 45nm process in the paper by Rehman et al. shows an area improve-
ment of 28.21%[29] compared to an accurate design. This design also shows
a reduction in the amount of boolean functions; o3 can simply be directly
routed to o0. However, the same placement approach as M1 is here not ap-
plicable. Boolean function o2 is dependent on four variables, meaning that
for two of these functions on one LUT, eight independent inputs would be
needed. M2 still has a minimum LUT usage of two per multiplier due to
the coarser granularity possible on an FPGA compared to an ASIC. This
design in itself shows no theoretical improvement in terms of LUT usage to
the accurate multiplier, while introducing an error.

Using the Xilinx UNISIM Library[28] it is possible to design multiplier archi-
tectures using the building blocks of an FPGA. This however bypasses the
algorithms used by the synthesizing tool, thus extra care has to be taken to
not erroneously under design a multiplier. If for example the designer assigns
two LUT6 2 structures to one M1 multiplier, one reaches a LUT usage of 2
per multiplier: the synthesizer will not merge partly unused look-up tables
if not explicitly stated in the VHDL or Verilog code.

Furthermore, an issue is that using the Xilinx UNISIM Library creates ven-
dor lock-in. Designs that are centered around using these ’primitives’ might
not show the hoped-for improvements on a different or future line of prod-
ucts, even less so at direct competitors. For example, the comparable logic
unit like the ’LUT6 2’ on the Intel Stratix V[30], called the ’ALM’, has the
possibility to compute two 4-input boolean functions meaning that M2 would
expectantly show an improvement in terms of area usage that M2 on the Xil-
inx FPGA does not.

Because of these reasons these models are not implemented using ’Approxy’.
There are however some papers that choose this approach ([19], [31], [32])
to essentially create an approximate multiplier by hand and get favorable
results for their specific Xilinx architecture.

Accn=2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
o0 = a0 ∧ b0 = f(a0, b0)

o1 = (a0 ∧ b1) ⊻ (a1 ∧ b0) = f(a0, b0, a1, b1)

o2 = ((a0 ∧ b1) ∧ (a1 ∧ b0)) ⊻ (a1 ∧ b1) = f(a0, b0, a1, b1)

o3 = ((a0 ∧ b1) ∧ (a1 ∧ b0)) ∧ (a1 ∧ b1) = f(a0, b0, a1, b1)

(4.1)

44 CHAPTER 4. IMPLEMENTATION OF MULTIPLIER MODELS

M1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
o0 = a0 ∧ b0 = f(a0, b0)

o1 = (a0 ∧ b1) ⊻ (a1 ∧ b0) = f(a0, b0, a1, b1)

o2 = a1 ∧ b1 = f(a1, b1)

o3 = 0

(4.2)

M2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
o0 = (a0 ∧ b1) ∧ (a1 ∧ b0) = f(a0, a1, b0, b1)

o1 = (a0 ∧ b1) ⊻ (a1 ∧ b0) = f(a0, a1, b0, b1)

o2 = ((a0 ∧ b1) ∧ (a1 ∧ b0)) ⊻ (a1 ∧ b1) = f(a0, a1, b0, b1)

o3 = o0

(4.3)

A0

A1

A2

A3 A5

A4 X0

X1

b0
a0

b1
a0

b0
a1

b1
a1 o3

o2

o1

o0

(a) Accurate 2-Bit Multiplier

A0

A1

A2

A3

o2

o3

X0

b0
a0

b1
a0

b0
a1

b1
a1

o0

o1

(b) Approximate M1 2-Bit Multiplier

A0

A1

A2 o3

A3

x0

x1

b1
a0

b0
a1

b1
a1

o0

o1

o2

(c) Approximate M2 2-Bit Multiplier

Figure 4.2: RTL Design Comparison

4.2 Numeric Multipliers

Numeric Multipliers are based upon the availability within the IEEE VHDL
specification to be able to describe arithmetic using mathematical operators,
in this case the ’*’. These are naturally the simplest way to describe since it

4.3. BEHAVIORAL MULTIPLIERS 45

creates an abstraction where only the multiplication of typed integer num-
bers is apparent: the inner functionality of the multiplication algorithm is
abstracted away. Its biggest limitation is that it cannot be used to describe
approximate multiplication. However, a positive outcome of this model is
that it gives full control to the synthesis tool on how to synthesize the multi-
plication, given that the design is not constricted in any way by the designer.
This makes it a great benchmark to compare approximate models to in terms
of area, delay and power usage.

These multipliers can also be designed on non-LUT based architecture. For
instance, the Xilinx UltraScale architecture provides DSP Slices[33], that are
ASIC structures within the FPGA architecture that can be used to compute
certain (high-width) functionality often used in DSP applications. The func-
tionality of these slices can differ between product line and vendor, but in
the case of the DSP48E2 Slice, as shown in Figure 4.3, it is perfectly capable
of implementing Multiplier/Multiply-Accumulate structures.

To see the effect of DSP slices on Multiplier design, n-bit sized multipli-
ers are synthesized out-of-context on a Xilinx Kintex-7 FPGA using Vivado
2021.1. In Figure 4.4, the area usage in terms of look-up tables is compared
on the same device by either giving full control to the synthesis tool(4.4b),
or by disallowing the usage of DSP slices(4.4a). From the results, it can be
seen that the extent of area reduction due to the introduction of DSP Slices
especially gets prominent when investigating higher width multipliers. Till
n = 10, the synthesis tool does not use any DSP slices. From n = 19 on, LUT
instances are again being placed due to the width of a single Xilinx DSP slice
not being sufficient anymore. More interestingly, the LUT-based multipliers
do not simply see a continuous increase in LUT usage when increasing the
multiplier width, increasing the size at various instances causes either stag-
nation or even reduction in terms of LUT area. This shows that the synthesis
tool also considers the usage of other primitives, such as CARRY4, in the
synthesis of multipliers and thus can have a considerable effect on the LUT
usage.

4.3 Behavioral Multipliers

A very basic multiplier model for the realization of approximate multipliers
is made by modelling the multiplier as a simple two dimension integer slice
in Go. The model for a 4x4-size array is shown in Table 4.1. Over this model
it is possible to superimpose the possible output values of an accurate 2-bit

46 CHAPTER 4. IMPLEMENTATION OF MULTIPLIER MODELS

Figure 4.3: Xilinx UltraScale DSP48E2 Slice [33]

(a) Disabling DSP Slices

(b) Using DSP Slices

Figure 4.4: Area usage of Accurate Numeric Multipliers

4.3. BEHAVIORAL MULTIPLIERS 47

multiplier, as shown in Table 4.2.

In the accompanying VHDL template the choice has been made to implement
this model with a Process statement to describe the combinational behavior
of the multiplier as seen in Listing 4.1. Here the templating model of Go is
extensively used to unroll the two-dimensional unsigned integer array field
LUT into a nested VHDL Case structure, where Case A responds to the array
row, and Case B to its column. Functions such as indexconv and valconv are
used within the templating pipeline to provide a conversion between Go’s
decimal integers and VHDL’s STD LOGIC VECTOR.

