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Abstract 
 
The estimation of forest parameters plays important role on forest 
inventory. The forest inventory is expensive and time consuming, but 
also important on forest management. The development on remote 
sensing techniques such as digital aerial images, satellite images, 
LiDAR has provide more efficient way of forest inventory. Many 
researches are going on to study more accurate and efficient way of 
forest inventory using different remote sensing techniques. This study 
aims to demonstrate the accuracy of estimation of forest parameters 
by using digital aerial image and LiDAR. In addition with, the 
potential LiDAR metrics were selected to estimate height, basal area 
and volume. 
 
The plot based approach was adopted as the study area has 1.0 point 
density m-2 and was not enough to generate the height, basal area 
and volume on individual tree level. Eight LiDAR metrics were 
selected for basal area model and seven LiDAR metrics were selected 
for height model and validated with field measured data. The final 
model was determined with selected LiDAR metrics after stepwise 
selection procedures. 10th and 90th percentiles of LiDAR canopy height 
was selected for final height model and maximum and mean of LiDAR 
canopy heights, 50th, 75th and 90th percentiles of LiDAR canopy 
heights, coefficient of variation of LiDAR canopy heights and canopy 
cover density was selected for final basal area model. While volume 
model used LiDAR tree height estimated after stepwise selection 
procedures and canopy density metrics from LiDAR data. The 
coefficient determination for height, basal area and volume was found 
to be 71%, 78% and 81% respectively with field measured data. 
 
Due to low GSD and low forward overlap on aerial image generate 
poor quality DSM and DTM, which affect the quality of CHM. The 
height of tree cannot be extracted from aerial image CHM and further 
analysis cannot be performed on this study area with aerial image 
CHM.  
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1.    Introduction 

Background 

In forest management, forest inventory plays an important role as it 
provides the information that is required to make decisions(Kangas, 
Heikkinen et al. 2004). Forest inventory is basically performed to 
provide the accurate measurements and estimations of the current 
state of the forest for planning and management(Tomppo 2010). In 
forests that  are exploited for timber production, accurate estimation 
of forest parameters especially the volume of growing stock, biomass, 
carbon content and the area of certain type of forest are the main 
information needed for sustainable management(Kangas, Heikkinen 
et al. 2004). According to the user’s requirement, forest inventory 
can be done by applying different methods using either field surveys 
or remote sensing or a combination of both(Packalen 2009). Remote 
sensing data such as satellite images, digital aerial photographs and 
LiDAR (Light Detection and Ranging) are mostly used in forest 
inventories and have potential for forest parameters 
estimation(Junttila 2011),(Magnusson 2006). The rapid development 
on remote sensing has become an integral part of forest inventory 
and management in reducing the forest expenses and collecting the 
data faster(Næsset 2002). The development of digital aerial 
photogrammetry and LiDAR has increased the possibility of new 
applications in forest inventory(Korpela 2004). 

For accurate estimation of biomass, carbon, and other land 
management, information about the 3D vegetation struc ture in high 
spatial resolution is essential. The demand for these measurements 
has grown rapidly in aspect of modeling and management. In recent 
years, LiDAR has been preferred tool for these measurements and 
making measurements of the 3D vegetation struc ture. For decades, 
aerial photogrammetric tools have been used to interpret 3D surfaces 
from 2D stereo image pairs(Dandois and Ellis 2010). Aerial 
photographs have advantages on 3D measurements for accurate 
estimation of forest parameters; nevertheless they are often used 
only for 2D measurements(Korpela 2004). After the commercial 
development of Aerial Laser Scanning, photogrammetric 
measurement was expected to be taken over by LiDAR. But still the 
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most promising remote sensing technologies are LiDAR and digital 
aerial photographs for accurate and efficient forest 
inventory(Holopanien 2004). Similarly, the integration of LiDAR and 
digital aerial images has many advantages. Aerial photo images have 
geometric stability which provides references for laser point cloud. 
The integration also compensates the weakness on each method 
which provide more accurate on modeling, interpretation and 
classification of the objects (Baltsavias 1999). 

1.1 Aerial Photogrammetry 
Aerial photography has been the most used remote sensing data for 
decades in collecting the forest data for interpretation, forest 
mapping, estimation of stand attributes and t ree composition(Korpela 
2004),(Wulder 2003) . As early as the 1920s, many studies and 
experiments were performed in Europe and North America by using 
aerial photographs such as interpretation of stereo aerial photographs 
for estimation of forest information. Finnish forestry used it for 
preliminary studies in early 1920s and used it for forest mapping and 
estimation of growing stock from 1930s(Packalen 2009). Also, with 
the help of aerial photographs, many forest inventories have been 
carried out to delineate and estimate forest variables in Sweden and 
Norway(Magnusson, Fransson et al. 2007). 
 
The paradigm shift in aerial photogrammetry from analog to 
analytical to computer assisted and to digital photogrammetry has 
encourage the foresters to research on forestry (Balenovic 2012), 
(Madani 2001),(Leberl 2010). Aerial images started to be digit ized in 
70’s and 80’s, but commercial airborne digital imaging sensors were 
not launched until 2000(Cramer 2005). The acceptance of digital 
camera is due to economy and the advantage of innovative data 
products (large format imaging sensors) which became powerful 
alternative to the analogue imaging(Cramer 2005). Digital aerial 
cameras can take many images the users need and the cost will not 
increase, in fact it will decrease (Leberl 2010). 

 
Aerial photographs can be used in both ways manual and automatic 
interpretation. By manual interpretation of aerial images using 
stereoscopic view can be used on stand delineation, tree height 
measurements and tree species composition(Magnusson, Fransson et 
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al. 2007). The accuracy of photo interpretation depends on the nature 
of objects, quality of images and interpretation procedure(Lillesand T. 
M. & Kiefer R. W. 2000). However, manual interpretation is time 
consuming, labor intensive and expensive also(Ke 2009), (Wang, 
2004). Digital photogrammetry can be used with digital images and 
scanned analog photographs(Madani 2001). Stereo photography lacks 
spectral depth and satellite image have more spectral bands but not 
of high resolution and geometric precision(Tuominen and Pekkarinen 
2005),(Gong, Biging et al. 1999).  
 
