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Management summary

Research goal and context
Shell’s Grease Manufacturing Plant (GMP) in Ghent is a key player in their lubricants supply chain. The
plant produces a total annual volume of around 12k ton of different greases, on different production lines. In
the past seven years, Shell has observed an increase in the demand of their specialty greases. In the current
situation, two of its production lines are fully constraint on their capacity. On two of the six production lines,
a total of 78% of the annualized volume is realized. These production lines, R109 and U400, do currently not
have the extra production capacity to adapt to uncertainty in demand, the acceptance of rush orders, or the
implementation of plant trials as requested by the R&D department. The capacity issues regarding Shell’s
production lines is identified as the core problem, and leads to the following research question:

“How could Shell increase their production capacity by 8-12% on production lines R109 and U400 in order
to deal with rush orders, uncertainty in production demand and RD test requests?”

Modeling approach
Analyzing the current performance and capacities of production lines R109 and U400 is done by means of
interviews, observations, and data-analysis. The interviews and data-analysis shed light on several different
bottlenecks that are present for these production lines. First, we observed that the current EOL-section is
inefficient and stops the production process frequently. The EOL-section ensures that all the greases that
are filled in SKUs, are eventually palletized and made ready for transport to the end-customer. Palletizing is
done by means of a palletizing robot. This robot is failure prone and had an average OEE of 22% for a 12-
week period, where its target was set at around 65%. As operators are responsible for fixing the palletizing
robot’s failures, it reduces the overall efficiency and productivity of the manufacturing line. Second, the
filling capacities for different SKUs are in practice almost 50% lower than the filling capacities as used by
the scheduling department. This is mainly caused by time-consuming SKU handlings and a direct result of
the failures regarding the palletizing robot, that need to be fixed by process or filling operators.

On a tactical level, we observed the plant suffers from extra production downtime as a result of the inefficient
filling and EOL-processes. As the scheduling department schedules the next batch in the process based on
its bottleneck time (longest process step on one of the three production kettles), we observed that in several
occasions the process suffered from a shifting bottleneck. A shifting bottleneck occurs when a batch has a
different bottleneck step, with regards to its schedules bottleneck step. This could lead to production waiting
times in case the bottleneck is found on the EOL-section, and not on one of the three production kettles.
This EOL-section is connected to both the production kettles and the filling process. This shifting bottleneck
causes process downtimes as the filling process is not yet finished before the arrival of a new production
batch. To identify and quantify the process downtimes, we make use of Discrete Event Simulation (DES).
DES is widely used in the manufacturing industry, to address dynamic (stochastic) and complex systems and
allows for both complex decision-making and testing of multiple production scenarios.

We conducted the simulation study in three steps. First, we analysed the baseline scenario for production
lines R109 and U400. Second, we tested for individual improvement factors such as increased palletizing
capacity, availability, and increased filling capacity. Third, we tested the interaction effects of the individual
improvement factors to obtain the best performing combination of improvement scenarios. For each of the
three steps, we made use of the same Key Performance Indicators KPI, namely the waiting time for the
scrape buffer vessel, the average cycle time per filling order and the average daily volume produced.

Results
The simulation model of the current baseline scenario showed that production line R109 has around 98.8
hours of downtime per six months. U400 did not suffer from any downtimes, due to having batch sizes
that are twice as small compared to production line R109. Smaller batch sizes are less likely to process
downtimes as the filling capacities are similar for both production lines, and will therefore take twice as long.
With the implementation of the individual improvement factors (step 2), we observed that the increase of
the palletizing capacity and the robot’s availability would in the best cases reduce the overall production
downtime to around 70.1 hours per six months. This result was obtained for a palletizing capacity of 400%
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and an availability of 90%. Also, the average cycle times for the filling processes were significantly less in
compared to the baseline scenario (from 424 minutes in the baseline scenario to 348 minutes). However, the
total daily volume remain unchanged. Increasing the filling capacity by 200% for the 18 kg SKU fill station
on production line R109, reduced the overall waiting time to 31.6 hours per six months, a reduction of 68%
compared to the baseline scenario. The average cycle filling time for 18 kg SKUs, was reduced from 424
minutes to around 339 minutes.

In step 3, we analysed the interaction of the individual improvement factors. We observed that the best
performing scenario was marked by the implementation of a palletizing robot with 90% availability and the
increased filling capacity (200%) for 18 kg SKUs on production line R109. The total waiting time in the
production process was reduced from 98.8 hours in the baseline scenario, to a total of 23.7 hours in this
scenario. This improvement scenario yielded a total waiting time reduction of 76%. This improvement
scenario also showed the best reduction in SKU filling time for 18 kg SKUs on production line R109 (424
minutes to 339 minutes). Linking the overall waiting time reduction to capacity improvements for the plant,
results in an extra capacity of 4.7% for production line R109, or an annual extra volume of 275 tons (34
batches) of grease, as described in Figure 1.

Table 1: Overview of the extra batches that could be produced after implementation of the best experiments

Best performing

experiments

Baseline waiting

time (hours)

Scenario waiting

time (hours)

Improvement

(hours)

Theoretical extra

batches produced

Annual extra

batches produced

Extra volume

(tons)

400% palletizing speed 98.8 70.0 28.8 6 12 97

90% robot availability 98.8 70.0 28.8 6 12 97

Increased FS1 capacity 98.8 31.6 67.2 15 30 242

90% robot availability

and increased FS1 capacity
98.8 23.7 75.1 17 34 275

With this result, we created an understanding of the current bottlenecks in the production process. First, Shell
should address the filling capacities for especially 18 kg SKUs, as this bottleneck has the largest contribution
to the overall waiting time. Second, Shell should take measures to either buy a new palletizing robot with a
capacity of 400% or put efforts in increasing the robot’s availability to 90%. Both options are equally good,
but improving the availability of the current robot is most likely the most cost effective option as a processing
speed of 400% seeks the placement of a new palletizing robot.

Conclusion and recommendation
For Shell Ghent, it currently is possible improve their current production capacity of their biggest production
line (volume wise) by 4.7%. This is realized by the implementation of a palletizing robot with a 90%
availability, and an increased filling capacity of 200% for filling station 1 on production line R109. Cost-
wise, this is currently not the best option, as it has a fairly high payback period of around 27 months. The
improvement scenario with the lowest payback period is the implementation of increased filling capacity for
filling station 1. This results in a total payback period of 16.5 months, with a total extra volume of around
242 tons per year. These implementations are capex long term investments, and will seek approval of senior
management in order to be realized. On a shorter term, the efforts of the maintenance department regarding
extensive Root Cause Analysis (RCA) could be further deployed for increased palletizing availability.

Further research should be focused on the addition of the remaining production lines to the current sim-
ulation model. As we only incorporated two production lines, the overall effect of the current bottlenecks
could potentially be larger. Further analysis and optimization of the indirect filling process on U400, and
reduction of overall filling cycle times for combined filling orders (multiple SKUs) on both production lines
are other topics that should be further researched to increase the baseline performance of the plant in terms
of productivity.
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1 Introduction

This chapter introduces the company, the problem statement and the main research question. Section 1.1
introduces Shell and gives a brief description of its production process, after which section 1.2 identifies the
problem. In section 1.3, the problem description is given, after which the research objective and the statement
of the research goal are presented in sections 1.4, and 1.5, respectively. Within section 1.6, the main research
question and the sub-questions are presented. At last, the scope of the project and the projected timeline,
are presented in sections 1.7, and 1.8.

1.1 Context

The Grease Manufacturing Plant (GMP) of Shell Ghent, is the main factory in Shell’s grease supply chain.
With a total produced volume of around 12k ton of different greases annually, it is Shell’s second largest
production plant of industrial greases. Not only the plant’s volume, but also the wide variety of different
greases in its portfolio, is a characteristic for the Belgium based plant. In comparison to other grease plants,
the plant produces around 59 unique products, sub-divided over 300 different Stock Keeping Units (SKU).

The products produced in Ghent, are the so-called lubricating greases, which is a chemical mixture of soap,
oil, and additives. Its applications are within the manufacturing, marine, and both the energy and automotive
industries. Lubrication greases are commonly applied to capital assets that seek higher lifespans, essential
for bearings systems and rotating equipment. As these products need to withstand severe conditions when
applied, such as extreme temperatures, water or high pressures, they seek strict quality demands.

Next to the production of highly specialized greases, the plant has access to a Research and Development
(R&D) facility. This facility develops and tests new products, that are demanded by Shell’s customers. The
first step of testing new products is done on a laboratory scale. After the laboratory tests, pilot testing is
performed on the product lines within the plant. By means of this R&D facility, Shell Ghent is able to further
increase and diversify their product portfolio.

Over the past seven years, Shell has observed an increase in demand for their specialty greases. The plant is
currently running on full capacity, while they are not producing on the theoretically maximum capacity. In
order to be able to fully serve their current and new customers while also adapting to future developments,
Shell is looking for extra production capacity within their current production set-up.

1.2 Research motivation

Shell’s production plant can be classified as a low-volume, high-mix production process. This is mostly
due to the fact that the plant only produces their greases by batches, and therefore capable of producing a
high variety of different grease products. The plant also operates by the Make-To-Stock (MTS) production
philosophy, since their products end up at different warehouses, where stock levels are being maintained,
waiting for further transportation to their end customers.

Ghent’s GMP is a plant that produces a wide variety of greases. The plant is set up in four different sections,
namely the preparation, core processes, after-process treatment, and the filling section. Figure 1.1 depicts a
global overview of the different sections in the manufacturing plant.
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Therefore, we will research the production process and further analyse the bottlenecks that we observe. We
will test the hypothesis as described by senior management, that 8-12% extra production capacity could be
realized when focusing on the current operational inefficiencies and production errors.

1.4 Problem statement

Shell’s GMP is currently unable to address increased demand, uncertainty in demand, and the ability to
perform R&D requests. Based on the information presented in sections 1.2 and 1.3, the following problem
statement has been formulated:

“Shell Ghent has no production capacity to respond to peak market demands or R&D requests, due to the
overall complexity of the production process and limited production capacity on production lines R109 and

U400.”

1.5 Research objective

In order to tackle the core problems, and the problem statement as described in sections 1.3 and 1.4, the
following main research question has been formulated:

How could Shell increase their production capacity by 8-12%1 on production lines R109 and U400 in order
to deal with rush orders, uncertainty in production demand and R&D test requests?

In order to properly answer the research question, and propose solutions that captures the essence of the
problem context, it is useful to list the deliverables that are obtained by this research:

1. Context study: Key to the understanding on how the different core problems affect the production
capacity, a descriptive context study will be performed. This study gives an analysis on the production
process. It also describes the tactical decisions made within the production process and how those are
related to the core problems as identified in section 1.3. In case further inefficiencies are observed that
contribute to capacity losses, those will be further explained as well.

2. Bottleneck analysis: With further understanding of the production process, we will identify and
quantify the bottlenecks in this chapter. This will result in the understanding and relating each of the
bottlenecks towards the production capacity. A Root Cause Analysis (RCA) will be done to understand
the underlying reasons for the current bottlenecks. We will also map further inefficiencies if found in
the production process.

3. Simulation model and solution validation: A simulation model is build to test multiple improve-
ment scenarios for the production capacity of the plant. Within this simulation, the different production
lines are recreated and the effectiveness of the different strategies and impact on production capacity
are tested. As an input for this simulation model empirical data from historical demand forecasts, his-
torical production data, flushing sequences and the downtimes of the production lines are needed. To
simulate the different batches that are produced in the process, we need flushing matrices of in-between
production runs (also called set-up times) and the batch times per product type on the production
kettles.

1.6 Research questions

To further answer the research question formulated in the previous section, different sub-questions are needed.
In total, 6 different research questions are needed that will answer the research question. Each question is
subdivided in to a specific chapter.

Chapter 2: Context study

1. How are production lines R109 and U400 set up and used, and where are current bottlenecks in the
production process observed?

1Statement from senior management, as described in section 1.2
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It is important to understand the current production process and the decisions made on both operational
and tactical levels to grasp Shell’s production strategy and philosophy. To further understand the process
of manufacturing within Shell’s GMP, both scheduling and operational departments will be questioned.
Also, different production shifts are attended to understand the complexity of Shell’s production process.
Furthermore, we analyse the relation of each of the core problems as identified, to the production capacity.

To subsequently deal with the bottlenecks found in the production process, data-analysis must be performed
to understand the dynamic of each bottleneck and its limiting factor to the production capacity. To perform
an analysis to identify the bottlenecks within the core problems, data is needed. Depending on the different
bottlenecks that are observed in the current production process, the data will be collected by the Distributed
Control System (DCS) that logs the actions that are performed in the process. The maintenance and
production departments have both access to the DCS system and are able to provide the specific data that
is needed.

Chapter 3: Literature review

2. Which methods are available within literature to address the bottlenecks found in the production process?

This sub-question focuses on the literature review, conducted when both knowledge about the production
process and the bottleneck formation in the production process are obtained. First, it is key to understand the
fundamentals regarding bottleneck identification and solving current bottlenecks in a manufacturing process.
Then, our literature review provides the knowledge for the design and application of simulation modeling to
Shell’s production process. With the use of a simulation model, we quantify the bottlenecks as observed in
the production process, and relate the simulation output to the production capacity.

Chapter 4: Simulation model and experimental design

3. What should a simulation model look like for Shell’s GMP and what possible strategies could be imple-
mented to remove the current bottlenecks that are observed in the production process?

Based on the content from chapter 2 and chapter 3, we proceed by creating a baseline model of the current
production process in which we can both identify and justify the observed bottlenecks. Within this sub-
question, a further analysis on the implementation of the model, is given. The model should be created in
cooperation with both senior engineers and the operational department, since the model should represent
the constraints and production philosophies by Shell. It should simultaneously incorporate the stochastic
behaviour of the production process.

Chapter 5: Experimental results

4. Which model configuration results in the most efficient way of removing the current production bottle-
necks and obtain more production capacity?

In order to answer this research question, the production process is recreated in Siemens’ Tecnomatix Plant
Simulation 13.2. This tool is capable of incorporating the uncertainty and unpredictability within the pro-
duction process. Open source tools exist, but we choose Siemens’ simulation software due to the pre-existing
knowledge on simulation modeling. We further test with the experimental design as described in chap-
ter 4. Finally, we perform additional experiments with the best performing scenarios that show the most
improvement with regards to the baseline production capacity.

Chapter 6: Implementation

5. How can Shell Ghent implement the suggested simulation model within their production lines to remove
the current bottlenecks?