1 proce s s (A,B) i s
2 begin
3 case A i s
4 {{− range $rowindex , $row := .LUT}}
5 when ”{{ $rowindex | indexconv }}” =>
6 case B i s
7 {{− range $columnindex , $va l := $row}}
8 when ”{{ $columnindex | indexconv }}” =>
9 prod <= ”{{ $va l | valconv }}” ;
10 {{− end}}
11 when othe r s =>
12 prod <= (othe r s => ’X’) ;
13 end case ;
14 {{− end}}
15 when othe r s =>
16 prod <= (othe r s => ’X’) ;
17 end case ;
18 end proce s s ;

Listing 4.1: Process Statement of the behavioral Multiplier Template

Since the resulting behavioral model in VHDL does not use the multipli-
cation operator, the synthesis tool might not optimize the design correctly,
thus the resulting overhead in terms of LUT usage is compared to the Nu-
meric Multiplier of the previous section. In Figure 4.5 the results of this
comparison can be seen. While for a 2-bit multiplier there is no difference
between either accurate models, a slight increase is seen for n = 4, 16 → 22.
For 8-bit multipliers, the behavioral model is completely useless, given the
almost factor 100 increase of used LUT primitives. This behavioral model is
therefore not applicable beyond 2-bit multipliers.

In Table 4.7, four approximate 2-bit multipliers are shown that are fur-
ther investigated. The approximate multipliers are synthesized on the Xilinx
Kintex-7 FPGA, using part number ”Xc7z030fbg676-3”, and compared to a

48 CHAPTER 4. IMPLEMENTATION OF MULTIPLIER MODELS

101 102 103 104

21

22

23

LUT

n
-B

it
M
u
lt
ip
li
er

Numeric
Behavioral

Figure 4.5: Comparison Accurate Multiplier Models

behavioral accurate multiplier. As seen in Table 4.8 the behavioral model for
an accurate 2-bit multiplier performs at the theoretical smallest area limit
described in Section 4.1 of 2 LUT/m.

This particular model of the Kintex-7 FPGA has 78600 available LUTs.
For these measurements a total LUT-usage of 80% is taken as a baseline to
account for any issues that may arise due to possible lax optimizing for de-
signs that barely occupy any area. The multipliers are simply linearly scaled,
Out-of-Context, using the following equation:

N = 0.8 ∗ LUTPart

LUTMult

= 0.8 ∗ 78600

2
= 31440 (4.4)

As predicted earlier, M2 does not show any improvements in terms of LUT
area. This is also the case for M3. M1 and M4 only show a slight over-
head compared to their theoretical RTL design equivalents of 1.73 percentage
points.

4.3. BEHAVIORAL MULTIPLIERS 49

Col0 Col1 Col2 Col3
Row0 A[0][0] A[0][1] A[0][2] A[0][3]
Row1 A[1][0] A[1][1] A[1][2] A[1][3]
Row2 A[2][0] A[2][1] A[2][2] A[2][3]
Row3 A[3][0] A[3][1] A[3][2] A[3][3]

Table 4.1: 2D Array Model

0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 4 6
3 0 3 6 9

Table 4.2: Accurate 2-bit Multiplier

0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 4 6
3 0 3 6 7

Table 4.3: M1 [16]

0 1 2 3
0 0 0 0 0
1 0 0 2 2
2 0 2 4 6
3 0 2 6 9

Table 4.4: M2 [29]

0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 4 6
3 0 3 6 11

Table 4.5: M3 [34]

0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 4 6
3 0 3 6 5

Table 4.6: M4 [18]

Table 4.7: Behavioural Models for 2-bit Multipliers

LUT LUT(%) LUT/m ERate EMag MAE (Uniform)
Acc 62880 80 2 0 0 0
M1 48518 61.73 1.54 1/16 2 0.125
M2 62880 80 2 3/16 1 0.1875
M3 62880 80 2 1/16 2 0.125
M4 48460 61.65 1.54 1/16 4 0.25

Table 4.8: Results for the behavioral Multipliers, N=31440,

50 CHAPTER 4. IMPLEMENTATION OF MULTIPLIER MODELS

4.4 Recursive Multipliers

By shifting the output of various smaller sized multipliers and adding the
results, a larger sized multiplier can be created[29]. An overview is shown in
Figure 4.6. When multiplying A with B, with bit-size 2W , the input values
are split in AH , AL, BH and BL with size W . The next formula calculates
the output of a 4-bit multiplier[18]:

Cn=4 = (AL ∗BL) + 4(AL ∗BH) + 4(AH ∗BL) + 16(AH ∗BH) (4.5)

Naturally, the multiplier calculating AHBH has the biggest influence on the

Figure 4.6: Recursive Multipliers

Mean Error, which is also reflective in the formula that determines the total
Mean Error:

ME4 = MEALBL
+ 22MEALBH

+ 22MEAHBL
+ 24MEAHBH

[18] (4.6)

In the Approxy framework, the Recursive Multiplier is simply defined as
a 4-length sized array of Approxy models in the form of VHDLEntityMultiplier

interfaces. The VHDL Template is simply a VHDL file that port maps the
four multipliers and uses the Numeric IEEE Library to perform addition us-
ing the ’+’ operator.

Overflow handling is performed in the same way as in the MACISH pa-
per by Gillani et al. ([18]) Recursively for every n/2-sized multiplier within a
recursive multiplier, and the n-sized recursive multiplier itself, the following
equation must hold.

∀i ∈ {0, ..., 2n − 1},∀j ∈ {0, ..., 2n − 1}, f(i, j) < 22n (4.7)

4.4. RECURSIVE MULTIPLIERS 51

This function is within Approxy only implemented as best-effort by checking
if any overflow behavior is detected when a single ReturnVal(uint, uint) is called.
However, by-design the whole output space gets calculated for generating the
exhaustive test-file. As long as the verification step is not being omitted, the
overflow handling can be guaranteed.

4.4.1 Design Space Exploration, 4-bit

For exploring the Recursive Multiplier based upon the results of the behav-
ioral multipliers, the set S := {M1,M2,M3,M4,MAcc} is used to create a
4-bit Recursive Multiplier. By taking the Cartesian Power S4, the entire set
of 4-bit Recursive Multipliers using S can be defined. Since the size of S is
5, the size of the design space of the 4-bit Recursive Multiplier using this set
equals 54 = 625. This would mean that for an 8-bit Recursive Multiplier,
set S would have a size of 625, making the Design Space S4 considerably
bigger. The general formula for the size of the design space is the following
equation, where m equals the size of the set of initial set S, and n equals the
size of the recursive multiplier:

s = m(n/2)2 [18] (4.8)

Given the Time Execution overview of the case study in Table 3.1, an es-
timate for the full-analysis of a recursive multiplier design (N = 1000,
i = 1000) is 8m41s. A full exploration of all 4-bit multipliers, using the
earlier described set, would take an estimate 3.8 days. For 8-bit exploration
the estimate is 2.5 million years, making it clearly non-viable.

