
Good location, but tourist-y and poor quality food. ● Food ● Place ● I planned a holiday dinner at Kurio and we ended up waiting two hours for the appetizers. ● Service ● Food ● We stumbled onto this diamond in the rough after our dinner 
plans at Schiller's were thwarted by a 90 minute wait. ● Service ● Food ● The waiter was very attentive and always kept the bread and drinks coming. ● Staff ● Food ● After our meal,the manager, even took some of his time to sit with us and 
give us a lesson in Sake 101. ● Staff ● Food ● The ravioli was the better of the two, but the serving was tiny, and the skin a bit rubbery. ● Service ● Food ● However the casual atmosphere comes in handy if you want a good place to drop in and 
get food. ● Food ● Ambience ● Their menu has just been updated featuring new rolls and more choices. ● Menu ● Food ● Come-as-you-are atmosphere, jukebox, value and James behind the bar work as a 
magnet. ● Place ● Ambience ● Ordered a beer from the bartender, she opened it and the told me that she didn't know the price !! ● Staff ● Food ● The Food Nothing makes for better bar snacks than this down-home Southern 
menu. ● Food ● Place ● Management had always been rude, but without the great staff as a buffer, Jesse's is just another pubby place with poor decor and average food. ● Staff ● Food ● Ambience ● the waiter was unable to identify whether 
certain cheeses from the cheese course were cow or goat milk. ● Staff ● Food ● I will definitely try dinner, but they do need to fix the kitchen shifts so that people get served in a reasonable time. ● Food ● Place ● Call it a bar with weak but tasty 
sangria and leave it at that. ● Food ● Place ● With the exception of one late day when I came in for caffe and the waitress nearly rushed us out since dinner was coming around. ● Staff ● Food ● yes as I sat at the table waiting just under 1 HOUR 
for my food, i was quite tempted to step across the road for a quick snack. ● Service ● Food ● The service is good, but the staff is not too friendly. ● Staff ● Service ● We had at least 10 of the appetizers on the menu, which all were 
delicious. ● Menu ● Food ● i do agree with the comment about their waitstaff, they tend to make you feel like you have to rush through your meal. ● Staff ● Food ● Had to constantly ask the waiter to top up water glasses, but generally service 
was ok. ● Staff ● Service ● i went here on a whim and found out you could get sushi for half price kind of like happy hour. ● Food ● Price ● The kicker was when there were three items on our check that were priced higher than stated on the 
menu and by the server. ● Staff ● Menu ● Price ● There is actually space to breathe and the decor sets the tone for an intimate dinner. ● Food ● Place ● Ambience ● I'd say the menu is generally below-average for the neighborhood, but if you 
want a burger, this is the place to go. ● Menu ● Food ● I am hoping the stale service was a one shot deal because it was deplorable for what we paid for dinner! ● Service ● Food ● Although the sushi was fresh, I was disappointed with the size 
of the portions for the price. ● Food ● Price ● Paying that high price, I could have dined at other places with better food and service. ● Food ● Price ● After I inquired why the food was taking so long, the waitress told us that the 2 dishes we 
ordered take a long time. ● Staff ● Food ● Seating is limited, so you will probably want to order take-out, but a better take-out pizza you will not find! ● Food ● Place ● Once seated we were greeted by a very rude waiter who threw menus at us 
and then snatched them away as we were ordering. ● Staff ● Menu ● Half way through the meal my husband had to go to the bar to order his own beer, since the server never came back. ● Staff ● Food ● Place ● for ANYONE to come and take 
our dessert order (we had previously seen our waitress going outside for a cigarette break and never coming back). ● Staff ● Food ● The waiters actually roll their eyes when you order something, as if you are imposing on them by ordering 
food. ● Staff ● Food ● I highly recommend the potato and cheese pierogis and the polish kielbasa entreesbut the real stars on the menu are the sides. ● Menu ● Food ● Our salads and appetizers were brought at the same time and we barely 
had time to enjoy them before a team of waiters whisked them (and our bread!) ● Staff ● Food ● Her attitude put a damper on the evening, as did the stares from some servers when we took a peek into the cheese cellar. ● Staff ● Food ● The 
portions were pretty small for the price, I thought, and I never got the coffee I ordered. ● Food ● Price ● Service is wonderful- I've sat there for over 3 hours at dinner and never felt rushed to leave. ● Service ● Food ● Asked for wine 
recommendations and the waitress told me her favorites and described them in detail - I don't encounter this much in NYC. ● Staff ● Food ● we had to wait at the bar for a table, but the atmosphere is bustling and is well worth 
it. ● Place ● Ambience ● Good food, but bad service. ● Service ● Food ● The decor was pleasant, but the tables were way too much crowded for a restaurant of this presumptive caliber. ● Place ● Ambience ● The bill came out to quite a lot 
though, considering there were 14 of us some of us ordered way too many drinks. ● Food ● Price ● The music is a mix of house radio as well as live band at the same time. ● Staff ● Ambience ● The food is definitely the attraction, but the 
service has been consistently bad on every visit. ● Service ● Food ● The manager came out very defensively and insisted that it was a 2 lb lobster. ● Staff ● Food ● Arriba Arriba has much better food, margs, and atmosphere with slightly higher 
prices, but well worth it. ● Food ● Price ● But wait, it gets even better, the mussels were so fishy that I had the server try one since he had a hard time believing that this was true. ● Staff ● Service ● Food ● After dinner the manager grabbed my 
boyfriend, asked him: Where are you from. ● Staff ● Food ● dining with my mother this past Saturday must have signaled to the wait staff that I wasn't cool enough to merit their attention. ● Staff ● Food ● After sitting at the table with empty 
glasses for a 1/2 hour, we had to ask the busboys to get us drinks as our waiter was nowhere to be found. ● Staff ● Food ● He prepares the most authentic dishes, I guess that's why the bar is usually filled with Japanese. ● Food ● Place ● it took 
forever for the waiter to take my order as he was too busy chatting at the bar. ● Staff ● Place ● The staff treated them like true royalty. ● Staff ● Service ● Our waiter was confused and forgot an additional soda when we asked for 
it. ● Staff ● Food ● The clientel, however, make it a scene for creative, talented people--inlcuding a soon-to-be-famous theater director who used to waitress there! ● Staff ● Food ● The food was a meal I could find anywhere else in the city for a 
better price. ● Food ● Price ● For the price I paid for a cup of Bustelo coffee w/ milk I could buy 2 vacumed packs for 3 bucks. ● Food ● Price ● one waiter couldn't remember what we had to drink and we were the only people in the 
place. ● Staff ● Food ● You get plenty of food for the price, enough leftovers for lunch and they actually serve garlic chicken with lots of chicken and chinese vegetables. ● Food ● Price ● The owner circles the place asking patrons if their meals 
are fine. ● Staff ● Food ● Call it a bar with weak but tasty sangria and leave it at that. ● Food ● Place ● Invited by friends to discuss business, I checked out the bar first, and didn't give my nme which was known to the owners Scott 
Heather. ● Staff ● Place ● I expected there to be more options for tapas the food was mediocre but the service was pretty good. ● Service ● Food ● For dinner we decided to take our servers advice and order several items to 
share. ● Staff ● Food ● I'm sorry, but the prices at Boi are outrageous for this type of cuisine. ● Food ● Price ● But Bobby Flay really steps up at Bar Americain--his passion and heart shine through the food. ● Food ● Place ● The bread was 
served, one razor thin slice on our bread plate, by the waiter. ● Staff ● Service ● After asking several different people find our waiter, he returned to say he couldn't find any wine and begged us to order sake instead. ● Staff ● Food ● From 
chicken wings and smoked beef brisket to pulled pork and Texas links, the menu features many barbecue favorites. ● Menu ● Food ● i mean the place was empty and it seemed to take for ever to get food, drink or the 
check. ● Food ● Place ● The servers were extremely professional, especially considering the entire room needed to be served at the same time. ● Staff ● Service ● Get a bottle of wine, and eat what your heart has been desiring because all the 
things you would love to be on one menu--are! ● Menu ● Food ● The host actually came over to my table and told me and my date we had to leave because we already paid our bill. ● Staff ● Price ● One of the managers offered us a seat at the 
bar to wait for a table, there we had the most amazing empanadas and red sangria. ● Staff ● Service ● Food ● Place ● In addition, they lack basic ammenities like a toaster, and the decor was shabby, at best. ● Food ● Ambience ● Our food was 
delivered in a timely fashion but if you wanted another drink or your check you had to hunt down your server. ● Food ● Price ● Super friendly neighboorhood atmosphere where even a lady can go alone and have a drink and feel 
comfortable. ● Food ● Ambience ● They ended up cramming 10 of us on 3 small tables, then taking forever with our food. ● Food ● Place ● For a normal dinner, I prefer a place that has a bit more room and that has a slightly more relaxed 
vibe. ● Food ● Ambience ● We would rather pay more prices and expect the better food and service. ● Food ● Price ● The space was so fantastic that once we heard they were serving dinner we decided to go one night and try it 
out. ● Food ● Place ● Seating is usually very prompt but expect a wait at peak times such as Sunday Brunch. ● Service ● Food ● I also do not think waiters there are rude- yes there are not friendly and chatty, but do provide great 
service. ● Staff ● Service ● He hooted and hollered -- and told every staff person at the bar, not to serve us. ● Staff ● Place ● The new server we had was surprisingly well-versed on the menu and gave really solid 
service. ● Staff ● Service ● Menu ● The menu is pricey and the food was not tasty - except for the tostones with garlic and oil. ● Menu ● Food ● The Captain was showing his impatience for a crowded Monday night and the dinner I was served 
was not prepared the way he told me it would be. ● Staff ● Service ● Food ● Didn't like having to flag down waiters for drinks, nor having to wait almost 15 minutes for a check after asking two servers. ● Staff ● Food ● All in all, I would not 
recommend for the food or drinks but I guess I can't expect better for the prices. ● Food ● Price ● If you're not looking for a pretentious atmosphere and a restaurant that serves the best steak you've ever 
eaten. ● Food ● Place ● Ambience ● worst margaritas in town,if you are going to order a battle of (white wine)they served hot. ● Service ● Food ● At one point, we tried to get our waitresses attention and she ignored us and than we asked for 
more biscuits and never got them. ● Staff ● Food ● The service always ruins your food if it's poor. ● Service ● Food ● The waiter did not know the menu, and was very unaccomidating about substutions. ● Staff ● Menu ● mistake on the check, 
overly salty morels stuffed with foie gras) but overall, Daniel's dishes are revelations in taste. ● Food ● Price ● nice place, good service but the price is a little bit more expensive when compare with the area, location and small 
dishes. ● Service ● Food ● Place ● Adding insult to injury, the waiter had to ask for the wine bottle by number (where are we? ● Staff ● Food ● I ended up wasting $24 on the most expensive dish on the menu. ● Menu ● Food ● Even with our 
reservation, they had us waiting at the bar for over an hour. ● Service ● Place ● The waitress encouraged to come for dinner and brunch, and I followed her recommandation. ● Staff ● Food ● We tried to place the order and the waiter had no 
clue what we wanted even though we pointed it out on the menu. ● Staff ● Menu ● My only complaint is that the place is over crowded on weekends, but that's the price you pay for having such great food. ● Food ● Price ● We saw the waitress 
twice - once to tell us the night's specials and once to take our order. ● Staff ● Food ● To the amusement of our server, I wrote everything down, lest I forget a single morsel (about 21 different dishes). ● Staff ● Food ● What the sparse space 
lacks in decor it makes up for in atmosphere. ● Place ● Ambience ● ) Service was good not great, waiters stood around,didn't ask how everything was. ● Staff ● Service ● The birthday girl's dessert included a candle the staff came by with 
birthday wishes. ● Staff ● Food ● The food and decor is above average, but it is clear the restaurant has bad management and service. ● Staff ● Service ● Food ● Ambience ● For the money, it's a dependable and fun place to get sushi - bring 
friends and share the 2 for 1 rolls (they have to be 2 of the same. ● Food ● Place ● Price ● Only quibbles are so-so wine service, and while Prix-fixe is reasonable at $68, extra charges for additional dishes/tastings can be 
high. ● Service ● Food ● However the manager came over and aplogized and all drinks were on him. ● Staff ● Food ● A friend was dieing for chorizo but it was only in the tapas menu which we couldn't have. ● Menu ● Food ● Our server 
seemed out of it, and drinks took 15 minutes to arrive. ● Staff ● Food ● The prices seemed reasonable with entrees ranging from $14-$25. ● Food ● Price ● We ended up having appetizers in the lounge, while listening to a really great 
DJ. ● Staff ● Place ● The waiters can shoot off a 5 minute long list of specials, and they know the menu very well. ● Staff ● Menu ● Even though it's a trek for me to get there and the place is a little of a Hole in the wall, I've gone many times for 
the food alone. ● Food ● Place ● After demanding a free round of drinks from a third manager, our party decided to bail on this horrific french import. ● Staff ● Food ● Service was horrendous the night we went for 
dinner. ● Service ● Food ● When I asked for a particular drink, the waitress gave me dirty look and annoyed b/c they didn't know what it was. ● Staff ● Food ● The food was barely decent and our server was nowhere to be 
found. ● Staff ● Food ● With one drink each, apps, entrees, and three desserts (nothing great) the bill came to $200 for four. ● Food ● Price ● The spacious bar, with its own menu of small plates and a lengthy list of wines by the glass, is a boon 
to single diners. ● Menu ● Food ● The prices are reasonable but they don't have a sushi lunch. ● Food ● Price ● Seated in the upstairs part of the restaurant my party and I were subjected to rude, abrupt service and unmercifully long waits for 
our food. ● Service ● Food ● The space and furnishings are too spartan and the service amateur and scattershot (no smiles offered here - busboy serves mains with who gets the. ● Staff ● Place ● Went on a Saturday with out of town tickets 
and the food was great but the service was awful, even surely. ● Service ● Food ● After waiting for 90 minutes, the host gave away our table to a couple who arrived after us. ● Staff ● Service ● Rather you are paying rock bottom price for a meal 
that could cost you triple any where else. ● Food ● Price ● My only quibbles are service - which was confused (we waited 10 minutes for menus), and the wine list, which is over-the-top expensive. ● Service ● Menu ● Food ● Jackson Diner was 
my first intro to true Indian food and its been 10yrs since and I cannot go one month without some of this unbelievable food. ● Food ● Place ● Favorites include the Curry Shrimp w/ Mushrooms, Watercress Salad (not listed on menu), and Kao 
Soy noodle soup with chicken. ● Menu ● Food ● A+ for the food but the wait staffs need to educate themselves better. ● Staff ● Food ● The manager claimed that he could not compensate us for anything on the bill which just shows the lack of 
sophistication from the entire group. ● Staff ● Price ● Very claustrophobic place so expect it to be really crowded during lunch. ● Food ● Place ● The place was very crowded usually it is a good indication that the food would be worth the 
delay. ● Food ● Place ● After spending over $500 on a business dinner, a manager knelt down at our table and asked us to quote, wrap it up and move to the bar. ● Staff ● Food ● Place ● After 45 mins of waiting in an sans air conditioned bar, 
we grew tired of paying for over-priced drinks. ● Food ● Place ● The menu is Prix Fixe, so be prepared to spend at least $60 per person, but it is Well worth itsuperb food. ● Menu ● Food ● The waiter messed up my order and we had to hunt 
down the wait staff to get a second drink. ● Staff ● Food ● Enjoy a drink at the bar over fresh shucked oysters. ● Food ● Place ● We wouldn't bother quibbling over the price of a few drinks anyway but I wonder why they would offer if they 
weren't intending to back it up. ● Food ● Price ● Sam and the staff at Rialto were so accomodating and gave us a dinner event we will always remember. ● Staff ● Food ● There is a litte bit of a wait on the food, but it is well worth 
it! ● Service ● Food ● The food was great but the music was loud and hip-hop and the wait was ridiculous and the prices were out of this world. ● Service ● Food ● Once the manager loudly referred to the customers patiently waiting at the all-
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Abstract