The functions of digital Photogrammetry can be divided into 
categories: i. Film scanning, ii. Aerial triangulation, iii. Digital terrain 
elevation, iv. Orthophoto generation, v. 3D data(Leberl 2010). Digital 
photogrammetry encompasses both high spatial and spectral 
resolution with sufficient spectral bands(Gong, Biging et al. 1999). 
For digital aerial photogrammetry, very high resolution imageries are 
available which has spatial resolution (10cm to 2- 3m) and can 
estimate forest stand characteristic more accurately(Tuominen and 
Pekkarinen 2005). Digital image can be acquired from digital camera 
or scanning an analogue photograph. The quality of digital image 
depends upon the parameters of CCD (Charge-coupled device) chips, 
i.e. photosensitive parts of sensors, digital cameras and sensors. Easy 
data transfers or large spectral sensitivity are the major advantages 
of digital image(Potuckova 2004). Digital photogrammetry is 
computerized application which automates all the traditional 
photogrammetry procedure such as contour and orthophoto 
generation, stereo model construction, aerial triangulation, photo 
orientation, mosaicking and mapping. The development of spatial 
positioning technology, remote sensing technology, and computer 
developed the aerial triangulation which progressed on digital 
mapping without GCPs(Yuan 2008). The primary use of digital 
photogrammetry is to produce digital elevation models and 
orthophoto(Gong, Biging et al. 1999). The digital aerial photographs 
can be interpreted as 2D and 3D image. 2D image include 
information such as species and number of trees but not auxiliary 
information such as tree locations, crown closure and crown size. For 
forest parameter estimation, 3D based interpretation is preferred. 3D 
automatic interpretation develops with digital photogrammetry can 
produce many forest parameters such as tree location, height, crown 
depth, crown radius and crown surface curvature(Gong 2002). 
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Spatial, tonal and textural properties of aerial image determine the 
interpretation of forest attributes(Wulder 2003). The scanned digital 
orthophoto has been used widely in forest sector for estimation of 
area, distance, tree height (Olsson 2005),(Zagalikis, Cameron et al. 
2005) The recent development in algorithms to generate 3D data 
from automatic matching of aerial imagery has created a revolution 
on estimating forest parameters (Bohlin, Wallerman et al. 2012) 
 

1.2 Image Matching 
Digital surface models (DSM) can be generated from different sources 
such as LiDAR, aerial images, satellite images and RADAR for analysis 
of vegetation, erosion(Sohraib 2012). DSM can be achieved from 
automatic image matching(Waser, Baltsavias et al. 2008). Image 
Matching is increasing the demand of accurate and low price for 
extraction of DSM. The quality of images, orientation and camera 
calibration will determine the quality of DSM. The high forward/side 
overlap such as 80/60 or 90/70 (both percent) significantly reduces 
occlusion in forest areas and has probability of higher accuracies and 
reliability (Lemaire 2008; Waser, Baltsavias et al. 2008). The area-
based image matching and feature-based image matching has to be 
considered to create more redundant matches and for appropriate 
matching(Zhang 2006). The geometry accuracy of DSM from image 
matching depends upon the correction of image coordinated from 
bundle block adjustment(Haala 2009). Image matching is increasing 
interest on the field of photogrammetric society to create accurate 
and dense point cloud for digital elevation model (DEM) which can be 
an alternative technique to LiDAR(Gulch 2009). Lothammer (2008) 
suggested that for derivation of DSM, resolution should be at least 20 
cm Ground sampling distance (GSD), calibrated digital camera and at 
least 60/60 overlap which give DSM five times of image GSD and 
height accuracy approximately two times of image GSD. The 
photogrammetric matching of aerial image can estimate tree height, 
stem volume and basal area comparable to LiDAR(Bohlin, Wallerman 
et al. 2012). More accurate tree height estimates can be obtained 
from digital photogrammetric by improved image matching (Næsset 
2002)Point clouds provide accurate analysis of automatic image 
based 3D data collection(Cramer 2009).  



 

 5

 
 
 
 
 
 
 
 

 
 

   (Dandois and Ellis 2010) 
 

1.3 Principal of LiDAR 
LiDAR is the active optical remote sensing technology which emits 
highly directional laser pulses and mainly used for small area 
inventories(Junttila 2011). With the help of global positioning system 
(GPS), inertial measurement unit (IMU), position and altitude of laser 
scanner, LiDAR determine the position (X, Y, Z) of the objects. The 
laser scanner emits near infra-red laser pulses at high frequency of 
25,000 to 100,000 per second. Most LiDAR system has capability to 
detect 2-5 reflected returns per laser pulse. For terrain mapping, 
LiDAR is flown over the leaf- off conditions while for vegetation 

Figure 1-1:Computer vision algorithms generate 3D
"point clouds" by building geometry from matching
features identified in multiple overlapping photographs.
3D point clouds are then geo-referenced and used to
make measurement 
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mapping; it is flown over leaf- on conditions(McGaughey 2006). 
LiDAR is mostly used to accurately estimate the topography of the 
area and obtain vertical information of the object. The major mapping 
applications of LiDAR data are vegetation mapping and topographic 
mapping. 
 

 
Figure 1-2: Typical operation of LiDAR Scanning 

(Source: www.tmackinnon.com) 
 

Small foot prints (less than 1 m) use discrete points(X, Y, Z and 
intensity) for DTM extraction and forest inventory(Kukko 2009). 
 

1.4 Point cloud based on aerial image and LiDAR 
Photogrammetry has the long history of developments on automation 
of information extraction from digital images while LiDAR is the 
important technologies developed recently(Baltsavias 1999). LiDAR 
data are referred to as better accuracy for last decade but the advent 
of new digital aerial cameras with wide coverage sensors, excellent 
signal to noise ratio and high forward overlap c apability is more 
suitable and efficient for image matching and to create point cloud. 
Despite the fact that tools for automatic stereo image matching have 
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been available for more than two decades, the collection of high 
resolution, high accuracy elevation data was mainly dominated by the 
application of airborne LiDAR systems(Haala 2009). 

 
The concept of point cloud generation from image matching is still 
new and in a development phase. However, there are studies that 
suggest the point cloud from image matching can be alternative 
technique to LiDAR for DSM preparation. Lemaire (2008) reported 
that DSM can be generated from image matching using MATCH-T 
software which is competitive to LiDAR especially if produced from 
high resolution (<20cm) orthophoto. The DSM point cloud from image 
matching is more accurate on flat terrain rather than on sloping 
surfaces. Waser,et.al.(2008) generated DSM from aerial image of 
spatial resolution 0.5m and co-registration was done with DSM from 
LiDAR (1-2 points m2). On the other study, DEM for open pit mining 
area were generated automatically from MATCH-T software which 
was accurate enough to compare with manual measurements(Gulch 
2009). Leberl (2010) came up with “Point clouds: LiDAR versus 3D 
vision” which illustrate on the benefits of point clouds based upon 
aerial image and they came with 15 advantages of photogrammetric 
approach to LiDAR. Point clouds from digital photogrammetry are 
superior to LiDAR point cloud and have accuracy of more than ± 1 
pixel whereas LiDAR accuracy is based on GPS/IMU measurements. 
Bohlin, Wallerman et al. (2012) estimated the tree height, stem 
volume and basal area with high accuracy using image matching of 
digital aerial image in combination with high resolution image. For 
tree height, stem volume, basal area the result shows RMSEs of 
8.8%, 13.1% and 14.9% respectively at stand level. (Kamiya 2012) 
also describe the collection of forest resource management 3D data 
acquired from stereo matching of aerial photographs (20cm GSD). 
DSM and DTM generated from aerial images provide enough accuracy 
to manage forest resources. 
 