Both the article by Gillani et al. [18] and the SMApproxLib library[19] use a
methodology to substantially reduce the computational power of synthesiz-
ing these multipliers by estimating the ’cost’ of the recursive multipliers by
using the resource information of their smaller N/2 building blocks. It has
to be noted though, that [18] applies these multipliers to ”TSMC 40nm Low
Power(TCBN40LP) technology” which behaves differently than FPGA tech-
nology. However, the SMApproxLib article summarizes their FPGA LUT
usage similarly:

LUTN∗N =
4∑︂

i=1

LUT
N
2
∗N

2
i + LUTAdder[19] (4.9)

In Section 4.1 it was already discussed that Vivado does not optimize RTL
designs and treats these VHDL entities as ’blackboxes’, making this addi-
tive LUT formula hold for RTL designs like SMApproxLib. When synthe-
sizing behavioral models and flattening their hierarchy, however, recursive

52 CHAPTER 4. IMPLEMENTATION OF MULTIPLIER MODELS

blocks can be optimized by the synthesis tooling and placed upon shared
resources transforming the formula into a higher-bound estimate instead.
This makes optimizing the design space exploration for recursive multipliers
on the FPGA, by selecting on these functions, quite risky given unexpected
synthesis optimizations might go undetected.

Given the extent of the 8-bit multiplier design space, only the 4-bit space
is fully explored. The following general notation is used to define the 4-bit
recursive multiplier from here on:

Rn := {AHBH ;AHBL;ALBH ;ALBL} (4.10)

An example of such a multiplier is:

RAcc4 := {MAcc;MAcc;MAcc;MAcc} (4.11)

This is a 4-bit Recursive Multiplier constructed using four 2-bit Accurate be-
havioral Multipliers. In the previous section it has been already shown that
there is no significant difference in terms of LUT usage between behavioral
and numerical 2-bit multipliers. Synthesizing the Accurate 4-bit Recursive
Multiplier {MAcc;MAcc;MAcc;MAcc} shows an average LUT usage per mul-
tiplier of 16.963. While this is higher than the 16 of the numerical 4-bit
multiplier, the overhead of this model is quite low. Comparing this to the
purely behavioral 4-bit model shown in Section 4.3 , which showed a LUT
usage of 22, the difference is clear. Adding the recursive structure to the de-
sign which uses four 2-bit behavioral multipliers, outperforms a 4-bit design
that is only described behaviorally.

4.4.2 Results

Using Vivado 2021.1 for a Xilinx Kintex-7 FPGA ”Xc7z030fbg676-3”, an Ap-
proxy Run is created for the whole 4-bit Recursive Multiplier Design Space
using the 2-bit behavioral multiplier set S := {M1,M2,M3,M4,MAcc}. As
earlier described, every permutation where repetition is possible is investi-
gated by creating the fourth Cartesian power, S4. All individual multipliers
are scaled with N = 1000. The post-placement simulation processes i = 1000
normal distributed (µ = 8, σ = 1.5) input values on a clock speed of 50MHz.
These means that all power simulations use a normally distributed input
vector. Additive results like LUT usage and power consumption are again
divided by N = 1000 to get the results per multiplier. The Mean Absolute
Error is normalized. Unless stated otherwise, the Mean Absolute Error has
the same normal distribution as used in the post-placement simulation.

4.4. RECURSIVE MULTIPLIERS 53

Similar to the analysis of the influence of i and N on the power consumption
results in Section 3.6, a run is created consisting of 50 reports for the bench-
mark 4-bit numeric multiplier. The results of this run is: µ = 172.26µW, σ =
0.795µW . Showing a small but insignificant possible deviation of the follow-
ing power results.

Figure 4.7 shows the box plots of the Mean Absolute Error of the set. The
distribution of the input values is uniform. The first distinction is made for
the most significant partial product AHBH , each showing a different box plot.
The color of the dots represent the second most significant partial product
AHBL. Every single dot represent a single configuration of S4. As expected,
the lowest MAE is seen for configurations that use an accurate multiplier for
the AHBH partial product. Similarly to the behavioral models, M4 shows
the highest mean error, after M2. M3 and M1 are comparable. In Figure

Figure 4.7: Comparison of Normalized Uniform Mean Absolute Error of 4 x
4 Recursive Multipliers on basis of most-significant partial product.

54 CHAPTER 4. IMPLEMENTATION OF MULTIPLIER MODELS

Figure 4.8: Quality-Area trade-off of 4 x 4 Recursive Multipliers

4.8 the LUT-MAE trade-off is shown for the entire set. Using different hues,
the configurations are distinguished by their most significant partial product
AHBH . The vertical line shown is the LUT usage of the numeric accurate
multiplier. Again seen in this graph, the lowest MAE is seen for configu-
rations that use an accurate multiplier for the AHBH partial product, and
almost fully dominate the Pareto Frontier. However a bigger spread in terms
of LUT usage is seen for configurations AHBH = M1∨M4. When for instance
looking at the biggest (25 LUT/m) configuration {M1;M2,M2,M2}, the Vi-
vado Synthesis issues a relatively high amount of LUT6 primitives, which
cannot share a LUT6 2 placement. To limit the amount of points in the
Pareto Frontier, the LUT/m is rounded off to one decimal digit, and shown
in Table 4.9. The smallest configuration in terms of LUT area is 13.9, which
is a 13.125% decrease compared to the numerical benchmark. An argument
could as well be made for the second multiplier in the table. While barely
increasing in size, the normal MAE is a bit lower. Furthermore, its uniform
MAE is significantly lower, making it more versatile for different use cases.

In Figure 4.9 the Power-MAE trade-off is shown for the set. It has to be
noted that for the whole set the Static Power consumption is 121-122 µW .
While this dominates the total power consumption, differences between static
power consumption are negligible to non-existent. This makes the actual dif-
ferences between total power consumption fully dominated by the differences
in dynamic power consumption. Furthermore, no direct positive correlation

4.4. RECURSIVE MULTIPLIERS 55

is seen between LUT area and power consumption of the FPGA; a lower
LUT/m does not necessarily mean lower power consumption given the shift
of the MAcc configurations. This is further substantiated in the Pearson
correlation coefficient heat map of Figure 4.11, showing even a negative cor-
relation between LUT area and Power consumption for this run. In the
Quality-Power trade-off, configurations with AHBH = M1 ∨M4 are showing
both the highest and lowest power consumption of the set. Other configura-
tions mostly perform worse than the numeric benchmark. The Pareto Points
are shown in Table 4.10. The point with the lowest power consumption shows
a 25% decrease compared to the numeric benchmark.

Figure 4.9: Quality-Power trade-off of 4 x 4 Recursive Multipliers

The worst paths delay in the designs are compared, otherwise called the
critical path, which results in the maximum frequency (T)−1(Hz) shown in
Figure 4.10. Similar to the Power/MAE trade-off, most spread is seen for
the M1 and M4 multipliers, where most other multipliers perform worse than
the numeric benchmark. The configuration with the highest maximum pos-
sible frequency is also the configuration that performs best in terms of power
consumption. This design shows a lot of MUX primitive implementations
where the select input is triggered by actual input instead of internal signals,
which means the capacity of a single slice is efficiently used, and the clocked
paths are short. Looking at the Maximum Frequency and the Pearson Corre-
lation Coefficients in Figure 4.11, the biggest correlations are seen. A higher
maximum frequency in general means a higher amount of look-up tables but

56 CHAPTER 4. IMPLEMENTATION OF MULTIPLIER MODELS

smaller power consumption.