The vast amount of reviews and opinions being shared online for practically all available goods
and services has an enormous potential value. Although the current state-of-the-art Aspect-Based
Sentiment Analysis (ABSA) methods show impressive results in extracting valuable opinions,
these Transformer-based models require large high-quality annotated training datasets. Datasets
that are not always available and which are very costly to create. To reduce the hunger of
these models for annotated data, we for the first time apply Generative Adversarial Networks
(GANs) to ABSA. We investigate using both regular and Wasserstein semi-supervised GANs
to generate artificial word embeddings, with varying amounts of unlabelled data and varying
generator complexity. We show that adding such a GAN can significantly improve performance,
even without using unlabelled data. Furthermore, we identify how much unlabelled data works
best and show that generators with more hidden layers perform better. Altogether, we show that
our method allows for reducing annotated data by 50% while still achieving similar performance.
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Chapter 1

Introduction

The introduction of Transformers significantly improved the then firmly established state-of-the-
art in machine translation, mainly by its ability to better model long-term relationships and to
greatly reduce the training cost [68]. In particular pre-trained Transformer-based word embed-
ding models have been revolutionary in natural language processing, with models like BERT,
RoBERTa and various GPT models outperforming the previous state-of-the-art on many bench-
mark datasets in various fields of natural language processing [10, 19, 42, 57, 58]. These models
have been pre-trained on enormous quantities of data by organisations like Google, Facebook and
OpenAI. As a result, these models can be fine-tuned to specific domains or tasks in a relatively
short time and with relatively little training data, often outperforming the current state-of-the-
art [19]. As a result, it needs little explanation that this technology is highly promising for
researchers, companies and society in general.

Although fine-tuning to a specific task or domain may require a lot less data than pre-
training a Transformer-based model, there is still a significant amount of high-quality annotated
data required to achieve a decent performance [14]. Creating or collecting a large high-quality
dataset is a very expensive and time-consuming process [14], while the availability of existing
datasets is limited. Consequently, the huge potential of these models can at this moment not
easily be realized for certain tasks and domains.

One of the tasks for which Transformer-based word embedding models have proved their
potential is sentiment analysis [8]. Nowadays, people share their opinions online on a massive
scale, with platforms like Amazon, Google, Facebook and Trustpilot containing billions of reviews
on practically all kinds of goods and services imaginable. Considering that most platforms are
open, the data there is just waiting to be converted into valuable information. However, manually
processing such a large amount of data is expensive and time-consuming, if not practically
impossible. Subsequently, sentiment analysis using artificial intelligence has become more and
more important [51]. Based on text documents, sentiment analysis extracts and analyses the
author’s sentiment, either in general or towards something specific [40].

Generic sentiment analysis has the goal to extract a sentiment polarity for a certain piece
of text, usually positive, negative or neutral. Additionally, sentiments can also be expressed in
more classes or even as a continuous score. Table 1.1 contains a few examples of brief restaurant
reviews and their respective sentiments. Generic sentiment analysis has a major drawback: it
is not known towards which aspect the sentiment is expressed, while this aspect may provide
essential information for many potential applications [38]. A lot of information can be missed as
a result, in particular when a text contains two or more aspects with different sentiments such
as in text 4 of table 1.1.
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# Text Sentiment
1 The food in this restaurant is absolutely amazing. Positive
2 It’s located near the highway. Neutral
3 I would not recommend this place. Negative
4 The food was amazing, but it has unfriendly staff. Conflict

Table 1.1: Sentiments for brief example review of a restaurant

The relatively new field of Aspect-Based Sentiment Analysis (ABSA) aims to identify which
sentiment is expressed towards a certain aspect, where a text may contain multiple aspects with
different sentiments. Figure 1.1 gives an example of ABSA. As many useful applications for
ABSA exist, the field has gained significant popularity [11]. However, sentiment analysis and in
particular ABSA are usually difficult tasks considering the large variation in writing styles and
sentence structuring.

Figure 1.1: Simple ABSA example that should identify the aspect categories food and
staff and then classify a positive and negative sentiment polarity, respectively.

Transformer-based word embedding models have proved to be able to achieve and improve state-
of-the-art performance in ABSA [8]. However, the common ABSA training datasets used to
achieve this performance still contain thousands of sentences each, with each sentence manually
annotated by one or multiple experts [20, 33, 56]. As a result, persons or organisations wanting
to apply ABSA to other sub-domains than those of the common datasets still need to create a
large high-quality dataset themselves.

To reduce the hunger for annotated data of Transformer-based word embedding models,
Generative Adversarial Networks (GANs) [25] could provide a feasible solution. In a GAN, a
generator is trained to produce artificial samples that resemble the real data, while a discriminator
attempts to tell the real from artificial samples. By playing an adversarial ’game’ with the
discriminator, the generator will learn to produce more and more realistic samples. GANs have
been particularly successful in the computer vision domain, for example in applications such as
image generation and image manipulation [32].

Over recent years, GANs have also been increasingly popular in the natural language domain,
as it has been used in state-of-the-art approaches for text generation [1]. Research has proved
that adding GANs to text classification tasks can indeed increase performance if less annotated
data is available [14], it can increase model robustness [4] and that semi-supervised approaches
are viable solutions [64]. All things considered, GANs are promising to reduce the need for
annotated data in natural language applications such as ABSA.

In this master thesis, conducted as a part of the Data Science & Technology specialization of
the master Computer Science at the University of Twente and executed at Accenture Netherlands,
we investigate whether we can use a GAN in combination with Transformer-based ABSA to
reduce the need for annotated data in training. To the best of our knowledge, no Transformer-
based ABSA method exists that has proved to achieve good performance with a limited amount
of annotated data. Additionally, semi-supervised approaches or GANs have never been applied
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to ABSA with very little work on adversarial training for ABSA existing in general. Considering
this, we define the following research questions:

RQ1 Can applying a semi-supervised GAN to generate artificial word embeddings improve
the performance of Transformer-based ABSA, in particular when smaller amounts of
annotated data are available?

RQ2 How does the amount and ratio of the labelled and unlabelled data used in a semi-
supervised GAN influence the performance of Transformer-based ABSA?

To answer these questions, we first dive into the theoretical basis of Transformers, Transformer-
based word embedding models and GANs in chapter 2. Next, we discuss existing related work on
both ABSA and GANs in natural language processing in chapter 3, followed by how we combine
a Transformer-based ABSA method with GANs and how we evaluate our experiments in chapter
4. We present the results in chapter 5 and discuss the implications and limitations of our research
in chapter 6. Finally, we draw our conclusions on our research questions in chapter 7.

At the end of this thesis, the Appendix contains more detailed results and additional plots that
visualise these results. All code to build, train, and test the model is publicly accessible at:
https://github.com/DirkKoelewijn/Transformers-on-a-diet
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Chapter 2

Theoretical background

This chapter introduces the core concepts that will be used in this research, as well as additional
concepts that are useful for understanding the related work. For convenience, we split this
theoretical background into four main areas of interest. Figure 2.1 gives a graphical overview of
the concepts included in this chapter.

Figure 2.1: Overview of core and additional concepts included in this theoretical background

Section 2.1 elaborates on neural networks as a shared basis for most other concepts in this chap-
ter, together with frequently used variants in the research area. In section 2.2 we discuss the
generative adversarial networks with a special focus on those using optimal transport. Transform-
ers and their core elements are then introduced in section 2.3. Last, we discuss word embedding
models in section 2.4 with a focus on the contextual Transformer-based models used in this
research.

2.1 Neural Networks

Since the introduction of the first artificial neuron by McCulloch and Pitts in 1943 [45] and the
multilayer perceptron by Rosenblatt in 1958 [60], artificial neural networks have come a long
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way. Although Rosenblatt already proved artificial neural networks could be used as universal
function approximators, it was not until Rumelhart et al.’s [61] invention of gradient descent
in 1986 that these networks could learn efficiently. Nowadays, various types of neural networks
produce state-of-the-art performance in various artificial intelligence applications, such as image
classification [16] and natural language processing [19, 42].

2.1.1 Feed-forward Neural Networks

The Feed-forward Neural Networks (FNNs or NNs) widely used today consist of layers of artificial
neurons. These neurons represent a mathematical function that loosely mimics the functioning
of neurons found in the brain [46]. Equation 2.1 shows the mathematical equation for a neuron.

y′ = a(wTx + b) (2.1)

Each artificial neuron receives a set of inputs, the vector x. The neuron multiplies each input
by weight using weight vector w and then adds a bias term b. The resulting value z is then put
into an activation function a that determines to what extent the neuron ’fires’ output y′. Figure
2.2 shows a graphical representation of this process.

Figure 2.2: Model of an artificial neuron.

In NNs, these artificial neurons are used in layers consisting of an arbitrary number of neurons,
where each layer receives the previous layer’s output as input. The first layer is the input layer
and takes the shape of the input, the end layer is the output layer that outputs the model’s
prediction. The layers in between are the hidden layers. Figure 2.3 shows an NN example
schematically.

Figure 2.3: Schematic of an example feed-forward neural network.
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Loss Function

The ultimate goal of NNs is to find the perfect weights w and biasses b for all its neurons, such
that the model predicts the correct output value y′ for all possible inputs x. As these perfect
parameters in principle cannot be calculated directly, this results in an optimization problem
aiming to reduce the prediction error. In order to produce a single scalar value that represents
the prediction error, a loss function L is added. The lower the loss value and the closer to zero,
the better the prediction and thus the better the parameters. Frequently used loss functions
are the mean squared error for classification problems and the cross-entropy loss for regression
problems [59]. Considering that the NN is optimized based on the loss value, the choice of the
loss function can significantly affect the training of the NN.

Gradient Descent & Backpropagation

In 1986, Rumelhart et al. invented gradient descent, which is used in the efficient process of
backpropagation to update the parameters of NNs [61]. Gradient descent calculates the gradient
of the loss with respect to a single parameter, allowing to change the parameter in the direction
in which the loss value decreases. In backpropagation, the derivative of the loss function is first
calculated for the last layer after which it goes layer by layer to the first layer, using the chain
rule and the derivative from the later layer to efficiently calculate the new derivative. To update
the parameter, the gradient of the loss function multiplied by a learning rate is subtracted from
the original parameter. Equation 2.2 shows the formula for updating the ith parameter θ in layer
l of the NN with learning rate α with respect to loss function L.

θ
(l)
i ← θ

(l)
i − α · δL

δθ
(l)
i

(2.2)

2.1.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [61] are specialized to process a sequence of inputs, often
supporting a variable length. RNNs use the idea of parameter sharing to transform from a
regular feed-forward neural network to a recurrent network, sharing the parameters over time.
For at least one layer of the RNN, the output of a hidden layer is fed back to themselves for the
next item in the sequence. Figure 2.4 gives an example of a simple RNN.

Figure 2.4: Example of a simple RNN.

Equation 2.3 shows the formula for output y′ of a simple recurrent neuron at time t with input
vector x, weight vector w, recurrent weight vector u, bias term b and activation function a:

y′(t) = a(wTx(t) + uT (wTx(t−1)) + b) (2.3)

The challenge to model long-term dependencies is particularly problematic for RNNs [24]. This
is because the weight w of equation 2.3 is effectively multiplied by itself many times for large
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differences of t, leading to either exploding gradients if w is large or vanishing gradients if w is
small. Bengio et al. [5, 6] proved that if we want to robustly store past knowledge with small
perturbations, the RNN must have gradients that vanish. The network can learn in this way, but
in practice, this will take very long. Experiments have shown that the probability of successfully
capturing over 10 to 20 steps in time becomes near impossible [6].

Long Short-Term Memory

Hochreiter and Schmidhuber [29] introduced a model that, with an essential addition by Gers et
al. in 2000 [22], is known as the Long Short-Term Memory (LTSM). Compared to the regular
RNN cells, LTSM cells add an input gate i, forget gate f and an output gate o. A schematic
of the LTSM is shown in 2.5. Without getting into too much detail, the input and forget gate
make it possible to apply different weights to the input and the hidden state and thus applying
different importance to each one. The output gate makes it possible to shut the output off in
specific situations. These three gates are all computed based on the current input and the last
output. Gated RNNs with LTSM are nowadays often used in the most effective sequence models
in practice [24].