The last sub-question mainly answers the main research question, and combines efforts and results from the
previous sub-questions, to answer which model can be considered as the best practice and how Shell could
implement the proposed solutions to fulfil the need for extra production capacity.
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1.7 Scientific contribution

The scientific contribution of this research, is mostly found in the usage of state of the operations management
tools in conventional sectors such as the oil and gas/chemical industry. Simulation modeling, especially
Discrete Event Simulation (DES), has not been used in these industries as it mostly concerns continuous
processes that do not lend themselves for a discrete approach. These processes are mostly characterised by
differential equations that describe the constant change in process parameters. Since the production of grease
is concerned by a batch process with mostly discrete process parameters and statistical input values, it is
perfectly suited for optimization by DES.

1.8 Scope

For this problem, changing the planning and scheduling of products over the different production lines is
not taken into account. This is due to the fact that the planning of production activities is performed by
an external Shell office. Also, with Shell’s standardized production scheduling tools, it is also cumbersome
and redundant to include the scheduling procedure within this research. The standardized Shell tools are
already provided with the latest heuristics and algorithm’s that should further schedule planned activities to
optimality.

This research project also excludes eventual changes to the Enterprise Resource Planning (ERP) system
used by both the planning and scheduling department. Since these systems are interconnected with multiple
production sites and local warehouses, it is undesired to further change its settings.

Data analysis during the creation of the research proposal indicated that current R&D requests are not
significantly using current production capacities. Therefore, this aspect is not considered to be part of the
problem cluster and will not be taken into account during this research. With regard to the production
process, the different production departments that are listed in figure 1.1, are taken into account. This
includes the preparation, core process, after-treatment and filling sections. We will not consider the out-
bound logistics process since this process is outsourced by a third-party company.

Next to production lines R109 and U400, there is another production line fully constraint by its capacity.
This production line is called Polyurea (R105), and is a standalone line that operates next to production
line R109. Production of grease on this line, does not interfere with the production processes of R109 and
U400. However, it has a shared resource, found in the EOL-section. We will exclude this production line
from the scope of this research project, since its annual volume is significantly lower than the volume of the
R109 and U400 combined. Senior management believes that more improvements are to be made on the two
major production lines R109 and U400.
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For each of the production lines, a standard routing for the production from raw material to eventually grease
can be defined. This route follows the different process steps which can be shortly summarized. A descriptive
and more technical analysis on the conventional warehouse, preparation section and the core processes, can
be found in Appendix A:

• Conventional warehouse: Storage of additives, raw materials and packaging materials for each SKU.
The warehouse is manually operated by logistics operators and is used to replenish the production units
with components for the production of greases. This warehouse is not used for the storage of finalized
products.

• Preparation section: Two facilities located near each production unit that allow for weighing and
collecting each of the additives and raw materials needed for the production of a batch of grease.
Production operators manually weigh each of the components in advance of producing a new batch.

• Core process: The core process characterizes the three production kettles necessary to produce grease.
The autoclave is the starting reactor, after which grease is pumped through to the cooling and finishing
kettles. Some greases follow different routes, such as the clay and black greases, which are made and
finalized on separate kettles. From the core process, products are pumped through to the hoppers
(indirect filling) or to a buffer vessel just before the filling sections where the products are being filled
(direct filling).

• EOL-section: The EOL-section consists of the filling stations, vertical lift from the R109 production line
and the palletizing robot. Here, the finalized greases are filled in SKUs and palletized by the palletizing
robot.

• AS/RS-warehouse: Automated storage and retrieval warehouse where palletized SKUs are stored and
awaiting final transport to the warehouses. The warehouse is operated and managed by the third-party
logistics service provider.

The plant operates in a three-shift system where only from Monday until Friday products are produced.
Monday’s first shift starts at around 05h45 in the morning, and Friday’s last shift is due at 02h45 on
Saturday morning. For producing different greases, a production schedule is prepared for a three-week ahead
period. The first week of this three-week schedule is fixed, and can therefore not be changed. If a certain
batch cannot be finished due to uncertain events such as equipment failures or a lack of workforce, it will not
be produced in the current production schedule. It will either be delayed until the next schedule, or it will
be cancelled.

During the first phase of this research project, both the production lines from the R109, U400 and the EOL-
section have been analysed for potential bottlenecks. Bottlenecks are, in this case, defined as constraining
steps in the production lines that limit the throughput of the production processes or time-wise, create
delays in the production process. Identifying bottlenecks was done by means of empirical research such as
interviews with management, production and the scheduling departments. As the majority of the bottlenecks
were identified in the EOL-section, we further analyse and research this section of the production process.
We proceed by giving an extensive description about the EOL-section, after which we identify the different
bottlenecks.
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SKUs is transported by means of a vertical lift in combination with a conveyor belt, that transports SKUs
from one side of the plant to the other side. Eventually, SKUs from both the production units come together
just before the weighing station. If filling occurs on both U100 and U400, a blockage is created just before
the weighing station, as the robot is only able to handle one pallet at a time.

2.2.1 Filling sections

Filling of the SKUs is initiated by filling orders. These orders are, along with the production orders, scheduled
for a three-week ahead period with a fixed filling schedule for the next week. Filling is usually performed
by dedicated filling operators, since this process is considered quite complex, as each SKU requires different
handlings. U400 is equipped with one filling operator per shift, whereas R109 has a total of two filling
operators per shift for six filling stations. The different filling stations can be briefly summarized:

• Filling station 1: A dedicated filling line for filling 18 kg pails within the R109 production line. This
station can be used for both hopper and direct fills from the production line.

• Filling station 2, 4 and 5: These filling stations are directly connected to the R103, R105 and R106
finishing kettles and are used as dedicated filling stations for the Polyurea, black grease, and clay
greases. Only 18, 50 and 180 kg packaging materials are filled in these stations (45 and 170 kg filled
volumes are packaged in the same 50 and 180 kg drums for all filling stations).

• Filling station 6 and 7: Two dedicated filling lines for filling 50 and 180 kg drums within the R109
production unit. Filling station 6 is used for the direct filling of products, whereas filling station 7 is
used as primarily a hopper/indirect fill station.

• Filling station 9: Dedicated filling station for the U400, which directly fills from the production line
and from the hoppers. Equipped with two lanes for filling 50 kg and 180 kg drums on one line, and
filling 18 kg pails on the other. Due to the current set-up of the filling station, it is only possible to fill
one SKU at a time.

The operator in charge of each of the filling stations must perform multiple handlings based on the different
SKUs that are being filled. Between the 18 kg pails and the 50 and 180 kg drums, noticeable differences are
found for their filling procedures. In the table depicted below, an overview of the activities and handlings
per SKU type are given.

Table 2: Activities performed per pack type to ensure the filling of the SKUs

Activities performed per SKU type
18 kg
(pails)

50 kg
(kegs)

170/180 kg
(drums)

Retrieval of SKU in conventional warehouse x
Retrieval of lids in conventional warehouse x
Retrieval of product information labels x x x
Automatic retrieval of SKU from drum buffer x x
Manually inserting SKU in buffer lanes x
Labelling machine for product information x x x
Manually labelling of product information stickers x x
Filling of the SKU x x x
Manually sticker QR-codes on SKU lids x x x
Automatically closing SKUs lid x
Manually closing SKU lid x x
Plastic liner x x

The complexity for completing 18 kg pails is higher than that for the 50 and 180 kg drums, since more
activities need to be performed before the filling procedure could be started. 18 kg pails consist of a pail
(bucket) and a lid, which need to be retrieved manually from the conventional warehouse, whereas the other
two SKUs are being delivered as a complete SKU, including the lids. A drum is for both production units
stored in the drum buffers, which are located next to the filling sections. Then, filling operators proceed by
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retrieving the right product information stickers, which are placed manually on drums and kegs. For pails, a
labelling machine is used that labels both sides of the pails. A filling operator is needed to manually insert
the labels to the machine, which is directly connected to the buffer lane for the pails. After successfully
labelling of the pails, the operator requests the transport of the SKUs to the filling stations. Here follows a
semi-autonomous filling process where both the drums and pails are one for one automatically filled.

After filing of each of the SKUs at the filling stations, there are buffer lanes in place that are filled up to
the total number of SKUs that fit on a pallet. The 18 kg pails are palletized per 322 SKUs, 50 kg kegs are
palletized per nine SKUs and 170/180 kg drums are palletized per four3 SKUs. The finished SKUs are in the
U100 transported by means of a vertical lift and a conveyor belt that is connected to the palletizing robot.
The conveyor belt for the U100 is also simultaneously used as a buffer, which can contain one full pallet of
18 kg pails.

2.2.2 Vertical lift U100

All finalized SKUs from U100 follow the route to the palletizer by making use of the vertical lift that connects
both the palletizer and the U100 with each other, Figure 2-6. Here, each SKU is moved individually into the
lift and is transported by a conveyor belt to the other lift module. It is frequently observed that the vertical
lift is not able to process all the incoming SKUs from the filling sections, or that the lift itself shuts down.
The former issue is a result of the slow processing speed of the lift and the lack of trays where SKUs could
be placed, where the latter is a result of the palletizing robot that gets into error mode. The lift is equipped
with a total of six trays that pick SKUs from the filling stations (U100) and drop them off at a platform
above the filling stations. From here, the conveyor belt moves the SKUs to the palletizing robot. Each 12
seconds, a SKU can be picked up from the filling stations, which brings its total capacity to around 5 SKUs
per minute.

2.2.3 Palletizing robot

The palletizing robot marks the end of both the R109 and the U400 production line. The robot ensures that
each of the final products is placed on a pallet, after undergoing a last set of quality checks for each of the
final products:

1. Weighing: Each of the products is weighed by a checkweigher to verify the total weight of the packaging
material and the grease, to ensure that the customer receives the correct quantity according to the EU
packaging legislation (council directive 78/1031/EEC). The product weights are logged in a dedicated
server.

2. Data-matrix scanner: Each of the products is equipped with a unique data-matrix that is labelled on
the lid of the packaging material. A 2D camera is mounted above the scale to read the matrix. This
piece of data contains information with regard to the batch number, product id, packaging material
and the filling operator that filled the particular SKU.

3. Handle alignment: For the 18 kg SKUs, an additional mechanic is introduced that rotates each of the
pails to ensure that the handle of the pails is placed correctly. Each of the pails should palletized by
the same way.

2.3 Bottlenecks within the production units

To understand the formation of bottlenecks in the production process, we first describe the production
lines in a more simplistic way. As described in more detail in Appendix A, both production lines from
U100 and U400 produce in either a direct or indirect route. Greases that are produced direct, are filled
directly after production, whereas indirect greases are temporarily stored in buffer/hopper units. Ghent’s
production philosophy is based around a bottleneck scheduling method, in which the scheduling department
takes into account the longest step in the production process (bottleneck) and schedules the next batch for
that production line around this bottleneck. We can further simplify both the production units in terms of a

2Asian production orders are palletized per 24 SKUs due to the smaller pallet dimensions for this market
3Asian production orders are palletized per three SKUs due to the smaller pallet dimensions for this market
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Based on interviews with the operators and the production department, it occurs around twice a month that
the production process is delayed due to a stoppage in the EOL-section. This bottleneck can be linked to core
problem three, which describes the issue where batch production times are increased or batches are delayed
as a consequence of operational inefficiencies and issues. The palletizing robot ensures palletizing of all the
SKUs that are filled in either 18, 50 or 170/180 kg packages. It makes use of a hydraulic system to grip, lift,
and place the SKUs on a pallet, as such it can be stored in the AS/RS warehouse.

The palletizing robot stops working in case an error mode is received in the control system. Currently, the
error modes can trigger either a “long” or a “short” stop. A long stop is characterized by a stop that takes
longer than 240 seconds, whereas all other stops are labelled as short stops. Short stops are in most cases
solved by a system reboot or reset, which is performed by the system itself. In case of a long stop, an operator
from the filling station or from the production units walks to the robot, after which it checks for the specific
problem and proceeds by solving it. If the operator is not able to solve the current issues by themselves,
a shift supervisor is asked to solve the issue. The difference in frequencies for short and long stops, and
respectively their durations, are depicted in table 3.

Table 3: Overview of short and long error modes as logged by the EOL-section for a three-month observation

Type #Stops Percentage of total stops Total duration of stops (min.) Percentage of total duration

Short 35083 93,4% 8410 22,3%

Long 2481 6,6% 29407 77,7%

Total 37564 100% 37817 100%

This data is a three-month observation from the error modes that are logged by the control system that in
the EOL-section. The total number of long stops is lower than the total number of short stops. However, the
total time of all long stops combined is significantly larger than the total time the robot spends in short stops.
As the short stops are solved by the system itself, we only take the long stops in further consideration. If we
further analyse the dataset to understand the impact of the downtimes of the EOL-section on a production
shift, we obtain the following data as depicted in Table 4.

Table 4: Impact of downtimes in the EOL-section on the filling times of a filling operator

Impact of long stops on a filling shift

Number of long stops in observed period 2481

Number of worked shifts in observed period 181

Avg of long stops per shift 14

Number of long stops per hour 1,75

Avg downtime per long stop (min.) 11:58

Avg downtime per hour per shift (min.) 20:44

Filling operators encounter on average 1,75 long stops per hour with an average length of 20:44 minutes
per hour. This means that the EOL-section is currently not working efficiently, as there are unnecessary
downtimes that limit both the EOL-section and filling operator’s efficiencies. Root causes for the large
number of stoppages are amongst others: the plastic wrapping machine, general warnings, the palletizing
robot, the pallet buffer and the lift section for production line R109. These are responsible for over 80% of
the total failures encountered in the EOL-section. At the time of writing, we cannot link the types of stops
to the duration of the stops since that specific data connection is currently not in use by the maintenance
department. Figure 2.4 depicts a Pareto analysis of the failures as observed at the palletizing robot.
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Table 5: Filling capacities for the filling stations that ensure direct filling straight from the production process
into SKUs

Direct filling capacities

Filling station SKU type
Scheduled filling

capacity (units/hour)

Effective filling

capacity (units/hour)

Realized filling

capacity (units/hour)

FS9 18 85 79,6 52,1

FS9 50 60 41,2 19,0

FS9 180 45 24,1 13,0

FS1 18 85 82,9 49,5

FS6 50 60 45,6 27,0

FS6 180 45 24,3 13,0

duration, is averaged at 50,8 SKUs per hour (for filling station 1 and 9), whereas the scheduling department
uses 85 units/hour as the current filling capacity. A discrepancy between both values is observed due to
inefficiencies regarding the filling process. Inefficiencies are defined as availability losses and are added to the
realized filling capacities. These availability losses could be explained by failures from the palletizing robot,
the complexity regarding the 18 kg pails, retrieving wrong SKU labels or the slow material handling process
of SKUs to the palletizing robot. This material handling process is within Shell called as the branching
process from SKUs from the filling stations to the palletizing robot. This process is in more detail described
as the removal from 18 kg pails from the filling stations to the palletizing robot. Currently, at U400s filling
station (FS9), operators need to wait approximately 7 minutes per 32 SKUs to continue their filling process,
as there is no buffer in the process that allows the operator to continue its filling process. For filling station
1 (R109), this process is more efficient as the operator has a buffer of 16 pails which he/she can fill after
completing a full pallet of pails (32 units).