Figure 4.10: Quality-Latency trade-off of 4 x 4 Recursive Multipliers

For some configurations, Vivado decides to use 2 CARRY4 primitives per
multiplier to take care of the adder instead of LUT/MUX logic. A slight
negative correlation is seen in relation to LUT area, but this does not seem
to carry into higher maximum frequencies or lower power consumption.

LUT/m Power(µW) MAE (Normal) Max Freq (MHz) AHBH AHBL ALBH ALBL CARRY4/m MAE (Uniform)
13.9 199 4.7656e-3 414.08 M4 M4 M2 M4 0 2.3438e-2
14 184 4.5547e-3 300.39 MAcc M4 M2 M1 2 7.3242e-3
14.5 174 6.7969e-4 419.82 M3 M4 M4 M1 0 1.2207e-2
14.6 177 6.4844e-4 401.93 MAcc M1 M4 M1 0 6.3477e-3
14.7 175 5.8594e-4 423.55 M1 M4 M1 M1 0 1.4160e-2
14.9 177 5.8594e-4 379.65 M3 M3 M1 M1 2 1.0986e-2
15 177 5.3906e-4 383.00 M3 MAcc M1 M1 2 9.2163e-3
15.9 174 0.0000e+0 353.11 MAcc M1 MAcc MAcc 2 1.9531e-3

Table 4.9: Pareto Frontier of 4 x 4 set, minimizing LUT/m and MAE

LUT/m Power(µW) MAE (Norm) Max Freq (MHz) AHBH AHBL ALBH ALBL CARRY4/m MAE (Uniform)
22.8 129 5.1563e-4 814.33 M1 M3 M1 M1 0 1.1047e-2
21.8 134 9.3800e-5 648.51 M1 M3 M1 MAcc 0 1.0742e-2
21.7 137 6.2500e-5 648.51 M4 M3 M3 MAcc 0 1.7578e-2
21.7 138 0.0000e+0 648.51 M1 MAcc MAcc MAcc 0 7.8125e-3

Table 4.10: Pareto Frontier of 4 x 4 set, minimizing Power/m and MAE

4.4. RECURSIVE MULTIPLIERS 57

Figure 4.11: Pearson Correlation Coefficient Heatmap of Data features of 4
x 4 Recursive Multiplier set

Chapter 5

Evaluation

In this Chapter, the model to compare multipliers from literature is discussed
in Section 5.1. The first library of multipliers discussed is SMApproxLib in
Section 5.2, these multipliers are optimized for low LUT resource usage on
the FPGA. In Section 5.3, multipliers from other articles and a commonly
used benchmark for ASIC designs is investigated. The results of Recursive
Multipliers from Section 4.4 are compared to the earlier described multipliers
from literature in Section 5.4. Finally, Section 5.5 shows the implementation
of the most power-efficient multiplier of the Results.

5.1 Comparing Literature Designs

To compare external results to the earlier explorer multiplier models, an Ap-
proxy model called ’External’ is created. Similar to other Approxy models,
it revolves around a VHDLEntityMultiplier interface. However, given the mul-
tiplier comes from an external source it often lacks a behavioral model to
validate results similarly than earlier described models. For these models,
the verification step in the Approxy flow is altered to build a behavioral
model around the provided VHDL file. Instead of using the Approxy model
as a baseline for verification data, the verification is in reverse. All possi-
ble inputs are simulated within XSIM using the external VHDL file and the
results are written to a file. These output values are then parsed and en-
capsulated within the interface. Finally, an Approxy behavioral model exist
that functions the same as all other models, based upon a VHDL model from
external source, and the rest of the flow can be exactly executed in the same
manner.

58

5.2. SMAPPROXLIB 59

5.2 SMApproxLib

In the paper ”SMApproxLib: Library of FPGA-based Approximate Multi-
pliers” by Ullah et al. [19] one of the first extensive methodologies is shown
to explore approximate multipliers on 6-input LUT FPGA systems. Specif-
ically, in this paper they try to recreate an open-source collection such as
the EvoApprox8b[17] library. This latter library presents a collection of 8-bit
approximate adders and multipliers for design and benchmarking. However,
in the paper by Ullah et al. [19] they recognize that the library is not op-
timized towards FPGA implementation, given that the original library is
aimed towards ASIC implementations, and introduce one accurate and three
approximate multiplier modules to compare 4-bit and 8-bit approximate mul-
tipliers to the ones from EvoApprox8b.

The multiplier models described within the paper are based upon RTL struc-
tures, comparable to the method of VHDL description as shown in Section
4.1. Instead of giving freedom to the synthesizing tool, they completely
structurally design the multiplier using HDL primitives for the Xilinx FP-
GAs. Using a pre-defined set of three different LUT6 2 configurations and
the CARRY4 primitive, they design an FPGA optimized accurate multiplier
by taking the general approach of an NxN multiplier seen in Figure 5.1.
Compared to Binary long multiplication, as shown in Listing 2.1, consisting
of AND gates and adders, it can be seen here that they combine the first
two rows of partial products using the ’T-1’ LUT6 2 configurations. The last
rows use ’T-2’ configurations, and ’T-3’ to generate P0 and PN+1.

5.2.1 Approximate Multipliers

On basis of the earlier described accurate multiplier, they describe three
proposed approximate designs that focus on the approximate addition of the
partial products. Their first proposed alternative (Approx1) is to remove one
of the carry chains that performs the addition of partial products and replace
it with LUT-based approximate addition. Although the paper describes the
INIT values for the LUT6 2 primitives, they unfortunately do not explain
in detail how this approximate addition is done. For Approx2 and Approx3
they propose to not use any chain adders at all, but group partial products
together into single layers that are either implemented using one or two
LUT6 2 primitives. An overview is seen in Figure 5.2 and Figure 5.3. The
Approx3 implementation tries to improve upon the accuracy of Approx2 by
trying to predict the carry out of the preceding partial product groups.

60 CHAPTER 5. EVALUATION

Figure 5.1: Implementation of SMApproxLib Multipliers [19]

Figure 5.2: Implementation of Approx2 and Approx3 [19]

5.2. SMAPPROXLIB 61

Figure 5.3: Implementation of green ’layer’ in Approx2 and Approx3 [19]

5.2.2 SMApproxLib Evaluation

The SMApproxLib multipliers are available as open-source VHDL files con-
sisting of interconnected RTL primitives. An ’External’ Approxy model is
created for these files, as mentioned in Section 5.1. Similarly to Recursive
Multiplier Design Space Exploration, an Approxy Run is created for the
SMApproxLib multipliers using Vivado 2021.1 on a Xilinx Kintex-7 FPGA.
The multiplier is linearly scaled with N = 1000, and post-placement sim-
ulation uses the same random number generation as earlier shown results
(i = 1000, µ = 8, σ = 1.5). The results of these simulations are shown in
Table 5.1.

Comparing the results, it is clear that the SMApproxLib multipliers perform
well in terms of LUT usage. This is very clear when looking at the accurate
SMApproxLib multiplier. When synthesizing for a Xilinx Kintex-7 FPGA
with 78.6K LUTs and 19650 Slices, 6550 instances can fit on the FPGA. The
amount of CARRY4 adders needed would be 19650, which means that all
slice carry adders are utilized. This is not the case for the numeric multiplier,
where only 4912 instances can be initialized resulting in 9824 carry adders.