1.5 Problem statement and Justification 
Various methods for the derivation of forest parameters in the fields 
of pre-processing, DSM generation, tree extraction, and classification 
already exist, but few of them are targeted or even tested on most 
recent point cloud based on digital aerial image.  
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1. The operational cost for LiDAR is high. 
2. LiDAR has poor capability on textural and spectral information 

which can be substitute by digital aerial images.  
3. LiDAR can penetrate to the ground in dense forest that does 

not mean the pulse will always hit the ground which can give 
wrong information. 

4. LiDAR can only map in 3D while photogrammetry can 
produces both in 2D and 3D maps(Leberl 2010). 

5. LiDAR is applicable to estimate tree height with high accuracy 
but not to estimate tree species and tree density(Kamiya 
2012). 

6. Aerial photogrammetric can produce more point density than 
LiDAR at the same height and flight speed which is more 
useful for interpretation. 60% side lap between flight line will 
also reduce occlusion. The comparison table below provides 
the further justification. 

 
Table 1-1: Comparison between LiDAR and Digital 
Photogrammetry(Leberl 2010) 

 

1.6 Research Objectives 
The main objective of the research is to compare method to 
accurately estimate forest parameters of Bergvik Skog AB, Sweden. 
 
Specific objectives 

a. To select the potential LiDAR metrics to generate tree height, 
basal area and volume. 

b. To compare the accuracies of tree height, basal area and 
volume derived from aerial image 3D and LiDAR point cloud. 
 

LiDAR Digital photogrammetry 
170 scans per second(190 kHz) GSD 25 cm 
8 points/m² 16 points/m² 
flying height 750 meters flying height 4188 meters 
aircraft speed 60m/sec aircraft speed 141m/sec 

20% side lap between flight line 
60% side lap between flight 
line 

efficiency 17% efficiency 100% 
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1.7 Research Question 
a. Which LiDAR metrics estimate more accurate tree height, 

basal area and volume compare to field measured tree height, 
basal area and volume? 

 
b. Which approaches (aerial image and LiDAR) gives the better 

accuracy on estimating forest parameters? 
 

1.8 Research Hypothesis 
a. There is statistically significant difference in estimation of 

forest parameters (tree height, basal area and volume) using 
LiDAR, aerial image.  
 

b. The mean height from the digital aerial image is significantly 
more accurate than mean height from LiDAR point cloud. 
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2.    Study area and Data 

2.1 Study area 
Sweden is regarded as an important forest nation in Europe. Sweden 
extends from southern Baltic sea to north of Arctic Circle. Although 
Sweden is situated in Northern Europe, the climate is fairly mild and 
temperate. Sweden has 29 million hectares of forest land (60% of the 
total land) among which 22.5 million hectares of forest is production 
forest. About 2.9 billion cubic meters of total standing volume is on 
productive forest land, which has been increased by 80% since 
1920s. 50 % of Swedish forest area is owned by individual owners, 
25% from privately owned companies, 14% from forest are state 
owned companies and rest 11% from other private, state and public 
owned companies (Swedish statistical yearbooks of forestry, 2012). 
The study area as shown in fig 2.1 is situated on Ockelbo 

municipality, the central 
part of Sweden It is 
located in the 
Gavleborg County (the 
latitude range from 60° 
N to 62° N) and has 
altitudinal range of 70- 
600 m above sea level.  
 
Sweden is categorized 
in eight different 
vegetation zones under 
which Gavleborg County 
lies in south boreal 
vegetational zones. The 
area consists of 80% of 
Scots pine (Pinus 
sylvestris) and Norway 
spruce (Picea abies), 
while 20% of Birch 
(Betula pubescens) and 
Lodgepole pine (Pinus 
contorta) on the forest.  

Figure 2-1: Study area with field plots and aerial
image with stand plots 
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2.2 Description of data 
The materials that have been used for this research are low density 
LiDAR data, aerial images, and field data. The digital aerial images 
and LiDAR data were collected from Lantmateriet, Sweden 
(http://www.lantmateriet.se) Field data were collected from Bergvik 
Skog, Sweden. 

2.2.1 LiDAR data 
The LiDAR data were collected in 2010 using scanner Optech ALTM 
Gemini/80. The scanning area size is 25*50 square kilometers that 
has at least 200 meters overlap on the adjacent sides. The scanning 
was mainly done in early spring and late autumn. The accuracy is of 
scanning is about 10 cm on planar paved surfaces but the accuracy 
decreases with the steep slope and dense forest. The measured 
accuracy in the height is about 30 cm. The number of points per file 
range from 3 million to 5 million The laser data were in the form of 
point clouds where each point has been classified to land, water or 
unclassified. The laser data were in 2.5 *2.5 km with 10 m resolution.  
 
Table 2-1: Metadata of the LiDAR data 

 

2.2.2 Aerial Imagery data 
Aerial images were captured at an altitude of 4800m, on different 
dates of August and September, 2011. The images have pixel 
resolution of 0.5m (GSD) with radiometric resolution of 8 bits. Each 
image tile covers an area of 6.6 X 3.7 km square on the ground. Total 

Colour Point density 

Blue > 0.5 pt/m² 

Green 0.25- 0.5 pt/m² 

Yellow 0.0625-0.25 pt/m² 

Red <0.0625 pt/m² 

Black 0 pt/m² 

Point density 0.5 to 1.0 per square 

Flight altitude 1700-2300 m 

Scanning angle ±20 ˚ 

Footprints 0.5 meters (small) 

Height system RH 2000 
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16 aerial images on 2 strips were used for the study area. The images 
had 60% forward overlap and 20-30% side overlap  
 
The aerial images were in .TIFF file format and were taken by digital 
mapping camera (DMC). The sensor size of camera had width of 7680 
pixels and length 13824 pixels with focal length of 120 mm. Aerial 
images were used to generate DSM and DEM using SOCET- GXP 
software. (Source: Lantmateriet photogrammetry, Sweden). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2-1: shows camera calibration data 