Linking the slower filling speeds of especially the 18 kg SKUs to increased waiting times in the production
process, is conducted by analysing the production data from 2021. Here, we linked production runs that
subsequently needed to be filled in 18 kg pails and analysed for each of these products where its bottleneck
was located in the process. This could be on one of the three different kettles in the production process, and
by increases waiting time, shift to the EOL-section. In case more than 2 batches needed to be filled directly
in 18 kg, we could observe increase waiting time in the process, as it simply takes too long for an entire batch
to be filled before the arrival of a new batch.

We analysed FS1, which is the 18 kg filling station from R109. This filling station fills on average 325 SKUs
per filling order. Its effective filling capacity is around 82,9 units per hour, whereas its realized filling capacity
falls just short of 50 units per hour (Table 5). The difference in filling a complete order is around 3 hours
extra, in comparison to the target time that the scheduling department uses for their production schedules.
The decrease in the filling capacity and hence, the increase in filling times, resulted for this filling station in
extra waiting times in the core process. Table 6 describes for 19 different production runs, which we obtained
by analysing the production data from 2021, the extra waiting times that occurred when filling in 18 kg
SKUs.
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Table 6: Analysis of production runs in 2021 with the total number of batches per run larger or equal to two,
and the total waiting time per batch due to an inefficient filling and EOL-process.

Production run Batches in run
Total duration
of filling (hr.)

Waiting time due to
filling bottleneck (hr.)

1 3 14,0 0,0
2 2 9,7 0,0
3 3 24,9 8,7
4 2 13,5 3,2
5 2 19,6 5,8
6 2 13,0 1,5
7 2 11,6 1,1
8 2 8,1 0,0
9 3 17,9 2,6
10 6 34,7 0,0
11 2 8,7 0,5
12 6 44,0 5,8
13 5 22,3 3,1
14 2 15,9 3,1
15 5 20,3 3,6
16 3 27,6 3,0
17 3 20,6 7,2
18 2 16,3 5,2
19 4 25,1 8,7
Total 62,9

Based on the analysis for FS1, we observe that in total, 63 production hours on the U100 production line
could not have been used for production purposes solely due to waiting times. Due to the increase in waiting
times before greases could be directly filled, the scheduled batch times for the production process could not
have been met. This is described as the phenomenon that operators indicated, that the production process
is halted due to the inefficiencies in the filling section. For FS9, the filling station of U400, we did not
observe delays in the production process as a result of the slow filling capacity due to the smaller batch sizes.
However, the inefficiencies regarding FS9 are mostly a result of the direct connection to the palletizing robot
which causes unnecessary movements and handling for the filling operators. Further, optimizing the filling
capacities and reducing the EOL-section failures, will most likely improve the current baseline performance
of production waiting times, and improve operator utilization in the filling sections.

2.4 Conclusion

In this chapter, we answered the first research question ‘How are production lines U100 and U400 organized,
and where are current bottlenecks in the production process observed?’. We observed that the current
production process is prone to several bottlenecks. In the EOL-section, the palletizing robot stops working
on average 20 minutes per hour. Its OEE was averaged for a 12-week period at 22%, which is below Shell’s
target of 65%. This results in a very inefficient EOL-process, since the robot is currently not performing whilst
it should be palletizing finished SKUs. It is currently not known what the impact of the issues regarding the
palletizing robot are in terms of productivity and production capacity.

Next to the issue regarding the palletizing robot, we observed that there are delays in the production process
whenever greases are directly filled from the production lines (direct filling route). Especially for the R109
production line, we observed that the filling process takes 54% slower in comparison to the scheduled filling
times. For R109, this is especially a problem since the batch volumes are twice as large in comparison to
U400, and that a slow filling process of 18 kg SKUs causes a delay in the process. We identified and quantified
the delays for the R109 whenever 18 kg SKUs were to be filled directly from the production line. As we
understand the delays in the production process due to a slow filling process, we currently do not know how
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this impacts the overall production capacity of R109 production line.

To further understand and research the impact of the delays in the production process and the inefficiencies
regarding the EOL-section, we need to create a simulation model that provides insights in the performance
of the current production process. Then, we proceed by the simulation of production improvements that
improve the baseline performance of the production process. This includes scenarios for the palletizing robot
(increasing OEE or the implementation of a different robot) and the filling capacities (reducing operator
handling and possible redesigns of the filling stations). Within the simulation model, we should pay close
attention to defining performance measurements for the production process. These measurements should
identify the total time that is lost in the process, such that we can quantify the number of extra batches that
could be produced extra, as a result of the improvement scenarios.

18



3 Literature review

In this section, we answer research question two ‘Which methods are available within the literature to address
the bottlenecks found in the production process?’. We proceed by explaining bottlenecks in general, how a
bottleneck is identified and how mitigating bottlenecks in a production setting can be performed. In section
3.2 we further research simulation models as a functional tool to identify bottlenecks in a process and link
to production performance. We conclude this chapter by explaining how a Discrete Event Simulation (DES)
study is performed (section 3.3) and how incorporating lean’s principles and tools in a simulation model
further improves the baseline performance of a production process (section 3.4).

3.1 Bottlenecks within manufacturing processes

In order to understand what each of the identified inefficiencies mean for the production process, we must
clarify the term bottleneck and how bottleneck dynamics influence a production process. According to
Goldratt [2] and Lenort [3], bottlenecks are defined as the weakest links in a production process that disrupts
the process’ continuity and material flow and impact’s capacity utilization. Bottlenecks can be encountered
in multiple qualities, but based on current literature, we can conclude that there is no unanimous consensus
about the exact definition or whereabouts of a bottleneck in a system. Lawrence and Buss [4] described that
there is no uniform expression for bottlenecks, but that in general, they can be described as follows:

• Congestion points or bottlenecks, primarily occur when manufacturing resources required in a given
time period are unavailable

• A bottleneck is defined as a process that limits throughput
• Production bottlenecks are considered to be temporary blockages to increased inputs
• Facilities, functions, or departments that impede production
• Bottleneck operations are operations that limit the outputs

Given the numerous definitions of bottlenecks, we observe that bottlenecks can be formed by both resources,
operators, equipment and certain processes within a production chain. Lin et al. [5] states that a bottleneck
is in general found in a machine that has the slowest production rate, or that the bottleneck is a buffer in
which its Work In Progress (WIP) is the largest of all buffers. In comparison to Li, Chang et al. [6] describes
a bottleneck as the machine’s which has the highest sensitivity to the overall system’s throughput.

However, not all the capacity limiting factors in a process are bottlenecks. In literature, there is a difference
made between bottlenecks and Resource Capacity Constraints (RCC). According to Hohmann [7], bottlenecks
are defined as resources with capacity less or equal to the demand that flows through the plant, while an
RCC is often a limiting factor to an organization’s performance. A constraint can be called a bottleneck, but
a bottleneck cannot always be called an RCC. In case of multiple bottlenecks, it is always the resource with
the slowest production rate that can be defined as both an RCC and a bottleneck.

For this research we use the definition as explained by Goldratt [2] and Lenort [3], that a bottleneck is defined
as the weakest link in the production process that disrupts continuity and material flow. In Shell’s production
process, we observed breakdowns and decreased filling speeds in the EOL and filling sections respectively.
These sections are therefore considered as the bottlenecks in the production process.

3.1.1 Identifying bottlenecks

Identifying and managing bottlenecks was described in the Theory of Constraints (TOC), which is a pro-
duction philosophy focusing on the weakest links in the production process to improve throughput. It is
assumed within TOC that there are no stable systems present in the manufacturing space that do not have a
bottleneck. Every system is to a certain extent facing some sort of bottleneck that limits for greater through-
puts. For increasing a manufacturing’s throughput and efficiency, as well as other performance measurements
such as productivity, cycle or lead times, identifying and managing process bottlenecks is a key element for
continuous improvement.

Implementation of TOC, according to Goldratt and Cox [8], follows a five-step iterative process which is
called the Five Focusing Steps (5FS). This method should be used for identifying and resolving bottlenecks
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in production processes and can be briefly summarized as follows:

1. Identify the system’s constraints
2. Decide how to exploit the system’s constraints
3. Subordinate everything else to the above decision
4. Elevate the system’s constraint
5. If, in any of the previous steps a constraint is broken, return to step 1

The first step describes the constraints that are currently observed in the system and which should be
quantified in terms of performance. Performance measurements for a production plant are mostly expressed
in terms of cost, quality, delivery (lead times), and flexibility [9]. Goldratt and Cox further emphasize the
performance measurement of a production system in terms of throughput, inventory, and the overall operating
expenses. Then, exploiting the current bottleneck means that we look for the highest achievable output by
eliminating the certain limitations around the bottleneck. At last, we subordinate the entire production
chain to the bottleneck found in the previous step, along with its capacities and throughput and start a new
iteration to identify new bottlenecks in the production chain [8].

Ronen and Spector [10] state that from the initial design of 5FS, it became unclear to what extent a system
needed to be improved and what performance measurement in this case was used to enhance performances.
Therefore, they improved the 5FS with two additional questions that should be answered before starting the
iterative process to understand the eventual goal of the researched system and its performance measurements:

1. Set-up and define the overall goal of the system
2. Determine the global performance measurements of the system

Lenort and Samolejová [3] describe the practical implementation of identifying bottlenecks in a low volume
and high product-mix setting such as a metallurgical production plant. In such a production facility, the
production output and throughput are strongly determined by the overall product-mix and the different
SKUs that need to be produced. The characteristics of this plant are in line with Ghent’s production plant,
where many product types of greases are produced and eventually are being filled in numerous SKUs. For
such a manufacturing plant, by observation and experience bottlenecks could be identified. For more complex
processes, bottlenecks could be found in operations that are often delayed or stock that is accumulated within
certain processes. In case bottlenecks are not found in first sight, capacity calculations should be performed
for both the general production process as the individual workplaces. This will create insights in spots with
either over or under capacity. At last, a computer simulation model turns out to be a universal and efficient
tool in identifying the capacity bottlenecks if the first two steps suffice in finding bottlenecks [3].

3.1.2 Mitigating bottlenecks

After identifying bottlenecks, one should proceed by improving the equipment, machine, or utility, that is
marked as a bottleneck. Chang et al. [6] describe that there are in general four different initiatives to improve
the identified bottlenecks. The first initiative is to increase a machine’s Mean Time Between Failure (MTBF),
or in other terms, its reliability. This parameter is described by the overall time in between equipment or
machine failures and is described by the failure rate (λ) and the MTBF formula [11]:

MTBF =
1

λ
=

Total operating time

Total failures
(3)

Increasing the MTBF will increase the time between failures, and is achieved by lowering the failure rate
or increasing the operating time of the machine or equipment. The second initiative is reducing the Mean
Time To Repair (MTTR) for an identified bottleneck. Reducing the time to repair broken down equipment,
is described by the repair rate (µ) and the MTTR [12]:

MTTR =
1

µ
=

Total number of maintenance actions

Totalmaintenance down times
(4)

Reducing the MTTR is achieved by focusing on maintenance efforts that will more easily fix a current
equipment failure. This could be achieved by simplifying the design of equipment which makes it easier to
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could therefore the system’s state and its parameters. Events can be described as e.g. the arrival or departure
of new jobs in an assembly line or the breakdown of certain equipment. A downside of using DES, is the
longer time needed to create a simulation model that represents the production process accurately. Not
only a large set of data is needed for creating the probability distributions for each of the equipment and
processing stations, but also it is time-consuming to program the logic within the production process.

SD and ABS are simulation models that are more applied to tactical and strategical management levels. SD
focuses on expressing state parameters of complex systems by a top-down approach, where from a macro
perspective a complex phenomenon or system is being described in terms of its long-term dynamics. SD
is described by means of a set of continuous functions, which follow differential equations to describe the
changes over time. In comparison to SD, ABS is designed in a discrete and bottom-up manner, that takes
into account agents (e.g. companies or individuals) in a certain environment and the interactions between
the agents in case policies changes over time [13] [18]. Both of these methods are not perfectly suited to
simulate a production environment, as they do cover strategical objectives and long-term system behaviour
of a certain system. DS, also makes use of continuous functions to describe changes in state variables, but
in comparison to SD, focuses on operational level changes within a certain system. SD is mostly used in
electrical or chemical engineering fields to describe physical changes in complex systems over time.

As DES is the most suitable simulation method to model Shell’s stochasticity in the EOL-section, in which
failure rates of equipment and processing speeds influence the current production efficiency, we proceed by
further researching how we conduct a DES study.

3.3 Conducting a DES study in a production environment

Conducting a DES study is tight to a ten-step approach that helps in performing a sound and accurate study
of a production system. Law (2015) [14] describes that during the execution of a simulation study, attention
must be paid to a variety of concerns such as modelling the randomness of the system in the model, validation
of the simulation model, the statistical analysis and interpretation of the output data and at last, project
management. Figure 3.3 depicts the ten steps that are performed in a simulation study [14]:
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3.3.1 Output analysis for a simulation model

Simulation models are amongst others used in simulating logistic, production, or healthcare systems. Each
of these systems have their own characteristics and lengths of operating. For a production plant that runs
in a three-shift system, the weekends are usually not used for production purposes as the plant is closed.
We call such a natural event in a simulation study, the occurrence of terminating simulation. As different
simulation runs make use of different random numbers, we can treat the output of each simulation run as an
Independent and Identically Distributed (IID) random variable.

In other cases, such as a healthcare system or a manufacturing plant which runs for 24 hours per day for
seven days per week, we do not have a natural event causing a terminating simulation. In that particular
case, we refer to a non-terminating solution. The output for such a simulation model can only be treated as
the steady-state behaviour of the random variable. As for Shell’s production system, we consider the system
to be emptied at the end of Friday night. Therefore, we assume that we make use of a terminating event
simulation that needs to make use of different production runs by means of different random numbers [14].

