






ABSTRACT

Many spatial phenomena are changing continuously in time and space. Thus, it is the emer-

gence of accessing frequent, up-to-date, spatially dense measurements for monitoring and track-

ing. Compared to conventional earth observation data collection technologies, wireless sensor

networks (WSNs) can provide continuous observations of physical phenomenon by means of

dense deployment of sensor nodes. Most WSN applications require accurate, energy friendly

and real-time data analysis in order to provide timely information for decision makers. Quality

of data provided by WSNs is highly critical while, provided raw data may be drawn in from of

a low quality and reliability level expectedly, because of the sensors inexpensive nature.

To assure quality of data obtained from WSNs, outlier detection refines the measured data and

leads to the retrieval potentially useful information, called an event. There is a trade-off between

accuracy and energy efficiency to design the effective event detection method. Temporal and

spatial properties of occurred events are important, and thus should receive more attentive

consideration.

To detect temporal outliers in the absence of a sufficient amount of historical data or in the

temporary deployments, building the temporal correlation model is not usually possible thus a

novel approach was proposed. The climatic observations and forecasts are utilized to identify

outliers. This research evaluated the suitability of using climatic observations and climatic fore-

casts in WSN for outlier detection. To identify temporal outliers, patterns were utilized instead

of absolute values. Experiments from the real dataset from Grand-St.-Bernard deployment in

Switzerland and Italy revealed that depending on the degree of localization, forecast values can

be directly applied in WSN outlier detection procedures and climatic observations can be used

in building the initial temporal model. This method has the advantage of using contextual

information in WSNs and was performed in an energy efficient manner.

Events were detected based on the correlation based neighbor-voting approach by integrating

the temporal and spatial properties of WSNs. Events were identified where a majority of ge-

ographically correlated sensors represent temporal outliers, simultaneously. The retrieval of

detailed information about spatial and temporal properties of events required the event time

scale be degraded and events reclassified as faults and events in finer resolution.
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Chapter 1

Introduction

1.1 Motivation and problem statement

Many spatial phenomena are changing continuously in time and space. Thus, it is necessary

to access frequent, up-to-date and spatially dense measurements for monitoring and tracking.

Most of conventional earth observation data acquisition techniques provide observations that

are discrete in time and not local enough. It is the emergence of new observation tools, wireless

sensor networks (WSN) that can provide new options of sensing. Wireless sensor networks can

observe physical phenomenon by means of dense deployment of sensor nodes (Vuran et al.,

2004). Wireless sensor networks are usually composed of low-cost and low-power sensor nodes

that make it possible to record observations with high spatial and temporal resolution.

Wireless sensor nodes are equipped with sensing, processing, and actuation capabilities (Liu

et al., 2003) that are linked by wireless media to transform the required and partially processed

data (Dı́az-Ramı́rez et al., 2012). In recent years many applications have been proposed for

WSNs. On the other hand, data for WSNs may observe by many different types of sensors

such as seismic, low sampling rate magnetic, thermal, visual, infrared, acoustic, and radar

(Akyildiz et al., 2002). Moreover, diverse variety of attributes can be observed that include

the following: temperature, pressure, humidity, soil make up, vehicular movement, noise levels,

lighting conditions, the presence or absence of certain kinds of objects, mechanical stress levels

on attached objects, the current characteristics such as speed, direction, and size of an object

and so on (Akyildiz et al., 2002; Estrin et al., 1999). Area monitoring, precision agriculture and

horticulture, (near) real-time event detection, air pollution monitoring, landslide detection, local

control of actuators, health, military, and security are only a few applications of currently used

WSNs. However, data collection and monitoring are the main objectives through the WSNs.

1



Chapter 1. Introduction 2

Wireless sensor networks are installed with respect to the application and type of the required

information, quality of the service or networks topology, communication protocols and routing,

power management, network structure and hierarchical networks (Lewis, 2004) since aforemen-

tioned parameters may affect the quality of the derived data. WSN applications require efficient,

accurate, and high spatial-temporal resolution data to address (near) real-time decision making

and situation awareness. Quality of data provided by WSNs is highly critical while, provided

raw data may be drawn in from of a low quality and reliability level expectedly, because of the

sensors nature. The quality of sensed data may be affected by noise and fault, missing values,

duplicated data or inconstant data (Zhang et al., 2010). Noise and fault, event, and malicious at-

tacks can be considered as a main outlier source in WSNs (Zhang et al., 2010). Limited numbers

of WSN resources, low quality ones, harsh deployment environments, memory, computational

capacity, and computational bandwidth can cause unstable data (Zhang, 2010). Whereas sensor

faults are not spatially dependent (Ding et al., 2005), events are spatially dependent in dense

networks. Consequently, outlier detection procedure refines the measured data and leads to

retrieve potentially useful information, called an event.

Events in different domains may interpret, differently. Event detection is counted as one of

the main applications of the WSNs. While the purpose of the study is event detection, it is

important to detect events in (near) real time. It can cause more challenge for online or (near)

real-time event detection while, large quantities of spatial and temporal data cause difficulties

with respect to the limited memory, computation, communication capabilities and constraint

on sensor nodes sensing capability (Shih et al., 2008). The limited resources and capability, un-

reliable and imprecise sensor observations, and the dynamic changing of an environment, make

WSN events detection challenging in the context of WSNs (Kapitanova and Son, 2010). Technol-

ogy requirements of WSNs also draw special attention to the energy consumption while, all the

accurate event detection methods could not be applied in WSNs because of energy constrains.

Accuracy and energy efficiency are the main challenges in the event detection where indirect

relationship exists among energy consumption and detection accuracy, generally. Whereas being

energy efficient could increase the life time of sensors and somehow prevent some kinds of faults,

accurate methods usually need to consume more energy. Generally, large amount of data, more

communication and processing rate are prerequisite for accurate event detection. Hence, there

is a trade-off between accuracy and energy efficiency to design the effective detection method.

To evaluate the accuracy of the event detection method detection rate and false positive rate are

assessed. Applied method also should be evaluated in terms of energy efficiency. Events maybe

detected in WSNs individually in single nodes or collaboratively in multiple nodes. Spatial and

temporal components of observations are essential where time and location of the events are of
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interest (Kapitanova and Son, 2010). Inexpensive and low-power characteristics of the WSN

devices encourage dense distribution of sensors that reminds the spatial correlation (Vuran and

Akan, 2006). Moreover, Vuran and Akan (2006) mentioned consecutive temporal records are

temporally correlated while, similar properties for spatially close observations are expected. So,

by considering spatial and temporal properties of phenomena it is beneficial to utilize all the

potentially useful available data by means of spatial and temporal models to obtain a better re-

alization from phenomena. However, due to existence of faults or in temporary deployments lack

of historical data is expected. Thus, performing the temporal correlation models is challenging.