All these multipliers outperform in terms of LUT/m compared to even the
smallest Recursive Multipliers. However, these come at a cost; In the previ-

62 CHAPTER 5. EVALUATION

Name LUT/m Power(µW) MAE (Norm) Max Freq (MHz) CARRY4/m MAE (Uniform)
Acc 12 267 0.0000e+0 319.28 3 0.0000e+0
Approx1 11 268 2.9781e-2 393.24 2 3.1982e-2
Approx2 7 158 3.4031e-2 556.17 0 4.1992e-2
Approx3 8 189 2.6281e-2 547.05 0 4.1992e-2

Table 5.1: Results of SMApproxLib designs[19], 4-bit, analyzed using Ap-
proxy

ous chapter, it is already shown that a smaller footprint does not automati-
cally mean lower dynamical power consumption for normal distributed input.
Both the Accurate and Approx1 multiplier have a higher power consumption
than the highest power consuming Recursive Multiplier {M4;MAcc;MAcc;M4}
of 222 µW . The normalized MAE(Norm) of {M2;M2;M2;M2}, the most
inaccurate recursive multiplier is ≈ 0.03, which is still less than all the ap-
proximate SMApproxLib multipliers.

5.3 lpACLib and Others

Another paper from Ullah et al.[35] before the creation of their SMApprox-
Lib, creates a single 4x4 multiplier design using two approximate 4x2 multi-
pliers. In addition, two carry chains are used for summation. They propose
an approximate design where they reduce the CARRY4 primitives to a sin-
gle one, and optimize their LUT structure by generating carry propagation
within. The result is a 4x4 multiplier using 12 LUT6 2 primitives and 1
CARRY4 primitive, with only 6 erroneous outputs with a difference of 8.
The normalized MAE(1.0938×10−3) for normally distributed inputs is fairly
low. In later results, this multiplier has the Class ’4x4’ to be able to reference
it.

The paper by Rehman et al. [29] is used as a basis of this thesis and works by
Gillani et al. [18] as the ’M2’ 2-bit multiplier, but this work also introduces
it own set of multipliers using a similar approach as this thesis. On basis
of various 2-bit multipliers, with the addition of various approximate 1-bit
adder designs and using the same recursive multiplier approach, they create a
set of various larger sized multipliers. The major difference is that this paper
is targeting ASIC 45nm technology instead of FPGAs. The resulting 4-bit
multipliers that they publicize in their ’lpACLib’ library are therefore Pareto-
optimum for this technology and therefore not directly comparable to FPGA
technology. The versions of these multipliers that use accurate adders are
classified as ’XMAA’. Furthermore they show published configurable multi-

5.4. COMPARISON OF INVESTIGATED 4-BIT MULTIPLIERS 63

Name LUT/m Power(µW) MAE (Norm) Max Freq (MHz) CARRY4/m MAE (Uniform)
4x4[35] 12 186 1.0938e-3 448.83 1 7.3200e-4
XMAA Accurate[29] 18 176 0.0000e+0 366.57 2 0.0000e+0
XMAA Approx Lit[29] 15 176 5.6250e-4 423.55 0 1.2207e-2
XMAA Approx V1[29] 16 179 2.3566e-2 352.61 2 1.8311e-2
XMAA Config Lit (Acc)[29] 18 177 0.0000e+0 366.57 2 0.0000e+0
XMAA Config V1 (Acc)[29] 18 179 0.0000e+0 349.65 2 0.0000e+0
ConfigXA Lit+Third (Full Approx)[36] 15 175 5.7812e-4 424.45 0 1.8311e-2
ConfigXA Lit+Third (Full Accurate)[36] 22 139 0.0000e+0 648.51 0 0.0000e+0
ConfigXA V1+First (Full Approx)[36] 23 222 2.5262e-2 324.68 0 1.8311e-2
ConfigXA V1+First (Full Accurate)[36] 21 220 0.0000e+0 346.26 0 0.0000e+0

Table 5.2: Results of other designs, 4-bit, analyzed using Approxy

pliers using approximate adders[36] which are classified ’ConfigXA’. Of these
configurable multipliers, the individual 2-bit multipliers can be configured
between an approximate and accurate configuration. For this comparison,
these are configured into a fully accurate design and a fully approximate de-
sign. The verified results of these papers[35][29][36] using Approxy are shown
in Table 5.2.

5.4 Comparison of Investigated 4-bit Multi-

pliers

This section shows the results of the multipliers from other papers, compared
to the Pareto front of the Recursive Multipliers. Table 5.3 shows the Pareto
front looking at minimum resource utilization. Table 5.4 shows the Pareto
front for the designs with the lowest power consumption.

Figure 5.4 shows the Quality-Area trade-off. While the Recursive Multipliers
optimized for LUT-usage show improvement over the numerical benchmark,
it is the SMApproxLib that has the best results in terms of low area usage.
This comes at a cost however, the three smallest SMApproxLib multipliers
have a significantly higher MAE. However, they provide an accurate multi-
plier that has a smaller footprint than any of the other investigated designs.

In Figure 5.5, the power consumption is compared to the normalized Mean
Absolute Error. All ’RecPower’ configurations, consisting of the optimized
Recursive Multiplier configurations for power consumption here perform fa-
vorably and dominate the Pareto front entirely. However, directly after this
front is an accurate multiplier ’ConfigXA Lit+Third (Full Accurate)’ that
also has a uniform MAE of zero, while only consuming 1 µW more than
R1555. Interestingly there is also an SMApproxLib configuration, that be-

64 CHAPTER 5. EVALUATION

Figure 5.4: Quality-Area trade-off of investigated 4x4 Multipliers

sides being low in area, also outperforms the numeric benchmark. All other
configurations perform worse than an accurate numeric multiplier.

In earlier results a strong correlation between latency and power consump-
tion has already been shown, the results in Figure 5.6 show a similar picture.
Where it is the ’RecPower’ configurations that have the shortest latency, and
thus the highest possible frequency. A difference here is that more configura-
tions here show a better latency than the benchmark, such as some ’RecLUT’
configurations and the ’4x4’. Similarly, another ’SMApproxLib’ that in the
previous figure compared worse in power consumption than the benchmark,
outperform here in terms of latency.