3.4 Lean thinking within production processes

Based on the previous sections in which we explained the suitability of DES, we further research how we can
address current inefficiencies in Shell’s production process. Melton [19] describes that current inefficiencies
such as failures and increased waiting times, as observed in Shell’s production process, can be identified as
one of the types of waste within the concept of lean thinking in the process industry. These operations, are
not adding any particular value to the customer, and only increase internal production lead times. Lean
thinking is described as ‘the antidote to waste’ according to Womack and Jones [20], and focuses on creating
value to the customer by reducing waste (e.g. waiting time, failures, and cost etc.) within the production
process or supply chain. Another aspect of lean thinking is creating flow within a production process by
implementing pull-strategies to reduce in-process inventories.

In typical manufacturing processes such as the automotive industry, lean thinking has been applied ever since
its existing, as it is perfectly suitable to high-volume and low product variety processes. For the chemical
process industry, which classifies Shell’s GMP, the implementation of lean thinking has not been evident.
No specific explanation has been given for this phenomenon, but Melton [19] links this to the unwillingness
of the process industry to change its production philosophy and mentality, which is needed to successfully
implement the concept of lean. For the process industry, value is primarily defined as product produced
with the right specification, by a low and competitive unit cost, delivered on time and eventually packed in
the right SKUs in the right volumes [19]. As cost price per unit is a very important driver for Shell’s GMP
to remain competitive, efforts should be made to reduce the overall operating cost and reduce waste within
the facility. To eliminate waste and add value to either a production process or final product, tools such
as Cellular Manufacturing (CM), kaizen, kanban, workplace organization (5S), poka-yoke, Total Production
Management (TPM) and Value Stream Mapping (VSM), could be used within the concept of lean thinking.

3.4.1 VSM in combination with DES

To implement DES within a production process, there should be an understanding of the waste, inefficiencies,
and non-value added activities in the process. Value Stream Mapping (VSM) is a process mapping tool that
is build around the principle of identifying all value, non-value, and necessary non-value adding operations
needed to bring a product to a customer [21]. By removing the non-value adding operations in a production
process, it is assumed that the total cycle time (the time it takes to complete an SKU in the production
process), will be reduced. Within Shell’s production process, we observed that it takes too long for SKUs
to be filled, palletized, and moved to the warehouse, which is mainly due to the large number of failure
discovered around the EOL-section. In combination with simulation modelling, VSM is considered to be
an effective method to visualize and quantify bottlenecks and strive for improved production efficiency, and
improved throughputs by reducing the cycle time [22]. This is due to the fact that VSM creates a snapshot
of the Current State Map (CSM) of the production processes with all its characteristics. In combination
with simulation modelling, which serves as an extension to VSM, multiple production scenarios could be
simulated that further reduce the presence of non-value added activities and enhance the performance of the
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Lazarevic et al. [28] describe that PY has two different functions to achieve mistake proofing in practice:
preventing and detection functions. Preventing functions are mostly concerned with implementing control
and warning systems to either stop a production process (control) or warn process operators (warning) in
case a failure is made within the process. Detection functions are different, as those are mostly concerned
with eliminating product errors during the production process. This is achieved by the implementation of
in-process inspections such as shape, size or colour inspections. Creating awareness amongst the process
operators can be achieved by making use of PYs preventive function, by implementing visual tools at the
filling stations that indicate whether the palletizing robot is currently in a breakdown. In case always good
products are produced, it is unnecessary to further implement detecting measures as this is redundant and
does not contribute to reducing the MTBF.

3.6 Conclusion

Within this chapter, we answered the second research question “Which methods are available within the
literature to address the bottlenecks found in the production process?”. Identifying bottlenecks can, based
on literature, be done by focusing on production steps that have the lowest capacity or throughput within a
production process. For Shell’s production process, all the production steps are measured by means of the
cycle time needed per production process. This is described as the total time it takes to produce a product
from the beginning to the end of the process. As Shell’s product portfolio consists of different products,
where each product has a different production and cycle time, we research what the potential capacity of
the EOL-section should be in order to prevent the filling and EOL-sections to become a bottleneck. We will
focus on increasing the availability and the processing speed of the palletizing robot, and combine this with
two scenarios in which we increase the capacity of the filling stations.

In recent literature, both analytical and simulation models have been used to mitigate bottlenecks in a
production process. For Shell’s production line, we will make use of DES, to simulate and improve the
current production process. DES is well suited for incorporating stochastic process characteristics and does,
in comparison to analytical models, not solely rely on exponentially distributed processing or breakdown
times. Also, by making use of DES, we can simulate production scenarios more efficient and obtain insights
in the long term performance of each scenario.

Improving OEE measurements can be achieved by means of enhancing the overall availability of the robot,
since it is already processing at its maximum capacity. With increased availability, the MTBF is reduced
or the MTTR is therefore improved. For Shell’s current situation, we are mainly looking to experiment
with factors such as increased availability and increased processing speed of the palletizing robot to obtain
information on how the EOl-section should be designed to remove current bottlenecks. With regards to
the filling section, we will mainly look for an increased processing speed (capactity) to improve the baseline
scenario of the process. By means of VSM we make comparisons to the reduced in waste (bottleneck time)
for the baseline scenario and the future states of the production process (future states include improvement
scenarios).
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4 Simulation model and experimental design

Within this section, we further design the conceptual simulation model for Shell’s production process and
give an answer to the research question: “What should a simulation model look like for Shell’s GMP and
what possible strategies could be implemented to remove the current bottlenecks that are observed in the
production process?”. First, we take a closer look in to the conceptual model design for the simulation model.

4.1 Conceptual model design

As described in section 3.3, a simulation study follows a three-step approach, which is further subdivided
into ten different steps. Within the first step, we define the problem, determine the scope, and describe KPIs
that need to be incorporated within the model to both quantify and justify certain improvement scenarios.
We define the current problem of the production process as: an inefficient EOL-process that is marked by
frequent and long breakdowns of the palletizing robot, with slow filling capacities that are causing delays in
the production process. In order to determine what the real effect of the downtimes in the EOL-section is on
the production capacity and how we can improve the baseline performance of the plant to improve efficiency
and productivity, we will simulate the production process for both the U100 and U400 production lines.
This simulation study will be improvement based, which means that we will propose several solutions and
improvements to the current production process and verify the effectiveness of the solution in the long run.
The effectiveness of each solution is obtained by the reduction in cycle time for the four potential bottleneck
locations, in comparison to the baseline scenario.

Both the plant manager and the production manager have stated that the capacity of the production plant is
heavily influenced by the different products that are produced. Both the U100 and the U400 are producing
around 33 different product types each. Each of these products have their own specific residence times in the
three kettles in the production process, and each of the products can be filled in different SKUs (18 kg, 50
kg or 180 kg). This makes the determination for the annual capacity on each of the production lines, hardly
doable. In order to make an accurate estimate of created production capacity, we make use of historical
production schedules for a 8-week period ahead, as an input for the simulation model. This schedule is based
on the production data from March 2022 up to the end of April 2022. We choose this time frame, as the
plant managed to produce a record number of grease (in terms of volume) in these months. Important for
this simulation study is to obtain the overall waiting times in the production process that are incurred due
to the inefficiencies observed in the flling and EOL-sections. We mainly focus on improving the cycle times
for these two sections, as this will result in faster filling processes and reduce the overall waiting times as
result of a domino effect in the production process but only in the EOL-section.
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Filling section scope
Once the scrape buffer vessel is empty and a new production order arrives, the filling orders are initiated
and the filling process can be started. In the filling process, the production order that just arrived in the
scrape buffer vessel, is read by the system. All the information regarding the number and type of SKUs is
communicated, and all the necessary SKUs are collected in the SKU buffer. In some production orders, we
only have one type of SKUs that needs to be filled. In other cases, we have two (eg. 18 kg and 180 kg) or even
three (eg. 18 kg, 50 kg and 180 kg) different types of SKUs that need to be filled from one production batch.
In this simulation model, we only include a combination of one and two SKU type filling orders. As a three
type filling order is not very common, we decided that the complexity to model these type of order, would be
too time consuming. We will only look at the filling processes of the 18, 50 and 180 kg SKUs. These are the
only SKUs that are being filled at the filling stations. Other SKUs such as the 0,8 kg cartridges and 1200 kg
Intermediate Bulk Container (IBC) are filled on standalone smaller lines, and do not cause stoppages in the
production process. Therefore, we do not include these SKUs in the simulation model.

As we model explicitly the direct production and filling process of greases, we do not include the filling process
of indirect filling products. Indirect production orders are marked for long production runs in which around
48 tons of grease are produced in one production run. These indirect greases are in most cases subject to long
testing procedures before filling can eventually start. Due to the complexity of filling these orders along with
the uncertainty in the testing procedures, we decided to not include these filling processes in the simulation
model. We do model the production of these certain products, as that can be very easily implemented in a
simulation model.

Once the SKUs are collected in the SKU buffer, they proceed in case of 18 kg SKUs by a labeling machine.
Here, each product is manually placed in the machine, after which it moves to the designated filling station.
The 50 and 180 kg SKUs are manually labeled at the filling stations, so those SKUs proceed directly to the
filling stations. This process is also not modeled in the simulation study, as we assume that manually labeling
takes place while the SKU is being filled. For the filling process, we do not take into account the presence
of operators as we assume that the planning department always ensures that there are enough resources to
realize the filling process. For each of the three SKU types, we constructed statistical distributions for the
filling speeds, as we do not take in to account the differences in filling speeds for the different products (grease
types). This would also be too time consuming and be beyond the scope of this research.

The filled SKUs are collected in the conveyors that are placed directly behind the filling stations. Here, the
system waits for the number of SKUs that represent a full pallet, after which the SKUs are moved to the next
conveyor. The SKUs are not moved altogether, but instead are moved individually, each after 10 seconds.
For the R109 production line, products move by means of a lift section and slat conveyor to the EOL-section.

EOL-section scope
The two production lines come together at the “conveyor to robot” conveyor belt. Here, we have a stream
of incoming SKUs from production line R109 and U400. The EOL-section works by a First Come First
Serve (FCFS) priority rule. This means that in a system with SKUs arriving from either production line,
it palletizes the SKUs (until a a full pallet of that specific SKU is created) from the production line which
arrived first at the ”conveyor to robot” conveyor belt.

With regards to the palletizing robot, we model three different failure types that have been logged by the
maintenance department, namely: logistical, operational and technical failures. For each of these failure
modes, we created the MTBF, MTTR and availability, these parameters are sufficient for Tecnomatix Plant
Simulation to construct a statistical distribution for each of the failure modes. We also assume for the EOL-
section that there are always enough pallets present. In practice, this is not the case, but the operational
failure mode already includes the stoppages of the palletizing robot that are caused by a lack of pallets. We
also do not model the plastic wrapping machine explicitly, as this machine is located behind the palletizing
robot. We only consider it’s failure modes, which are included in both the operational and technical failure
modes for the palletizing robot, as these ensure that the robot can fall in an error mode and stops the flow
in the production line.
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In short, we need to ensure that the bottleneck kettle of the next batch that we enter in to the system, is
free, before we start with the new batch. Therefore, we need to determine the time difference between the
moment the current batch is done on the bottleneck kettle of the next batch, and the moment of arrival of
the new batch on its bottleneck kettle. Whenever the time for a batch is longer to get to its bottleneck kettle,
than for the previous batch to finish on that bottleneck kettle, we can immediately call the new batch in to
the system. If this is not the case, we calculate a waiting time that is needed to ensure that the bottleneck
kettle of the next batch is free. To clarify the bottleneck scheduling method and the determination of the
optimal start time of the next batch, we will explain some of the bottleneck scenarios:

• Scenario 1: The bottleneck kettle of the current batch (batch 0) is the autoclave kettle and the bottleneck
kettle of the next batch (batch 1) is also the autoclave. Since we check the possible entry of the next
batch on the moment that the current batch has completed on the autoclave, we can immediately enter
the new batch in the system. If the current and the new batch do not have the same product type, we
incur a flushing set-up time for the next batch on the autoclave. The start time of the next batch on
the autoclave is then given by the following formula, with t0 marking the time at which the autoclave
kettle is done with the current batch:

toptimal = t0 + tflushing set−up time (5)

• Scenario 2: The bottleneck kettle of the current batch (batch 0) is the cooling kettle and the bottleneck
kettle of the next batch (batch 1) is the autoclave. We can optimally start batch 1 on the autoclave, if
we can ensure that the cooling kettle has finished processing batch 0. For this scenario, we determine
the difference between the moment the cooling kettle is empty after processing batch 0 (tck,0) and the
time it takes to finish batch 1 on the autoclave (tac,1). As batches coming from the autoclave must
directly be pumped to the cooling kettle, due to quality regulations. If the current and the new batch
do not have the same product type, we incur a flushing set-up time for the next batch on the autoclave.
There are no other set-up times incurred in the production process. Hence, the optimal start time of
the next batch on the autoclave is in this scenario given by the following formula:

toptimal = t0 + (tck,0 − tac,1) + tflushing set−up time (6)

• Scenario 3: The bottleneck kettle of the current batch (batch 0) is the finishing kettle and the bottleneck
kettle of the next batch (batch 1) is also the finishing kettle. In this scenario, we need to take into
account all the kettles before the finishing kettle. Key in this scenario is that we ensure that the total
needed time for batch 0 on the cooling kettle plus the finishing kettle, is smaller or equal to the total
time of batch 1 on the autoclave and the cooling kettle. If this is not the case, batch 1 needs to wait an
additional time before the finishing kettle is empty. The extra waiting time is the total time needed for
the finishing kettle to be empty. If batch 0 and batch 1 do not have the same product type, we incur
a flushing set-up time for batch 1 on the autoclave. The optimal start time of the next batch on the
autoclave in this scenario is given by the following formula:

toptimal = t0 + ((tck,0 + tfk,0)− (tac,1 + tck,1)) + tflushing set−up time (7)

• Scenario 4: The bottleneck kettle of the current batch (batch 0) is the cooling kettle and the bottleneck
kettle of the next batch (batch 1) is also the cooling kettle. In this scenario, we have two different
situations. The first situation describes the optimal start time of the next batch on the autoclave,
when the residence time of the cooling kettle for batch 0 is larger than the residence time of the
autoclave for batch 1. If this is the case, we immediately start the batch 1 (subject to flushing set-up
times or not). If this is not the case, we add an extra waiting time to ensure that batch 1 is finished
on the autoclave, it can immediately start at the cooling kettle. This bottleneck scenario is described
by the following formulas:

toptimal =

{

t0 + tflushing set−up time, if tac,0 > tck,1

t0 + tflushing set−up time + (tck,0 + tac,1), otherwise
(8)

The other six bottleneck scenarios and their optimal starting times for the next batches are described in
Appendix C. Figure 4.3 illustrates the bottleneck logic implemented in the simulation model.
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created based on logged data for the processing times, which have been recorded over the past two years.
Appendix E depicts for both production lines R109 and U400 the individual statistical distributions and their
parameters. We made use of Easyfit as a statistical distribution fitting tool. Here, we test three different
statistical methods to conclude whether or not a data set follows the proposed distribution. These methods
are the Anderson-Darling, Kolmogorov-Smirnov, and the Chi-Square test statistic. The method regarding
these test statistics can be found in F. In general, most product types do follow different distributions than
the normal distribution, as data was simply not normally distributed. Based on the suggestions obtained
from Easyfit, we conclude that many residence times are either distributed by a lognormal, gamma or weibull
distribution.