2.2.3 Field data 
24 field plots of Ockelbo area were selected as a study area. The field 
plots were measured on January, 2012. For each plots, all the trees 
were measured within the radius of 8.46 m. Trees with diameter at 
breast height (DBH) above 4 cm are measured and 3 trees were 
systematically selected for measuring height and age. The heights of 
trees range were from 10- 25 meters. The Lorey’s height for each 
plot was also computed which give the average tree height with 
average basal area. As larger trees were given more weight than 
smaller trees, the Lorey’s height is larger than average height of 
trees. It is predicted that the canopy height estimated from LiDAR 
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data will be closer to this Lorey’s height (Magnussen and Boudewyn 
1998). The plot volume, stem number, basal area were averaged per 
hectare while mean height, mean diameter were weighted by basal 
area of each tree in the plot.  Soil sites were classified either by site 
index class or site productivity class. Soil site index class was based 
on dominant height at a certain age (H100) and was determined 
according to dominant height curve. Swedish site classes were based 
on productivity (m3/ha/yr). Basal area weighted mean diameter was 
calculated by multiplying tree diameter at breast height (DBH) by its 
basal area  and then dividing by sum of total stand basal area. Stem 
number per hectare provided the information on the amount of pre 
commercial thinning that had to be done.  
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3.   Method 
The method for this research is mainly focused in two parts, LiDAR 
data processing and Digital aerial image processing. The method of 
this research comprises of 3 parts: LiDAR data processing, Digital 
aerial image processing and model development. The LiDAR data and 
Digital aerial images were further processed to obtain DSM, DTM and 
CHM. LiDAR data was processed on Fusion/LDV software to generate 
LiDAR metrics whereas Digital aerial image was processed on SOCET 
GXP software to generate DSM and DTM. The LiDAR metrics 
generated from Fusion /LDV software were further analyzed to 
extract tree height, basal area and volume. The DSM and DTM 
generated from aerial image were further processed on Arc GIS to 
generate CHM. The tree height, basal area and volume thus obtained 
were validated with field measured tree parameters. A flow diagram 
showing the research methodology is illustrated on fig 3-1. 
 
 

 
Figure 3-1: Flowchart of research method 
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3.1 LiDAR data processing 
LiDAR point cloud was obtained from COWI. Terra scan software was 
used for pre-processing of raw LiDAR data by Lantmateriet 
http://www.lantmateriet.se). The LiDAR point cloud was classified 
into 3 classes (ground, non-ground and unclassified) and has 5 
returns. The LiDAR data were on LAS format.  
 
DSM and DTM were generated from LiDAR data using Fusion/LDV 
Software. DSM is generated from first returns of the LiDAR point 
cloud.  
 
 

 
Figure 3-2: LiDAR points over the single tree and closed canopy tree 

 

3.1.1 Digital Elevation Model extraction 
Digital elevation model (DEM) represents the height information 
without any details about earth surface. DEM is often used as a 
general form of DSM and DTM.  
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Figure 3-3: DSM (green) over the DTM (grey)

DTM provides the reference elevation of the features in the data 
which helps on measurement of heights. The above ground LiDAR 
returns were filtered and DTM was created with remaining ground 
LiDAR returns. DSM represents the earth’s surface which includes all 
objects on it and useful to measure the height of the objects. The 
DSM is generated from first or highest return of the LiDAR point. 

DTM 
“Groundfilter” and “Gridsurfacecreate” command was execute in 
Window Dos command to create DTM from Fusion software. The 
syntax for DTM computation using GrridSurfacecreate command is: 
 
 
 
 

DSM 
“CanopyModel” command was execute to derive DSM. “CanopyModel” 
is for smoothing of the generated surface using median or mean filter 
or both which preserves local maxima to acquire tree tops. The 
syntax command for DSM computation is: 
 
 
 
 

GridSurfaceCreate out_path cellsize xyunits z units coordsys zone 
horizdatum vertdatum in_path 

CanopyModel out_path cellsize xyunits z untis coordsys zone 
horizdatum vertdatum in_path 
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CHM 
CHM is also referred as normalised DSM as it is the difference 
between DTM and DSM to get the vegetation height. “CanopyModel” 
was executed to derive CHM. When used with DTM, CanopyModel 
subtracts the ground elevation from the DSM to produce CHM. The 
threshold height was defined to generate maximum tree height. The 
syntax for CHM is: 
 
 

 
 
Where, 
Out_path = Output surface file 
Cell size = Grid cell size for the surface 
Xyunits = X and Y Units for LiDAR data 
Z units = Elevation units for LiDAR data 
Coordsys = Coordinate system for the surface 
Zone = Coordinate system zone 
Horizdatum = Horizontal datum for the surface 
Vertdatum = Vertical datum for the surface 
In_path = Input LiDAR file 
 

3.1.2 Extraction of field plots 
The sub-samples of LiDAR data were extracted in a fixed circular area 
for each plot. The Microsoft Excel was used to create the large batch 
files using plot centre coordinates and radius for each plot. The 
circumference for each plot was generated by calculating X and Y 
minimum and X and Y maximum by subtracting and adding radius to 
plot coordinates.  
 
The LiDAR metrics were extracted for each plot by executing the 
“ClipData” command after the estimation of minimum X and Y and 
maximum X and Y for each plot. The syntax for extraction of field 
plots is: 
 
 
 
 

CanopyModel/ground: DTM_file out_path cellsize xyunits z untis 
coordsys zone horizdatum vertdatum Lidar_data 

ClipData /shape: 1 in_path out_path  MInX MInY Max X MaxY 
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3.1.3 Extraction of LiDAR metrics 
The descriptive statistics parameter for each LiDAR file and within 
each cell in the output grid is computed using “CloudMetrics” and 
“GridMetrics”. The Metrics were created using point elevations and 
intensity values. The LiDAR metrics were used further for regression 
analysis. Cloudmetrics compute the single metrics for entire data file 
processed while Gridmetrics compute metrics for all returns within 
each cell. 
 
  
 
 

3.2     Aerial Image data processing 
The SOCET set GXP software was used to process the digital aerial 
image. The different steps like data import, triangulation, and terrain 
generation were followed to generate DSM and DTM from aerial 
images.  
 

3.2.1 Data Import to SOCET GXP 
The data were imported, viewed, organized and performed on the 
workspace manager of the SOCET GXP. Before performing the task, 
the working directory was created where the desired spatial reference 
system was set for the project. Frame images, ground control points, 
camera calibration files and camera orientation data were imported 
on SOCET GXP. 
 

Cloudmetrics /id/new/above:15 / minht: 2 in_path out_path 
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Figure 3-4: Shows the workspace manager and frame import tools in SOCET 
GXP 

 
The frame import window consists of image files to import, camera 
calibration parameters, distortion, ground point file and camera 
position. After the frame import process is complete, a set of support 
files (.sup files) was created which provide geo referencing to aerial 
triangulation. Automatic DTED file was created by using camera 
calibration files and images. 
 

3.2.2 Aerial Triangulation 
Triangulation is the process of image orientation and registration to 
the ground. The triangulation tools on SOCET GXP have Image setup, 
Data setup, APM/IPM and solve tab. The images were import on 
image setup tab. Ground point files, automatic DTED (elevation) file 
were uploaded on the Data setup tab to increase the ac curacy of the 
triangulation. APM (Automatic Point Measurement) helps to correlate 
the ground point on multiple images, producing tie points. Tie point 
pattern and strategies for automatic point measurement was selected 
on APM tab.  
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Figure 3-5: Triangulation window with ground point file and APM tab 

The solve tab used the method bundle adjustment that minimizes the 
relative difference between the points measured on overlapping 
images. The image RMS with pixel value less than 1 is good. The 
image residual with maximum value were deleted or re-measured. 
After suitable adjustment, the results were saved. 
 