LUT/m Power(µW) MAE (Normal) Max Freq (MHz) Name CARRY4/m MAE (Uniform)
7 159 3.4031e-2 556.17 SMApproxLib Approx2[19] 0 4.1992e-2
8 186 2.6281e-2 547.05 SMApproxLib Approx3[19] 0 4.1992e-2
11 272 2.9781e-2 393.24 SMApproxLib Approx1[19] 2 3.1982e-2
12 267 0.0000e+0 319.28 SMApproxLib Accurate[19] 3 0.0000e+0

Table 5.3: Pareto Frontier of 4 x 4 set, minimizing LUT/m and MAE

5.4. COMPARISON OF INVESTIGATED 4-BIT MULTIPLIERS 65

Figure 5.5: Quality-Power trade-off of investigated 4x4 Multipliers

Figure 5.6: Quality-Latency trade-off of investigated 4x4 Multipliers

66 CHAPTER 5. EVALUATION

LUT/m Power(µW) MAE (Normal) Max Freq (MHz) Name CARRY4/m MAE (Uniform)
22.8 129 5.1563e-4 814.33 R1311 (RecPower) 0 1.1047e-2
21.8 134 9.3800e-5 648.51 R1315 (RecPower) 0 1.0742e-2
21.7 137 6.2500e-5 648.51 R4335 (RecPower) 0 1.7578e-2
21.7 138 0.0000e+0 648.51 R1555 (RecPower) 0 7.8125e-3

Table 5.4: Pareto Frontier of 4 x 4 set, minimizing Power/m and MAE

5.5 Final Design

In Chapter 4, FPGA multipliers models are discussed, resulting in the design-
space exploration of 4-bit Recursive Multipliers. An exhaustive analysis is
done for all Recursive Multipliers using the set of 2-bit behavioral models:
S := {M1,M2,M3,M4,MAcc}. Two Pareto Frontiers are created, one that
optimizes for low area, and one for lower power consumption. From the re-
sults could be seen that optimizing for low resource usage does not automat-
ically mean lower power consumption. These two frontiers have been com-
pared in this Chapter to available open-source approximate multiplier models
published in literature. The multiplier with the lowest power consumption
is the Recursive Multiplier R1311 := {M1;M3;M1;M1}, having a Normalized
Mean Absolute Error for a Normal Distribution(i = 1000, µ = 8, σ = 1.5) of
0.000515625.

The implementation can be seen in Figure 5.7. Noteworthy is that for the
implementation of R1311, there is zero routing between FPGA Slices. The
calculation of O7 till O3 (PROD[7] till PROD[3]) is each done on a single slice,
consisting of four LUT6 2 Primitives, two MUXF7 primitives controlled by
A2 and one MUXF8 Primitive controlled by B1 creating a combinational
logic function calculation the output bit without extra delays due to rout-
ing. The lower significant output bits are done using only LUTs. For O2,
a 6-input logic function is implemented. O1 is simply two AND-gates and
one OR-gate implemented using a single LUT. The first bit is simply one
LUT implementing: O0 = A0&B0. The LUT6 2 primitives implementing O0

and O1 could be implemented using a single LUT, explaining the non-integer
LUT/m (22.792) results for implementing N = 1000 R1311 multipliers on a
single FPGA. Next to the lack of any slice-to-slice routing that would have
added to the dynamic power consumption, the inputs A2 and B1 are only
connected to the multiplexers, causing minimal cascading switching behavior.

When compared to an accurate Numeric Multiplier, as described in 4.2,
which has higher power consumption but requires less LUT resources, the
distinction can be seen. The implementation of this multiplier is shown in

5.5. FINAL DESIGN 67

Figure 5.8, Here the placement of resources and their connectivity is shown.
Multiple routing connections can be seen between the slices. Besides the
CARRY route between the two CARRY4 primitives, which are physically
connected within the CLB, these are routed over the routing matrix of the
FPGA, increasing power consumption and latency. No MUX primitives are
used, and some LUT outputs connect to other LUT inputs, causing a cascad-
ing path with increased internal dynamic power switching. The final results,
compared to the numeric 4-bit benchmark, is as follows:

Figure 5.7: Implementation of R1311 on Xilinx 7-series using Approxy

• Name: R1311

• LUT/m: 22.792(+6.792)

• Power: 129µW (−43µW)

• MaxFreq: 817.332MHz(+403.772MHz)

• CARRY4: 0 (-2)

• MAE (Uniform): 0.01104736328125

68 CHAPTER 5. EVALUATION

Figure 5.8: Placement of an Accurate 4-bit Numeric Multiplier on Xilinx
7-series using Approxy

• Error Rate (Uniform): 49

• Error Magnitude (Uniform): 40

• MAE (Normal) : 0.000515625

Chapter 6

Conclusion

This thesis shows that applying Recursive Multiplier techniques for ASIC
technology can be used to achieve reduction in terms of power consumption
and reduced latency on the FPGA. The highest power gains are reached in
the 4-bit multiplierR1311, reaching a reduction of 25% in power consumption.
The Pareto Front also shows configurations reaching 19.77% power reduction
for a near-zero Mean Absolute Error for a normal distributed input, mak-
ing the application of Approximate Computing to FPGA signal processing
a viable approach. State-of-the-art libraries applying Approximate Comput-
ing to FPGA multipliers generally optimize for FPGA resource allocation.
Comparatively, to these available open-source VHDL libraries, the investi-
gated multipliers do not show any interesting gains in terms of chip-area,
thus are not part of this Pareto Frontier. They however do outperform them
in terms of power consumption. For the investigated multipliers, the general
approach within FPGA Power Optimizing, in which reduction in area results
in reduced power consumption does not seem to hold. Bigger multipliers, in
terms of chip utilization, that mostly keep switching propagation within the
slice use less power than significantly smaller multipliers that make more us-
age of the FPGAs routing network.

In Chapter 3, ‘Approxy’, an extendable open-source framework is presented
to automate the Design Exploration of various multiplier models. By lever-
aging the generic model applicable to all (approximate) multipliers, ‘Approxy
Runs’ can be created to automate FPGA experiments in a controlled environ-
ment. Due to the architectural connection between the behavioral modelling
in the imperative programming language ‘Go’ and the automatic genera-
tion of VHDL code, models can be validated against each other by using the
automated testing functionality. Time execution experiments show that ‘Ap-
proxy’ has negligible overhead compared to a classic workflow using Vivado

69

70 CHAPTER 6. CONCLUSION

and VHDL Simulators only. Nevertheless, the exploration of 8-bit Recursive
Multipliers and beyond is still unfeasible without further extending of the
methodology by ‘pruning’ the available Design Space.

Chapter 7

Future Work

7.1 Multiply-Accumulate and Applications

While in Chapter 3, the initial work for investigating the Multiply-Accumulate
operation in terms the model and validation methodology have been inves-
tigated, the Design Space Exploration has not been executed yet. Given
the behavioral approach of the implementation of the MAC, the synthesis
tool is free to implement the Accumulator without any structural constraints
besides the multiplier. Therefore, it is unknown still if extending the 4-bit
Recursive Multiplier Design Space to a MAC Design Space by applying the
Accumulator will show similar results or show different Pareto Fronts. What
is known however is that the current comparison favors designs with a near-
zero Mean Absolute Error. If this near-zero MAE is actually a positive or
negative mean error in disguise, accumulation will decrease the quality of
the system. Multiply-Accumulators using the MACISH approach by Gillani
et al. [18], using the same Recursive Multipliers, implement Internal-Self-
Healing by having ‘mirrored’ errors, which cancel each other out. Investi-
gating this effect for MAC operations on the FPGA might show different
results. Furthermore, the results can be further validated by implementing
an application using the approximate multipliers. This will make it possible
to show application-specific error metrics, showing the trade-of in terms of
loss-of-quality to power reduction within real-life applications.