While temporal and spatial properties of occurred events are important, temporal extent of

an event should receive a more attentive consideration. In order to meet the event detection

objective, it is important to identify an event and subsequently, track the spatial and temporal

development of an event where event tracking requires frequent sampling and communication

in order to sense event features.

Conventional event detectors, follows three type of scenario in statistic context:

• Detecting the events based on temporal correlation models.

• Detecting the events based on the spatial correlation models.

• Detecting the events by cooperating temporal models and spatial models.

Generally, sensing all the properties of an event is not possible, where most often an individual

sensor node cannot detect the events properly. Thus, it is the emergence of using all the

available potentially useful data. Events could not be distinguished sufficiently from outliers in

the temporal models in the absence of multiple variables while, events are detected in individual

sensor nodes in time and spatial data of neighbor nodes are ignored (Zhang et al., 2012).

Moreover, Zhang (2010) mentioned, events could not be distinguished properly from long-term

faults in the absence of enough information and neighboring nodes data. Spatial models detect

the events with respect to the multiple nodes at a moment in time where, it ignores the time

sequence data (Zhang et al., 2012). Considering the advantages and disadvantages of spatial

correlation and temporal correlation in order to obtain accurate results spatial and temporal

properties should be integrated. In addition, it is necessary to use multi-nodes approach in

order to monitor and track the temporal evolution and geographic extent of events.
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1.2 Research identification

The aim of this research is to detect outliers and events and identify the geographic extent of

events and their evolution over time.

1.2.1 Research objectives

The main objective of this research is to develop a techniques to identify outliers and events

with respect to the spatial and temporal properties of the WSN data in an energy efficient and

accurate manner.

1.2.2 Specific objectives and research questions

In order to achieve the research objectives following specific objectives and questions should be

addressed:

1. To define outliers and events.

1.1. How can an outlier be defined?

1.2. How can an event be defined?

1.3. How can an outlier become an event?

2. To detect an event.

2.1. How can temporal properties of WSN data be used to identify events?

2.2. How can spatial properties of WSN data be used to identify events?

2.3. How to integrate spatial and temporal properties of WSN to identify events?

3. To characterize an event.

3.1. What is the temporal evolution of event?

3.2. What is the spatial extend of event?

4. To evaluate the detected outliers and events.

4.1. How can a reference data-set be identified?

4.2. How accurately can outliers be detected?

4.3. How accurately can events be detected?

4.4. How efficient is the proposed event detection method in terms of energy?
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1.3 Innovation

This research aimed at developing an energy efficient spatial-temporal outlier and event detec-

tion method. The main contribution of this research is to configure an energy friendly method

for identifying the events based on the patterns by using the contextual information.

1.4 Thesis organization

The organization of the thesis is shown in Figure 1.1 which demonstrate the information flow

of the main thesis topics, the contributions and relationship among the chapters. The rest

of the thesis is organized as follows. Chapter 2 gives the theoretical background. Chapter 3

describes study area, dataset description, tools and data pre-processing. In chapter 4, the pro-

posed methodologies are presented. Chapter 5 gives experimental results to demonstrate the

proposed approaches. In chapter 6, discussions on methodology and results are provided. Thesis

is concluded in chapter 7 by summarizing the key results, highlighting the lessons learned and

direction for future work.

Figure 1.1: The organization of the thesis





Chapter 2

Theoretical Background

2.1 Outlier and event definitions

Application domain affects the definitions of outliers and events. For example, outliers can be

defined for metrological observations based on standards that are provided by world meteoro-

logical organization (WMO). Zahumenskỳ and SHMI (2004) proposed plausible value check and

plausible rate of change for outlier defining. Zhang (2010) applied the plausible value check to

fault detection by using pre-defined threshold. It should be consider that for defining events,

availability of information such as nature of the variable, space and time specifications of the

variable and events properties are important. In other words, a unique and constant threshold

cannot be specified for all environmental observations and the threshold may vary by different

times, days, weeks, months, locations and events. Moreover, even by specifying a threshold

for a specific type of variable, in a specific time, events cannot be distinguished from outliers

while most of the time event type is unknown in advance. Hence, it is not simply pragmatic

and realistic, to have definitions for events and outliers based on a pre-defined threshold in the

absence of prior knowledge on upcoming events (Zhang et al., 2009).

In order to distinguish events from outliers; data properties, application domain, and detection

method should be taken into account. Generally, outliers are defined as data points which

are very different from the rest of the data based on some measure (Aggarwal and Yu, 2001).

Barnett and Lewis (1984) defined outliers as those observations that are inconsistent with other

observations. Outliers may present any change in the state of the environment that is called

event or include any source of faults.

7
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Faults may include incidental absolute error, clustered absolute error, random error, long-term

error (Zhang, 2010), dead band errors and systematic errors. Incidental absolute error or blun-

ders are defined as a short period and unexpected errors while, clustered absolute errors have

the same nature but occur in a long time period. Random errors are not within the threshold

based on normal behavior while, long-term errors contain random errors properties but occur in

a long time sequences (Zhang, 2010). On the other hand, systematic errors often occur because

of sensors imperfection. Thus, by excluding faults from outliers, potentially useful information

will be retrieved from outliers that illustrate a real change in the state of the environment.

However, it is not usually straightforward to distinguish faults in terms of long-term error and

systematic errors from events. Dealing with outliers is an area of interest while, they can be

adjusted, reject or remain unaltered based on the type of outlier (Onoz and OGUZ, 2003). In

the case of faults they can be ignored or replaced while, events that present a change in the

state of environment should be remained for further investigations.

2.2 Spatial and temporal correlations in WSNs

Spatial and temporal properties of WSNs data, acknowledge applying of temporal and geosta-

tistical analysis to obtain temporal and spatial movement and extent of events.

2.2.1 Spatial modeling by geostatistics

The mathematical difference of any pair of observations which is calculated by half of the squared

difference between both values presents semivariance. The usual formula for computing the the

sample Variogram is:

ŷ (h) =
1

2n (h)

n(h)∑

s=1

(ys − ys+h)
2 (2.1)

where: s is a vector of spatial coordinates, h is the lag distance representing separation between

two spatial locations, ys is the variable under consideration, ys+h is the same value of a separation

of h, s presents the different spatial locations of the data, and n(h) is the number of point pairs

(ys, ys+h) separated by h.

Variogram can be described based on the follow characteristics by Figure 2.1:
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Figure 2.1: A theatrical Gaussian model variogram

• The Sill: Correspond to the maximum semivariance value, which represents the values

at the locations that are spatially independent. The difference between the sill and the

nugget (described below) is known as the partial sill.

• The Range: The range presents the corresponding separation distance at which the sill is

reached.