3.2.3 Automatic Terrain Generation (ATG) 
SOCET GXP consists of both Automatic Terrain Extraction (ATE) and 
Next Generation Automatic Terrain Extraction (NGATE) applications to 
generate DTM. The main difference between ATE and NGATE is that 
NGATE provides more accurate and dense DTM and also has option 
for DTM and/or DSM.  The DTM and DSM were generated from using 
stereo imagery. 
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Figure 3-6: Automatic terrain generation tab 

The stereo images for the study area were selected with the define 
boundary on ATG tab. The X and Y spacing for the terrain were 
selected. NGATE algorithm was selected to generate DTM and DSM. 
 

3.2.4 Extraction of CHM from DSM and DTM 
CHM for digital aerial image was extracted by subtracting DTM from 
DSM using raster calculator on Arc GIS 10.1.  
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3.3     Regression Analysis 

3.3.1 Estimating dominant tree height and basal area 
from LiDAR data  
Eight different predictor variables (i) 25, (ii) 50, (iii) 75 and (iv) 90 
percentiles of the height distribution of laser pulses classified as 
canopy hits, (v) the maximum value, (vi) the mean value, (vii) the 
coefficient variation, and (viii) canopy density calculated as the 
number of canopy hits divided by total number of transmitted pulses 
derived from the laser data were used to develop models to estimate 
tree height and volume. The canopy height and tree height vary with 
plots and it is better to model mean height of dominant tree using 
different quantiles (Naesset and Bjerkness, 2001). 
The linear regression that is found to be suitable for estimation of 
mean height and timber volume look like is 
 

         (1) 

 

        (2) 

Where, 
 = Lorey’s mean height 

, , ,  =10, 50, 75, 90 percentiles of the laser canopy heights 
 = maximum laser canopy height  
  = mean of the laser canopy height 

  = coefficient variation of laser canopy heights 
  = Basal area (m2/ha) 
  = canopy densities corresponding to proportions of laser returns 

to total number laser returns 

3.3.2 Estimating stand volume from LiDAR data 
The allometric equation for the stand volume is the multiplicative 
model of mean LiDAR stand height and mean LiDAR canopy cover 
density (Naesset, 1997b). 

        (3) 

Where, 
 = total volume per hectare with bark (m3/ha) 
 = LiDAR stand mean height (m) 
 = mean LiDAR canopy cover density 
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4. Results 

4.1 Descriptive analysis of field data 
Forest stand parameters (Lorey’s height, Basal area, volume) of 24 
field plots were considered for analysis of study area. The descriptive 
statistics of each parameter for the study area are shown in table 4.1. 
The field plot has Pinus sylvestris, Picea abies, and Betula pubescens 
species among which Pinus sylvestris is the most dominant species.  

 
Table 4-1: Descriptive statistics of field plots 

Statistic Volume(m3/ha) Basal area(m2/ha) Lorey's height(m) 
Mean 226 259 18 
Mininmum 55 100 11 
Maximum 401 453 24 
Std. Deviation 86 78 31 

 
Lorey’s mean height, Basal area and Volume of three different species 
are presented in the box plot as shown in fig 4.1, 4.2 and 4.3. The 
box plots show that Pinus sylvestris has the largest basal area and 
Lorey’s height followed by Picea abies and Betula pubescens has very 
low values of Lorey’s height and basal area. Pinus sylvestris has the 
largest variation range on basal area and volume followed by Picea 
abies, while least variation on the Lorey’s height. Moreover, Picea 
abies has the highest variability on the Lorey’s height compare to 
other species.  

Figure 4-2: basal area PR=
Pinus sylvestris, PA= Picea
abies, BP= Betula
pubescens)

Figure 4-1: Lorey’s mean
height (PR= Pinus sylvestris,
PA= Picea abies, BP= Betula
pubescens) 
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4.2 DSM, DTM and CHM generation from LiDAR 
data 
The above-ground LiDAR data were filtered to obtain the DTM (Bare 
earth surface). The Canopy height model (CHM) was then generated 
using the first returns. The 3D view of the CHM is shown in fig 4.4(b) 
 

    
Figure 4-4: (a) DTM and                 (b) CHM derived from LiDAR point 
cloud using Fusion software 

 
 
 
 

Figure 4-3: volume of major tree species 
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4.3 Extraction of field plots from LiDAR data 
The circular plot size of radius 8.46 m was masked out from the 
LiDAR data using XY coordinates. The cross section profile and 
overhead view is as shown in fig 4.5. Each extracted plot contains 
LiDAR point clouds used further in calculation of plot metrics. The 
LiDAR metrics were computed from the 1st returns of LiDAR data.  
 
The canopy cover for this plot on fig 4.5 is 71% whereas the 
minimum elevation is 240 m, maximum elevation is 264 m. The plot 
metrics such as maximum, mean, coefficient of variation of LiDAR 
heights, different quantile- based metrics describing the LiDAR height 
distribution, canopy density metrics were extracted for each field 
plots. 
         

     
(a)                                                          (b) 

Figure 4-5: Cross-section (a) and overhead view (b) for the same field plot 

4.4 Accuracy assessment  

4.4.1 LiDAR derived height 
 
Tree height collected from field plots and derived from LiDAR were 
compared using linear regression model. The comparison was done 
with 15 field plots. The tree height was computed by relating with 
seven predictor variables derived from LiDAR. The summary of 
statistics for both height measurements is given in Table 4.2. On 
average, field (Lorey’s) height overestimated LiDAR derived tree 
height, by 0.11 m, which is described as tree height of 5 plots were 
overestimated and remaining 10 plots were underestimated on LiDAR 
derived height. 
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Table 4-2: Summary of statistics for tree height measurement 

 
 
  
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Goodness of fit between LiDAR derived height and Lorey’s height was 
analyzed on R stat using regression analysis for 15 field plot metrics. 
R square shows that the LiDAR derived height was predicted at 96% 
with RMSE of 0.57 m.  
 
The test hypothesis from one way ANOVA at 95% confidence interval 
and Pearson’s correlation test shows that there was significant 
relationship between Lorey’s mean tree height and LiDAR derived 
mean tree height. 
 