Flushing procedure (set-up time)
Besides the bottleneck scenarios, we include the extensive flushing procedures within the core process of the
simulation model. Each time a new production run (multiple batches of the same product) is initiated, a
set-up time is incurred in-between the production runs. In practice, this set-up time describes the time it
takes to fully rinse piping, filter and reactors within the process. From the production planning department,
we obtained a detailed list with the average set-up time per product produced on the production line. The
averages are calculated values from historical values, and range from zero minutes up to 24 hours. Appendix
D describes the average set-up times for the different products.

4.2.3 Filling process settings

After the creation and processing of the production orders, we proceed with the filling processes. Here,
we consider the direct filling processes from production lines R109 and U400. In a later section, the logic
implemented in the filling process is thoroughly described by means of flow charts.

Filling orders
Filling orders are together with the production orders, predetermined by the scheduling department. Each
production order contains all the specific information for the filling process, such as the type and number
of SKUs to fill. Filling orders can either consist of one or two SKU types to be filled. We do not consider
the possibility of three SKU types to be filled from one production batch, since this implementation was
considered to be too complex.

Set-up time filling stations
For each filling order, a set-up time is incurred. This set-up time is used for actions that need to be performed
by the operators, to ensure that the filling process can be started. These actions are amongst others: collection
of SKU labels, retrieving SKUs and the preparation of the filling nozzle. For all these activities, the planning
department calculates a fixed time of 20 minutes. In practice, this constant value is not always realized.
Therefore, we assume that the set-up time is a random variable. Since there is no data present on the set-up
time per production order, we assume that the duration (as this is dependent on the SKU type), is given by
a uniform distribution with a minimum of ten minutes and a maximum of 30 minutes. A ten minute set-up
time is generally applicable for 180 and 50 kg SKUs, whereas the set-up of 18 kg SKUs takes longer due to
the extra preparation steps (Table 2).

Processing times of the filling stations
The processing times for each of the SKUs that are filled on the filling stations, have been analysed. Here,
we obtained statistical distributions for each of the SKUs, based on the filling speeds realized from the
1st of January until the end of August. By making use of statistical distributions, we include variation in
the production process and approach the real life production process better. Determining the statistical
distributions was done by the same procedure as for the processing times on the different kettles. The
different distributions used for the processing times at each filling station, are depicted in Table 8.
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Table 8: Suggested distributions for the processing times of each SKU type at the different filling stations.

Filling station SKU type Suggested distribution

FS9 18 Gamma (3p) (γ = 0.341, α = 4.422, β = 0.122)
FS9 50 Gamma (3p) (γ = 0.470, α = 3.587, β = 0.316)
FS9 180 Gamma (3p) (γ = 1.565, α = 6.127, β = 0.082)
FS1 18 Gamma (3p) (γ = 0.518, α = 1.744, β = 0.150)
FS6 50 Gamma (3p) (γ = 1.034, α = 1.352, β = 0.486)
FS6 180 Gamma (3p) (γ = 1.490, α = 5.119, β = 0.193)

The processing times of each SKU at the filling station all follow the gamma distribution. We observed
that the test statistics for the gamma distributions were all more favorable in comparison to the normal,
lognormal, weibull and logistic distributions. The test statistics for each of the distributions are depicted in
Appendix G. The test statistics are performed with an α value of 0.05. If the test statistic is larger than the
critical value, we reject the H0 hypothesis in which we assume that the data follows the suggested distribution
function. If the critical values are fairly close to the test statistic values, we will still accept the suggested
distribution, as it is more likely to follow the proposed distribution instead of an empirical distribution. In
case two of the three test statistics fail to reject the H0, we accept that distribution and will not further seek
for an empirical distribution. All the test statistics that fail to reject the H0, are marked green.

Cycle time individual process steps
We described the layout of the production lines earlier in terms of flowcharts and their individual processing
steps. Each of these individual process steps have their own cycle times and capacity. Table 9 depicts the
different cycle times as measured in the filling process.

Table 9: Technical specifications of the individual processing steps for both production lines.

Production line R109 Production line U400
Process step Processing time (sec) Capacity (units) Processing time (sec) Capacity (units)
Labeling machine 3.5 1 3.5 1
Conveyor 1 225 96 105 96
Conveyor 2 320 48 320 32
Conveyor 3 190 9 105 9
Conveyor 4 40-90 9 40-90 9
Conveyor 5 10 5 85 12
Lift module (up) 13 3 n.a. n.a.
Slat conveyor buffer 530 65 n.a. n.a.
Lift module (down) 13 3 n.a. n.a.
Conveyor to robot 15 5 7.5 5

4.2.4 EOL-settings

For the EOL components, we consider the slat conveyor and its lift sections, the conveyor belts towards the
palletizing robot, the palletizing robot and the plastic wrapping machine. In this section, the filled SKUs are
palletized after which they can be stored in the warehouse.

Palletizing robot
The palletizing robot is, as described in section 2.3.1, failure prone and unreliable. Based on data from
the maintenance department, we decided to create three different error profiles for the robot. These error
profiles are based on a review of the robot that has been ongoing for the last 10 weeks. In this review, the
maintenance department monitored and logged each of the machine’s failures, manually. The different error
profiles that we integrated in the simulation model are: technical, operational and logistical. These failures
capture the most common errors, such as issues with regards to the weight checker, the plastic wrapping
machine and the robot itself. We make use of these error profiles as they all ensure that the palletizing robot
stops working whenever one of the failures occur.
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As there is no data logged by Shell in which the total duration of the stop is monitored, we logged data
ourselves. This data represents 28 different instances in which the total downtime for the palletizing robot
has been monitored. These downtimes are then averaged in to the MTTR. For each of the failure profiles, we
constructed a statistical distribution based on the number of failures per failure profile, that have occurred in
the total time span of 10 weeks. To construct the availability of the palletizing robot, we calculated the total
time that the palletizing was actual operating based on the total pallets that have been processed during
that time span. This resulted in a MTTR of around 16.82 minutes. We consider the Time To Repair (TTR)
as a random variable, with the following distribution: TTR ∼ Erlang(25:24,17:57). In Table 10, we define
the MTBF, MTTR and availability per failure profile for the palletizing robot.

Table 10: Failure count per failure type and their MTBF, MTTR and total availability.

Week Logistical Technical Operational
1 1 57 0
2 3 42 1
3 0 7 1
4 1 30 0
5 4 38 1
6 3 37 2
7 4 31 3
8 6 17 0
9 0 20 0
10 1 20 4

Average of failures (per week) 2.30 29.90 1.20
Average of palletizing time (min.) 880 880 880
MTBF (min.) 382.49 29.42 733.11
MTTR (min.) 16.82 16.82 16.82
Availability (%) 96% 64% 98%

Plastic wrapping machine
For the plastic wrapping machine, we consider a constant processing time for each of the finished pallets.
This is verified with the maintenance department and manually checked during the attendance of several
wrapping procedures for different SKU types. The processing time of each pallet is fixed at 1:45 minutes. We
do not take the failures of the plastic wrapping machine into account, as these failures are again connected
to the palletizing robot.

4.3 Output of the simulation model

The output of the simulation model is the data that is obtained after each run. For this simulation model, we
make use of KPIs that indicate the waiting time in the production process, and the daily production numbers.
Shell does usually not make use of other KPIs, other than the total volume produced. Therefore, we introduce
two other KPIs that will help in quantifying the bottlenecks at the filling process and EOL-section. First, we
gather information regarding the total waiting time on the scrape buffer vessel. The blocking of this vessel
results in the potential stoppages of the production process since a finished batch cannot be filled. With this
KPI, we can quantify how the production process suffers from a shifting bottleneck. Second, we make use of
the average filling time for a production order, since this KPI indicates per SKU type the time it takes for
the scrape buffer vessel to be completely empty. At last, we are interested in the average daily volume, on
each of the production lines.

4.4 Experimental design

In this section, we further explain the different experiments that will be performed within the simulation
model. As our goal is to indicate the effect of the shifting bottleneck in the production process due to
the inefficient EOL-section and the filling section, we set-up the following experiments that we will use to
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gather results with. Shell wants to gather information regarding the specifications of a palletizing robot that
would remove the bottleneck from the filling and EOL-section. We do not make use of a standard Design Of
Experiments (DOE) such as 2k factorial, as we first want to gain insights in the individual effects for each of
the improvement scenarios.

In the current situation, the robot is unreliable due to its low availability and its capacity. To obtain
information regarding the specifications of a robot that meets the current demand of the manufacturing
plant, we test for different availability and capacity settings (as the current robot’s OEE fails to meet current
targets).

Under the assumption that the robot does not have the capacity to process all of the SKUs demanded per
hour, we proceed by increasing the capacity of the palletizing robot. Increasing capacity is currently not
possible with the current robot, since it is already running at its maximum performance, however, it creates
valuable insights in the desired palletizing capacities and the specifications that a likely new robot should
have. We experiment with increasing the palletizing speeds by 125%, 150%, 200% and 400%. These factors
were obtained in discussions with the engineering department, to obtain insights in the desired capacity for
the palletizing robot, that would result in removal of the bottleneck at the palletizing robot.

The second set of experiments relate to an increase in the availability of the palletizing robot. With the
current efforts of the maintenance department and their aim to increase the availability by focusing on the
most occurring mistakes, we analyse what the effect of the availability value is on the performance of the
production process. In agreement with the engineering department we decided that a robot should be having
an availability target of at least 95%. This is currently unrealistic due to its unreliable nature, but we test
for different availability values to search for an improvement in cycle and waiting times. For this set of
experiments, we are only interested in the effect of the overall palletizing availability on the waiting time
in the production process. Hence, we only change the availability factor of the palletizing robot in Plant
Simulation, which results in a change in the MTBF of the robot. For the MTTR, we will not make any
additional changes. We experiment with availability values ranging from 60.2% (baseline), 70%, 80%, 90%
and 95%, as discussed with Ghent’s senior engineer.

At last, we proceed with experiments with regards to the set-up of the filling stations. Here, we previously
observed that filling of 18 kg pails can be time-consuming (Table 5) and takes significantly longer for an
order to complete, due to the large number of SKUs that need be filled. Therefore, we analyse the impact
of a multi filling station for 18 kg SKUs, which allows to fill multiple SKUs at once. We only take in to
account that the potential new filling machine has the ability to process two SKUs at the same time and
that therefore, the processing time is reduced by 50%. Increasing the filling capacity by more than two SKUs
at the same time is hardly achievable in practice, due to the complexity of pumping greases through pipes.
We constructed new statistical distributions for filling station 1 and 9, for half the processing times. Filling
station 1 uses distribution Γ(2.403, 3.530) with a threshold parameter of 14.75. For filling station 9, the new
distribution is given by Γ(4.790, 3.640) with a threshold parameter of 9.13.

Table 11: Experimental design of the experiments performed to obtain the effects of the different measure-
ments to improve the filling and EOL-section.

Experiment
Processing speed

palletizing robot (%)
Availability

palletizing robot (%)
Avg. processing speed

fill station 1 (sec.)
Avg. processing speed
fill station 9 18 kg (sec.)

1 125 60.2 46.50 51.10
2 150 60.2 46.50 51.10
3 200 60.2 46.50 51.10
4 400 60.2 46.50 51.10
5 100 70 46.50 51.10
6 100 80 46.50 51.10
7 100 90 46.50 51.10
8 100 95 46.50 51.10
9 100 60.2 23.25 51.10
10 100 60.2 46.50 25.55
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After the individual effects, we proceed by using a fractional factorial design (23−1) for the interaction
effects between the different improvement scenarios. As we deal with three different process variables and
we analysed the individual effects separately, we obtain a design with four different experiments. Table
12 depicts the additional set of experiments between the best performing individual improvement scenarios
(obtained from the individual effect experiments).

Table 12: Further experiments performed to obtain the interaction effects between the best performing
improvement scenarios

Experiment
Best performing

robot speed
Best performing
robot availability

Best performing
filling station capacity

Baseline Not implemented Not implemented Not implemented
12 Implemented Implemented Not implemented
12 Implemented Implemented Implemented
13 Not implemented Implemented Implemented
14 Implemented Not implemented Implemented

4.5 Verification and validation

This section explains both the verification and validation of the simulation model. This is a crucial step
in comparing the model to the real life production process, and ensure that the production philosophy and
individual process steps as found in the production process, are translated in to the simulation model.

4.5.1 Verification

Verification is a process that mostly allows for the removal of errors within the simulation model. According
to Law (2015), debugging can be used to verify whether or not the assumptions and concept that has been
created on paper, are translated in to useful programming code and logic. We verified our simulation model
after implementation of each method (programming code that implements the production logic in to the
model). By means of debugging we removed all the errors that were present in the system. For debugging
purposes, we used 70 production orders for both the production lines and obtained zero errors. Another
method of debugging is enabling peer reviews to check and verify the assumptions that have been made in
advance and were translated in to the simulation model. At Shell, we verified the simulation with both the
deputy production manager and the senior project engineer. Here, we concluded that all the production steps
as found in the production process, are correctly translated to a simulation model.