7.2 Expanding to 8-bit and beyond

Many applications require data representation with a higher resolution than
four bits. A quick calculation within the Design Space Exploration, given
the results of the time execution analysis, showed while 4-bit exploration

71

72 CHAPTER 7. FUTURE WORK

is feasible, 8-bit and beyond is not viable using the current methodology.
Other papers([18][19]) use the resource consumption of N

2
multipliers to es-

timate the ‘cost’ of higher resolution multipliers. Exploration of the 4-bit
Recursive Multipliers have showed that using the data of the 2-bit Behav-
ioral Multipliers gives no proper estimate for resource allocation and power
consumption, because of the freedom that the synthesis tool has to optimize
designs. However, the results of the Pareto Fronts can be used as inspiration
for structural modelling as an RTL Design, as described in Section 4.1. This
way the synthesis tool does not apply optimizations to the overall design,
making the earlier described ’cost’ estimates valid.

Other approaches to Design Space Exploration can be found in the Error
Metric analysis. By ignoring the ‘Verification’ step of the Approxy work-
flow, the calculation of the Mean Absolute Error of the Design Space can
be greatly accelerated. For instance, the exploration of all MAE-values for
normal distributed input for the 4-bit Recursive Multipliers takes without
optimizations one second. While linearly extrapolating this to the 8-bit De-
sign Space makes the exploration still infeasible, Equation 4.6 and further
software optimizations can be used to exclude subsets of multipliers with
high mean-errors from the exploration.

Bibliography

[1] G. Rodrigues, F. L. Kastensmidt, and A. Bosio, “Survey on approximate
computing and its intrinsic fault tolerance,” Electronics 2020, Vol. 9,
Page 557, vol. 9, p. 557, 3 2020.

[2] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard, Man-
aging Performance vs. Accuracy Trade-Offs with Loop Perforation. ES-
EC/FSE ’11, New York, NY, USA: Association for Computing Machin-
ery, 2011.

[3] D. O. N. A. L. D. MICHIE, ““memo” functions and machine learning,”
Nature, vol. 218, no. 5136, pp. 19–22.

[4] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design and Test, vol. 33, pp. 8–22, 2 2016.

[5] J. Qian and J. Wang, A 4-bit array multiplier design by reversible logic.
Taylor & Francis Group, 10 2014.

[6] S. M. S. Trimberger, “Three ages of FPGAs: A retrospective on the first
thirty years of FPGA technology: This paper reflects on how moore's
law has driven the design of FPGAs through three epochs: the age of
invention, the age of expansion, and the age of accumulation,” IEEE
Solid-State Circuits Magazine, vol. 10, no. 2, pp. 16–29, 2018.

[7] Aldec, “Xilinx design flow,” 2022. https://www.aldec.

com/en/solutions/fpga_design/fpga_vendors_support/

xilinx--xilinx-fpga-design-flow [Accessed 1 Sept 2022].

[8] Xilinx and Inc, “7 series fpgas configurable logic block user guide
(ug474).” https://docs.xilinx.com/v/u/en-US/ug474_7Series_

CLB, 2016.

[9] Hwang, “D flipflop timing.” http://hades.mech.northwestern.edu/

index.php/File:D_flipflop_timing.gif, 6 2006.

73

https://www.aldec.com/en/solutions/fpga_design/fpga_vendors_support/xilinx--xilinx-fpga-design-flow
https://www.aldec.com/en/solutions/fpga_design/fpga_vendors_support/xilinx--xilinx-fpga-design-flow
https://www.aldec.com/en/solutions/fpga_design/fpga_vendors_support/xilinx--xilinx-fpga-design-flow
https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB
https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB
http://hades.mech.northwestern.edu/index.php/File:D_flipflop_timing.gif
http://hades.mech.northwestern.edu/index.php/File:D_flipflop_timing.gif

74 BIBLIOGRAPHY

[10] Xilinx and Inc, “Vivado design suite user guide, design analysis and
closure techniques, ug906 (v2017.3).” https://docs.xilinx.com/v/u/

2017.3-English/ug906-vivado-design-analysis, 2017.

[11] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power consump-
tion in digital cmos circuits,” Proceedings of the IEEE, vol. 83, no. 4,
pp. 498–523, 1995.

[12] A. Amara, F. Amiel, and T. Ea, “Fpga vs. asic for low power applica-
tions,” Microelectronics journal, vol. 37, no. 8, pp. 669–677, 2006.

[13] Wikimedia Commons, “Layout of nmos and pmos components in an
inverter (not gate).,” 2006.

[14] Wikimedia Commons, “Circuit diagram of an sram cell, built with six
mosfets.,” 2009.

[15] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 2013 18TH IEEE EUROPEAN
TEST SYMPOSIUM (ETS), IEEE.

[16] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in 2011 24th Interna-
tioal Conference on VLSI Design, pp. 346–351, IEEE, IEEE, 2011.

[17] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapproxsb:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017, pp. 258–261,
Institute of Electrical and Electronics Engineers Inc., 5 2017.

[18] G. A. Gillani, M. A. Hanif, B. Verstoep, S. H. Gerez, M. Shafique, and
A. B. J. Kokkeler, “Macish: Designing approximate mac accelerators
with internal-self-healing,” IEEE Access, vol. 7, pp. 77142–77160, 2019.

[19] S. Ullah, S. S. Murthy, and A. Kumar, “Smapproxlib: Library of fpga-
based approximate multipliers,” in 2018 55th ACM/ESDA/IEEE De-
sign Automation Conference (DAC), pp. 1–6, Institute of Electrical and
Electronics Engineers (IEEE), 9 2018.

[20] G. A. Gillani and A. B. J. Kokkeler, “Poster: Go green radio astronomy:
Approximate computing perspective: Opportunities and challenges,” in
Proceedings of the 16th ACM International Conference on Computing
Frontiers, vol. 2, pp. 300–301, Association for Computing Machinery,
Inc, 4 2019.

https://docs.xilinx.com/v/u/2017.3-English/ug906-vivado-design-analysis
https://docs.xilinx.com/v/u/2017.3-English/ug906-vivado-design-analysis

BIBLIOGRAPHY 75

[21] S. G. A. Gillani, Exploiting error resilience of iterative and accumulation
based algorithms for hardware efficiency. PhD thesis, 7 2020.

[22] C. Niemann, M. Rethfeldt, and D. Timmermann, “Approximate mul-
tipliers for optimal utilization of fpga resources,” Proceedings - 2021
24th International Symposium on Design and Diagnostics of Electronic
Circuits and Systems, DDECS 2021, pp. 23–28, 4 2021.

[23] F. Cabello, J. Leon, Y. Iano, and R. Arthur, “Implementation of a
fixed-point 2d gaussian filter for image processing based on fpga,” in
2015 Signal Processing: Algorithms, Architectures, Arrangements, and
Applications (SPA), vol. 2015-December, pp. 28–33, IEEE Computer
Society, 12 2015.

[24] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural
networks: A review,” IEEE Access, vol. 5, pp. 17322–17341, 8 2017.

[25] Z. Wang, M. A. Trefzer, S. J. Bale, and A. M. Tyrrell, “Approximate
multiply-accumulate array for convolutional neural networks on fpga,” in
2019 14th International Symposium on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC), pp. 35–42, Institute of Electrical
and Electronics Engineers Inc., 7 2019.