Figure 2.5: Schematic simplification of an LTSM cell. The calculation of the gates and the σ
and tanh activation functions have been omitted for simplicity.

2.2 Generative Adversarial Networks

Deep Neural Networks (DNNs) promise to deliver models that can represent all kinds of prob-
ability distributions over all sorts of data [7]. Until 2014, the success of DNNs was mainly for
discriminative classification models. That changed when Goodfellow et al. introduced a frame-
work to create generative models by using an adversarial process: the Generative Adversarial
Network (GAN) [25]. Since then, GANs have achieved incredible results in generating highly
realistic samples in many computer vision and natural language applications [32].

Figure 2.6: Basic overview of a GAN.
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As the GAN uses an adversarial process, it contains two models that are trained roughly si-
multaneously. First, the model consists of a generative model G, also called the generator, that
attempts to capture the distribution of the real data and generate samples from it based on
random noise. Secondly, there is a discriminative model D, the discriminator, that attempts
to discriminate whether a real or generated sample belongs to the distribution of the real data.
Figure 2.6 shows a schematic overview of the structure of a GAN.

The training procedure of the GAN framework corresponds to a minimax game between the
generator G and the discriminator D [25]. G is trained to maximize the chance of D making a
mistake, whereas D attempts to identify artificially generated samples. Considering that both
G and D are neural networks, the entire GAN can be trained with backpropagation. Equation
2.4 provides a mathematical formulation for this minimax game with the loss function L(G,D):

min
G

max
D

L(G,D) = Ex∼pd
[logD(x)] + Ez∼pz [log(1−D(G(z)))] (2.4)

where x is a sample from the real distribution of the data pd, z is a sample from the noise
distribution pz and D(x) is the probability that x came from pd rather than from pz. For an
optimal D, Goodfellow et al. have shown that this minimax game minimizes the Jensen Shannon
Divergence (JSD) between the distribution of G and the true distribution pd [25]. However, their
work also shows that training G to maximize log(D(G(z)) provides stronger gradients in early
training.

Challenges

Research has shown that regular GANs are very hard to train in practice, with Arjovsky and
Bottou arguing that the main problem for regular GANs is seeking to minimize the JSD [2]. They
show that gradients vanish if G tries to optimize log(1−D(G(z)) for an optimal discriminator,
while the more practical alternative − log(D(G(z))) leads to unstable training signals instead.

Figure 2.7: Example of mode collapse: While the real distribution consists of 8
sub-distributions, only 4 of those are generated.

GANs also suffer from a phenomenon called mode collapse. In this case, the generator only learns
to reproduce only a part of the real data distribution pd. This is a result of the training objective:
G is trained to simply fool D and G only produces a certain type (mode) of samples that D
will consider to be genuine [63]. Figure 2.7 shows a visualization of mode collapse. Regular
GANs have additional shortcomings, such as the Nash equilibrium, internal covariate shift and
the lack of proper evaluation metrics for generated samples [32], but these are not discussed in
this background.

8



2.2.1 Wasserstein GANs

To tackle the problem of vanishing gradients and mode collapse, Arjovsky et al. introduced the
Wasserstein GAN (WGAN) [3], a GAN that has a loss function that is derived from the Earth
Movers Distance (EMD), in mathematics also known as the Wasserstein distance. The EMD
measures the distance between probability distributions. Informally, the EMD is defined as two
different possible piles of dirt (earth), where each possible pile could be seen as a probability
distribution. The EMD calculates the minimum amount of (cost) that has to be done to turn
one pile into another, where the cost is the amount moved times the distance. Equation 2.5 gives
the mathematical formulation for the EMD:

W (pd, pg) = inf
γ∈Π(pd,pg)

E(x,y)∼γ [∥x− y∥] (2.5)

where pd is the real data distribution, pg is the generated data distribution and Π(pd, pg)
represents the set of all joint distributions of pd and pg. As the infimum term (inf) is highly
intractable [3], WGANs reformulate equation 2.5 as the Kantorovich-Rubinstein duality [62] to
make this optimization applicable in practice. Equation 2.6 contains the duality:

W (pd, pg) = sup
∥C∥L≤1

Ex∼pd
[C(x)]− Ex∼pg

[C(x)] (2.6)

where C needs to be a 1-Lipschitz function [3]. By providing some additional mathematics,
Arjovsky et al. show that solving this in a WGAN comes down to:

min
G

max
C

Ex∼pd
[C(x)]− Ez∼pz

[C(G(z))] (2.7)

where G is again the generator and C is the discriminator, now named the critic. The discrim-
inator is renamed to the critic as it now provides information about how far both distributions
are from each other, instead of providing a binary classification. Using a WGAN has shown to
be an effective way to prevent vanishing gradient and greatly reduce the risk of mode collapse.

An important challenge for WGANs is enforcing the 1-Lipschitz continuity. Arjovsky et al.
achieve this by clipping the weights of the critic to a fixed interval, naming it a terrible way to
ensure 1-Lipschitz continuity. As an alternative Gulrajani et al. [27] add the gradient penalty
to the WGAN critic. Equation 2.8 gives the formula for the added gradient penalty:

λEx̃∼px̃
[(∥∇x̃C(x̃)∥2 − 1)2] (2.8)

with λ a scalar and

x̃ = ϵ · x + (1− ϵ) ·G(z) (2.9)

where ϵ ∼ U [0, 1]. The WGAN with gradient penalty (WGAN-GP) showed more stable train-
ing and better performance than the standard WGAN, allowing for a wide variety of architecture
with little hyperparameter tuning [27].

2.2.2 Other Optimal Transport GANs

Although the Wasserstein GAN prevents vanishing gradients for continuous data, the gradient
still vanishes for discrete data (i.e. text) after a few iterations for both regular WGANs and
WGAN-GP [23]. As a result, various research has been performed to apply the EMD in GANs
that deal with discrete data, mainly in the field of text. Several solutions use the Sinkhorn
divergence [15] to solve an entropy-regularized EMD. However, the solution is very sensitive
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to hyperparameter settings [13]. As a solution, Chen et al. introduce the use of the Inexact
Proximal point method for Optimal Transport (IPOT) where the hyperparameter only affects
the convergence rate [13]. Compared to Sinkhorn-based solutions, the IPOT-based solution is
reported to significantly improve performance and effectiveness.

2.3 Transformers

Until 2017, RNNs and in particular the LTSM and gated RNNs (see section 2.1.2) were the
state-of-the-art in domains such as machine translation and language modelling problems [68].
Although various attempts had been done to improve upon this firmly established state-of-the-
art, the introduction of the Transformer in 2017 [68] was the first to significantly improve it. As
an additional major advantage, Transformers did this with only a fraction of the training costs
compared to the existing state-of-the-art. This section discusses the most important ideas that
have led to Transformers, encoder-decoder models and attention, and introduces the Transformer
architecture.

2.3.1 Encoder-decoder models

Encoder-decoder models convert (encode) input to a representation with a lower dimensionality
to then create (decode) a similar output. A data science website1 makes the effective comparison
with Pictionary, illustrated in figure 2.8. The first player receives a concept (input) and makes a
drawing of this (the encoding). A second player ’decodes’ this picture to the concept he thinks it
is. Encoder-decoder models use this concept to, for instance, translate text to another language
or provide captions to images.

Figure 2.8: Encoder-decoder models as Pictionary.

A simple yet popular type of encoder-decoder model is the Autoencoder (AE) [32]. The AE’s
encoder compresses the input to a small representation compared to the input, while the AE’s
decoder attempts to reconstruct the data. The loss function LAE for AEs is simply a form of
distance between input and reconstruction, e.g. the Euclidean distance. Equation 2.10 shows an
example loss function for AEs:

LAE =
1

N

N∑
i=1

[xi −D(E(xi))]
2 (2.10)

where E is the encoder and D is the decoder.

1https://towardsdatascience.com/what-is-an-encoder-decoder-model-86b3d57c5e1a
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2.3.2 Attention

In the paper in which Vaswani et al. introduce the Transformer, they state that ”the Transformer
is the first transduction model relying entirely on self-attention to compute representations of its
input and output without using sequence-aligned RNNs or convolution” [68]. Attention or more
specifically self-attention is an essential component of the Transformer: it is the mechanism that
relates different parts of a single sequence to compute the sequence’s representation [68]. The
attention used in the Transformer is scaled dot-product attention, which is then used to create
multi-head attention.

Scaled Dot-Product Attention

Transformers use Scaled Dot-Product Attention (SDPA) as their basic attention mechanism.
SDPA takes three matrices as arguments, a query Q, a key K and a value V . As the name
suggests, SDPA first calculates the dot-product of the query and the key, after which it applies
a scaling factor. After applying the softmax activation function, the result is multiplied by the
value. Equation 2.11 gives the function for SDPA.

SDPA(Q,K, V ) = softmax(
QKT

√
dk

)V (2.11)

where dk is the shared dimension of both Q and K, with Q having dimension m× dk and K
having dimension n × dk. This is identical to the attention of Luong et al [43], except Vaswani
et al. added the scaling factor 1√

dk
.

Multi-head attention

Vaswani et al. found it beneficial linearly project the queries, keys and values h times with
learned linear projections. For these linear project queries, keys and values the SDPA is calcu-
lated simultaneously. The concatenated result is then linearly projected into the output shape.
Equation 2.12 gives the formula for this so-called Multi-Head Attention (MHA):

MHA(Q,K, V ) = concat(head1, . . . , headh)WO (2.12)

where WO is the output projection matrix and

headi = SDPA(QWQ
i ,KWK

i , V WV
i ) (2.13)

where WQ
i , WK

i , and WV
i are the projection matrices for the query, key and value, respec-

tively.

2.3.3 Transformer Architecture

The Transformer is an encoder-decoder model using stacked self-attention and fully connected
layers for both the encoder and decoder. The model architecture is shown in figure 2.9, with the
encoder and decoder on the left and right sides of the figure, respectively.

In the original architecture, the Transformer features N = 6 identical encoding stacks. Each
encoding layer consists of an encoder MHA layer and a fully connected feed-forward network,
with a residual connection around each layer. Likewise, the decoder has also 6 identical stacks,
consisting of a masked decoder MHA layer, an encoder-decoder MHA layer and a feed-forward
fully connected layer, also with a residual connection around each layer. Where the encoder and
decoder (masked) MHA layers receive their key, query and value from the previous stack or the
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Figure 2.9: Transformer model architecture.

input, the encoder-decoder MHA layer receives the query and key from the encoder output and
the value from the decoder MHA layer.

2.4 Word Embeddings

Before 2013, natural language processing mostly treated words as atomic units like an index in
the dictionary or a specific N-gram. This stored no information about the similarity of certain
words and also nothing about the meaning of words. That changed when the Word2Vec [47]
model was introduced with the idea that words could have multiple degrees of similarity. The
Word2Vec model showed that a vector can be used to represent the semantic relationships of
a word in a vector, a word embedding (WE), capturing whether a word is likely to appear in
similar contexts [47].

Other WE models like GloVe [52] followed and researchers quickly realized that the use of
WEs pre-trained on very large datasets could greatly help create models for problems with small
datasets. However, the embeddings created by models such as Word2Vec or GloVe have one
big disadvantage: they create static word embeddings that disregard the context in which the
sentence was used. For instance, the word stick can both be used as a verb and a noun, yet these
static WE models would always return the same vector.

As a response to this problem, researchers started to work on contextual WE models that
produce word embeddings that change based on the context the word is used in. Models such
as Embeddings from Language Models (ELMo) [53] and later Universal Language Model Fine-
Tuning (ULM-FiT) [30] followed. Both ELMo and ULM-FiT use LSTMs (also see section 2.1.2)
and in particular ULM-FiT showed that it can effectively be pre-trained on vast amounts of data
and then also effectively be fine-tuned to different language tasks [30]. Both models introduced
outperformed the state-of-the-art on various problems at the time of their introduction.
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2.4.1 Transformer-based Word Embeddings

The introduction of the Transformer (also see section 2.3) and the significantly improved per-
formance on machine translation [68] led to the idea that Transformers could replace LTSM, in
particular as they seemed to better represent long-term dependencies and could be trained in par-
allel. One of the earliest Transformer-based WE models was OpenAI’s Generative Pre-Training
(GPT) [57] model. GPT uses a 12-layer, decoder-only Transformer and was trained for much
longer and much more data than any model before. It significantly improved the state-of-the-art
[57], confirming the promising idea of Transformer-based architectures. Many Transformer-based
variants like GPT-2 [58], GPT-3 [10] and XLNet [71] have followed, but for this background we
will only discuss BERT.

Figure 2.10: BERT model architecture.

Bidirectional Encoder Representations from Transformers

In 2019, Google AI’s Devlin et al. argued that the techniques of then (amongst which GPT) would
restrict the power of pre-trained word embedding models with the main argument that these
techniques are all uni-directional, which limits the choice of architecture during pre-training [19].
They introduced Bidirectional Encoder Representations from Transformers (BERT), which uses
only the encoder blocks of the Transformer as shown in figure 2.10. To alleviate the unidirectional
constraint, BERT uses a Masked Language Model that randomly masks some input tokens with
the goal to predict the masked tokens. For a part of the training, BERT even masks out the entire
following sentence to be able to perform next-sentence prediction. In contrast to most others at
that time, BERT has a deeply bidirectional architecture instead of a shallow concatenation of
two unidirectional models. More importantly, BERT was shown to be the first fine-tuning-based
model that outperformed state-of-the-art on both token and sentence level tasks [19].
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Chapter 3

Related work

This chapter discusses works and datasets related to this research. First, section 3.1 elaborates
on relevant datasets for Aspect-Based Sentiment Analysis (ABSA). Next, we discuss state-of-the-
art ABSA models in section 3.2 Last, section 3.3 discusses works related to applying Generative
Adversarial Networks (GANs) to natural language problems. In both section 3.2 and section 3.3
we focus on works using Transformer-based word embedding models.