• The Nugget effect: The nugget effect represents a discontinuity of the semivariogram that

can be present at the origin. As the distance goes to zero, there tends to be a nugget

effect due to measurement errors and non-spatial and micro-scale variation.

2.2.1.1 Prediction

Fitted model to the variogram and coordinates of the neighboring locations and corresponding

observations are used for predicting an unknown observation at a known location. An optimal

geostatistical interpolation technique that provides the best linear unbiased predictor (BLUP)

for every location is called kriging. Kriging is used to predict the unknown observations as a

linear weighted combination of observations collected at its neighbor location.

2.2.2 COSMO forecasting models

In the absence of sufficient historical data to build temporal correlation model to build the

temporal correlation model climatic forecasts are utilized. In this research, instead of building

the temporal correlation model by WSN data, climatic forecasts are utilized as a result of
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temporal correlation model to perform temporal outlier detection. Forecasts are provided by

MeteoSwiss (2013) for the study area.

Consortium for small-scale modeling (COSMO) operates and further develops a high-precision

numerical weather prediction system, to automatically generate regional and local forecasts

products in complex topography (Baldauf et al., 2011). A detailed image of the future state of

the atmosphere is computed, from the low stratosphere to the surface, including the evolution of

the snow cover, the lake temperature and the soil characteristics. COSMO–7 produces forecasts

up to three days in advance on a domain covering central and western Europe. Figure 2.2

shows the model suite of MeteoSwiss: the european center for medium range weather forecast

(ECMWF) operates a global model describing the synoptic scales. MeteoSwiss operates the

regional scale COSMO–7 and the local scale COSMO–2 models.

Figure 2.2: The three nested numerical weather prediction models of the COSMO system

(MeteoSwiss, 2013)

A numerical weather prediction model is based on the physical laws describing the atmospheric

and surface processes (e.g. conservation of energy, transformation of phase, black body radi-

ation), suitable initial and boundary conditions, and a numerical method to solve in time the

resulting system of complex mathematical equations (Baldauf et al., 2011). These equations

describe a variety of atmospheric processes on different temporal and spatial scales, for example

the development of low pressure systems, snow fall and summer convection. The calculations

are performed on a three–dimensional grid, where the vertical spacing of the computational

levels is inhomogeneous in order to better resolve the low level atmospheric conditions (Baldauf

et al., 2011).

Suitable initial conditions for starting a forecast are produced by combining actual atmospheric

observations, previous model guidance, and climatic information in a way compatible with the
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model equations; this is the so-called data assimilation process. In a typical 24 hours assimilation

period, COSMO–7 ingests (Baldauf et al., 2011):

• about 120 vertical soundings,

• about 8000 aircraft observations,

• about 28000 surface observations, and

• about 1000 wind profiler measurements.

COSMO-2 and COSMO-7 models provide operational products as following:

COSMO-2, with a mesh size of 2×2 km, COSMO-7, with a mesh size of 7×7 km.

2.2.2.1 Localizing the forecast values

To localize the forecast values, algorithm searches grid points in the vicinity of the surface

station, consequently optimization is performed in terms of horizontal distance and vertical

height difference (Kaufmann, 2008).

2.2.2.2 Search radius depending on model surface at station

Localization is performed, by determining the land surface type (land or water) of the model at

the station location, firstly. Then grid cell, which the station is located in, can be determined

by rounding the grid coordinates of the station to the nearest whole number. Depending on the

surface type of the respective model grid cell, the search radius for model grid points around

the station is defined as (Kaufmann, 2008):

rsreach = rland = 1.415 for land surface,

rsreach = rwater = 2 for water surface, in model grid units.

The value of the radius is chosen to keep the method in close accordance with the previously

used method but to allow a wider search area over a flat water surface.
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2.2.2.3 Search area and preference of land points

All grid points within a horizontal distance of research of the exact station location are evaluated.

The number of evaluated grid points depends on the location of the station relative to the model

grid. If at least one model grid point within the search radius has a land surface, all water points

are excluded from the selection.

2.2.2.4 Optimization of horizontal and vertical distance

Horizontal distance dhor =
√

Δx2 +Δy2 and the vertical height difference dver = z of the

station to all grid points are calculated, in the same geometrical length unit, e.g. in meter.

Aforementioned two elements are combined to an optimization distance according to Kaufmann

(2008):

dopt = dhor + |dvert| · fve

with the vertical emphasis factor fve = 500. Smallest optimization distance grid point is selected,

consequently. This grid point shall be the model grid point associated with the station.

2.3 Related work

In this section, conventional statistics-based outlier and event detection techniques are pre-

sented. In order to provide an easier overview, they are categorized to the spatial, temporal,

and spatial-temporal event detection techniques in the context of WSNs.

2.3.1 Spatial outlier and event detection methods

Wu et al. (2007) proposed a localized algorithm which applied implicitly spatial correlation to

distinguish events from outliers at an event boundary. Their proposed method identifies outliers

based on differences of observed value of each station and the median reading of adjacent sensors.

Subsequently, each node collects all differences from its neighborhood and standardizes them.

Finally, outlier is occurred when the absolute value of its standardized difference is sufficiently

larger than a preselected threshold. They also proposed a scheme to adaptively adjust the

thresholds in the base station. Yang et al. (2008) proposed an unsupervised (one-class) centered

quarter-sphere support vector machine method and took advantage of spatial correlations that

exist among sensor data of adjacent nodes to reduce the false alarm rate in real-time. Wang and
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Yu (2005) proposed a method for event region detection based on the Markov Random Field

(MRF) model and a sensor fusion technique. Event reigns were identified where MRF model was

used to model the spatial correlation, and the sensor fusion technique considered the concept of

sensor reliability. Jin and Nittel (2006) proposed a distributed algorithm that utilized implicitly

spatial correlation among nodes to event and event Boundary detection. Zhang et al. (2012)

proposed a spatial outlier detection method in which nodes transmit their observations to the

adjacent nodes in every sensing instant in time and while a node detect the outlier, it sends

notification to the neighboring nodes. They detected events in the presence of confirmation

from adjacent nodes. This technique was not energy efficient and could not address the online

applications while, large amount of data transition and communication exist. Yu et al. (2012)

proposed event detection method based on spatial correlation, to perform prediction to find the

event features, correct the faulty sensor nodes and detect the event region.

2.3.1.1 Spatially based event definitions for outliers and events

Outliers are spatially independent, whereas normal observations of the same phenomenon are

geographically correlated (Krishnamachari and Iyengar, 2004). Spatial outliers are those ob-

servations that difference between predicted value/pattern and observed value/pattern exceed

pre-defined threshold or lies outside of the confidence interval. Predicted values can be obtained

from the spatial correlation model. Generally, it is assumed that events are spatially correlated.