[26] J. N. Mitchell, “Computer multiplication and division using binary log-
arithms,” IRE Transactions on Electronic Computers, vol. EC-11, no. 4,
pp. 512–517, 1962.

[27] Go, “template package - text/template - version: go1.18rc1.” https:

//pkg.go.dev/text/template@go1.18rc1. Accessed: 2022-03-01.

[28] Xilinx and Inc, “Ultrascale architecture libraries guide
(ug974).” https://docs.xilinx.com/v/u/2018.1-English/

ug974-vivado-ultrascale-libraries, 2018.

[29] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, and J. Henkel,
“Architectural-space exploration of approximate multipliers,” in Pro-
ceedings of the 35th International Conference on Computer-Aided De-
sign, vol. 07-10-November-2016, Institute of Electrical and Electronics
Engineers Inc., 11 2016.

[30] Intel, “Stratix v device handbook: Volume 1: Device interfaces and
integration , 1.2.1. Normal Mode.” https://www.intel.com/content/

www/us/en/docs/programmable/683665/current/normal-mode.

html, Last accessed on 2022-03-31, 2022.

https://pkg.go.dev/text/template@go1.18rc1
https://pkg.go.dev/text/template@go1.18rc1
https://docs.xilinx.com/v/u/2018.1-English/ug974-vivado-ultrascale-libraries
https://docs.xilinx.com/v/u/2018.1-English/ug974-vivado-ultrascale-libraries
https://www.intel.com/content/www/us/en/docs/programmable/683665/current/normal-mode.html
https://www.intel.com/content/www/us/en/docs/programmable/683665/current/normal-mode.html
https://www.intel.com/content/www/us/en/docs/programmable/683665/current/normal-mode.html

76 BIBLIOGRAPHY

[31] S. Ullah, S. Rehman, M. Shafique, and A. Kumar, “High-performance
accurate and approximate multipliers for fpga-based hardware accel-
erators,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 41, no. 2, pp. 211–224, 2021.

[32] Y. Guo, H. Sun, and S. Kimura, “Small-area and low-power fpga-
based multipliers using approximate elementary modules,” in 2020 25th
Asia and South Pacific Design Automation Conference (ASP-DAC),
vol. 2020-January, pp. 599–604, Institute of Electrical and Electronics
Engineers Inc., 1 2020.

[33] Xilinx and Inc, “Ultrascale architecture dsp slice (ug579).” https://

docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp, 2013.

[34] G. A. Gillani, M. A. Hanif, M. Krone, S. H. Gerez, M. Shafique, and
A. B. J. Kokkeler, “Squash: Approximate square-accumulate with self-
healing,” IEEE Access, vol. 6, pp. 49112–49128, 2018.

[35] S. Ullah, S. Rehman, B. S. Prabakaran, F. Kriebel, M. A. Hanif,
M. Shafique, and A. Kumar, “Area-optimized low-latency approximate
multipliers for fpga-based hardware accelerators,” in Proceedings of the
55th annual design automation conference, pp. 1–6, IEEE, 2018.

[36] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 1, pp. 124–137, 2013.

https://docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp
https://docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp

Appendix

A.1 Approxy Case Study

1 func PaperExample () {
2 // S ta r t o f Approxy Run
3 CurrentRun := Viv . StartRun (ReportPath , OutputPath , ”

Rec 1234”)
4 CurrentRun . ClearData ()
5
6 //Generation o f Recurs ive Mu l t i p l e r
7 Rec 1234 := VHDL. NewRecursive4 (”Rec1234” , [4]VHDL.

VHDLEntityMultiplier{M1, M2, M3, M4})
8 Rec 1234 . GenerateTestData (OutputPath)
9 Rec 1234 . GenerateVHDL(OutputPath)
10
11 //Opt iona l Ve r i f i c a t i o n o f Recurs ive4
12 v e r i f y := Viv . CreateXSIM(OutputPath , ”prePR” ,

Rec 1234 . GenerateVHDLEntityArray ())
13 v e r i f y . SetTemplateMult ip l i e r ()
14 v e r i f y . Exec ()
15 e r r := Viv . ParseXSIMReport (OutputPath , Rec 1234)
16 i f e r r != n i l {
17 log . Fata l ln (e r r)
18 }
19
20 //Generation o f N=1000 Sca l e r o f Rec1234
21 Rec 1234 s ca l e r := VHDL. New2DScaler (Rec 1234 , 1000)
22 Rec 1234 s ca l e r . GenerateTestData (OutputPath)
23 Rec 1234 s ca l e r . GenerateVHDL(OutputPath)
24
25 //Synth + Place + Route
26 viv := Viv . CreateVivadoTCL (OutputPath , ”main . t c l ” ,

Rec 1234 sca l e r , VivadoSett ings)
27 viv . Exec ()
28 // Pos tSyn the s i sAna l y s i s
29 p o s t a n a l y s i s := Viv . CreateXSIM(OutputPath , ”postPR”

, Rec 1234 s ca l e r . GenerateVHDLEntityArray ())
30 p o s t a n a l y s i s . SetTemplateScaler (1000)

77

78 BIBLIOGRAPHY

31 p o s t a n a l y s i s . Crea t eF i l e (t rue)
//Create PostPR Testbench

32 VHDL. NormalTestData (Rec 1234 sca l e r , OutputPath ,
1000) //Create i =1000 Normal Test Data f o r 4− b i t

33 p o s t a n a l y s i s . Funcsim ()
34 viv . PowerPostPlacementGeneration ()
35
36 //Create Report
37 Report := Viv . CreateReport (OutputPath ,

Rec 1234 s ca l e r)
38 Report . AddData(”MAE Uniform” , s t rconv . FormatFloat (

Rec 1234 . MeanAbsoluteError () , ’E ’ , −1, 64))
39 Report . AddData(”MAE Normal 1000” , s t rconv .

FormatFloat (Rec 1234 . MeanAbsoluteErrorNormalDist
(1000) , ’E ’ , −1, 64))

40 Report . AddData(”Overflow” , s t rconv . FormatBool (
Rec 1234 . Overflow ()))

41 CurrentRun . AddReport (∗Report)
42 }

Listing A.1: Example of Approxy run

	Introduction
	Outline

	Background
	Approximate Computing
	Digital Multiplication
	FPGA and Design Flow
	VHDL
	Design Flow

	System Requirements
	Slices and Chip-area
	Latency
	Power Consumption
	Error Metrics

	Applications for Approximate Multipliers
	Radio Astronomy
	Image Processing
	Neural Networks

	Go Programming Language

	Methodology
	Computer-Aided Design
	Approxy
	Approxy Model
	Verification
	Synthesis Design-Flow
	Analysis
	Case Study

	Implementation of Multiplier Models
	RTL Multiplier Design
	Numeric Multipliers
	Behavioral Multipliers
	Recursive Multipliers
	Design Space Exploration, 4-bit
	Results

	Evaluation
	Comparing Literature Designs
	SMApproxLib
	Approximate Multipliers
	SMApproxLib Evaluation

	lpACLib and Others
	Comparison of Investigated 4-bit Multipliers
	Final Design

	Conclusion
	Future Work
	Multiply-Accumulate and Applications
	Expanding to 8-bit and beyond

	Appendix
	Approxy Case Study