4.5.2 Validation

For the validation of the simulation model, we consider the output of two KPIs after a simulation run. First,
we validate the model by analysing the total volume produced in the simulation model and compare that to
the current production parameters. Second, we use the total number of batches produced as an indication of
the effectiveness of the bottleneck scheduling method. In section 4.3 we consider different output parameters
for the production process. However, the average waiting time on the scrape buffer vessel and the average
filling time per production order, are currently not used and actively logged. Therefore, we only validate
the model with the total volume and the number of batches produced. As Shell’s scheduling and planning
department uses fixed one week schedules for the production process, it is generally harder to determine the
planning for an 8-week ahead period since these schedules are subject to change. Nevertheless, we still expect
similar total numbers for both KPIs as the forecasted demanded generally needs to be met. Table 13 depicts
the validation of the simulation for R109.
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Table 13: Validation of the simulation model for production line R109

R109
Number
of batches

Avg. batches
per week

Total volume
(tons)

Avg. volume
per week (tons)

Realized 177 19.7 1395.7 155.0
Simulated 171 19.0 1372.4 152.5
Difference 6 0.7 23.3 2.5
Percentage of total (%) 3.34 3.55 1.67 1.61

For production line R109, we observe slight differences in the simulation model with regards to the realized
production data. On average, the simulation model is slightly more pessimistic as in practice we produce
3.55% more batches. As the input schedules were not fixed, it means that changes could still be made to
the fixed schedules and that in this case, extra batches could be produced in the production process. This is
something we do not take in to account in the current model. At last, we analyse the total volume realized
in the time frame of the input production schedule. Here, we observe minor differences of 1.67% in the total
volume realized versus the simulated total volume. This difference is mostly explained due to the variation in
batch yields being different than the realized batch volumes. As the chemical process itself does not always
guarantee the same batch volumes, we observe more volume produced. Based on this data, we conclude that
our simulation model accurately simulates the production situation regarding production line R109. Table
14 validates the simulation model for U400.

Table 14: Validation of the simulation model for production line U400

U400
Number
of batches

Avg. batches
per week

Total volume
(tons)

Avg. volume
per week (tons)

Realized 139 15.4 729.7 81.2
Simulated 132 14.7 716.3 79.6
Difference 7 0.7 13.4 1.6
Percentage of total (%) 5.04 4.55 1.83 1.97

Table 14 describes more or less the same situation as found at the validation of production line R109. Here,
we realized slightly more batches and volume than scheduled. We observed that the simulation model was
not able to finish the complete production schedule, which was likely too optimistically created, and that
too many batches were scheduled in the eight week period that we used for the input schedule. In general,
there were around 5.04% more batches realized and 1.83% more volume realized, than scheduled. With these
numbers, we conclude that we can accurately enough simulate the production process.

4.5.3 Warm-up period and number of replications

Due to the various types of simulation models, we need to make a distinction between our model and the
other simulation models. In theory, we have a simulation model whose output is either dependent on the
initial conditions of the system or which is not dependent on the initial conditions of the simulation model. In
our model, we start each simulation with the same initial conditions, which is an empty system with no jobs
in it. On the beginning of the simulation, we start the initialization which loads all the production orders in
to the system. Also, our model is not dependent on the run length, but rather on the different production
orders on both production lines that occur simultaneously. Therefore, we consider the steady state behavior
of the system, and not its transient behavior.

The second distinction is the distinction in terminating and non-terminating simulation models. Terminating
simulation models have a natural event ending the simulation run, such as a factory closing at the end of
the day. Non-terminating models have no such event. In our model, we do not have a natural event causing
the end of the simulation run, therefore we consider our simulation model as a non-terminating variant.
According to Law [14], we need to determine the warm-up period and number of replications as we deal with
a non-terminating simulation. This is due to fact the our output values are in the beginning of the simulation
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run dependent on the initial state of the system.

In other to make the output values of the simulation model independent, we delete a fraction of the beginning
input values to reach the steady state values. To determine the warm-up period we use Welch’s graphical
method, as, described by Law [29]. We conclude that a total of 17 periods/production days, is enough to
reach a steady-state value for the total volume produced on a daily basis. Appendix I describes both the
method used and the graphical outcomes to determine the warm-up period.

To determine the number of replications, we make use of a method as described by Law (pp. 493-497) [29].
We perform different replications from our simulation model until the width of the confidence interval of
the average output is smaller than the standard error (γ). Appendix I further describes the method used to
determine the number of replications. We choose for a total of three replications per experiment to obtain
statistically significant results for our output values.

For the run length of the simulation study, we discussed internally what would be a sufficient simulation
period. At first, we chose for a total run length of 52 weeks to mimic the behaviour of a full production year.
However, due to the long computation time of 60-65 minutes per simulation run, we use a total simulation
time of 26 weeks or 182 days to reduce the simulation run time to around 30 minutes. To obtain the full
effects of the experiments over a full production year, we multiply the outcome of the different simulation
runs by two (365 days).

4.6 Conclusion

To answer the research question “What should the simulation model look like for Shell’s GMP and what
possible strategies could be implemented to remove the current bottlenecks that are observed in the production
process?”, we created a simulation model in Tecnomatix Plant Simulation. First, we described the conceptual
simulation model by a general description of the different production lines. Then, we proceeded with its scope,
the logical flowcharts that translate the process dynamics into logical flowcharts, and the input parameters
for the simulation model. We verified and validated our simulation model. Verifying was performed by
stepping through and debugging the simulation model. We concluded that the model is bug-free and runs
according to the steps performed in the production process. Validating our simulation model was done by
comparing the simulation output to the output from March until the end of April 2021. Here, we concluded
that the simulation model is accurate enough to simulate the simulation model as the realized production
volumes and the average number of batches produced are deviating between one and five percent of the
simulated volume and the average number of batches produced. We proceeded with constructing different
strategies/experiments which would result in improving the efficiency of the filling and EOL-section in the
production process. We constructed a main KPI, which is the total waiting time that is incurred on the
scrape buffer vessel. This is the waiting time that is accumulated in the production process whenever the
filling process is not efficient. It blocks the entry of the newly produced batch that is coming of the finishing
kettle and needs to be filled in SKUs. For each of the experiments, we perform a total of three replications,
with a run length of 183 days (half a year) and a warm-up period of around 17 days.
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production process was reduced to 4.4-5.1 hours. This means that further improving the cycle times of FS1
reduces the overall waiting time even further. As this is not a realistic scenario due to the technical limits of
the filling equipment, we did not consider further analysing this scenario.

5.3 Best improvement scenario

Based on the additional experiments, we choose experiment 13 as the scenario that improves the current
state of the production process, the best. For this experiment, we increase the robot availability to 90% and
increase the filling capacity of filling station 1, by implementing a second filling hose. We can translate the
number of waiting hours in the production process for the best set of experiments, to a total number of extra
batches that could theoretically be produced extra. We obtain the extra batches by dividing the total waiting
time by the weighted average bottleneck time for the R1094. Table 16 depicts the results regarding the extra
batches that could be produced for the best experiments between both the individual and interaction effects.

Table 16: Overview of the extra batches that could be produced after implementation of the best experiments

Best performing

experiments

Baseline waiting

time (hours)

Scenario waiting

time (hours)

Improvement

(hours)

Theoretical extra

batches produced

Annual extra

batches produced

Extra volume

(tons)

400% palletizing speed 98.8 70.0 28.8 6 12 97

90% robot availability 98.8 70.0 28.8 6 12 97

Increased FS1 capacity 98.8 31.6 67.2 15 30 242

90% robot availability

and increased FS1 capacity
98.8 23.7 75.1 17 34 275

From table 16, we observe that we could produce 34 extra batches in a future state on a full production
year. For production line R109, this equals a total extra volume of around 275 tons5 of greases annually. In
comparison to the total volume produced on this production line, that results in a total capacity improvement
of 4.7%.

Now, we want to ensure that the experiment in which we increase the robot’s availability and the filling
capacity for fill station 1 is statistically significant compared to our baseline scenario. We perform a paired
t-test in Minitab on the average waiting times in the production process, with an α value of 5%. In the paired
t-test, the H0 states that the difference in means of both samples equals 0. In our situation, we reject the
H0 as our p-value is 0.012, which is smaller than 0.05. This concludes that we have statistically significant
differences between the baseline scenario and the experiment in which we increase the robot’s availability
and increase the filling capacity of FS1.

5.4 Cost indication of improvement scenarios and payback period

From the engineering department, we obtained cost indications for a new palletizing robot with the desired
availability/processing speed and the increased filling capacity for filling station 1. Next to the total cost,
we also obtained an fictional value6 of the net margin per produced kg of grease from the sales department.
In table 17, the total investment costs, total cash flow, and the payback period for each of the improvement
scenarios, are depicted. The payback period is determined as the total investment costs divided by the annual
cash flow.

Table 17: Overview of investment costs, annual cashflow and payback period per investment scenario

Improvement scenario Investment costs (k€) Annual cash flow (k€) Payback period (months)
Palletizing speed 400% 300 102 35.3
Robot availability 90% 300 102 35.3
Increased FS1 capacity 350 254 16.5
Robot availability 90%
and increased FS1 capacity

650 289 27.0

4Production line R109 only suffers from waiting times in the process
5Average batch sizes for the R109 of around 8080 kg
6The actual net margin per kg grease will not be used due to confidentiality
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Based on table 17, we can conclude that increasing the capacity of FS1, yields the shortest pay back period
of 16.5 months. It does not necessarily yield the largest improvement with regards to waiting time reduction
(as this is achieved by implementing both a new robot and increasing filling line capacities), but it is cost
wise the best option to currently invest in.

5.5 Conclusion

In this chapter, we made use of the DES model to answer the following research question: “Which model
configurations result in the most efficient way of removing the current production bottlenecks and obtain
more production capacity?”.

We first simulated our three individual factors (experimental design), to understand the dynamics of each
intervention with regards to the production capacity, the filling cycle times and the total volume produced.
With regards to the production capacity, the increase of the filling capacity for 18 kg SKUs on production
line R109 (experiment 9), yielded the best reduction in the process waiting times. With regards to the filling
cycle times, we noticed that experiment 7 (increase of robot’s availability to 90%) and experiment 9 reduced
the average cycle filling times, the most. With regards to the total volume produced, we did not observe any
significant differences between the experiments.

Combining the best performing experiments and simulating their future states, resulted in 17 extra produced
batches per six months, or 34 annually. For production line R109, this yield an additional production capacity
of 4.7%. This is realized when the palletizing robot’s availability is increased to 90% and the filling capacities
of 18 kg SKUs on production line R109, are doubled. We conclude that the filling speeds at filling station 1
(18 kg SKUs) is a bottleneck for production line R109, as this causes excessive waiting times due to the batch
sizes being twice the size as for production line U400. In case 18 kg SKUs are filled, it takes longer than
the weighted average bottleneck time (263 minutes) to empty the scrape buffer vessel. For production line
U400, the palletizing robot is a bottleneck, as it is directly connected to the EOL-section. This production
line benefits from the increased availability, but it does not generate waiting times since the weighted average
processing time for the batches on this production line are longer (383 minutes) than the filling times. We also
obtained statistically significant results in comparing the baseline scenario to the best additional experiment
(increased availability and increased palletizing capacity FS1). To conclude, the best strategy for improving
the current state of the production process is to invest in increased capacity for filling station 1, as this
investment proposal has the lowest pay back period of 16.5 months.
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6 Implementation

In this section we answer the final sub-question: “How can Shell Ghent implement the suggested simulation
model within their production lines to remove the current bottlenecks?”, we briefly describe the priorities for
Shell Ghent in order to remove their current production waiting time as observed in the production process
of production line R109.

6.1 Bottleneck prioritization

As observed in section 5.5, does Shell’s current production process deal with two bottlenecks. In order of
the impact each of the bottlenecks has on the production process, we prioritize the bottlenecks. Shell deals
with the inefficient and slow filling process and the low OEE of the palletizing robot. In order to remove
the current production waiting time, Shell should consider improving the situation regarding the capacities
of the filling stations first, as this problem accounts for 68% of the total waiting time as observed in the
production process. Also, this improvement scenario has the lowest payback period and hence, is the current
best investment in order to reduce process waiting times. This problem is twofold, since it comes down to
either improving the capacity of the filling stations or by reducing the overall set-up times and cycle times for
filling orders. We only researched the effect of improved filling, therefore we suggest improving the baseline
scenario by the implementation of an additional filling hose for the FS1 filling station. Besides the improved
filling capacity, we observed that this adjustment does not solely reduce the waiting times to a minimum,
since adjustments of 400-800% capacity could only reduce this waiting time to a minimum of 4-5 hours.
Therefore, it should be required to further analyse the overall cycle times per process step in the filling
process for especially 18 kg SKUs, in order to minimize the potential waiting time in the process.

The most useful tool for reducing the cycle times for the filling process is a traditional variant of Value Stream
Mapping VSM. We primarily used VSM to identify the current bottleneck and create insights in the potential
benefits for future production states. Within VSM the activities and cycle times for each of the processes
is further analysed and wasteful activities that do not add any extra value to the customer, are evaluated
and removed. For this method, the activities should primarily be analysed on an operational level. This is
especially necessary for 18 kg SKUs due to the extra steps that need to be taken by operators to ensure the
right filling process. Next to the 18 kg SKUs, it is also useful to use VSM to further streamline the process
of combined production orders.

A short term solution that would decrease the current production waiting time, would be the further focus on
Root Cause Analysis RCA from the maintenance department with regards to the palletizing robot. Previous
efforts from the maintenance department have already improved the OEE of the robot from around 22%
to 60.2%, so it has proven to be a valuable concept within maintenance engineering to further optimize the
palletizing robot’s availability. This could potentially help Shell increase the palletizing robot’s availability
to around 80%, hence, reduce the overall waiting time in the production process. Although we could only
reduce the number of production hours by 28,8, this would still result in an extra volume of 97 tons annually.

6.2 Conclusion

To answer the sub-question: “How can Shell Ghent implement the suggested simulation model within their
production lines to remove the current bottlenecks?”, we further discussed the results that we obtained from
section 5. Implementation of the suggested adjustments is a long-term strategy, that should be discussed
with senior management. Either a new palletizing robot that has the right specifications (at least a 90%
availability or 400% processing speeds) or the implementation of increased filling capacities for filling line
FS1, are CAPEX investments and need to be approved by both senior management as well as regional general
management. Therefore, the short term solution to make further use of RCA and to focus on the so called
”low hanging fruit” with regards to the breakdowns of the robot, would be recommended to reduce current
waiting times in the production process. On the longer term, we conclude that the investment proposal in
increasing filling capacity for fill stations 1, has the lowest payback period and should be prioritized first.
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7 Conclusions & recommendation

This chapter provides a conclusion to the main research question as stated in section 1.5. In section 7.1 we
present the overall conclusion to the conducted research. Section 7.2 addresses further research for Shell,
after which section 7.3 describes several recommendations. We conclude with the contribution to theory and
practice in section 7.4.