Events are occurred when multiple number of outliers are happened in correlated adjacent nodes

at a specific time instance. While outliers can be occurred in each of the attributes indepen-

dently, co-occurrence of outliers in multiple attributes in single node by using spatial predictions

can present events.

2.3.2 Temporal outlier and event detection methods

Subramaniam et al. (2006) utilized proposed an outlier detection method that utilized temporal

correlation. They labeled observation as an outlier where each node identified local outliers while

the observation deviated significantly from the result of temporal model. Zhang et al. (2012)

proposed an online temporal outlier detection method by using the time series analysis. Their

method utilized the predictions of autoregressive model to identify outliers. This method identify

outliers where an observation lays outside the confidence of its predicted value. Ogbagabriel

(2012) proposed a temporal outlier detection method based on maximum variability check. This

method identified outliers where observations jump over a specific time period, unrealistically.
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Ogbagabriel (2012) proposed a method to identify temporal outliers by using moving average

and moving median.

2.3.2.1 Temporal based definitions for outliers and events

Temporal outliers may be those observations that jump in time at successive records in a single

node. Subsequently, in the presence of multiple variables, co-occurrence of outliers in single

node at a multiple attribute in a specific time instance can illustrate events. It should be noted

that outliers can be occurred in each of the attributes independently. Moreover, events can be

determined based on the length of outlier sequence. In other words, based on duration of the

outliers, events can be identified (Zhang et al., 2012) in multiple nodes and it is highly effected

by application requirements and sampling rate. Outliers can be defined as those observations

that deviate considerably from predicted value/pattern with respect to the pre-defined threshold

or placing outside of the confidence interval. Temporal correlation models are used to predict a

value. Hence, to identify events co-occurrence of multivariate outliers and the length of outlier

sequence are applicable.

2.3.3 Spatial-temporal outlier and event detection methods

Bettencourt et al. (2007) developed a distributed method to identify outliers and events in

ecological application of WSN. This method addressed the non-stationarity by learning the sta-

tistical distribution of difference between its own measurements and each of the adjacent nodes,

as well as its current and previous measurements. Outliers were identified where measurements

were less than a user-defined threshold. Consequently. events were detected since outliers were

different temporally from previous observations and spatial correlation existed by other outliers.

Wang et al. (2008) proposed combination of dimensionality analysis and a Bayesian networks as

a means for unsupervised learning and anomaly (event) detection in gas monitoring sensor net-

works for underground coal mines. Wang and Wu (2010) utilized spatial-temporal correlation

based outlier detection in which distributed algorithm utilized spatial and temporal correlation

between sensor nodes to detect outliers. In order to identify outliers, similarity of two succes-

sive sliding window observation were checked and in the presence of considerable jump it would

continue by checking whether it is faulty data or not. Then, they used spatial correlation of

last sliding window among different nodes to check which nodes were interrelated and by using

pre-defined threshold spatial correlated nodes can be determine. Moreover, if the current slid-

ing window of a node and correlated neighbors own sliding window presented similarity then a
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positive vote will be given otherwise a negative vote and non-correlated nodes do not affect the

procedure. Finally, negative sum of votes can illustrate the faulty observations of corresponding

sliding window.

Shahid and Naqvi (2011) proposed a quarter-sphere SVM based outlier and event detection.

Their method utilized temporal correlation along with the attribute correlations at each node.

One class Quarter-Sphere SVM based on temporal and attribute correlations were used for

outlier detection. They identified outliers based on distance criteria and events were defined

with respect to the decision criteria which counts the number of sensor arrays (group of sensors

which measure different attributes) whose distances are greater than their corresponding radii.

They utilized spatial correlation to identify events, implicitly. Events were defined as those

observations where an outlier on at least half of the sensor nodes occurred. Dereszynski and

Dietterich (2011) proposed a model that adapted to each deployment site by learning a Bayesian

network structure that captured spatial relationships between sensors, and it extended the

structure to a dynamic Bayesian network to incorporate temporal correlations. This model had

a capability to label faulty observations and predict the true values of the missing or corrupt

readings. Their process model incorporated spatial component that represents the relationships

among all sensors within a deployment for a given time slice and temporal component that

captures the transition dynamics from one time period to the next. Outliers were defined by

inferring the most likely state of the sensors given the current temperature observations and

those of the immediate past.

Shahid et al. (2012) proposed SVM based method by cooperating Quarter- Sphere (QS) for-

mulation of one-class SVM. They applied QS-SVM formulation based on attribute and spatial-

temporal. They modified QS-SVM by utilizing attribute correlation while, conventional QS-

SVM methods just used spatial-temporal correlation. So, they improved the results by using

attribute correlation as well as spatial-temporal correlation and results showed that spatial-

temporal and attribute QS-SVM increase the detection rate considerably over the spatial-

temporal QS-SVM. They used advantages of QS-SVM in their work to provide online, adaptive,

and distributed algorithm. They performed the event detection by detecting the radios of QS

based on spatial-temporal and attribute correlation. They presented applying attribute corre-

lation in the presence of spatial-temporal correlation in QS-SVM to improve outlier detection

rate and reduce false positive rate over the spatial-temporal QS-SVM. Albanese et al. (2012)

proposed a method, called rough outlier set extraction from spatial-temporal data that relies

on a rough set theoretic representation of the outlier set using the rough set approximations,

i.e. lower and upper approximations. Moreover, they also applied a new set, named Kernel Set,
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that is a subset of the original data-set, which is able to describe the original data-set both in

terms of data structure and of obtained results.

Zhang et al. (2012) proposed three spatial-temporal correlation based outlier detection. In first

method, they integrated spatial and temporal correlation while, each node identified tempo-

ral outliers and then outliers were distinguished from events by using spatial outliers results

and prediction was accomplished with respect to the actual measurements. They proposed a

second method based on spatial predicted-data-based outlier detection which, used parameters

of autoregressive model and neighboring data to prediction. Thirdly, they proposed spatial

and temporal integrated method to outlier and event detection in which, weights of nodes and

temporal correlation parameters were applied separately.

2.3.3.1 Spatial-temporal based definitions for outliers and events

For spatial-temporal outlier and event detection two scenarios can be supposed: first using

spatial and temporal models separately and second using integrated spatial-temporal model.

Firstly, spatial and temporal separate models can detect outliers by using temporal models.

Hence, outliers are defined with respect to considerable deviation from predicted value with

respect to the pre-defined threshold or confidence interval and events are presented by co-

occurrence of multivariate outliers and on the other hand length of the outlier sequence is

applicable for event detection. Secondly, there are methods that utilize spatial and temporal

models as an integrated model. They also identify outliers in successive temporal observa-

tions then events can be detected based on length of outlier sequence. So, outliers are those

observations that differ from predicted value by spatial-temporal model and events are those

observations that occurred in successive multiple time sequence. Moreover, co-occurrence of

spatial-temporal outliers in multiple correlated nodes can also present an existing of events.