Table 4-3: Summary of ANOVA analysis for tree height 

Statistics Lorey’s height(m) Lidar derived height(m) 

Mean 16.97 16.86 
Minimum 11 11.78 
Maximum 21.2 21.65 
Standard deviation 2.97 2.87 

Summary df SS MS   F Significance F 

Regression 1 118.67 118.67  327.81 0.000000132 

Residual 13 4.706 0.362  

  R square           0.961 Standard error          0.054 RMSE           0.57 Intercept         -0.147 

Figure 4-6: Scatterplot and summary of regression for tree height
measurements 
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4.4.2 Basal Area 

 
Figure 4-7: Scatterplot and summary of regression for basal area 
measurements

The basal area was computed within 15 field plots using eight 
predictor variables derived from LiDAR. The linear regression model 
for the field measured and LiDAR derived basal area shows that the 
field measured basal area is 0.10 m2/ha greater than LiDAR derived 
basal area on average. However, the LiDAR derived basal area 
underestimate the field measured basal area by 46% and 
overestimate by 54%. 
 
Table 4-4: Summary of statistics for basal area measurement 

Statistics Field measured BA(m2/ha) Lidar derived BA(m2/ha) 
Mean 23.37 23.26 
Minimum 10 11.15 
Maximum 33.7 34.38 

Standard deviation 1.25 1.25 
 
The goodness of fit between basal area from field plot and LiDAR was 
analysed and regression analysis was done among 15 field plots. The 
regression shows that LiDAR derived basal area was predicted with 
87% and RMSE of 2.5 m. The one way ANOVA at 95% confidence 
interval and Pearson’s correlation test shows that there was 
significant relationship between field measured basal area and LiDAR 
derived basal area. 

Total 14 123.373   

R square        0.87 
Standard error     0.18 
RMSE        2.5 
Intercept      -0.643 
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Table 4-5: Summary of ANOVA test for basal area measurement 

 

4.5 Correlation analysis   
Pearson’s product moment correlation coefficient analysis was 
performed between LiDAR metrics and Lorey’s mean height. The 
correlation coefficient for all LiDAR metrics ranges from 0.1 to 0.9. 
Among the LiDAR metrics, coefficient variations of laser canopy 
heights (hcv) had the highest correlation coefficient  0.9 and 10th 
percentiles of laser canopy height (h10) had the least correlation 
coefficient. The LiDAR metrics have weak relationship with Lorey’s 
height but have positive correlation.  
 
Table 4-6: Correlation among the variables of regression model 

 
Similarly, correlation coefficient was performed between LiDAR 
metrics and basal area. The correlation coefficient ranged from -0.21 
to 0.44. The correlation coefficient between canopy density and basal 

Summary df SS    MS   F    Significance F 

Regression 1 433.61   433.61 
          
59.273            3.40E-06 

Residual 13 95.1   
Total 14 528.71       

Correlation among  LiDAR metrics and Lorey's 
height 

Correlation among  LiDAR 
metrics and BA 

Variables df(n-2) t-statistic r  P value t-statistic r  
P 
value 

hmax 13 0.6123 0.11 0.55 0.2223 0.06 0.8275 

hmean 13 0.3904 0.11 0.70 0.1564 0.04 0.8781 

hcv 13 7.898 0.91 0.0000026 2.3953 0.55 0.032 

h10 13 0.0764 0.021 0.94 -0.1491 -0.041 0.8838 

h50 13 0.653 0.178 0.5252 0.4032 0.11 0.6934 

h75 13 0.5982 0.164 0.56 0.23 0.06 0.8217 

h90 13 0.6203 0.17 0.55 0.24 0.066 0.8519 

D1         -28.786 0.623 0.012 
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area was the highest while the lowest was with the coefficient 
variations of LiDAR canopy heights (hcv). 

4.6 Stepwise Regression 
Stepwise regression procedure was performed to select LiDAR metrics 
on the final model. The stepwise regression was performed with 7 
predictor variables from the LiDAR metrics that was selected to 
compute the tree height. The least AIC value was selected for the 
final model. The combination of h10 and h90 for estimation of the tree 
height gave the least AIC value. The final model to estimate the tree 
height is given by means of following equation (4). However, for the 
basal area model 7 predictor variables were selected among the 8 
predictor variables. The multiplicative model for basal area was 
estimated as linear regression in following form (5): 

 
      ( ) 

Where, 
 = natural logarithm to the base 2.71828 
 = LiDAR derived mean height 
 = intercept 
 = coefficient of 10th percentiles of LiDAR metrics 
 = coefficient of 90th percentiles of LiDAR metrics 

 

         ( ) 

Where, 
 = natural logarithm to the base 2.71828 
 = LiDAR derived basal area 
 = intercept 
 = coefficient of maximum LiDAR canopy height  
 = coefficient of maximum LiDAR canopy height  
= coefficient of 50th percentiles of LiDAR canopy height 
= coefficient of 75th percentiles of LiDAR canopy height 
= coefficient of 90th percentiles of LiDAR canopy height 
= coefficient of coefficient variation of LiDAR canopy height  
= coefficient of canopy cover density 
 = canopy cover density 

 

4.7 Model validation of tree height and basal area 
The model for height estimation from stepwise regression was 
validated with nine independent field plots. The Lorey´s mean height 
and LiDAR derived height were plotted as shown in fig 4.4. R2 value 
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for the validated height model was found to be 71% with RMSE of 1.3 
m. Similarly, the predicted and observed basal area were plotted and 
R2 value for the validated model was found to be 78% with RMSE of 
4.5 m2/ha.  
 
The selected regression equation for estimation of tree height  (6) and 
basal area (7) was as follows: 
 

    (6) 

 

 (7) 

 
Figure 4-8: Scatterplot of observed and predicted height and basal area 

4.8 Model for stand volume 
The multiplicative regression model for volume was developed with 
the combination of canopy density metrics from LiDAR and height 
derived from eqn. (1). The linear regression for prediction of volume 
is shown in eqn. (8) with coefficient of height and canopy density. 
 

      ( ) 

 
Where, 

 = natural logarithm to the base 2.71828 
 = stand volume 
 = intercept 
 = coefficient of LiDAR derived height 
 = coefficient of canopy density 

 = LiDAR derived mean height 
 = canopy density 
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The model was based on the calculation of RMSE and coefficient of 
determination (R2). The model has R2 value of 81% and RMSE of 
30.68 m3/ha. The regression coefficients for the model were shown in 
following table 4.6. The observed and predicted volume from 
regression models were plotted against each other in fig 4.9. The 
regression analysis shows that stand volume of 7 field plots were 
underestimated and remaining 8 field plots were overestimated.  
 
Table 4-7: Regression coefficients and statistics of model 

Variables estiamte std.error       t value  
b0 -0.6835 0.8589 -0.796 
b1 1.8036 0.,3299 5.467 
b2 -2.3126 1.0143 -2.28 
R2 0.8131   
Adjusted R2 0.7819     

 
The test hypothesis from one way ANOVA at 95% confidence interval 
and Pearson’s correlation test shows that there was significant 
relationship between observed and predicted volume as shown in 
table 4.7. 
 