3.1 Datasets

Aspect-Based Sentiment Analysis (ABSA) has become a popular research topic due to the many
useful applications [11] and various public datasets available. In this section, we discuss the
popular SemEval and Twitter dataset(s), as well as the more challenging MAMS dataset. Table
3.1 shows the details of these databases.

Dataset Domain Pos. Neutr. Neg. Total

SemEval-2014 [56]
Reviews (Laptops)
Reviews (Restaurants)

1328
2894

629
829

994
1001

2951
4724

SemEval-2015 [55]
Reviews (Laptops)
Reviews (Restaurants)

1644
1652

185
98

1094
749

2923
2499

SemEval-2016 [54]
Reviews (Laptops)
Reviews (Restaurants)

1540
1802

154
104

869
623

2563
2529

Twitter [20] Social Media (Various) 1735 3470 1735 6940
MAMS [33] Reviews (Restaurants) 4183 6253 3418 13854

Table 3.1: Dataset details, with samples labelled Conflict excluded.

The International Workshop on Semantic Evaluation (SemEval) featured ABSA tasks in 2014
[56], 2015 [55] and 2016 [54]. All these datasets contain laptop and restaurant reviews in English,
where in particular the 2014 datasets have become a benchmark for deep-learning-based ABSA
approaches [8, 33]. The SemEval tasks are based on aspect-term and aspect-category, where the
latter groups terms into categories and is only featured in the restaurant datasets.

The Twitter dataset by Dong et al. [20] was also introduced in 2014 and is frequently used
in ABSA research, although less popular than SemEval-2014 [8]. This dataset is bigger than the
SemEval datasets, with neutral samples making up half of the dataset. Only the aspect-term
task is featured in the dataset [20].
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Last, the Multi-Aspect Multi-Sentiment (MAMS) dataset [33] introduced in 2019 also
concerns restaurant reviews. However, the dataset only features sentences with multiple aspects
that each have a different sentiment for each aspect. As a result, the MAMS dataset usually
leads to lower performance and can therefore be considered more challenging [33]. Additionally,
the dataset is also significantly larger with more than 10K samples for both tasks.

3.2 Aspect-Based Sentiment Analysis

A survey by Brauwers and Frasincar [8] shows that more than 60 works on ABSA have been
published in the last decade. Since 2019, Transformer-based models make up most of the state-of-
the-art architectures, practically all using Devlin et al.’s Bidirectional Encoder Representations
from Transformers (BERT) [19] as a core component. In this section, we provide an overview of
various Transformer-based ABSA approaches relevant to this research.

Type Binary Sentence
QA Yes The polarity of the aspect safety of X is positive
NLI Yes X, safety, positive
QA No What do you think of the safety of X?
NLI No X, safety

Table 3.2: Example auxiliary sentences for entity X as generated by Sun et al. [67]

One of the earliest applications of BERT for ABSA is that of Sun et al. [67]. They create
an auxiliary sentence based on Question Answering (QA) or Natural Language Inference (NLI)
to make ABSA a sentence pair classification task, using both binary and non-binary questions.
Table 3.2 contains example sentences for each combination. The sequence output (CLS) vector
of BERTBASE is followed by a fully connected layer with a softmax classification layer, achieving
an 85.9% accuracy on the aspect-category sentiment classification task of SemEval-2014. Hoang
et al. [28] use a similar approach.

Figure 3.1: Variants proposed by Goa et al. [21] without (left) and with (right) CLS vector.

Goa et al. [21] use the word embeddings from the target followed by max pooling, instead of or
in addition to the CLS vector from BERTBASE. Variants that use the CLS vector concatenate or
multiply this with the pooling outcome, after which all variants end fully connected layer with
a softmax output layer. Results on SemEval-2014 show that the variant without CLS performs
best accuracy-wise, but multiplication with CLS (laptops) or even Sun et al.’s aforementioned
approach (restaurants) performs better on F1-score.
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Hu et al. [31] use a multi-target extractor to determine where the aspect is located and use
BERTLARGE. This extractor mainly consists of a BERT model with a fully connected layer
with softmax to determine the start and end position of a target. They combine three years
of SemEval datasets, making the results hard to compare, but claim to achieve state-of-the-art
results at that time. Xu et al. [69] implement a similar approach but post-train BERTLARGE for
70K-140K steps on a review dataset they introduce in their paper. They show that post-training
on a related domain can significantly increase the performance, yet their method (BERT-PT)
comes at a severe computational cost that is even larger due to the use of BERTLARGE.

Zeng et al. [73] introduce a more complex approach called Local Context Focus (LCF). LCF
uses a local and global context processor, both using BERT followed by two additional layers
of Multi-Head Attention (MHA, also see section 2.3.2). For the local context processor, they
add a Context features Dynamic Mask (CDM) or Context features Dynamic Weighted (CDW)
layers between the two last MHA layers. The output from both the local and global context
processors is then combined, followed by another MHA layer and a pooling layer to produce
the output. Despite its complexity, the LCF approach yields impressive results with 87.1% and
82.5% accuracy on the SemEval-2014 restaurants and laptops dataset respectively.

Figure 3.2: Left: Local Context Focus [73]. Multi-Attention Network (MAN) [70].

An alternative approach is proposed by Xu et al. [70] in the form of the Multi-Attention Network
(MAN). Both aspect and context are put into their own BERT models, each followed by several
Transformer encoders to create a hidden representation for both the aspect and context. The
outputs of both threads are then jointly used as input for a global and local intra-attention
layer. The intra-attention outputs are then concatenated and connected with a fully connected
softmax layer to produce the output. MAN is significantly outperformed by LCF and also does
not perform significantly better than the simpler architectures outlined before. Figure 3.2 shows
a schematic of the LCF and MAN architectures.

Early 2021 Karimi et al. [35] introduced the first application of adversarial training in ABSA,
BERT Adversarial Training (BAT), build on the post-trained BERT-PT approach by the afore-
mentioned Xu et al. [69]. They use an adversarial white-box attack [35] based on the gradient
of the loss function on BERT’s input embeddings, by solving the minimization problem shown
in equation 3.1:

radv = arg min
r,∥r∥≤ϵ

log p(y|x + r; θ̂) (3.1)

where radv is the perturbation, ϵ the maximum perturbation, p(y|x; θ) the probability that
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the correct label y is predicted for input x on a model with parameters θ and θ̂ is a copy of
the model parameters to prevent gradient propagation. BAT showed to improve BERT-PT in
practically all cases reaching 86.0% accuracy on the SemEval-2014 restaurant dataset. However,
the choice of ϵ can significantly impact performance and [35] shows optimal ϵ values differ per
dataset.

Figure 3.3: BERT Adversarial Training (BAT) from Karimi et al. [35].

In the same year, Su et al. [66] introduced Progressive Self-Supervised Attention (PSSA) learning,
a new method of training attention-based ABSA models. They show that attention mechanisms
are susceptible to context words that very often occur with the same sentiment. This results in
wrong predictions, as too much attention is given to these words. PSSA masks out the word
that is given the most attention in the previous training phase to address this problem, leading
to state-of-the-art performance on both the SemEval-2014 datasets and the Twitter dataset.
Additionally, they show that their method not only works for BERT-based models, but also for
older attention-based models.

3.3 GANs for Natural Language

Although initially mainly used in computer vision applications, Generative Adversarial Networks
(GANs) have been applied successfully in the field of natural language [1, 32]. This section
discusses two variations of using GANs for natural language. First, we discuss GANs that have
the goal to generate text and what methods they use to deal with the discrete nature of text.
Second, we focus on GANs applied to Transformer-based word embedding models, in particular
those that use GANs to improve classification performance rather than to generate text.

3.3.1 GANs for Text Generation

Several recent surveys show that a significant amount of works have been published that use
GANs for text generation [1, 17]. A significant challenge for GANs is that they are designed to
generate continuous data, whereas the discrete nature of text limited the effectiveness of early
GANs [1]. We discuss how this problem can be overcome.

Reinforcement Learning-based approaches

A popular approach for generating text with GANs is Reinforcement Learning (RL), where an
agent learns its behaviour by punishment or reward based on its actions. Promising results
have been shown in GANs in which the generator is the agent and the discriminator guides
the training by determining the reward. SeqGAN [72] was one of the earliest applications,
modelling the GAN’s generator as a stochastic RL policy and using RL gradient policy update.
Lin et al. [39] introduced the use of adversarial ranking, RankGAN, where the discriminator
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is a ranker that ranks human-written and machine-written sentences. MaliGAN [12] is another
approach that uses a maximum-likelihood training objective for GANs to address the challenge
of backpropagating on discrete data like text.

However, RL-based approaches face some major challenges that in general lead to poorly
generated text [1]. First, RL-based approaches have a gigantic state-action space that can only
partially be explored, leaving a large part of potential actions unconsidered. Additionally, these
approaches can get easily trapped at local optimums and gradient estimates using RL gradient
policy can have very high variances [44, 74].

Other approaches

Considering the drawbacks of RL-based approaches, researchers have tried to find alternative
solutions that address these drawbacks, so-called RL-free models. A popular method is to use
a continuous approximation of discrete sampling [1], such as using Gumbel-softmax in GSGAN
[37] or soft-argmax operator in TextGAN [74] as a trick to provide a continuous approximation
of the distribution. RelGAN [50] is one of the first approaches that can generate realistic text
using Gumbel-softmax and produces state-of-the-art results.

An alternative approach to approximate a continuous contribution is to use the Earth Mover’s
Distance (EMD) as an alternative GAN training objective, as discussed earlier in section 2.2.2.
The Future Mover’s GAN (FM-GAN) [13] implements this, leading to a model with a critic
instead of a discriminator that can overcome problems such as mode collapse.

3.3.2 GANs with Transformer-based Word Embeddings

GANs and Transformer-based word embedding models are both very popular, and various
works applying GANs to text exist [8, 32, 1]. However, the research on combining GANs with
Transformer-based word embedding models such as BERT is limited, with the text-to-image
domain as an important exception [18, 48, 49]. In this section, we discuss the work on using
GANs with Transformers-based architectures.

Shang et al. [65] use the TextGAN [74] and Transformer GAN (TransGAN) [34] architecture
to generate additional augmented data to improve sentiment classification using BERT-variant
RoBERTa. TransGAN was originally built to generate images without using any convolutional
operation but was tweaked to generate text instead. They have shown that the combination of
the TransGAN with RoBERTa yields superior results and that using the TransGAN for data
augmentation increases performance regardless of which classifier is used.

Figure 3.4: Using BERT’s Masked Language Modelling (MLM) to generate a lie.

Barsever et al. [4] predict random sentences to better detect lies by using BERT’s Masked
Language Modeling. They first generate a random seed for the first token, after which they
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use BERT to predict the remainder of the tokens. This is visualized in figure 3.4. The second
instance of BERT is then used as a discriminator to detect lies. They show that this method
significantly increases performance compared to other published methods and is state-of-the-art
on the used dataset. However, the paper does not include any result without using the GAN,
leaving it unclear if any performance is gained.

GAN-BERT

A different method, GAN-BERT, is proposed by Croce et al. [14]. They argue that the huge
amount of annotated data that is required to make Transformer-based word embedding mod-
els like BERT perform is highly unpractical: obtaining this data is very expensive and time-
consuming unless a large, high-quality dataset already exists. As unlabelled examples for a
target task are often easy to collect, they propose a semi-supervised approach based on the
Semi-Supervised GAN (SS-GAN) [64].

In SS-GANs, a k class discriminator is trained for a (k + 1) class objective, where the (k +
1)th class is for artificially generated samples. SS-GANs split the loss into a supervised loss
and an unsupervised loss, where supervised loss corresponds to the cross-entropy loss and the
unsupervised loss measures the error for labelling a real example as artificial and vice-versa.
SS-GANs use a feature matching loss in the generator, aiming to make sure that hidden layer
activations are similar for generated and real samples across batches. In contrast to the regular
GAN, the generator and discriminator now play their own minimization game with different
losses instead of a shared objective.

Figure 3.5: GAN-BERT Architecture.

Rather than a GAN that generates text, Croce et al.’s GAN-BERT only generates the encoding
that BERT produces as output with a very simple one-layer MLP as both generator and discrim-
inator. Figure 3.5 gives an overview of the rather simple GAN-BERT architecture. GAN-BERT
uses BERTBASE. In their experiments, GAN-BERT is trained for only 3 epochs and uses a ratio
of 100 unlabelled samples per labelled sample, while repeating labelled samples to make sure
every batch contains them. Despite the extremely simple generator and classifier, GAN-BERT
shows a significant increase in performance when limited annotated data is available, for all 6
tested natural language tasks tested.

Multi-Task GAN-BERT (MT-GAN-BERT) has been proposed by Breazzano et al. [9] as
an extension to GAN-BERT based on MT-DNN [41], to allow small training sets even further.
MT-GAN-BERT shares a single BERT model for multiple classification tasks, each with its own
generator and discriminator. This makes it possible to combine multiple datasets that share a
domain but have different labels, to improve model robustness and generalisation. Although it
seems that not all natural language tasks are fit to combine in a multi-task setting, MT-GAN-
BERT reports promising results for those that are related.
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Chapter 4

Method

This chapter discusses our method to investigate the effect of applying Generative Adversarial
Networks (GANs) on a Transformer-based Aspect-Based Sentiment Analysis (ABSA) method.
First, we specify the task that our models will solve, followed by our baseline model. Next, we
state how will implement both a regular and Wasserstein GAN variant of this baseline model,
followed by the datasets used. Last, we discuss how we evaluate our models.

4.1 Task

In this research, we combine aspect detection and sentiment classification in one task. For a
given piece of text, this means that the model has to determine if a sentiment about the given
aspect is expressed and if so, what sentiment is expressed. Usually, these two sub-tasks are used
separately, but we combine the two to create a more challenging task. If a text says nothing
about an aspect, we apply the label Not Mentioned (NM). Otherwise, the sentiment polarity
labels Positive, Neutral, Negative and optionally Conflict are used. Figure 4.1 visualises this.

Figure 4.1: Visualisation of the combined detection and sentiment classification task.