As a conclusion, spatial event detection methods are incomplete simply while, temporal observa-

tions are ignored (Zhang et al., 2012) and due to inexpensive and imprecise nature of the WSNs

multiple faulty nodes can happen, frequently which may be labeled as event. Zhang (2010)

mentioned events that are detected by temporal correlation cannot be reliable while neighbor-

ing data are not considered and events are detected locally. In addition, because of not existing

the spatial information a single node cannot distinguish long-term faults from events. Tempo-

ral event detection methods cannot be applied in the absence of correlated multiple attributes

which are not available, generally. In order to overcome disadvantages and drawbacks of spatial

correlation and temporal correlation event detection methods, an integrated approach should
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be applied to utilize both spatial and temporal properties of WSN data to event detection in

WSNs.





Chapter 3

Study area, Dataset description,

Tools and Data pre-processing

3.1 Study area

Grand-St.-Bernard wireless sensor network is deployed at the Grand-St-Bernard pass at 2400

m between Switzerland and Italy. Most of the stations are located in Switzerland and a few are

installed behind the Italian border that are presented by Figure 3.1 .

3.2 Wireless sensor network dataset

The Grand-St.-Bernard data-set is investigated in this research (Figure 3.5). The dataset is

provided by interdisciplinary project called SensoreScope in 2007. The project aims to develop

a new generation of measurement system based on a wireless sensor network with built-in

capacity to produce high temporal and spatial density measures, push the limits in real-time

environmental measurement by deploying sensing stations in the Swiss Alps and development

of a complete communication stack well-fitted to harsh deployment sites featuring multi-hop

routing and synchronization among stations, as well as an advanced energy management of the

radio chip (Sensorscope, 2007).

The elevation range in the study area is from 2300 meters to 2500 meters. The available dataset

was observed from 13th September 2007 to 26th October 2007 and recorded at coordinated

universal time (UTC) time zone for 45 days (Ingelrest et al., 2010). The frequency of the

sampling for the deployment is two minutes. The data-set is provided by 23 sensor nodes.

19
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a) The distribution of the nodes in the study site

b) The coordinates of nodes according to the Geographic coordinate system

Figure 3.1: The Grand St. Bernard wireless sensor network deployment
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Eighteen are deployed in Switzerland and rest of them are installed across the Italian border.

These sensing stations periodically sample and transmit their readings through the wireless

network to a collection points that are called base-stations. The nodes are deployed in two

clusters. The big cluster consists of 18 nodes while, the small cluster includes five nodes.

The data-set includes seven external sensors, which makes the station capable of measuring nine

different data inputs: ambient temperature and humidity, infrared surface temperature, solar

radiation, wind speed and direction, precipitation, soil moisture, and soil pressure (Sensorscope,

2007). Data are collected under specific range and accuracy as presented by Table 3.1.

Table 3.1: Sensors specifications

Measurement Type Range Accuracy

Air Temperature –20◦C–60◦C ±0.3◦C
Humidity 0–100% ±2%
Surface Temperature –20◦C–70◦C ±0.6◦C

The proposed methodology was experimented on ambient temperature with respect to the small

cluster consisting of sensor nodes 25, 28, 29, 31 and 32 that are highlighted in Figure 3.1(a).

Observations were recorded at the same point in time, for the period 00:00∼24:00 on two

successive days, 29 and 30 September 2007 and presented in Figure 3.4.

3.3 MeteoSwiss dataset

To perform temporal outlier detection climatic observations and forecasts are utilized in this

study that are provided by MeteoSwiss (2013).

3.3.1 MeteoSwiss observations

Hourly mean data of air temperature 2 meter above ground is provided by MeteoSwiss (2013)

from 10th September 2007 to 28th October 2007. MeteoSwiss observations (MOs) are obtained

from a station located in ’Col du Grand St-Bernard’ in the 2472 elevation (Figure 3.5). Ob-

servation were recorded in UTC time zone. Hourly mean values (HH = (HH-1):41 - HH:40)

were calculated for MeteoSwiss observations (MOs) with six values of temperature, measured

in 10-minute intervals: (HH-1):50, HH:00, HH:10, HH:20, HH:30, HH:40 (MeteoSwiss, 2013).



Chapter 3. Study area, Dataset description, Tools and Data pre-processing 22

[a]

Figure 3.2: The illustration of ambient temperature on 2007–09–29

[b]

Figure 3.3: The illustration of ambient temperature on 2007–09–30

Figure 3.4: Illustration of ambient temperature on 2007–09–30 and 2007–09–29
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3.3.2 MeteoSwiss forecasts

Forecast data are provided by MeteoSwiss (2013) that are hourly values 72 hours in advance.

Model that is explored in section 2.2.2 resulted the hourly temperature forecasts. COSMO–7

forecast data up to 72 hours for the Grand-St.-Bernard and the four surrounding grid points

(Figure 3.5) are retrieved from the operational 7km × 7km versions of the COSMO at the study

area. The grid point M that is presented in Figure 3.5 is the most representative grid point

for a certain weather station Mo by looking to distance and height difference between model

and real orography as explained in detailed in Section 2.2.2.1. COSMO–2 could be led to more

local forecasts but due to this fact that COSMO–2 was not operational in 2007 we have to use

COSMO–7 forecasts. MeteoSwiss forecasts (MFs) are provided with respect to the UTC time

zone. Forecasts are instantaneous values but the model time step is 60s only and the real time

resolution thus might be about five minutes.

Figure 3.5: Locations of applied datasets in the research, where M, M1, M2, M3 and M4
present the MeteoSwiss forecast grids and MO illustrates the MeteoSwiss observation station
and two black clusters show the WSN small and big clusters in geographic coordinate system

3.4 Labeled dataset

In the absence of reference dataset, evaluation of outlier and event detection techniques is

challenging. To assess the detection accuracy, labeled data from Zhang (2010) is used. The
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dataset was provided by using three techniques: running average-based, Mahalanobis distance-

based and density based. Moreover, aforementioned techniques resulted outliers for spatial,

temporal and spatial-temporal domains on 2007–09–30 from 06:00 ∼ 14:00 for nodes of the

small cluster.

• Zhang (2010) performed the running average-based labeling technique by using a smooth-

ing window and calculating the mean value for a fixed sample size. Subsequently, outliers

are defined by taking the absolute value of the difference between the measurements and

the values calculated by applying the running average filter. So, outliers are those ob-

servations that the absolute value of the difference between the measurements and the

calculated values exceeds the certain threshold.

• Mahalanobis distance-based labeling technique was utilized by Zhang (2010) to identify

outliers based on the measure of full dimensional Mahalanobis distance between a point

and its nearest neighbor in the dataset. Hence, outliers are those observations whose

Mahalanobis distance is larger than a predefined threshold.