Table 4-8: Summary of ANOVA analysis for volume model 

Summary df      SS             M       F 
                    
Significance F 

Regression 1      56947             56947       52.441  6.54E-06 
Residual 13      14114             1086   
Total 14      71061             58033     
 

 
Figure 4-9: Scatterplot of observed and predicted stand volume 
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4.9 DSM, DTM and CHM generation from aerial 3D 
image  
DSM and DTM from aerial image were generated by using SOCET GXP 
software to extract CHM. The height difference between DSM and 
DTM was very low and negative. DSM value for the study area ranged 
from 60.45 m to 339.46 m while DTM value ranged from 58.53 m to 
344.17 m. The value shows that DTM is higher than DSM which 
cannot be true. The below fig 4.10 shows that DSM and DTM was 
better to delineate the edges. 
 

   
(a)                                             (b) 

Figure 4-10: shows the (a) DTM and (b) DSM from aerial image 

CHM and aerial image of the same area is shown in fig 4.7. The below 
fig 4-11 shows that aerial image could not generate better CHM over 
the whole study area. The CHM value for the barren land and forested 
area were same. 
 

  
(a)                                                (b) 

Figure 4-11: shows the (a) CHM and (b) aerial image of the same area 
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The CHM thus generated from DSM and DTM gave the tree height of 
4m on average Whereas, the field measured tree height and LiDAR 
derived tree height range from 11- 24 m  Thus, aerial image was not 
further processed to estimate the tree height, basal area from the 
study area. Accurate estimation of CHM requires good quality of DTM 
and DSM. 
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5.   Discussion 

5.1 Extraction of LiDAR metrics 
48 LiDAR metrics were computed using intensity and elevation values 
for each field plots. Among these LiDAR metrics, the potential 
predictor LiDAR metrics had to be selected to estimate the tree 
height, basal area and volume. The selected LiDAR metrics had to be 
robust for the estimation of the mean tree height, mean basal area 
and mean stand volume. Several studies had been done to select the 
potential LiDAR metrics to estimate the different forest parameters. 
Næsset and Bjerknes (2001) studies shows that eight predictor 
variables i.e. (i) 25, (ii) 50, (iii) 75 and (iv) 90 percentiles of the 
height distribution of laser pulses classified as canopy hits, (v) the 
maximum value, (vi) the mean value, (vii) the coefficient variation, 
and (viii) canopy cover density were selected to estimate the 
dominant height and stem number. Erdody and Moskal (2010), also 
used nine LiDAR predictor variables which include maximum and 
mean height, 10th, 25th, 50th, 75th , 90th percentile heights, coefficient 
of variation of LiDAR heights and canopy density. Similarly, Næsset 
(2002) used the same eight predictor variables to estimate Lorey’s 
height, dominant height, stem number, basal area and volume. 
Means (2000) selected 0, 80 and 90 percentiles of the height and 20 
percentile of cover to estimate the tree height, basal area and 
volume. Næsset (1997) studies shows that using mean canopy cover 
density and LiDAR derived stand mean height can predict the volume 
of the stand. Therefore, all the LiDAR metrics were not necessary to 
extract the height, basal area and volume. The potential LiDAR 
metrics has to be selected according to forest parameters and the 
predictor variable can be different depending upon the study area, 
age. 
  
The study area has LiDAR data of 1.0 m point density which is 
sufficient for estimating tree height, basal area at plot level but not 
on individual tree level. The LiDAR metrics selected on study area are 
the potential predictor variables, which estimated the mean tree 
height and basal area more accurately. 
 

5.2 LiDAR derived tree height and basal area and 
accuracy assessment 
The multiple regression analysis was used to develop models to 
estimate mean tree height, mean basal area using eight predictor 
variables derived from LiDAR data on 15 field plots.  



Chapter 6 
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The LiDAR derived tree height underestimated field measured tree 
height by 0.11m on average. It showed that 33% of tree height was 
overestimated and 67% of tree height was underestimated by LiDAR 
derived tree height compare to Lorey’s height. Næsset (1997) 
research on the mean tree height of forest stands shows that mean 
laser height underestimated the Lorey’s tree height by 4.1-5.5 m. 
While this study area is young and unmanaged forest, there are some 
tall trees due to the favourable conditions but there are more small 
trees and the Lorey´s height is also the average of the tree height of 
sample plot. The study was done in plot level and the value for the 
tree height is average of plot tree. According to Suárez, Ontiveros et 
al. (2005), LiDAR underestimate the ground measured tree height by 
7-8% with point density of 3-4 points/m2.Hyyppä, Hyyppä et al. 
(2008) study has found that low point density of LiDAR underestimate 
the tree height. Similarly, the LiDAR point density is 1 point/m2 in 
this study area, thus the percentage difference of overestimation is 
found low and underestimation is found high. 
 
The coefficient of determination (R2) of predicted tree height by 
observed tree height was 96% with RMSE of 0.57m. The Pearson’s 
correlation test and F test shows that there is statistically significant 
relationship between the Lorey’s mean tree height and predicted 
mean tree height. The finding of this study can be compared with 
other studies done by several researchers i.e. Næsset (2002) studies 
obtained R2 as high as 95% on young forest and this study area is 
also young forest. Similarly, Andersen, McGaughey et al. (2005) 
obtained 98% of R2 with 1.3 m of RMSE, while estimating the canopy 
height in the coniferous forest. Erdody and Moskal (2010) found 93% 
of coefficient of determination from LiDAR derived tree height. The 
different studies shows that coefficient of determination is higher in 
young forest, it may be due to Lorey’s mean height is based on all 
measured trees while in mature forest it is based on trees with dbh 
greater than 10cm.  
 
Similarly, the LiDAR derived basal area underestimate the field 
measured basal area by 46% and overestimate by 54%. The 
regression shows that LiDAR derived basal area was predicted with 
87% and RMSE of 2.5 m. The F test revealed that there is significant 
relationship between the LiDAR derived basal area and field measured 
basal area.Næsset, Bollandsås et al. (2005) study revealed that the 
coefficient of determination is higher in basal area of young forest, 
which is 91%. Magnussen, Næsset et al. (2011) found 84% of R2 for 
LiDAR derived basal area on their study.  
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The comparison of accuracy of the tree height and basal area cannot 
be done directly, as there are many factors which influence the 
accuracy i.e. species, age, crown shape, forest composition, tree 
density, topographic features and the quality of LiDAR data.  
 

5.3 Model validation of tree height and basal area 
Stepwise selection was performed to select LiDAR variables to include 
in final model and cross validation was done to assess the accuracy.  
Cross- validation procedure was used to assess the reliability of this 
model. The cross validation of the model was done with nine 
independent field plots. R2 value for the validated mean tree height 
model was found to be 71% with RMSE of 1.3 m. Similarly, R2 value 
for the validated basal area model was found to be 78% with RMSE of 
4.5 m2/ha.  
 