We group aspects into 5 or 8 categories depending on the dataset used. For example, terms like
salad, lasagne and zucchini will be grouped together under the aspect-category food. As a result
of the categories, we do not have to detect an (almost) infinite amount of terms, which makes
it possible to perform both detection and sentiment classification in one task. This makes that
each text has 5 or 8 tasks, one for each category present in the dataset. The categories for each
dataset can be found in table 4.3 on page 25.
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4.2 Baseline method

We first select a Transformer-based ABSA method that will function as a baseline. This research
focuses on using limited amounts of labelled training data and not necessarily on improving
state-of-the-art performance, allowing us to select a not-too-complex model that has a decent
performance. Considering that BERT is designed to work with a very minimal classification
part appended and taking the ABSA methods as seen in 3.2 into account, we chose to use the
method of Sun et al. [67] as the baseline model. The method has decent performance with an
acceptable, modest difference in performance when compared to more complex state-of-the-art
models such as LCF [73]. However, the model is relatively simple to implement and does not use
BERTLARGEwhich is deemed unpractical due to its large size that results in long training times
and high GPU memory requirements.

Sun et al.’s model [67] generates an auxiliary sentence to make BERT perform a sentence
pair classification task. For this research, we use their non-binary question-answering method
to generate this auxiliary sentence. This means that for a given target category, we add the
question what do you think of the {target category} of it? after the original sentence, separating
them with a [SEP] token. Figure 4.2 shows an example of this, together with the architecture
of the model.

Figure 4.2: Overview of the baseline method based on Sun et al. [67]

We use the default BERT preprocessor to tokenize sentences using a maximum sequence size of
128 tokens, considering the relatively small size of the input texts. These are put into BERTBASE,
which will produce a sequence output (CLS) vector of size 768 representing the entire sentence.
The CLS vector is put into a single fully connected layer of the same dimension with Leaky ReLU
as activation function. During training, this layer uses a dropout percentage of 10% to improve
regularization. In the end, there is a fully connected softmax output layer. The baseline model
is trained for 8 epochs using a batch size of 16 and uses the categorical cross-entropy loss with
an Adam [36] optimizer with a learning rate of 1e−5.

4.3 Regular GAN

As a basis for our GAN, we will apply the semi-supervised GAN-BERT [14] as earlier discussed
in section 3.3.2 to Sun et al.’s baseline method. The application is straightforward, considering
that GAN-BERT’s discriminator architecture is similar to that of the classification layers of the
baseline. In practice, BERTBASE and the classification layers stay the same, except for the extra
class for artificial samples that is added to the output layer. The main change is the addition of
a generator that feeds artificial sequence output (CLS) vectors to the discriminator. A schematic
overview of the combination of the two models can be seen in figure 4.3.
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Figure 4.3: GAN-BERT [14] applied the approach of Sun et al. [67]

As a discriminator does not necessarily need real samples to be labelled, it allows using of
unlabelled data next to the labelled data in training. To accommodate this, the model uses
distinct losses for the generator and discriminator as introduced by the Semi-Supervised GAN
(SS-GAN) [64]. Equation 4.1 states the formula for the discriminator loss, where pd denotes
the distribution of the real data, pz be the distribution of the latent vector z, D(ŷ = y|x) the
probability that the discriminator predicts the class y given sample x, k + 1 the class used to
denote an artificial sample and G(x) the output of the generator for input x.

LD =Lsup.
D + Lunsup.

D

Lsup.
D =− Ex,y∼pd

log(D(ŷ = y|x))

Lunsup.
D =− Ex∼pd

log(1−D(ŷ = k + 1|x))

− Ez∼pz log(D(ŷ = k + 1|x = G(z)))

(4.1)

The discriminator loss LD consists of a supervised and an unsupervised component. The su-
pervised component Lsup.

D is calculated based on the labelled data only and corresponds to the
categorical cross-entropy loss as used in the baseline. For the unsupervised component Lunsup.

D ,
the first part takes the categorical cross-entropy loss based on the probability that a real sample
is not classified as artificial. It then adds the same loss for the probability that an artificial
sample is classified as such, after which both components are summed together.

LG =Lfeat.
G + Lunsup.

G

Lfeat.
G =∥Ex∼pd

a(x)− Ez∼pza(G(z))∥
Lunsup.
G =− Ez∼pz log(1−D(ŷ = k + 1|x = G(z)))

(4.2)

The generator loss LG shown in equation 4.2 also consists of two components. Its unsupervised
component Lunsup.

G takes the cross-entropy loss based on the probability that an artificial sample

is classified as real. Additionally, SS-GANs use a feature matching loss Lfeat.
G aiming to make

sure that hidden layer activations a(x) are similar for artificial and real samples.
This research uses two generator architectures, one with one hidden layer (Gh=1) and one with

three hidden layers (Gh=3). Both generators receive a latent vector sampled from a Gaussian
distribution with µ = 0 and σ = 1. This noise is put into the fully connected hidden layers using
Leaky ReLU as activation function and followed by a 10% dropout. Finally, each generator
consists of an output layer consisting of 768 units with a linear activation which outputs the
artificial CLS. The dimensions for the two different generators are shown in figure 4.4.
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Figure 4.4: Architecture for Gh=1 (top) and Gh=3 (bottom).

In GAN-BERT, Croce et al. train both the generator and the discriminator once per batch.
However, empirical tests show that the generator loss quickly increased, while the unsupervised
discriminator loss quickly dropped to near-zero values. This results in sub-optimal performance.
To keep the generator sufficiently powerful, we introduce the maximum generator loss Lmax

G .
If LG > Lmax

G directly after the generator was trained, the generator is trained again. We
consider the generator to be sufficiently powerful if, on average, the discriminator assigns a 70%
or higher probability that a generated sample is real. This corresponds to a maximum loss value
Lmax
G = 0.5. To avoid very long training times, the generator is never updated more than 5

times per batch. Both the generator and discriminator are trained for 8 epochs using batch size
16 and use the same Adam optimizer as in the baseline model with a learning rate of 1e−5.

4.4 Wasserstein GAN

Aiming to improve the diversity of artificial samples, we also propose a Wasserstein GAN
(WGAN) [3] variant with gradient penalty [27]. The main challenge for applying a WGAN
to a classification problem is that it has a critic instead of a discriminator. This critic could
help to avoid problems such as vanishing gradients and mode collapse, but it cannot be used for
classification. To still be able to classify, our WGAN uses a hybrid approach with both a critic
and a discriminator.

This hybrid approach is shown in figure 4.5 and can be viewed as two models that are
trained together. One of these models is a classification or discrimination model, essentially
our regular GAN but without the generator. Instead, it only focuses on the semi-supervised
discrimination task, receiving its artificial samples from the other model, a regular WGAN.
This WGAN attempts to produce artificial sequence output (CLS) vectors by minimizing the
Wasserstein distance while enforcing the 1-Lipschitz constraint by applying gradient penalty
(GP). Please see section 2.2.1 for more details on the Wasserstein distance and gradient clipping.
Similar to the regular GAN, the same two generator architectures are used. The critic has a
similar architecture to that of the discriminator, but its output layer now only consists of one
unit with linear activation.

For each batch, the training step begins with training the WGAN. In line with the recom-
mendations in [3, 27] both generator and critic are updated using the RMSProp optimizer with
a learning rate of 5e−5, the critic is updated 5 times for each time the generator is updated and
the GP-weight is set to 10. Both BERT, which supplies the real CLS vectors, and the discrim-
inator are not updated during this process. After the WGAN has been trained, the artificial
samples it generates are used to train the classification model. In this step, the WGAN supplies
the artificial CLS vectors but is not updated. The discriminator uses the same loss function LD
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as defined in section 4.3 and an Adam optimizer with the same learning rate of 1e−5 as in the
regular GAN.

Figure 4.5: Schematic overview of our hybrid WGAN approach.

Similar to the regular GAN, the WGAN faces the challenge that the generator might not be
sufficiently powerful to fool the discriminator. Considering that the generator loss is now the
Wasserstein distance, this cannot be set to a predefined target value such as the maximum
generator loss. Instead, we manually set the number of times the generator is trained per step
to ntrain

G = 3 after empirical results showed this to be the best-performing value.

4.5 Data

In this section, we describe the data that is used to train and evaluate the methods presented
earlier in this chapter. First, we describe the labelled data that both the baseline and GAN
models will use for training and evaluation. Next, we specify how we use unlabelled data, which
can be added to the GAN models next to the labelled data. Last, this section will also discuss
the preprocessing of the data.

4.5.1 Labelled data

The Multiple Aspects Multiple Sentiments (MAMS) [33] is used as the main dataset for this
research. This dataset is considered to be more challenging than others, considering that each
sentence contains at least two different aspects with at least two different sentiment polarities.
Additionally, this dataset has three more categories compared to the SemEval-2014 [56] dataset.
We use the restaurant reviews dataset, where table 4.1 shows an overview of the distribution of
the different sentiment polarities within the dataset, where NM denotes Not Mentioned.

Type Sentences Positive Neutral Negative NM Total
Train 3149 1929 3077 2084 18102 25192

Validation 400 241 388 259 2312 3200
Test 400 245 393 263 2299 3200

Table 4.1: MAMS dataset statistics for all aspect-categories combined. [33]
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Next to the MAMS dataset, we use the SemEval-2014 [56] dataset to compare the performance
of our baseline implementation to the reported performance by Sun et al. [67]. We again use
the restaurant reviews dataset, which compared to MAMS has the additional sentiment polarity
Conflict. Table 4.2 shows an overview of the distribution of the different sentiment polarities
within the dataset.

Type Sentences Positive Neutral Negative Conflict NM Total
Train 3041 2177 500 839 195 11494 15205
Test 800 657 94 222 52 2975 4000

Table 4.2: SemEval-2014 dataset statistics for all aspect-categories combined. [56]

In both datasets, some categories are significantly more prevalent than others. Table 4.3 shows
the distribution of categories in the training data for the respective datasets. It can be seen that
food, staff and miscellaneous occur most, while the ambience and the price are only mentioned
infrequently.

Dataset Ambience Miscellaneous Food Menu Place Price Service Staff
MAMS 324 954 2307 475 694 322 631 1383
SemEval-14 431 1130 1232 321 597

Table 4.3: Number of sentences in which a sentiment is expressed per category.

As this research focuses on performance with a reduced amount of labelled training data available,
most experiments do not use all training data. Therefore, we introduce the ratio of labelled data
rL, which represents the percentage of sentences in the training dataset that is used. Based on
the performance of the baseline method with values of rL ranging from 2.5% to 100%, we use
the ratios of labelled data rL ∈ {10%, 20%, 50%, 100%} for our (W)GAN experiments.

If the ratio of labelled data is smaller than 100%, sentences will be randomly sampled from
the dataset. The sampled data is then balanced using oversampling for all sentiment polarities,
while the label Not Mentioned (NM) is undersampled to match the sentiment polarities. The
latter is due to the large number of cases in which an aspect category is not present. Balancing
is only applied to the training data and is not applied for validation or testing. Table 4.4 shows
to which number the MAMS and SemEval-14 datasets are balanced for rL = 100%.

Dataset Positive Neutral Negative Conflict None Sampling target
MAMS 1929 3077 2084 18102 3077

SemEval-14 2177 500 839 195 11494 2177

Table 4.4: Distribution of sentiment polarities and corresponding sampling target (all data)

4.5.2 Unlabelled data

Both our regular and Wasserstein GAN allow for the usage of unlabelled data in addition to
the labelled data. We combine the training data of the SemEval-2014 [56], SemEval-2015 [55]
and SemEval-2016 [54] restaurant review datasets to create one big collection of unlabelled data.
Table 4.5 shows an overview of the distribution of sentiment polarities within these datasets.
Please note that the labels themselves will not be used.
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Dataset Sentences Categories Pos. Neut. Neg. Con. NM Total
SemEval-2014 3041 5 2177 500 839 195 11494 15205
SemEval-2015 1315 13 1060 49 345 24 15617 17095
SemEval-2016 2000 12 1464 95 662 37 21742 24000

Total 6356 4701 644 1846 256 48853 56300

Table 4.5: Statistics for the datasets used for unlabelled data.

Considering that this research aims to investigate the effect of the amount of unlabelled data,
we also define the unlabelled data ratio rU . This ratio represents the amount of unlabelled data
compared to the amount of labelled data. Let the amount of labelled data for labelled data ratio
rL be denoted by |LrL |, the amount of unlabelled data |U | is then given by:

|U | = rU |LrL | (4.3)

Similar to the labelled data, the unlabelled data is sampled on a sentence level to simulate
collecting unlabelled data in the real world. Where Croce et al.’s GAN-BERT uses a set value for
the unlabelled data ratios rU , we conduct experiments for different values. For rL ∈ {10% , 20%}
we use rU ∈ {0, 1, 2, 4, 8, 16}, for rL = 50% we use cU ∈ {0, 1, 2, 4} and for rL = 100% we use
cU ∈ {0, 1, 2}. Only the smaller unlabelled data ratios are used for larger labelled data ratios
to assure sufficient unlabelled data is available and to keep training times limited.

4.6 Evaluation

The survey by Brauwers and Frasincar [8] shows that the accuracy and macro-F1-score are the
most widely used metrics for the evaluation of deep-learning ABSA methods. While accuracy
is a very straightforward metric, the macro-F1-score can be considered to be more strict as it
weighs each class equally, regardless of the number of occurrences. Next to these metrics, we
use precision and recall for the error analysis. Expressed in terms of true positives (TP), false
positives (FP) and false negatives (FN), the precision, recall and F1-score are given by:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2
precision · recall
precision + recall

The metrics in the equations above are all measured per class. The macro-F1-score is the average
of the F1-scores for all individual classes. We conduct an experiment for every combination of
(W)GAN, generator architecture, rL and rU , with each experiment being repeated at least
three times. Excluding the baseline, this has resulted in a total of 582 experiments for the 76
combinations mentioned above.
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Chapter 5

Results

In this chapter we present the results of the experiments defined in the previous chapter, aiming
to draw valid conclusions on our research questions later. In the first section, we start with
the effect of our Generative Adversarial Networks (GANs) on the overall performance of our
Transformer-based Aspect-Based Sentiment Analysis (ABSA) model. We then take a closer look
at the performance for the two sub-tasks we combined, aspect-category detection and sentiment
classification. Finally, we take a closer look by analysing errors and attempting to explain model
performance.