• Zhang (2010) applied the density-based labeling technique to identify outliers by using

diverse clusters in the dataset. Consequently, outliers are those observations if they locate

in an area of the grid whose density is lower than a fixed percentage of the density values.

3.5 Tools

In order to accomplish the implementations in this research, two software are applied, simul-

taneously. In order to manage the WSN data PostgreSQL database system is applied which is

a powerful, open source object-relational database system (PostgreSQL, 2013). While most of

statistical analysis in this study are performed in R software so, RPostgreSQL (Conway et al.,

2007) package of R is used in order to connect database to R. RPostgreSQL package provides

a database interface compliant driver for R to access PostgreSQL database systems. In other

words, all the commands and stored data of PostgreSQL can be accessed easily in R by using

RPostgreSQL package.

In R software in order to perform analysis and presentation number of packages are applied.

In order to perform spatial and geostatistical modeling, prediction and variogram map plotting

gstat package is applied (Pebesma, 2004). Classes and methods for spatial data are provided by

sp package (Pebesma and Bivand, 2005). In order to perform statistical analysis including tradi-

tional, likelihood-based and Bayesian methods geoR package is applied (Ribeiro Jr and Diggle,
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2001). RPostgreSQL package is a tool for interaction of PostgreSQL and R software (Conway

et al., 2007). The ggplot2 package is applied as an implementation of the grammar of graphics

in R (Wickham, 2009). The scales package provides methods for automatically determining

breaks and labels for axes and legends (Wickham, 2012). The reshape2 package provides flex-

ibly restructure and aggregate data using just two functions: melt and cast (Wickham, 2007).

Geographical maps are drawn by maps package (Brownrigg , 2012). The package of ggmap is

applied for spatial visualization with Google Maps and OpenStreetMap (Kahle and Wickham,

2012). In order to converts latitude-longitude into projected coordinates mapproj package is

utilized (McIlroy, 2003).

3.6 Data pre-processing

Data cleaning usually constitutes the initial step in wireless sensor networks (WSNs). In WSNs

because of inexpensive sensors and harsh deployment, data need to be refined. Besides, WSN

data are considered as streaming data since it is the emergence of performing data management

because of large volume of data. Certain properties of a WSN dataset, such as dead band error

and gross error can corrupt the analysis. Thus, cleaning the data is essential. In this study

with respect to the nature of the WSNs data, plausible value check and minimum variability

are applied in order to eliminate gross errors and dead band caused errors.

3.6.1 Database management system

To manage the WSN data, PostgreSQL database system is applied which is a powerful, open

source object-relational database system (PostgreSQL, 2013). While most of statistical analysis

in this study are performed in R software so, the RPostgreSQL (Conway et al., 2007) R pack-

age was used in order to connect database to R. RPostgreSQL provides a database interface

compliant driver for R. In other words, all the commands and stored data of PostgreSQL can

be accessed easily in R using RPostgreSQL.

3.6.2 Data cleaning: Gross error identification

Plausible value check (Zahumenskỳ and SHMI, 2004) is used to identify gross errors for climatic

data based on world meteorological organization (WMO) guidelines. Maximum and minimum

limitations of observation are checked by verifying if the observed values are within the ac-

ceptable range limits. Acceptable range limits are defined based on sensing capability range of
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the Grand − St. − Bernard sensors which are presented in Table 3.1 and with respect to the

geographic location and season. Subsequently, those observations that are exceeded the limit

are detected as faults and are not used for further analysis.

For this research gross errors are defined based on the historical data range of temperature in the

Swiss Alps for the months of September and October of the last 10 years as those observations

that lay outside the minimum of −5◦C and maximum of 25◦C (MeteoSwiss, 2013) and those

observations that exceed the aforementioned threshold will not be used for further analysis

(Figure 3.6). Based on the acceptable range number of observations are detected as fault that

are presented in Table 3.2.

Figure 3.6: An example of performing the plausible value check for ambient temperature,
they are laid outside the (-5◦C,25◦C) threshold (a) before performing the plausible value check

(b) after performing the plausible value check

Table 3.2: Gross errors found using plausible value check for ambient temperature of nodes
[25–28–29–31–32]

Type Node name

25 28 29 31 32

A 20276 20302 20267 20263 20257
B 1376 1321 83 1329 1502
C 0 0 0 0 0

A: Total number of observations
B: Number of faults for the whole data set
C: Number of faults on 2007–09–29 and 2007–09–30

3.6.3 Data cleaning: Identification of dead band error

A time consistency check (also called plausible rate of change) is used to verify the temporal

consistency of instantaneous data among current and preceding values (Zahumenskỳ and SHMI,

2004). If the difference between the current value and previous observation exceed a specific

limit then the current value labeled as outlier. In order to identify dead band error, the min-

imum variability check was performed. To perform the minimum variability check, a cluster
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of successive observations are checked if they do not vary over the pre-defined time period by

more than a specific limit, all the corresponding observations are consider as fault. To define

a threshold for minimum variability check elements such as accuracy of the sensor, geographic

location and season are considered.

To define a threshold for minimum variability check elements such as accuracy of the sensor

(Table 3.1) , geographic location and season are considered. Subsequently, for ambient temper-

ature based on WMO guidelines (Zahumenskỳ and SHMI, 2004), minimum variability threshold

is defined ±0.5◦ to cover a period of 60 minutes. Table 3.3 illustrates the quantity of the faults

that are occurred because of dead band.

Table 3.3: Dead band caused errors found using plausible rate of change for ambient temper-
ature on nodes [25–28–29–31–32]

Type Node name

25 28 29 31 32

A 20276 20302 20267 20263 20257
B 214 65 4316 335 153
C 0 0 0 0 0

A: Total number of observations
B: Number of faults for the whole data set
C: Number of faults on 2007–09–29 and 2007–09–30

Consequently, six number of nodes on 2007–09–29 and 2007–09–30 are ignored from further

analysis. Nodes 6, 9, 11, 15, 18 and 20 are not utilized in process while, they include considerable

number of missed values, gross errors and dead band errors.





Chapter 4

Methodology

The methodologies of the research for outlier and event detection are illustrated by Figure 4.1.

4.1 Temporal outlier detection

To perform a successful temporal modeling long-term records should contain seasonal and diur-

nal effects. Seasonality and diurnally effects are necessary as the predicted variables illustrate

seasonal and daily effects, specifically in outlier and event detection domains. In this research,

the main focus is on ambient temperature as a climatic variable. Note that the dataset, col-

lected over a 45 day period, includes considerable numbers of missing data, gross errors and

dead band caused errors is presented in Table 3.2 and Table 3.3. Moreover, the problem of in-

sufficient historical data also exists in the temporary sensor deployments, whose durations can

range from a single week to several months. Subsequently, the amount of data decreased due

to the existence of missing values, gross errors and dead band errors, which have been removed

from the dataset. However, replacing the removed and missing values is beyond the scope of

this research. Furthermore, the dataset does not include seasonal effects for accurate prediction

of upcoming environmental variable.