7.1 Research conclusion

Shell Ghent currently does not have the capacity to counter peak demand or uncertainty in the market or
deal with the implementation of R&D requests. To get an understanding on how to improve productivity
for their manufacturing plant and deal with the aforementioned factors, Shell Ghent wanted to gain more
insights in their current production performance and the potential presence of bottlenecks in their production
process. First, we analysed the main research question as stated in section 1.5:

How could Shell increase their production capacity by 8-12% on production lines R109 and U400 in order to
deal with rush orders, uncertainty in production demand and R&D test requests?

To understand and identify the bottleneck’s of Shell’s GMP, we answered sub-question 1: “How are pro-
duction lines R109 and U400 set up, used and where are current bottlenecks in the production process
observed?”. Production lines R109 and U400 are the two production lines which account for 78% of the total
volume produced annually. We observed that the current filling and EOL-processes are inefficient, and cause
multiple breakdowns and complete stoppages of the production lines. For the EOL-section, we observed a
bottleneck in which the current palletizing robot is causing on average 20 minutes of breakdowns per hour.
Over a 12-week period it also fails to meet the Overall Equipment Effectiveness OEE target of 65%. Without
a functioning palletizing robot, the SKUs that need to be palletized will not be processed and remain in the
current system. The other bottleneck is therefore the reduced filling capacities on production lines R109 and
U400, which are in some cases 54% slower than the capacities used by the scheduling department. This is
not only due to the operators being interrupted with their filling activities, but also due to set-up times for
different SKUs and the technical limitations of the current filling process. Especially for 18 kg SKUs, the
current filling capacities are cumbersome and result in process delays.

In section 3, we answered the second sub-question: “Which methods are available within the literature to
address the bottlenecks found in the production process?”. We found that Discrete Event Simulation DES
is a powerful tool to mimic a production process and its stochastic behaviour. In combination with Value
Stream Mapping VSM, in which we analyse a baseline production process with different future states after
implementation of certain improvement scenarios, we could create insights in the most inefficiencies of a
production process and obtain information with regards to the best performing improvement scenarios.

After the literature review, we answered the third sub-question “What should the simulation model look like
for Shell’s GMP and what possible strategies could be implemented to remove the current bottlenecks that
are observed in the production process?” (section 4). The created simulation model for production lines R109
and U400 focuses on the production of direct batches. This simulation model was validated with production
data from March and April 2022, and indicated that it is accurate enough to be used as a representation of
the production process (2-5% deviation to the realized production volumes). In this simulation model, we
make use of a 17-day warm-up period and use a total run-length of around 183 days. To obtain statistically
significant results we make use of three replications per simulation run.

With the use of the simulation model, we answered our fourth sub-question: “Which model configuration
results in the most efficient way of removing the current production bottlenecks and obtain more production
capacity?” (sextion 5). We observed during the different experiments that a palletizing availability of 90%
is indifferent to a palletizing robot with a palletizing speed of 400%. Both adjustments reduced the overall
waiting time from 98.8 hours (baseline scenario) to around 70 hours. The implementation of extra filling
capacity for 18 kg SKUs for production line R109, yielded the overall best improvements for the individual
factors, both in terms of waiting time (31.6 hours) and average filling cycle time (338.9 minutes) per filling
order. For the interaction effects, we obtained the best results when we combined an availability of 90% and
increased filling capacity for 18 kg SKUs on R109. The overall waiting time was found to be 23.7 hours,
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which is a total reduction of 75.1 hours in comparison to the baseline scenario. This reduction translate to
an additional volume of 275 tons for production line R109 (34 batches annually), which is a total of 4,7%
of the total volume produced on this production line. For U400, we did obtain efficiency improvements but
this did not translate to productivity improvements since this production line is less affected by the current
bottlenecks of the filling and EOL process.

Finally, we answer sub-question 5: “How can Shell Ghent implement the suggested simulation model within
their production lines to remove the current bottlenecks?”. It currently is possible to remove the bottlenecks
regarding the palletizing robot. We observed that a palletizing robot with an availability of 80-90%, with the
same capacity of the current robot, is able to reduce the waiting time to 70 hours (reduction of 28.8 hours).
However, it currently is not possible to completely remove the bottleneck regarding the filling processes of 18
kg SKUs. This is mostly due to the large batch sizes of production line R109 and the large number of SKUs
that we need to fill. The remaining delays were caused by combined filling orders of multiple SKUs, which
cause increased complexity in the production process and increases the set-up times for filling orders. Focus
should therefore be on the overall reduction of set-up times in the filling process and increase efficiency for
this process. Implementation of improved filling capacity for filling station 1 is the best investment option,
considering its payback period (16.5 months).

7.2 Further research

In this section, we describe extra research possibilities for Shell’s manufacturing plant, to further improve
the productivity of their production processes.

7.2.1 Indirect filling process

First, we address the inefficiencies regarding the filling station. As we observed does production line R109
suffer from the direct filling of SKUs, and creates additional waiting time in the production process. Produc-
tion line U400 does not suffer from this problem, but we observed for the filling process of this production
line that indirect fills (filling process from batches that are produced by the hopper buffers) cause another
problem. The problem observed is the total time it takes to empty the hopper buffers of around 45 tons in
time, before another production run of 45 tons arrives at that same buffer. As we observed earlier in table
5, are the realized filling capacities significantly lower than the scheduled capacities (used by the scheduling
department). This problem is slightly worse for indirect fills, as we observed during our data-analysis. With
lower filling capacity for indirect fills, the production process can be halted on a more frequent basis. As
we did not consider the indirect filling process to our scope, it should be an important problem to solve in
Shell’s future. Even more so because, as figure H2 depicts in appendix H, the ratio of direct versus indirect
filled batches is only declining over the years. For U400 this means that in the future, more batches will be
produced and filled by a indirect manner. Therefore, more production stoppages will be encountered in case
the filling capacities are not up to the targets used by the scheduling department.

7.2.2 Production lines R103, R105 and R106

Second, we did not take the other three production lines R103, R105 and R106 in to consideration within
this research. This means that we left 22% of the total annual volume produced, out of the scope of this
research. This was mainly done due to time constraints and the fact that current production issues could
already be exposed by only simulating production lines R109 and U400. Including these production lines
will give a better estimation of the actual waiting times in the production process, since the filling process of
these lines are often done simultaneously when filling from either production line U400 or R109. In practice,
the waiting time in the production process could therefore be even more, and simulating this scenario could
in potential net even more production capacity. This is in scientific terms often referred to as a ”digital twin”
of the manufacturing process, but could help Shell with their capital investment decision-making process.

7.2.3 Order complexity combined filling orders

We observed increased filling complexity and increased filling cycle times for combined filling orders (multiple
SKU types). As explained in section 5.2, do combined filling orders cause excessive waiting times in the
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production process. For this problem, we recommend to create more insights with regards to the set-up
times and the overall efficiency of switching from SKU types in the filling process. First, VSM or Single-
Minute Exchange of Die could be used to identify and eliminate waste in the set-up process and obtain a
faster filling process for combined orders. If this is not suitable for this type of problem, a planning and
scheduling solution could also reduce the overall waiting time in the process. For this matter,it would be
smart to further research the sequence in which Shell Ghent fills their SKUs from the production line and
to research if making longer production runs (more batches of the same product), would reduce the overall
waiting time in the production process. Also, more produced batches would increase the overall holding and
inventory costs for the plant, therefore we are looking for an optimization of the production run length and
the inventory holding costs.

7.3 Recommendations

Finally, we give recommendations for Shell in using the developed simulation tool. For Shell, we will briefly
discuss the added value and the practical use of the simulation tool. The goal of this thesis is to improve
Shell’s current production capacity by focusing on certain inefficiencies in its production process. This goal
was realized by the creation and implementation of a DES tool, to both quantify the current impact of
bottlenecks towards the plant’s productivity, and incorporate the process’ stochastic behaviour.

With the created tool, Shell is able to identify the current inefficiencies in their production lines R109 and
U400. It also helps them to identify wasteful sources within their filling and EOL-section. For the operations
department, this tool could be used to verify the implementation of certain process adjustments, such as
the impact of reduced bottleneck times within the core process on the overall production capacity, or the
implementation of extra buffers in the EOL-section to reduce extra waiting times at different EOL-processes.

Also, the operations department benefits from the created simulation tool as their decision making process
regarding batches that are produced on Fridays, will be better streamlined. With the implemented stochastic
behaviour of the core process (statistical distributions for all products on the different kettles), the operations
department can produce multiple simulation runs to verify whether or not starting a single batch during the
Friday’s last production shift, could be a realistic scenario. In some cases, batches are not started on the
autoclave since there is not enough time to ensure that this batch could reach the finishing kettle before the
end of the shift. With the simulation tool and the added stochastic characteristics of the production process,
the operations department could therefore increase the current productivity for batches produced on Friday
evening, by making use of the simulation model.

Furthermore, the local planning and scheduling department can use the simulation tool to verify one-week
ahead schedules, and the impact of accepting rush orders in to the current production schedule. The schedul-
ing department could create a data set of the normal one-week ahead planning. After that, it is possible
to add the specific production orders that are marked as ”rush orders” to the schedule. With the new and
adjusted planning, the scheduling department obtains information on the total waiting time accrued or the
extra yielded volume as a result of the implemented rush orders in the new production schedule.

Another benefit for the scheduling department is the experiments that could be performed with variable
product runs. During the first months, the scheduling department wondered about the impact of longer
production runs (more batches of the same product type) and the effect of this change to the productivity
of the plant. Shell’s manufacturing plant has always been a manufacturer of specialty greases, which is also
the reason why it has a more complex product portfolio in comparison to other grease manufacturing plants.
Since most of the planning is done with help of an ERP-system and manual adjustments, the scheduling
department could now test for different production run lengths and different sequences.

7.4 Contribution to theory and practice

During literature review, we have noticed that Discrete Event Simulation (DES) is a popular tool in man-
ufacturing, healthcare ad logistic processes. Existing studies have mostly applied DES to the conventional
manufacturing industry (metal or automotive industry). Using DES for the chemical industry, has not ex-
plicitly been named or been addressed in literature. Grease manufacturing is a process that has been known
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for decades and falls within the conventional oil and gas/chemical industry. For this sector, it is known that
adoption of new technologies and methods of analysing the performance of manufacturing plants, can be
extremely challenging. This study shows that new technologies such as DES can be applied for this kind of
plants, and can help in improving baseline productivity performances of production plants.

The practical contribution is verified and acknowledged by Shell. With the current efforts in the identified
and quantified bottlenecks, Shell has the information on which bottlenecks to address first in order to gain
extra production capacity. The simulation model provides the plant with an extra layer to support and verify
investment decisions. Also, the simulation model ensures the collection of extra data (production waiting time
and cycle time per SKU type) that would otherwise not be logged by either the maintenance or operations
department.
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Appendices

A Production process

This section describes the production processes of U100 (R109, R103, R105 and R106) and U400 in more
detail.

A.1 Conventional warehouse

The conventional warehouse is a manually operated warehouse that provides storage to all additives used in
the grease products, packaging materials for each of the SKUs, storage for special Schwerdtel filling tanks
and storage for Intermediate Bulk Containers (IBC). For all products, their components are stored within the
conventional warehouse. The on-site logistics department, a third party, provides support to the production
activities that happen on-site. Their tasks are amongst others, ensuring that all incoming raw materials,
additives, and packaging materials are stored, replenishment of thickening components and additives to the
U100 and U400, storage of palletized end-products in the AS/RS warehouse and retrieval of products for
outbound logistics to end-customers.

From the production department, a request for thickening components and additives is communicated weekly
from the production department to the logistic third-party based on the production schedule for the next
week. Here, an overview of the components that are required to produce the difference is stated. The logistic
operators collect the pallets with additives and thickening components and store them within the preparation
section. In case any of the production units need additives or other components that are required during
production, the third party ensures that both units are replenished in a Just in Time (JIT) manner. On
several occasions, operators need to manually retrieve material from the warehouses as a result of lack of
communication between both the production department and the logistics operator. This results in a loss of
effective production time in case the operator is away from its workstation (core process or filling station).

A.2 Preparation section

Figure A.1: Fully weighted addi-
tives and thickening components
for Gadus S2 V220C.

The preparation section is the second step in the production process for
products from both production units. This process step mainly covers
the pre-treatment of the batches by preparing the grease thickeners and
additives. Each of the production units has their own preparation section.
Within this section, different operational activities are performed to ensure
that the core process section can be initiated. For every batch, operators
collect the thickening components and the additives required to produce
one batch. Operators manually weigh the components according to the
quantities needed as described in the Method of Manufacturing (MOM).
With different thickening types in the greases, different components are
needed. For the Gadus S3 V220C, a grease with a Lithium-Complex thick-
ener, the following components are for example needed: Lithium, Boric
acid and a LUBAD 638 additive. Each of the three products is originated
from the conventional warehouse and needs to be weighted in the prepa-
ration section. Figure A.1 depicts a fully weighted pallet with additives
and thickening components.

Within the U100, operators can directly add the mixture to the core
process after weighing the different components. The U400, where the
Polyurea line also shares the preparation section, is located further away
from the actual core process. Here, operators need to manually transport
the additive and thickening components to the process and use a forklift to
eventually get the mixture at the production platform. It occurs that operational mistakes are made during
this process, such as retrieving the wrong additives from the conventional warehouse or materials that have
not yet been approved by the laboratory.
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For operators, the behavior of the stirrer provides them with information on the hardness of the greases. This
is usually noted by the amperage of the stirrer and the cooling speed within the reactor. From experience,
operators ”know” that a higher stirrer amperage and temperature correspond to generally harder greases. A
hard grease has higher viscosities and is not always desired if that contradicts its product specifications. After
cooling in the R420 cooling kettle, the grease is pumped through the R430. Here, the last set of additives
are manually added by the manhole and, in case the grease requires it, a rework is done to obtain the right
hardness.

Reworking greases is rather time consuming and could take up to 45 minutes per rework cycle. For hard
greases, extra oil and additives are blended with the grease to obtain the right hardness. Greases which are
tested and turned out as too soft cannot be reworked and should be approved by the laboratory, for a potential
waiver. A waiver is an approval of a batch that could not meet the internal product specifications. One of
the Key Performance Indicators (KPI) for production is the First Time Right (FTR). This ratio describes
the number of right batches produced the first time divided by the total amount of batches produced. A
rework is not affecting whether a batch is produced the first time right. Therefore, this is still counted for as
a ”right” produced batch. Last year, the plant’s FTR was around 91% of all batches produced.