5.1 Overall performance

Before we can analyse and understand the effect of adding a GAN, in particular when less
annotated training is data available, we first need to know how the ABSA model performs with
less training data in general. Figure 5.1 shows how the baseline performance decreases as the
ratio of labelled data rL decreases, with the error bands showing the 95%-confidence interval
over at least 5 runs.

Figure 5.1: Overall baseline performance with rL from 100% to 2.5%.
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We can clearly see that performance decreases more steeply as the amount of labelled data
available decreases. At first, this decrease is limited: at 50% of labelled data, both the accuracy
and macro-F1-score have dropped by 3.5 and 5 points respectively. However, when the amount
of training data is reduced to 20%, roughly halving the data again, performance has decreased by
respectively 11 and 16 points total. After another division by two in terms of training data, the
performance takes a significant dive down. As the positive effect of adding additional training
data on performance can be expected to decrease as more training data is already available, it
is not surprising that the difference in performance converges as rL increases. The exact values
for all data points in figure 5.1 can be found in the Appendix.

Adding one of our GANs almost always improves the overall performance of the ABSA
model, even without the use of unlabelled data. Figure 5.2 shows that only the Wasserstein
GAN (WGAN) with one hidden layer is an exception, performing below baseline levels for a
ratio of labelled data rL ≥ 50%. The largest improvements can be seen when small amounts of
labelled data are available, where both accuracy and macro-F1-score improve by up to 5 points.

Figure 5.2: Overall performance for GANs without using unlabelled data.

Table 5.1 shows that regular GANs outperform WGANs in practically all cases, albeit by a few
points at most. This could be due to the fact that the gradients of the discriminator are directly
used by regular GANs to generate artificial samples, similar to adversarial training methods such
as that of Karimi et al. [35]. Wasserstein GANs do not have this advantage, having to generate
very realistic samples instead of being able to directly attack the discriminator.

rL = 10% rL = 20% rL = 50% rL = 100%
Model Acc mF1 Acc mF1 Acc mF1 Acc mF1

Baseline 0.707 0.554 0.758 0.614 0.834 0.727 0.869 0.770
GANh=1 0.758 0.607 0.793 0.658 0.846 0.736 0.878 0.782
GANh=3 0.746 0.603 0.784 0.666 0.847 0.748 0.882 0.791
WGANh=1 0.729 0.576 0.782 0.641 0.823 0.715 0.864 0.761
WGANh=3 0.749 0.581 0.776 0.647 0.847 0.734 0.873 0.774

Table 5.1: Overall performance for GANs without using unlabelled data.

Particularly for larger amounts of labelled data, it stands out that both regular and Wasser-
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stein GANs with 3 hidden layers generally produce better results than their variants with only
one hidden layer. For rL = 10%, however, the variants with only one hidden layer perform better.
Likely, it becomes easier for the discriminator to learn more complex patterns in BERT sequence
output (CLS) vectors as more training data is available, while generators with one hidden layer
find it more difficult to reproduce such patterns artificially.

While adding a GAN with only labelled data already improves performance, choosing the right
amount of unlabelled data can significantly add to this. Figure 5.3 shows the performance for
the best-performing ratios of unlabelled data rU , selected based on the macro-F1-score. Where
the GANs without unlabelled data kept relatively close to the baseline performance, we now
clearly see very significant gaps. This difference is particularly visible for lower ratios of labelled
data rL, with an additional performance increase by over 3 and 5 points for the accuracy and
macro-F1-score respectively.

Figure 5.3: Overall performance for the best-performing ratios of unlabelled data rU .

In total, using a GAN with the right amount of unlabelled data can increase accuracy by up
to 8 points and the macro-F1-score by up to 10 points when lower amounts of labelled data
are available. The difference in performance again converges as rL increases, but also with the
full training dataset available performance is still increased by 1 and 2 points for the accuracy
and macro-F1-score respectively. Comparing to the baseline performance we see that the best-
performing versions of the models can use approximately half of the training data while keeping
the test accuracy approximately the same. For the macro-F1-score this is half to two-thirds of
the training data.

rL = 10% rL = 20% rL = 50% rL = 100%
Model rU Acc mF1 rU Acc mF1 rU Acc mF1 rU Acc mF1

Baseline 0.707 0.554 0.758 0.614 0.834 0.727 0.869 0.770
GANh=1 8.0 0.789 0.642 4.0 0.815 0.698 1.0 0.854 0.750 2.0 0.881 0.784
GANh=3 8.0 0.789 0.655 8.0 0.814 0.702 1.0 0.867 0.759 0.0 0.882 0.791
WGANh=1 16.0 0.757 0.622 16.0 0.819 0.696 4.0 0.847 0.738 1.0 0.873 0.778
WGANh=3 16.0 0.775 0.642 8.0 0.828 0.710 4.0 0.857 0.753 1.0 0.875 0.778

Table 5.2: Overall best performing values of rU per model.

Similar to the GANs without unlabelled data, we see that the GANs with three hidden layers
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perform better than their one hidden layer variants. With the addition of unlabelled data this
now also holds for when very little amounts of labelled data are available. Probably, this is the
result of the discriminator now also learning more complex patterns in BERT’s CLS vectors at
lower amounts of labelled data, considering that the total amount of data has grown due to the
unlabelled data.

Table 5.2 shows the exact performance values and the ratios of unlabelled data rU for which
they were achieved. It shows that the optimal unlabelled data ratio rU varies, but we can say that
the ideal ratio of rU decreases as the amount of labelled data rL increases. For sufficient amounts
of labelled data, even using no unlabelled data at all might be optimal as GANh=3 shows for rL =
100%. This suggests that given sufficient labelled data, the presence of unlabelled data negatively
impacts the training of the model. A reason for this could be that the discriminator focuses too
much on the discrimination part, instead of the classification part of its task. The WGANs seem
to allow for higher ratios of unlabelled data compared to the regular GANs, potentially needing
the additional data to produce artificial samples that can confuse the discriminator.

Figure 5.4: Overall performance for WGANh=3 with different ratios of unlabelled data rU .

The overall performance for the WGAN with three hidden layers, shown in figure 5.4, gives a
similar impression. From 100% of labelled data available to 10%, the optimal unlabelled ratio
rU goes from 16 to 8 and then from 4 to 1. With the full dataset, the performances converge to
a low value of rU , something we see for all tested models. The exact performance values and the
graphs for all our GAN variants can be found in the Appendix.

5.2 Sub-task performance

Our model combines two sub-tasks, namely detecting whether a category is mentioned and if
so, what sentiment is expressed towards this category. In various other works, such as our
baseline method, these tasks are trained and tested separately. To verify our re-implementation
of the baseline we tested it on the SemEval-2014 dataset, for which the results are added in the
Appendix. We see that our re-implementation closely matches the 91.5% detection macro-F1-
score and the 85.9% classification accuracy as reported by Sun et al [67]. Our results are slightly
lower with scores of 90.4% and 84.8% respectively, which could be expected as we train for both
sub-tasks at once instead of using separately trained models for both sub-tasks. For MAMS, the
performance of the baseline model on the two sub-tasks can be seen in figure 5.5, which shows a
clear difference in detection and classification performance.
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Figure 5.5: Baseline sub-task performance.

Remarkably, the accuracy and macro-F1-score only differ by up to one point for both sub-tasks,
while this difference is very significant for the combined task. To explain this, we take a look
at how we split the combined task into two sub-tasks. By using softmax our model predicts
the probability of each class. We consider a category not detected in the detection sub-task if
the probability of Not Mentioned (NM) is larger than 50%, while NM just having the highest
probability suffices in the combined task. As the highest probability could be lower than 50%,
categories that are detected in the sub-task might not be in the combined task. Consequently,
the combined prediction can be wrong while the predictions for the individual sub-tasks are
correct. Considering that NM is the most-prevalent class the impact on accuracy is limited, but
the impact on the macro-F1-score can be very significant.

Figure 5.6: Sub-task performance without using unlabelled data.

Looking at the performance of our GANs with only labelled data in figure 5.6, we can see that
purely adding a GAN does not necessarily improve sub-task performance, while this is the case
for the overall performance. GAN variants with one hidden layer can make a significant difference
in detection for lower ratios of labelled data rL, while in most other cases the difference with the
baseline is very limited. The relative simplicity of the detection task may explain why the one
hidden layer variants prevail, as a more complex generator might not help improve performance.
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For classification the regular GAN with three hidden layers makes a significant difference, outper-
forming the baseline by 1 to 4 points for all values of rL. The direct access to the discriminator
weights and the more complex classification task probably gives the GANh=3 model an edge,
while other models struggle to improve the baseline. The latter is particularly the case when
more labelled data is already available.

Although we have seen that our models struggle to improve the baseline performance with
only labelled data, this is not the case with unlabelled data. All models can make significant
improvements with the optimal amount of unlabelled data, improving performance by up to 5
and 6.5 points for detection and classification respectively. Similar to the overall performance
the graph shows that the differences in performance converge, making the most impact at lower
ratios of labelled data rL. Figure 5.7 shows a visualisation of these best-performing results,
with the ratio of unlabelled data rU selected based on the macro-F1-score. The exact results
together with the best-performing rU values can be seen in table 5.3 for detection and table 5.4
for classification.

Figure 5.7: Sub-task performance for the best-performing values of rU .

For detection, all models can improve performance, but the differences are rather limited for
rL ≥ 50%. For these values of rL, all GANs perform within 1 point of each other with regular
GANs performing slightly better than their WGAN counterparts. For smaller amounts of labelled
data, the GAN with only one hidden layer performs better than its three hidden layer variants.
The simpler structure of the one hidden layer GANs might allow them to more quickly learn the
relatively simple task of detection, particularly with small amounts of labelled data.

rL = 10% rL = 20% rL = 50% rL = 100%
Model rU Acc mF1 rU Acc mF1 rU Acc mF1 rU Acc mF1

Baseline 0.814 0.792 0.845 0.827 0.904 0.889 0.922 0.908
GANh=1 8.0 0.869 0.847 4.0 0.887 0.870 2.0 0.920 0.905 1.0 0.924 0.911
GANh=3 8.0 0.857 0.837 1.0 0.876 0.859 1.0 0.920 0.906 0.0 0.927 0.914
WGANh=1 8.0 0.828 0.811 16.0 0.892 0.872 4.0 0.914 0.899 0.0 0.926 0.912
WGANh=3 16.0 0.841 0.821 4.0 0.884 0.867 1.0 0.912 0.897 1.0 0.924 0.910

Table 5.3: Detection performance for the best-performing value of rU .

Furthermore, it stands out that WGANs need more unlabelled data for optimal performance,
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similar to the overall performance. The WGANs probably need this data to produce the necessary
high-quality artificial samples as they cannot attack the discriminator’s weights directly. In
general, the ideal amount of unlabelled data still decreases as labelled data increases like for the
overall performance, but in particular for the WGANs this pattern does not always hold.

The classification performance shows slightly larger increases in performance compared to
detection and shows a large variation in which model performs best. For low amounts of labelled
data, the models with three hidden layers closely compete for the best performance. For higher
amounts of labelled data, the Wasserstein GAN with one hidden layer performs better, success-
fully managing to use more unlabelled data compared to the other models. The ideal ratio of
unlabelled data still increases as the number of labelled data decreases. For the GAN with three
hidden layers adding unlabelled data even has a negative effect for rL ≥ 50%.

rL = 10% rL = 20% rL = 50% rL = 100%
Model rU Acc mF1 rU Acc mF1 rU Acc mF1 rU Acc mF1

Baseline 0.669 0.652 0.701 0.685 0.783 0.776 0.804 0.799
GANh=1 16.0 0.708 0.690 8.0 0.745 0.737 1.0 0.793 0.788 0.0 0.814 0.809
GANh=3 8.0 0.715 0.705 8.0 0.759 0.749 0.0 0.792 0.787 0.0 0.821 0.817
WGANh=1 4.0 0.705 0.686 2.0 0.749 0.738 4.0 0.805 0.800 1.0 0.823 0.819
WGANh=3 8.0 0.716 0.702 8.0 0.760 0.751 4.0 0.792 0.783 0.0 0.808 0.804

Table 5.4: Classification performance for the best-performing value of rU .

While regular GANs generally performed better for detection, the WGANs do so for classification.
As a more complex and nuanced task, it has more varying samples, which probably benefits the
GANs using the Wasserstein distance. An interesting result is that the WGANs with three
hidden layers perform better for lower amounts of labelled data, while their one hidden-layer
variants perform better for more labelled data. A potential explanation for this could be that
WGANh=3 performs better with more unlabelled data in a classification setting, an advantage
when less labelled data is available.

There is also an important thing to note comparing the overall results to these sub-task
results. We see The GANs with three hidden layers perform best on the combined task while
their one hidden layer variants are generally better for the individual sub-tasks. This is very
counter-intuitive and a result of the way we split the sub-tasks as explained earlier in this
section. Mathematically, this can only be the case if the models with h = 3 correctly classify
sentiment polarities with a higher probability, making sure this probability is higher than that
of Not Mentioned. Altogether, it should be noted that the models have been trained on the
combined tasks and not specifically on the individual sub-tasks. Therefore, these results should
always be viewed in the context of the combined task.

For both sub-tasks, the results for all configurations and additional graphs can be found in
the Appendix.

5.3 Error analysis

In this section we analyze the errors that our method makes, focusing on our overall best-
performing methods as presented in table 5.3 and comparing them with the baseline. First, we
quantitatively discuss the errors, looking into class confusion and performance on a category
level. After this we use a qualitative approach, manually analysing errors to see how our method
improves the performance and where the method could still improve.
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5.3.1 Quantitative error analysis

We start this quantitative analysis by analysing the predicted classes, focusing on which classes
are confused with each other. Figure 5.8 shows the confusion matrices for the baseline method
based on the test dataset, where the values are summed over 3 experiments.

Figure 5.8: Baseline confusion matrices.