While temporal correlation models typically produce accurate detections (Zhang et al., 2012),

given their high detection and low communication rates, they cannot be utilized in this study,

given the aforementioned restrain. Consequently, this research explores the use of information

obtained from climate stations which is widely available and can be accessed from precise sensors

in the presence of large amounts of historical data. Climatic weather stations usually include

two general types of products, observations and forecasts. Hence, this research examines their

29
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Figure 4.1: The flow chart of applied methods for outlier and event detection

applicability in the WSN context. Real observations and forecasts were provided by MeteoSwiss

(2013) and are applied in this research. Thus, MeteoSwiss observations and forecasts as climatic

products, are considered the results of a temporal correlation model, used to identify tempo-

ral outliers. Consequently, temporal outliers are those observations of WSN that differ from

MeteoSwiss observations or forecasts.

WSNs may use either climatic forecast values in advance to identify temporal outliers or uti-

lize observation values of climatic stations to build temporal models. WSNs usually deployed

in harsh, uncontrolled or even hostile environments (Ma et al., 2013) with complex topogra-

phy, thus it is not realistic to expect similar values for observations or forecasts of climatic
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stations with respect to the wireless sensor measurements. The aforementioned argumentation

consequently justify the comparison of patterns rather than absolute values. As presented by

Table 4.2, WSNs may not have similar values in comparison with climatic observations and

forecasts but regardless, one may expect to observe similar patterns to some extent.

[a] [b]

[c] [d]

[e] [f]

Figure 4.2: The patterns of wireless sensor network against the MeteoSwiss forecast for am-
bient temperature (◦C) on 2007–09–29

4.1.1 Temporal outlier detection using patterns

In order to identify temporal outliers, MeteoSwiss forecasts (MFs), provided by MeteoSwiss

(2013), and WSN measurements are utilized to obtain temporal patterns and differences of
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the patterns, present outliers. Additionally, the suitability of MeteoSwiss observations (MOs)

for building the initial temporal model is evaluated. In other words, temporal correlation be-

tween consecutive values of MFs, MOs and WSN measurements are utilized to expose temporal

patterns in order to identify temporal outliers.

Hourly forecasts up to 72 hours in advance, are provided by the numerical weather prediction

model, COSMO–7 (Baldauf et al., 2011). COSMO models are described in Section 2.2.2. More-

over, the near surface temperatures are height-adjusted to the height of the study area (with a

constant lapse rate), while the model level values are not. In addition due to local clouds [fog]

and wind regimes in the complex topography cannot be resolved on a high spatial resolution by

COSMO–7 model, while sensors of small cluster all within a grid mesh of 2×2 km . In order to

overcome a problem of height difference between the meteorological station and WSNs stations,

forecasts for four COSMO grid points around the study area were retrieved. Subsequently, the

nearest grid point forecast to the WSN was utilized.

4.1.1.1 Pattern formation

As discussed, absolute values cannot address the outlier detection in this study and patterns

are thus compared to identify outliers. Behavior of the temperature in a specific time interval

is called a pattern. In this study, patterns are obtained by conjoining the values of temperature

in consecutive time slices. In order to, form patterns WSN measurements and MeteoSwiss

products should be in a similar time scales. While the WSN data were observed with two

minutes frequency, MFs are hourly instantaneous values and MOs are hourly mean values.

MeteoSwiss forecasts are derived from instantaneous values at the full hour HH:00 and forecast

model time step is 60s only and thus the real time resolution is about five minutes (MeteoSwiss,

2013). Subsequently, every hour of instantaneous WSN measurements are aggregated with

observations of five minutes before and after and will be referred to as “instantaneous” values

in the text.

MeteoSwiss observations are hourly mean values in 10-minute intervals for an hour HH = (HH-

1):41 - HH:40. Hourly means were obtained by calculating the mean values of the following six

time instants: (HH-1):50, HH:00, HH:10, HH:20, HH:30, HH:40.

WSNs measurements are aggregated by the mean function to obtain a consistent temporal

resolution with respect to the MFs and MOs. Moreover, MFs and MOs were obtained by

different approaches and separate WSN subsets are assigned to each of them. Thus, four types
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of patterns exist for MFs, MOs and WSN (WSN measurements aggregated based on MF and

MO).

4.1.1.2 Similarity assessment

Similarity assessment in this study was performed by calculating the slopes. For the similarity

assessment slopes of WSNs measurements and MFs are compared as well as slopes of WSN and

MOs. Slopes for WSNs measurements are calculated from differences between a current mean

value and previous mean value within the same time period. On the other hand, slopes for MFs

are computed by subtracting two successive hourly forecasts within similar time periods, since

slopes of MOs are obtained by calculating the differences of two hourly mean sequences. Using

the mean aggregation function to provide the similar temporal resolution in WSN yielded bene-

fits such as reducing the effects of infrequent faults and reducing the effect of small fluctuations.

Comparing patterns of WSN and MFs can also determine long term faults in WSNs. Moreover,

using slopes to identify outliers ignores effects of vertical shifts, global scaling and shrinking

(Suntinger et al., 2010) due to the complex topography and harsh condition of the study area.

4.1.1.3 Temporal outlier detection

Temporal outliers are those observations of WSN on a specific time slice where patterns of WSN

and MeteoSwiss products show differences. Patterns are considered similar when the slopes of

the MeteoSwiss products are placed within the tolerance of the WSN slope. In other words, if

the slope of the MeteoSwiss products at specific hour lay outside the WSN slope tolerance, a

subsequent relevant WSN observation of that hour is labeled as an outlier, otherwise labeled as

normal. The tolerance is defined based on the accuracy of the wireless sensor device, presented

in Table 3.1. Based on the accuracy of the device, the maximum and minimum range for each

observation can be estimated. Thus, the tolerances are defined based on possible minimum and

maximum variation for each WSN sequence.

4.2 Spatial outlier detection

In section 2.2.1 spatial modeling by using geostatistics is described. Geostatistical data analysis

is used to model spatial correlation. This includes calculating the sample variogram to obtain

spatial correlation, fitting a model to the sample variogram and using the model to make

predictions at unsampled locations (Webster and Oliver, 2007).
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4.2.1 Spatial outlier detection by using kriging

Spatial outliers are identified which uses the contextual information belonging to neighboring

nodes. In order to identify spatial outliers, sample variograms should be calculated. Variogram

modeling generally requires a sample size of at least 100 (Webster and Oliver, 2007). In this

study WSN contains 23 nodes where six of nodes are faulty and cannot be used in variogram

modeling. In other words, spatial variation of sensors data cannot be presented by 17 nodes since

less than 50 locations are liable to sudden unpredictable change (Webster and Oliver, 2007).