Within the U400, the final product is either pumped to the V440 vessel or to the hopper storage tanks.
Both the vessel and the tanks are in direct connection with filling station 9, but their urgency for filling is
different. From the V440, the product follows the direct filling route, and these products need to be urgently
filled. Whereas the products from the hoppers (V445, V446) are not in direct need of filling into SKUs,
the indirect filling route. In the hoppers, which are both dedicated to two products, a total of six different
batches are produced to completely fill the hoppers. In order to produce new batches for each of the hoppers,
it is mandatory to completely empty its contents. This could either be done by filling from filling station 9
or a separate filling section called the schwerdtel filling, which only fills 0,4 kg cartridges. We do not take
the schwerdtel filling during this research into account, since it’s a stand-alone filling section.

A.3.2 U100

U100s core process is characterized by the autoclave (R108) and the cooling kettle (R107), along with the
R109 finishing kettle. Major differences between both production units are the volume produced per batch
and the amount of hopper storages that is used to store products. Volume wise, the R109 can produce twice
as many greases as on the R430. It also a total of nine different hoppers, in comparison to the two hoppers
from the U400. For these hoppers, the same rules apply as for the hoppers from U400; in order to make
another production run for a product that is stored in a hopper, the hopper should be completely emptied.

Finished greases from the R109 also follow either the direct or the indirect filling route. For the direct filling
route, any finished product from the R109 is always directly pumped through to the V170 vessel. In this
vessel, the product can await to be filled by an operator at filling station one or six, depending on the type
of SKU. Filling station six is dedicated to the V170 vessel, and thus, dedicated to the direct filling route for
filling products in 50 and 180 kg SKUs. The indirect filling route is marked by filling from the hoppers. Each
of the hoppers is connected to so-called collectors, which connects the piping systems from the hoppers to
the filling sections. Filling from the hoppers is usually performed by both filling stations one and seven.

The R103 is a standalone reactor that produces clay greases. Its advantage is the production of clay greases
without making use of the R108 (autoclave) or R107 (cooling kettle). The batch sizes produced on the R103
are small in comparison to the other finishing kettles, varying from 1640-1690 kg of grease, depending on the
product. In total, four different products are created on the clay reactor. Operating this reactor is usually
performed by a single operator and could easily be performed next to operating the R109 or R106 production
kettles. Each of the batches takes around 460 minutes each to be finished and after finishing, the end-product
is always directly filled. No indirect filling route for this kettle exists. The R103 is equipped with a dedicated
filling station filling station 3, to prevent the increased frequency of changeovers when this type of product
is filled at other filling stations due to contamination hazards.

The next finishing kettle, the R106, is a finishing kettle that solely produces graphite greases in batches of
4200 up to 4500 kg. Its base grease is produced on either the R109 or R430 finishing kettles, after which it is
mixed in the R106 along with graphite particles. From the U400, it is not possible to pump greases directly

64



through to the R106 reactor within the U100 section due to the long distance between the production units
and the complexity of pumping grease over such a distance. Therefore, the products are manually filled in
180 kg drums in the U400 filling station, transported to the R106 finishing kettle, and manually emptied by
using a Graco pump. For a whole batch of grease from the U400, this corresponds to manually emptying
23 drums and subsequently filling another 23 products with the final product within the dedicated filling
station. Due to the contamination effect of graphite on both the kettle and the piping system, the R106 is
used as a dedicated and stand-alone finishing kettle.

According to the quality departments, are the kettles for each of the production units used to their full
potential. Since the core process follows the MOM, the product recipe which is based on mass percentages
for each of the products. Significant capacity improvements are not likely to be found within the kettle sizes,
but rather in reducing the operational failures due to retrieving wrong additives. Also, quality departments
described that the flushing process is also not subject to major capacity improvements, since this process is
key to maintaining product specifications which is achieved by the current flushing sequences.
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B Photos of the production process

(a) Filling station 9 (b) Filling station 4

(c) Filling station 6 at U100 (d) Filling station 7 at U100

Figure B1: Overview of different filling stations within the EOL section, where (a) originates from the U400
and rest of the pictures are located at the U100
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(a) Branching section and buffer after FS9 (b) Converyor belts to the palletzing robot from
FS9

(c) Palletising robot at the EOL section

Figure B2: Overview of different locations within the EOL section
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C Optimal start time of the next batch for the different bottleneck
scenarios

Table 18: Bottleneck scenarios and their optimal starting time for entering a new batch in to the production
system

Bottleneck

scenario

Bottleneck

current batch

Bottleneck

next batch
Optimal start time next batch

1 Autoclave (1) Autoclave (1) toptimal = t0 + tset−uptime

2 Autoclave (1) Cooling kettle (2) toptimal = t0 + (tck,0 − tac,1) + tset−up time

3 Autoclave (1) Finishing kettle (3) toptimal = t0 + (tck,0 − tac,1) + tset−up time

4 Cooling kettle (2) Autoclave (1) toptimal = t0 + (tck,0 − tac,1) + tset−up time

5 Cooling kettle (2) Cooling kettle (2) If (tac,1 > tck,0): toptimal = t0 + tset−up time

Else: toptimal = t0 + tset−uptime + (tck,0 − tac,1)

6 Cooling kettle (2) Finishing kettle (3) If (tck,0 − tac,1) and (tck,1 > tfc,0) toptimal= t0 + tset−up time + (tck,0 − tac,1)

Else if (tck,0 − tac,1) < 0 and (tck,1 > tfc,0): toptimal = t0 + tset−up time

Else if (tck,0 − tac,1) >= 0 and (tck1 < tfc0): toptimal = t0 + tsetup time + ((tck,0 − tac,1) + (tfc0 − tck1))

Else if (tck,0 − tac,1) < 0 and (tck,1 − tfc,0) < 0: toptimal = t0 + tset−up time + (tck,1 − tfc,0)

7 Finishing kettle (3) Autoclave (1) toptimal = t0 + tset−up time

8 Finishing kettle (3) Cooling kettle (2) toptimal = t0 + tset−up time + (tck,1 − tac,0)

9 Finishing kettle (3) Finishing kettle (3) toptimal = t0 + tset−up time + ((tck,0 + tfk,0)− (tac,1 + tck,1))

The column ”optimal start time next batch” refers to the multiple scenarios for each of the bottlenecks
scenarios in which a new product could optimally be started. t0 refers to the time in which the current batch
is finished on the autoclave and tset−uptime refers to the set-up time as incurred by the flushing procedure,
which will be discusses in the next section. At last, there are multiple possible scenarios for bottleneck
scenarios 5 and 6. These are all dependent on the differences in the starting time of the current batch on
the cooling kettle (tck,0), the finishing time of the next batch on the autoclave (tac,1), the finishing time of
the current batch on the finishing kettle (tfc,0) and the finishing time of the next batch on the cooling kettle
(tck,1).
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D Set-up times for production line R109 and U400

Table 19: Set-up time for the flushing procedures for production line R109 per product that is produced.

Product Set-up time Unit
CALIHAR 3,600.000 Sec
BGr(GHE) Nerita 0768 7,200.000 Sec
BGr(GHE) Rhodina BBZ 14,400.000 Sec
BGr(GHE) GdS2V220 2 18,000.000 Sec
BGR (GHE)GadS2V220AD 3,600.000 Sec
Alvania 1029 7,200.000 Sec
Alvania S 2 600.000 Sec
Rhodina 0616 3,600.000 Sec
Rhodina 0616 86,400.000 Sec
Nerita 0768C 6,000.000 Sec
SKF MT33 (SNF) 1,800.000 Sec
Sterak Grease 1 3,600.000 Sec
Rhodina BBZ 3,600.000 Sec
Rhodina BBZ 86,400.000 Sec
SKF MT47 10,800.000 Sec
Alvania 0854 3,000.000 Sec
Gadus S2 V220 2 3,600.000 Sec
Gadus S2 V220A 1.5 3,600.000 Sec
Gadus S2 V220AC 2 3,600.000 Sec
Gadus S2 V220 00 3,600.000 Sec
Gadus S2 V220AC 0 3,600.000 Sec
Gadus S3 V460 1.5 3,600.000 Sec
Gadus S2 V220 1 3,600.000 Sec
Gadus S2 V100 3 3,600.000 Sec
Gadus S2 V220 0 3,600.000 Sec
Gadus S2 V100 2 3,600.000 Sec
GadusRail S3 EUFR 4,200.000 Sec
GadusRail S3 EUDB 2,700.000 Sec
Gadus S1 V220 2 1,200.000 Sec
GadusRail S3 EU 3,000.000 Sec
Gadus S5 V42P 2.5 4,200.000 Sec
GadusRail S4 HS EUDB 4,200.000 Sec
GadusRail S4 HS EUFR 6,000.000 Sec
Gadus S2 V145KP 2 10,800.000 Sec
Gadus S5 V25Q 2.5 1,200.000 Sec
Gadus S2 V100Q 2 10,800.000 Sec
SL2400 6,000.000 Sec
SL 3239 4,200.000 Sec
SL 3240 6,000.000 Sec
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Table 20: Set-up time for the flushing procedures for production line U400 per product that is produced.

Product Set-up time Unit
GadusS3V460D 1e fase 3,600.000 Sec
GadusS4 OGK 0/00 1st 3,600.000 Sec
G S3 V460D 1.5 3,600.000 Sec
Gadus S3 V770D 1 28,800.000 Sec
BGr(GHE) GdS3V220C 2 3,600.000 Sec
BGR (GHE) Albida 0617-135C 2,400.000 Sec
BGR (GHE) Albida 0617-170C 0.000 Sec
BGR(GHE)G 43,200.000 Sec
BGR(GHE)GadS3V1002135C 2,400.000 Sec
BGR(GHE)GadS3V1002170C 0.000 Sec
FGr GHE GadS5V460 00 36,000.000 Sec
Retinax LX 2 INA 1,200.000 Sec
SKF GHG 1,200.000 Sec
Albida 0617 18,600.000 Sec
Gadus S2 V220 2 3,600.000 Sec
Gadus S3 V220C 2 7,200.000 Sec
Gadus S3 V460 2 3,600.000 Sec
Gadus S2 V220 1 3,600.000 Sec
Gadus S3 V100 2 3,300.000 Sec
Gadus S4 V150KP 2 43,200.000 Sec
Gadus 1526 21,600.000 Sec
Gadus 1582 43,200.000 Sec
Gadus S5 V460 00 3,600.000 Sec
JD GrGardPrPlus 1,200.000 Sec
Gadus S5 V110KP 1 36,000.000 Sec
Gadus S5 V460KP 1.5 3,600.000 Sec
Retinax LX 2 1,200.000 Sec
Albida 0617A 18,600.000 Sec
SL2262 2,400.000 Sec
Gadus S3 V160CP 2 3,600.000 Sec
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• (Log)Normal
• Negative Exponential
• Paralogistic
• Pareto
• Poisson
• Triangular
• Uniform
• Weibull

Testing against every statistical distribution can be a very time-consuming job, especially with Shell’s product
portfolio. Easyfit tests against three different test statistics, namely the Kolmogorov-Smirnov test, the
Anderson-Darling test and at last, the Chi-Square test. Each of these test statistics are unique in their own
way, and test for different parameters in the data set. For our distributions, we test according an alpha value
of 0.05. In the following sections, we further explain the method used for each test statistic.

F.1 Kolmogorov-Smirnov

According to Law [14], does the Kolmogorov-Smirnov (KS) test statistic compare the empirical distribution
function with the distribution function of the hypothesized distribution. The advantage of the KS test
statistic is that grouping of data is not necessary, which removes the potential loss of information/data due
to data grouping in intervals. Another advantage of the KS test statistic is that it can be applied to any
sample size n. Its null hypothesis is rejected if the test statistic value is smaller than the critical value C1−α

for a specific value of α. For this test statistic, we make use of the following formula since all our distribution
parameters such as the mean and variance are known, to check if the null hypothesis is rejected or not:

(√
n+ 0.12 +

0.11
√
n

)

∗Dn < C1−α (9)

As for this formula, the test statistic is denoted by Dn and is found by Easyfit. Here, it ranks the test
statistics amongst all the other possible distributions that could be chosen from. We make use of an alpha
value of 0.05, which translates to a critical value of 1.358 for each of the distributions.

F.2 Anderson-Darling

Another test statistic that is used by Easyfit, is the Anderson-Darling (AD) test statistic. This statistic has
more power in the tails of the distribution in comparison to the KS test statistic, but follow the same principle
as the KS test. It tests the emperical distribution function with the hypothesized distribution function. Here,
the null hypothesis is rejected in case the following condition regarding the test statistic and the critical value
holds:

A2

n ≤ C1−α (10)

For this test statistic, we make use of an α value of 0.05, which translates to a critical value of 2.492.

F.3 Chi-Square

At last, we make make use of the Chi-Square test statistic. This test statistic focuses on the comparison of
the created histogram of a data set and the fitted density or mass function of the distribution. This is done
so by creating k adjacent intervals, where we calculate the absolute difference in the number of observations
in an adjacent interval Nj and the expected number of observations in the interval npj . Then, we divide
this difference by the expected number of observations in the interval npj . The sum over all the adjacent
intervals results in the Chi-Square test statistic value. The following formula describes the above mentioned:
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X2 =

k
∑

j=1

(Nj − npj)
2

npj
(11)

We reject the null hypothesis, in which it does not follow the suggested distribution, in case that the test
statistic value is larger than the critical value. Its critical value can be calculated by means of Excel, in which
the CHISQ.INV function is used. This functions depends on two parameters, which are the probability of α,
which is in our case 0.05 and a degrees of freedom, denoted by df .

G Statistical distributions for the filling stations

Table 21: Statistical distributions for the filling times per SKU type on the different filling lines

Filling station SKU type
Suggested distribution

by Easyfit
K-S test
statistic

Critical
value

A-D test
statistic

Critical
value

Chi2

statistic
Critical
value

FS9 18 Gamma (3p)
(γ = 0.341, α = 4.422, β = 0.122)

0.069 0.091 1.123 2.502 10.849 14.067

FS9 50 Gamma (3p)
(γ = 0.470, α = 3.587, β = 0.316)

0.053 0.105 0.635 2.502 5.0823 14.067

FS9 180 Gamma (3p)
(γ = 1.565, α = 6.127, β = 0.082)

0.071 0.063 1.663 2.502 68.231 15.507

FS1 18 Gamma (3p)
(γ = 0.518, α = 1.744, β = 0.150)

0.040 0.038 1.180 2.502 18.680 18.307

FS6 50 Gamma (3p)
(γ = 1.034, α = 1.352, β = 0.486)

0.095 0.338 0.352 2.502 0.202 3.842

FS6 180 Gamma (3p)
(γ = 1.490, α = 5.119, β = 0.193)

0.128 0.278 0.459 2.502 1.498 5.992
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