It becomes clear that both precision and recall drop significantly for all classes as the ratio
of labelled data rL decreases. The baseline model finds it increasingly difficult to correctly
classify sentences in which the category is not mentioned, with the recall for not mentioned
(NM) dropping from 91.1% to 79.0%. Considering the large number of sentences in which a
category is not mentioned, this has a very significant effect on the precision of the other classes.
This particularly holds for the neutral class, for which the precision drops from 60.7% to 39.4%,
making it most likely that a predicted neutral is actually not mentioned for rL = 10%. The
confusion between neutral and not mentioned seems logical, as usually not much sentiment is
expressed in both cases.

Figure 5.9: Confusion matrices for best-performing models for rL = 20%.

When we look at the best-performing models for rL = 20% shown in figure 5.9, we can see
significant differences between models. All the shown models improve the macro-F1-score by at
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least 8 points, where WGANh=3 has the best macro-F1-score but is closely followed by the other
models. Compared to the baseline we can see that the confusion between positive and negative
has greatly reduced for all models, which also holds for the confusion of positive and negative
with neutral. The main challenge for all models is the confusion between neutral and the not
mentioned class. Both the one hidden layer GANs and the WGANs seem best able to improve
the precision on neutral compared to their counterparts, but do so at the cost of its recall. For
the WGANs this could be the result of the higher variance in the generated samples, spreading
the confusion over both the neutral and not mentioned recall.

Figure 5.10: Confusion matrices for best-performing models for rL = 100%.

Looking at the same visualisation for the full training dataset, shown in figure 5.10, we can
see both differences and similarities. A major difference is that our GANs improve significantly
less for rL = 100%, with GANh=3 on average improving most with 1.3 points in terms of
macro-F1-score. All models still manage to improve the positive recall and most also do this for
neutral. The major difference, however, is again made in the sentences in which a category is
not mentioned. GANh=3 most successfully improves recall for not mentioned to 91.9%, partially
also by its ability to better reduce the confusion of positive and negative with the not mentioned
class.

Figure 5.11: Baseline performance (left) and training dataset prevalence (right)
for the different categories.

Similar to the classes we also analyze the errors with respect to the 8 categories that are present
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in the dataset. Figure 5.11 shows the macro-F1-score of the baseline model broken down for
the different categories, together with the prevalence of those categories in the training dataset.
We can see that the model has large differences between categories. In particular, the baseline
model performs significantly worse for the miscellaneous and ambience categories. Both these
categories have difficulties in classification, but for the miscellaneous category, this is mainly a
result of poor detection. This can be expected as expressions belonging to this category can
highly vary, but is also somewhat surprising considering how prevalent this category is.

As for the overall performance, our GANs can significantly improve the performance for the
categories but also show significant differences. Figure 5.12 shows the difference between the
baseline and the best-performing models, where a positive value denotes that a model performs
better than the baseline. It stands out that the category menu generally gains the least from
the addition of a GAN, as this category already performs very well in the baseline method.

Figure 5.12: Difference in performance between baseline and best-performing models
for the different categories.

The models realize the largest increase in performance for a ratio of labelled data rL = 20%,
but there seems to be no clear pattern as to which categories are improved by how much. What
does stand out is that the staff and service categories are the only ones that have a larger
improvement for rL = 10% than for rL = 20%. Furthermore, the ambience seems to benefit
more from the regular GANs while miscellaneous seem to profit more from the Wasserstein
GANs. The WGAN’s generally higher variance in generated samples might be an advantage for
the miscellaneous category, as this category likely has a high variance of itself as well.

5.3.2 Qualitative error analysis

In this qualitative error analysis, we manually investigate incorrect predictions that our models
make. Considering that this task is highly time-consuming, we focus on comparing the baseline
and the best-performing models for the ratios of labelled data rL of 20% and 100%, respectively
WGANh=3 and GANh=3. For each model, we gather the incorrect predictions on the test dataset
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over three different experiments, which are all trained and evaluated separately. We then ran-
domly sample 100 incorrect predictions for manual investigation, without duplicates and using
how many experiments an error occurs as the sampling weight.

Label Sentence

Neutral The food is fantastic, Gourmet comfort food and has gotten progressively better over
the past year, as did the service.

Not mentioned The food is average, at best (I have been repeatedly underwhelmed by the mediocre
fare) and the service is only good if Elaine is within range.

Not mentioned The overpriced food that’s supposed to come off as homestyle diner just doesn’t work
when the atmosphere is supposed to be super cool but the food is super bland.

Table 5.5: Examples of actual labels for the category food that are at least debatable.

Looking at the incorrect predictions in general, there are a few observations that stand out for
all models and values of rL. First, the MAMS dataset seems to contain various test cases in
which the supplied label is at least debatable, if not incorrect. For the models at rL = 100%, this
can amount to over 30% of the sampled incorrect predictions. Table 5.5 shows three examples
of such cases for the category food.

Having the lowest macro-F1-score of all target categories, the miscellaneous category also
significantly contributes to the errors. Its detection seems the main difficulty for the models, as
confusion between the neutral and not mentioned label for miscellaneous makes up for up to 25%
of all sampled errors. Similarly to the models, we find it very difficult to assess the presence of
this category manually. Table 5.6 shows an example of two sentences that both tell an anecdote
related to staff or service, yet only is labelled to contain the miscellaneous category1.

Sentence

The service, which was horrendous - they charged us for two appetizers when we asked to split one (when
we brought it up, he insisted that the appetizer really did only consist of 2 sliced tomatoes and 1 slice of
cheese).

To top it off, when we mentioned it to our lovely waitress, she responded as though it was no big deal
along with Well now you know for the next time.

Table 5.6: Examples for the miscellaneous category: one is labelled as neutral and one as not
mentioned.

Next to some debatable labels and the difficult miscellaneous category, however, there are also
some distinct types of errors that we see. A good example of this is the confusion between
the neutral and not mentioned label outside of the miscellaneous class. For the baseline at
rL = 100%, a text in which a category is not mentioned is often predicted to be neutral if the
category is mentioned while nothing is said about it. For example, words like kitchen and table
seem to trigger detection of the category place, while served seems to trigger service and wine
room is sometimes recognised as talking about food. At rL = 20% a clear difference is visible,
now also frequently detecting a category while there is nothing in the text that is obviously
related to it.

1 Thebottomsentenceislabelledtobeneutral.
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This is particularly the case for the category food when little labelled data is available, as it seems
that uncommon words are sometimes enough to ’detect’ food. This could be due to dishes and
recipes usually having a name that is not necessarily a common English word. As a result, the
BERT preprocessor uses the unknown word token and the model might associate these tokens
with food. When more data is present the models seem better at handling this, possibly as a
result of a better understanding of the context around these uncommon words.

Another matter that can be observed for lower amounts of labelled data is that the model
seems to mix up certain categories with each other. Food and price are sometimes difficult to
keep separated as, for example, overpriced food could also mean that the food is of insufficient
quality. Furthermore, this also happens for staff and service, as staff members usually provide
the service of an establishment. Last, the place and ambience can be very related as well as a
good place can usually be expected to have a good ambience and vice-versa. Table 5.7 shows
two example sentences in which two categories seem to get mixed up.

Detected Sentence

Service Our last experience: Waiting for a table at the bar (we always make reservations), the
bartender ignored us until my husband intervened with one of the owners.

Place Small dishes, a bit pricier than you’d pay in Miami or LA, but the atomsphere is on
the sexy side (however pared down) and its cozy.

Table 5.7: Examples of the wrong category being detected.

Applying our best-performing GANs reduces most of the aforementioned problems, but some
remain a significant challenge. This in particular holds for the detection of food while no related
words are available, as our GANs do not seem to be able to improve here. For categories outside
of food, our method can make a real improvement, but the challenges here remain significant. For
reducing mixed-up categories, however, our GAN shows to work well. Additionally, our methods
seem to better handle sentences that have a negative undertone, which the baseline frequently
marks to be negative if given only 20% of the labelled data.

For rL = 100%, no clear differences could be found between the errors of the baseline and best-
performing models in terms of qualitative analysis. The miscellaneous class and the detection
of categories that are mentioned but about which nothing is said therefore remain the main
challenge for the methods trained with a full dataset.

5.4 Additional analysis

In addition to the results shown before, we have also generated t-distributed Stochastic Neighbour
Embeddings (t-SNE) to represent the output sequence (CLS) vectors that BERT produces in a
two-dimensional space. We produced these embeddings aiming to gain more insights into the
effect of applying regular and Wasserstein GANs, by visualising if artificial and real CLS vectors
are easily separable by t-SNE. We produce these embeddings on a balanced sample of the training
dataset with 500 samples per class, as otherwise certain classes would not be visible.

Before applying t-SNE, we first perform Principal Component Analysis (PCA) on the CLS
vector to reduce the number of input components from 768 to 48. In all our experiments these
48 components explain almost all of the variance in the original CLS vectors. We then apply
t-SNE analysis to reduce the number of components to 2, using 1000 iterations and a perplexity
of 30.
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Starting without using any unlabelled data, an interesting phenomenon becomes visible when
we compare the t-SNE plots of the regular and Wasserstein GAN for h = 3, as shown in figure
5.13. The real data classes are more clustered and separated from each other at the regular
GAN for both values of rL and we have seen that the GAN achieves a higher test performance.
However, the artificial samples generated by the regular GAN are very clustered as well, despite
they should replicate all real classes.

Figure 5.13: Comparison of t-SNE plots for rU = 0%.

In contrast, the artificial samples created by the Wasserstein GAN generator show a curved line
pattern in the t-SNE analysis. This indicates that its samples relate to some of its other samples,
but are also very unrelated to some other samples generated by the same model. The higher
variation in-between samples that can be observed here can be seen as one of the WGAN’s well-
known strong suits: the ability to create highly diverse samples. Comparing the samples with
the regular GAN, it seems as if the regular GAN suffers from mode collapse despite the special
part of the generator loss aiming to minimize the distance between features Lfeat

G as defined in
equation 4.2.

When adding unlabelled data, again some interesting phenomena are showing for the regular
and Wasserstein GAN, as is shown in figure 5.14 for rL = 20%. The two variants show different
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Figure 5.14: Comparison of t-SNE plots for different values of rU at rL = 20%.

patterns when it comes to artificially generated data. For the regular GAN, this data as shown
in red forms more of a round shape for rU = 2.0, slowly stretching out and curving as the ratio
of unlabelled data increases. In the process, the real classes get slowly more separated from
each other. For the Wasserstein GAN, the artificial data points form a long and thinly stretched
line that expands when rU increases to 4.0, indicating a larger variance within these artificial
samples. For an unlabelled ratio of 8.0, however, all data points start to form one big cluster
with all classes more or less mixing. Strangely enough, this is where the WGAN achieves its best
performance, potentially as a result of being able to very well confuse the discriminator.
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5.5 Summary

• Reducing the amount of labelled training data severely reduces the performance of the
baseline Transformer-based Aspect-Based Sentiment Analysis (ABSA) method. With only
20% of the labelled dataset available, the performance can drop by 10-15 points and this
decreases further when less data is available. This drop in performance affects both category
detection and sentiment classification.

• Using a regular or Wasserstein GAN as described in our method improves performance
without using unlabelled data. When trained with a full dataset, this performance im-
provement is limited to only one or two points. With fewer data, however, this difference
can get up to 5 points. Both regular and Wasserstein GANs can improve sub-task perfor-
mance for lower amounts of available labelled data, but regular GANs generally achieve
higher scores. When no unlabelled data is used, the models using a generator with three
hidden layers generally perform better than their one hidden-layer counterparts.

• The addition of unlabelled data can very significantly increase performance, increasing
accuracy and macro-F1-score by up to 8 and 10 points respectively when 20% or less of
the original dataset is present. This can decrease the need for labelled data by approxi-
mately 50% in terms of accuracy, while for the macro-F1-score this can be decreased by
approximately 40-50%. Similar to the GANs trained without unlabelled data, the variants
with a generator with three hidden layers achieve the best results. Additionally, the use of
unlabelled data can improve both category detection and sentiment classification by up to
5 points in terms of macro-F1-score.

• The chosen ratio of unlabelled data, however, has a large effect on performance. There
is not one ratio that performs best in all circumstances. In general, the optimal ratio of
unlabelled data decreases when the amount of labelled data increases and can even be zero.
Regular GANs generally perform better with a lower ratio compared to their Wasserstein
counterparts. For GANs, a combination of labelled and unlabelled data that together totals
between 80% and 180% of the size of the original labelled training dataset seems optimal.
For Wasserstein GANs this equals between 1.5 to 2.5 times the size of the original dataset.
Adding unlabelled data can significantly improve both category detection and sentiment
classification performance.

• Error analysis reveals that the main challenge with less labelled data is the confusion re-
garding categories that are not mentioned, where in particular neutral sentiment is often
predicted. In particular the miscellaneous is difficult, presumably as a result of the high
variety within this category. Additionally, some words seem to incorrectly trigger the de-
tection of certain categories. Our best-performing models reduce these errors and generally
improve performance for all class labels and aspect categories, but some errors - mainly
those regarding the miscellaneous category - remain a significant challenge.

• Additional analysis of the real and generated word embeddings indicates that the Wasser-
stein GAN produces artificial word embeddings with a higher variance, with generators
with three hidden layers producing the largest variance. Despite this increase in variance,
it does not necessarily lead to an increase in performance when compared to the regular
GAN. It is not fully clear why this is the case, but this could be due to the absence of
direct feedback from the discriminator weights.
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Chapter 6

Discussion

We have investigated the use of semi-supervised Generative Adversarial Networks (GANs) to
improve the performance of Transformer-based Aspect-Based Sentiment Analysis (ABSA). We
have shown that our method can significantly improve performance, in particular when less
labelled training data is available. In this chapter, we will discuss the implications of our research
and its results, together with its limitations.