Næsset and Bjerknes (2001) study revealed that the after stepwise 
selection procedure, the final model for tree height include only 
maximum laser height and coefficient of determination was 75%. 
Næsset and Gobakken (2005) studies on young forest–stratum 
comprised of 10th percentiles and mean LiDAR height on the tree 
height model with 91% R2 and 0.08 RMSE. While final model of basal 
area comprised of 10th and 50th percentiles and canopy density with 
R2 of 91% and 0.11 RMSE. Monnet (2010) study comprised of 50th, 
75th and minimum height values of LiDAR pulses on the final tree 
height model with 84.1% of R2 and for final basal area model 25th, 
50th percentiles and density metrics was used with R2 of 70.8%. 10th 
and 80th percentiles of LiDAR canopy height were selected for 
prediction of mean tree height on final model while 50th percentiles 
and mean of LiDAR canopy height and canopy density were selected 
for final model of mean basal area. Similarly, in this study area, only 
10th and 90th percentiles of LiDAR canopy height was included on final 
tree height model and 7 predictor variables i.e. maximum and mean 
of LiDAR canopy heights, 50th, 75th and 90th percentiles of LiDAR 
canopy heights, coefficient of variation of LiDAR canopy heights and 
canopy cover density was included for the final basal area model.  
 

5.4 LiDAR derived stand volume and accuracy 
assessment 
The mean tree height obtained from final model and LiDAR canopy 
density metrics were used to estimate the stand volume of the study 
area. Nelson, Krabill et al. (1988) tested different equations to 
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compute the best stand volume by using LiDAR canopy density 
metrics and LiDAR height metrics.  
 
 The model of stand volume for this study has R2 value of 81% and 
RMSE of 30.68 m3/ha. Næsset, Bollandsås et al. (2005) study has 
94% of R2 on their young forest study area. Linderg, Holmgren et al. 
(2010) also found 35 m3/ha RMSE on their plot level study area 
 
González-Ferreiro, Diéguez-Aranda et al. (2012) study revealed that 
the pulses densities of LiDAR affect the quality of DTM and DSM, 
which in long run will affect the estimation of tree volume and other 
forest parameters. The comparison between 8 and 0.5 pulses m-2 in 
that study shows that R2 of 8 pulses m-2 has 10.4% higher than 0.5 
pulses m-2. RMSE of stand volume is larger which is due to smaller 
mean stem volume, as forest is young. . The total plot volume on 
field was computed as the sum of individual tree volumes of dbh 
greater than 4cm on young forest. However, LiDAR cannot easily 
penetrate the tree canopy and estimate more volume of stand.  
 
Næsset (1997) compared different model to estimate the stand 
volume and found R2 range from 46-89% and RMSE of 26-83 m3/ha. 
This fact also reveals that volume model should be calibrated 
individually for different tree species. The common volume equation 
for different species such as Norway spruce, Scots pine tend to 
underestimate the volume of pure pine stands (Næsset 1997). In this 
study, the common volume equation was proposed for both Norway 
spruce and Scots pine. Thus, the RMSE is higher in study area 
compare to other studies. 
 

5.5 Aerial image analysis 
The DSM and DTM generated from LiDAR gave far better result than 
the aerial image, which in long run affect the quality of CHM. The 
mean tree height and mean basal area was difficult to estimate from 
the DSM and DTM generated from aerial image. Thus, the comparison 
of mean tree height, mean basal area and stand volume from aerial 
image with LiDAR has to be terminated. Baltsavias (1999) found that 
LiDAR had strengths on mapping of surface whereas image matching 
from aerial image delivered poor result. Eid, Gobakken et al. (2004) 
revealed that LiDAR gave more precise estimates of height, basal 
area and number of trees than compare to aerial image. Holopanien 
(2008) studies showed that LiDAR performed far better than aerial 
photograph while adding aerial photographs features into LIDAR 
features gave worst result. Hopkinson, Hayashi et al. (2009) 
compared DEM from LiDAR and aerial photo in their study and found 



 38 

that LiDAR DEM performed far better than aerial photo DEM. 
However, aerial photo DEM was able to capture break line features 
such as ridges and cliff edges. The below figure from the study area 
also shows that aerial image is able to capture the edges and better 
for demarcation. 
 

 
 

Fig 5- 1 Comparison of CHM derived from aerial image, LiDAR and aerial 
photographs of the same area from up to bottom respectively 

In this study, the aerial image GSD was 0.5 m and not enough 
overlap aerial image was the major problem to get the poor DSM and 
DTM. Schardt (2004) suggested that while using photogrammetric 
methods for forestry purposes, it is better to use DEM from LiDAR to 
get accurate estimation. The study also found that aerial photographs 
were not suitable to measure the individual tree heights. Waser 
(2006) used 0.5 m aerial image to predict the shrub occurrence. 
Baltsavias, Gruen et al. (2008) used aerial image of GSD 9-22 cm 
and 60-80% forward overlap to generate high quality DSM and 
suggested that the accuracy of DSM depends upon the image scale, 
image texture, imaging geometry and compactness of tree canopy 
definition. In this study area, digital aerial image has 60% forward 
overlap and 20-30% side overlap. Due to low GSD and low forward 
overlap of aerial image could not generate better CHM. The more 
forward overlap on aerial image will helps to generate more tie points 
on aerial triangulation and which will generate more accurate DTM 
and DSM.  
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6   Conclusion and Recommendations 

6.1 Conclusions 
The objective of this study was to compare the accuracies of 
estimation of forest parameters using digital aerial image and LiDAR 
data and to extract the potential LiDAR metrics to generate more 
accurate height, basal area and volume. 
 
The potential LiDAR metrics that generate accurate tree height and 
basal area were selected from stepwise procedure and validate with 
field plots. The 10th and 90th percentiles LiDAR canopy height was 
selected among seven predictor LiDAR metrics to validate the tree 
height model and gave 71% of R2. Whereas, seven predictor LiDAR 
metrics were selected among eight LiDAR metrics to validate basal 
area model and has 78% of R2. The model for stand volume comprise 
of mean tree height generated from final tree height model and 
canopy cover density generated from LiDAR. In this study, the 
volume generated from LiDAR has strong relationship with field 
measured stand volume. 
 
The LiDAR gave the better result compare to aerial image. The aerial 
image did not generate the better DSM and DTM, which gave poor 
quality CHM. Thus, the tree height cannot be generated and has to 
terminate the process of extracting height, basal area and volume. 
 

6.2 Recommendations 
The use of digital aerial image has high scope on estimation of forest 
parameters but should be used with high GSD and high forward 
overlap digital aerial image. There were some difficulties with digital 
aerial image during the research time However, some 
recommendations are as follows: 

 The GSD of aerial image should be at least 25cm to generate 
accurate CHM from DSM and DTM of aerial images. 
 

 The forward overlap of aerial image should be 75% to 
generate accurate CHM. 
 

 The knowledge of potential software to generate DSM and 
DTM from aerial image is necessary requirements to the 
researcher. 
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