Next to showing that Croce et al.’s GAN-BERT method [14] can be applied to the ABSA
domain, our research has various other implications. First, we have shown that the method is
generally also beneficial if the unlabelled data is left out. Additionally, our research shows strong
indications that, at least for our dataset, the unlabelled ratio of 100 as used by Croce et al.
is too high: the optimal ratio of unlabelled data seems to decrease as the amount of labelled
data increases. As a result, the ideas of Croce et al. can likely more easily be applied than
the original paper suggests, as less unlabelled data seems necessary to make it work. Another
significant difference to GAN-BERT is the use of generators with more hidden layers. Our results
show that the more complex generators can significantly increase performance, most likely due
to their ability to generate more complex structures in the artificial word embeddings. Although
regular GANs usually produce better performance, our research has also shown that using a
Wasserstein GAN can be beneficial in specific situations.

The Wasserstein GANs can produce artificial word embeddings with more variance compared
to the regular GAN, but in those cases performance not necessarily improves. It is not fully clear
why this is, but a potential explanation might be that the WGAN does not have access to the
gradients of the discriminator and, therefore, cannot perform the ”white-box attack” that the
GAN can do in its attempt to mislead the discriminator. In essence, the usage of the GAN in this
setup could somewhat correlate to the effect that white-box attacks like the Fast Gradient Sign
Method [26] have, which is known to be able to improve performance when used in adversarial
training. However, the current method makes it difficult to analyze the performance of the
regular or Wasserstein GANs as the ’real’ word embeddings produced by BERT constantly
change. The adaptation of BERT to provide more easily classifiable embeddings most likely
improves performance but makes it hard to see progress in the GAN. Additionally, as nearly no
research exists on using GANs to generate artificial word embeddings, there is also no indication
of which GAN architectures or configurations could work well in this setting.

Looking more specifically at the ABSA task, it would have been better to keep the two
sub-tasks of detection and sentiment analysis separated. For this research, combining the two
sub-tasks seemed the better choice, as this allows for a more complex task and allows us to
train only one model. This reduction of computational costs also has a more impractical side
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as the combined training will most likely perform differently for both sub-tasks compared to
when trained separately, while most other models are trained separately as well. Likely, the
performance on the sub-tasks could have been increased when trained separately. In addition,
this would have made it possible to conclude whether certain configurations would work better
for one of the sub-tasks. For example, there are indications that Wasserstein GANs seem to
have a more positive influence on sentiment classification. To prove this, however, the sub-tasks
should be trained separately.

The grid-search way in which the research was approached also somewhat limited the re-
search. This method led to a large number of combinations between model types, amounts of
labelled data and amounts of unlabelled data. In total, this resulted in approximately 90 model
configurations that have been tested in over 500 experiments. This has resulted in a lot of re-
sults and insights but has the downside that sometimes choices had to be made due to the large
computational cost of training BERT a large number of times.

Last, the research also showed that for lower amounts of labelled data available, the variance
in the results increases. While each experiment has been repeated approximately 5 times to gain
a more reliable average performance, the variance made it still hard to compare models where
the results are very minimal. In combination with the computational costs described above it
was not realistically possible to repeat experiments 10 or 15 times, but maybe other steps could
have been taken to reduce this variance. A way of producing more stable results with very low
amounts of labelled data would have been beneficial.
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Chapter 7

Conclusions

We have seen that less labelled training data significantly decreases the performance of our
baseline Transformer-based Aspect-Based Sentiment Analysis (ABSA) method. In this research,
we investigate whether applying a Generative Adversarial Network (GAN) can improve this
performance:

RQ1 Can applying a semi-supervised GAN to generate artificial word embeddings improve
the performance of Transformer-based ABSA, in particular when smaller amounts of
annotated data are available?

RQ2 How does the amount and ratio of the labelled and unlabelled data used in a semi-
supervised GAN influence the performance of Transformer-based ABSA?

We have performed experiments for various amounts of labelled and unlabelled data, with both
a regular and a Wasserstein GAN and with two different generator architectures. Based on the
results presented in the previous chapter, we draw the following conclusions:

• With labelled data only, applying a GAN to generate artificial word embeddings improves
the performance of our Transformer-based ABSA method in almost all cases. This per-
formance improvement becomes larger as less labelled data is available and can increase
accuracy and the macro-F1-score by up to 5 points.

• Adding unlabelled data can further increase performance significantly by up to 5 additional
points. This allows our best-performing models to reach the performance of a baseline
model that uses 80-100% more labelled data. The largest performance increase is observed
when only 10% or 20% of the labelled data is available.

• There is not one single optimal ratio of unlabelled data and more is not necessarily better.
The best-performing regular GANs generally use less unlabelled data compared to their
Wasserstein counterparts. A total amount of data, including both labelled and unlabelled
data, varying between 80% and 180% of the size of the full dataset seems ideal for regular
GANs. For Wasserstein GANs these percentages are between 150% and 250%.

• Despite that Wasserstein GANs seem to produce more varying artificial word embeddings,
regular GANs perform better in most cases by a limited difference. However, both regular
and Wasserstein GANs using a generator with three hidden layers produce significantly
better performance than their one hidden-layer counterparts.
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Altogether, we conclude that applying a semi-supervised GAN can significantly improve the
performance of a Transformer-based ABSA method when less training data is available, with
a semi-supervised GAN being able to increase performance as if almost twice as much training
data was available.

7.1 Future work

While the conclusions of this research are promising, it is to the best of our knowledge also the
first application of semi-supervised GANs with more than one hidden layer to BERT and the first
application of a Wasserstein GAN with BERT in general. Besides this, there has been (nearly)
no research on applying GANs in the ABSA domain in general. As a result, various questions
still have to be answered in future work.

First, separating the two detection and sentiment classification sub-tasks might be beneficial
to the performance of the model. Also, the effect of which unlabelled data is used might severely
impact the result: in this case, very similar unlabelled data was available, but this might not
always be the case in practice. Additionally, future work could show whether this technique
works more universally for other text-based domains where Transformer-based word embedding
models make up the state-of-the-art as well.

With regards to the GANs, there are a lot of other configurations that still could be tested.
The training and updating procedure could be adapted, as well as the architectures for both the
generator and discriminator. For the WGANs, it should also be investigated to what extent they
can be used to improve detection accuracy while not using the gradients of the discriminator as
part of adversarial training. As mentioned earlier in the discussion, the differences and similarities
with adversarial training should be investigated as well.

Last, it would be interesting to see whether a similar method can also be used at other
Transformer-based word embedding models and if the same principle could also be applied at
different depths of the model. In the same sense, this training method could potentially also
yield success on various other deep learning methods (e.g. domains outside natural language),
where it could potentially also enable the usage of less training data to achieve still reasonably
good performance.
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Appendix

A Overall Performance

This section of the appendix contains additional results related to section 5.1, the overall results.
Table A.1 contains the average overall performance for each configuration of the model, labelled
data ratio rL and unlabelled data ratio rU . These results are averages over at least 3 runs.

rL = 10% rL = 20% rL = 50% rL = 100%
Model rU Acc mF1 Acc mF1 Acc mF1 Acc mF1

Baseline 0.707 0.554 0.758 0.614 0.834 0.727 0.869 0.770
GANh=1 0.0 0.758 0.607 0.793 0.658 0.846 0.736 0.878 0.782

1.0 0.750 0.601 0.800 0.678 0.854 0.750 0.878 0.782
2.0 0.743 0.601 0.819 0.697 0.844 0.737 0.881 0.784
4.0 0.769 0.635 0.815 0.698 0.856 0.747
8.0 0.789 0.642 0.819 0.695
16.0 0.755 0.613 0.821 0.693

GANh=3 0.0 0.746 0.603 0.784 0.666 0.847 0.748 0.882 0.791
1.0 0.762 0.619 0.813 0.693 0.867 0.759 0.878 0.785
2.0 0.747 0.614 0.809 0.693 0.834 0.731 0.869 0.769
4.0 0.765 0.638 0.819 0.692 0.864 0.758
8.0 0.789 0.655 0.814 0.702
16.0 0.778 0.644 0.812 0.682

WGANh=1 0.0 0.729 0.576 0.782 0.641 0.823 0.715 0.864 0.761
1.0 0.726 0.572 0.780 0.654 0.837 0.729 0.873 0.778
2.0 0.753 0.606 0.787 0.663 0.847 0.734 0.869 0.771
4.0 0.757 0.607 0.783 0.662 0.847 0.738
8.0 0.756 0.616 0.803 0.679
16.0 0.757 0.622 0.819 0.696

WGANh=3 0.0 0.749 0.581 0.776 0.647 0.847 0.734 0.873 0.774
1.0 0.741 0.581 0.810 0.680 0.856 0.744 0.875 0.778
2.0 0.760 0.610 0.784 0.660 0.847 0.740 0.875 0.778
4.0 0.740 0.610 0.825 0.706 0.857 0.753
8.0 0.748 0.633 0.828 0.710
16.0 0.775 0.642 0.812 0.700

Table A.1: Overall performance. Best performing results per combination of model and
labelled data ratio rL are marked in bold.
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Next, figures A.1 to A.4 visualise these results per model. Plots of the baseline performance, all
models with unlabelled data and the best-performing models can be found in section 5.1.

Figure A.1: Overall performance for GANh=1.

Figure A.2: Overall performance for GANh=3.
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Figure A.3: Overall performance for WGANh=1.

Figure A.4: Overall performance for WGANh=3.
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B Sub-task performance

This section of the appendix contains additional results related to section 5.2, the sub-task
results. Table B.1 contains the average detection performance for each configuration of the
model, labelled data ratio rL and unlabelled data ratio rU . These results are averages over at
least 3 runs.

rL = 10% rL = 20% rL = 50% rL = 100%
Model rU Acc mF1 Acc mF1 Acc mF1 Acc mF1

Baseline 0.814 0.792 0.845 0.827 0.904 0.889 0.922 0.908
GANh=1 0.0 0.831 0.811 0.863 0.844 0.910 0.895 0.921 0.908

1.0 0.823 0.805 0.869 0.851 0.906 0.891 0.924 0.911
2.0 0.834 0.814 0.884 0.864 0.920 0.905 0.923 0.910
4.0 0.855 0.836 0.887 0.870 0.916 0.901
8.0 0.869 0.847 0.873 0.855
16.0 0.835 0.815 0.878 0.856

GANh=3 0.0 0.821 0.801 0.848 0.830 0.900 0.884 0.927 0.914
1.0 0.836 0.817 0.876 0.859 0.920 0.906 0.922 0.909
2.0 0.826 0.808 0.873 0.856 0.891 0.876 0.918 0.904
4.0 0.841 0.824 0.878 0.858 0.914 0.900
8.0 0.857 0.837 0.872 0.856
16.0 0.844 0.824 0.869 0.850

WGANh=1 0.0 0.819 0.801 0.860 0.840 0.896 0.880 0.926 0.912
1.0 0.819 0.798 0.870 0.852 0.887 0.871 0.917 0.904
2.0 0.814 0.794 0.856 0.837 0.903 0.887 0.925 0.911
4.0 0.822 0.805 0.855 0.838 0.914 0.899
8.0 0.828 0.811 0.874 0.856
16.0 0.818 0.801 0.892 0.872

WGANh=3 0.0 0.825 0.799 0.838 0.819 0.908 0.891 0.923 0.909
1.0 0.806 0.785 0.867 0.847 0.912 0.897 0.924 0.910
2.0 0.826 0.805 0.850 0.833 0.903 0.888 0.921 0.907
4.0 0.813 0.796 0.884 0.867 0.908 0.892
8.0 0.815 0.798 0.884 0.867
16.0 0.841 0.821 0.872 0.856

Table B.1: Detection performance. Best performing results per combination of model and
labelled data ratio rL are marked in bold.
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Similarly, table B.2 contains the average classification performance for each configuration of
the model, labelled data ratio rL and unlabelled data ratio rU . These results are also averages
over at least 3 runs.

rL = 10% rL = 20% rL = 50% rL = 100%
Model rU Acc mF1 Acc mF1 Acc mF1 Acc mF1

Baseline 0.669 0.652 0.701 0.685 0.783 0.776 0.804 0.799
GANh=1 0.0 0.676 0.655 0.728 0.713 0.770 0.758 0.814 0.809

1.0 0.676 0.657 0.748 0.735 0.793 0.788 0.812 0.808
2.0 0.671 0.655 0.740 0.727 0.795 0.787 0.813 0.807
4.0 0.699 0.680 0.744 0.734 0.791 0.784
8.0 0.696 0.680 0.745 0.737
16.0 0.708 0.690 0.728 0.716

GANh=3 0.0 0.680 0.662 0.738 0.726 0.792 0.787 0.821 0.817
1.0 0.686 0.664 0.746 0.739 0.785 0.779 0.817 0.813
2.0 0.684 0.658 0.744 0.731 0.783 0.776 0.802 0.799
4.0 0.703 0.693 0.735 0.726 0.788 0.781
8.0 0.715 0.705 0.759 0.749
16.0 0.700 0.684 0.713 0.700

WGANh=1 0.0 0.657 0.637 0.716 0.703 0.768 0.762 0.802 0.799
1.0 0.663 0.645 0.737 0.726 0.774 0.766 0.823 0.819
2.0 0.682 0.666 0.749 0.738 0.772 0.765 0.822 0.817
4.0 0.705 0.686 0.733 0.725 0.805 0.800
8.0 0.691 0.670 0.744 0.732
16.0 0.691 0.675 0.743 0.732

WGANh=3 0.0 0.657 0.637 0.717 0.706 0.779 0.771 0.808 0.804
1.0 0.667 0.645 0.745 0.735 0.778 0.771 0.808 0.803
2.0 0.684 0.666 0.725 0.710 0.784 0.777 0.808 0.802
4.0 0.690 0.669 0.756 0.745 0.792 0.783
8.0 0.716 0.702 0.760 0.751
16.0 0.708 0.685 0.757 0.748

Table B.2: Classification performance. Best performing results per combination of model and
labelled data ratio rL are marked in bold.
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Next, figures B.1 to B.4 visualise the sub-task performance per model. Plots of the baseline
performance, models using only labelled data and the best-performing models can be found in
section 5.2.

Figure B.1: Sub-task performance for GANh=1.

Figure B.2: Sub-task performance for GANh=3.
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Figure B.3: Sub-task performance for WGANh=1.

Figure B.4: Sub-task performance for WGANh=3.
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