Hence, spatial variability analysis is performed using multiple measurements in time to estimate

the variogram (Sterk and Stein, 1997). In other words, in order to overcome the aforementioned

constraint the method of Sterk and Stein (1997) is adopted under the assumption of a similar

spatial correlation over time. This implies that the spatial variability of WSN measurements

during different time periods is characteristic of the same variogram model structure. Subse-

quently, the Equation 2.1 for tha variogram is modified to Equation 4.1. A pair of observations

with same separation vector h in different time intervals are grouped into similar classes.

γ̂ (h) =
1

2n(h)

m∑

j=1

nj(h)∑

i=1

(y (i, j)− y (i+ h, j))2 (4.1)

where: m is the number of different time periods, h is the lag distance and nj(h) is the number

of point pairs for each h at time period j. Spatial outliers are those observations that differed

significantly from the predicted value.

Kriging applies a linear combination of observations to predict unbiased values in unsampled

locations with minimum variance error. Observations and variogram model should be used to

perform predictions. In order to identify spatial outliers, WSN observations and predictions

should be compared and outliers are those observations that differ significantly. Spatial outliers

are identified based on the confidence interval of the predictions by using the standard error of

the predicted values and the coefficient for a given confidence level.

4.3 Event detection

In this research events are identified based on the correlation based neighbor-voting approach.

When a sensor node identifies outliers it requires geographically correlated neighbors to help

determine whether the outlier is a “fault” or an “event”. Outliers that represent a change in

state of environment are spatially correlated for correlated nodes. Events are defined as those
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observations where, temporal outliers occurred on at least half of the correlated sensor nodes,

otherwise they are labeled as faults. Moreover, based on data exploration and pre-processing

results, it is assumed that the probability of all sensor nodes being faulty simultaneously is very

low. On the other hand, before voting for neighbor’s outliers, the sensor node should be aware

of the correlation rate of their adjacent nodes, as nodes only have interaction with adjacent

correlated nodes.

4.4 Re–labeling

In Section 3.4 the methodologies underlying the labeling of the data are described. While that

labeled data were derived from two-minute periods, the current methodology requires labeled

data in hourly time resolution. In order to have hourly labeled data, re-labeling is performed

based on the existing labeled dataset.

Re-labeling is accomplished with respect to the hourly instantaneous and hourly mean periods,

described in Section 3.3. Both hourly instantaneous and hourly mean periods are re-labeled to

extract the majority of the labels in the corresponding time periods, and are called “majority”

approach in the text. Moreover, hourly instantaneous and hourly mean periods are used to

re-label the data based on the time periods of hourly mean and hourly instantaneous and if

any outliers exist in the related time period are classified within “minimum” approach, as it is

referred in the text.

4.5 Evaluation in terms of accuracy and energy

In the context of WSNs, energy efficiency and accuracy are critical for performance evaluation

given the technology requirements.

4.5.1 Accuracy of detected outliers

The accuracy of the outliers can be assessed with respect to the reference data. Assessments

can be performed based on detection rate (DR) and false positive rate (FPR). DR presents the

percentage of outliers that are detected correctly, and calculated using Equation 4.2, where OP

is the number of correctly identified outliers and TP is a total number of detected outliers.
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DRoutlier = (OP ÷ TP )× 100 (4.2)

On the other hand, FPR represents the percentage of non-outlier records that are detected as

outliers and is defined by Equation 4.3, where OF is number of non-outlier records that identified

as outliers and TN is total number of normal data.

FPR = (OF ÷ TN)× 100 (4.3)

4.5.2 Accuracy of detected events

The accuracy of the detected events can be evaluated with respect to the detection rate (DRevent)

and false positive alarm (FPA). DR event presents the percentage of correctly detected events

is described by Equation 4.4, where EP is the number of correctly identified events and TE is

the total number of events.

DRevent = (EP ÷ TE)× 100 (4.4)

FPA presents the percentage of faults that are detected as events and is calculated by equa-

tion 4.5, where EF is number of faults that are incorrectly detected as events and TF is total

number of faults.

FPA = (EF ÷ TF )× 100 (4.5)

4.5.3 Evaluating the spatial model

Cross-validation is known as the simplest and most widely used technique for estimating the

errors of predictions (Webster and Oliver, 2007). Main metrics of cross-validation are, mean

prediction error (MPE), which shows the quality of predictions in terms of bias and root mean

square error (RMSE), for a model is a measure of accuracy.
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4.5.4 Evaluation of complexity and energy efficiency

The complexity of applied method for event detection is assessed in terms of communication

overhead, computation and memory complexity. Additionally, consumed energy for communi-

cation is investigated while, the main source of energy consumption in WSN is communication

overhead.

4.6 Event characterizing

In order to retrieve detailed information about events and faults, the detected events’ time

scale is degraded. Events are investigated in finer resolution while detected in the hourly scale.

Thus, in the presence of WSN measurements variance a tolerance is defined for labeling the

events in degraded resolution. Consequently, based on two-minute sampling frequency of WSN

data, nodes are re-labeled as “fault” or “event”. Variance is calculated for the observations

that are involved in the hour of occurred event. Subsequently, tolerance is defined based on the

variance of the relevant observations and those WSN measurements that lie within the tolerance

of “hourly value±variance”, are labeled as event or otherwise as fault. In other words, by using

the aforementioned procedure, corresponding observations of a specific time interval (i.e. a full

instantaneous hour labeled as event) are re-labeled as event or fault.
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Results

5.1 Temporal outlier detection using patterns

This section presents result of temporal outlier detection in the presence of MeteoSwiss Forecasts

(MFs), MeteoSwiss observations (MOs) and wireless sensor networks (WSNs) patterns. Tem-

poral correlation between consecutive values of MFs, MOs and WSN measurements are utilized

to establish temporal patterns in order to identify temporal outliers. Subsequently, similarity

assessment of patterns is performed by determining differences of the patterns of wireless sensor

nodes, with respect to the MFs and MOs. Because the time scales of the MOs and MFs are

different, the WSN measurements should be aggregated to obtain a consistent time scale. The

method of temporal outlier detection is described in section 4.1.1.

To make the WSN measurements consistent in term of time resolution WSN data on 2007–

09–30 are aggregated with respect to the MeteoSwiss forecasts and MeteoSwiss observation

specifications. MeteoSwiss forecasts are derived from instantaneous values at the full hour,

while the forecast model time step is 60s only and thus the real time resolution is about five

minutes. Consequently, every hour of instantaneous WSN measurements are aggregated with

observations of five minutes before and after and are referred to as “WSN hourly instantaneous

values” in the text and these values are presented by Table 5.1. Table 5.2 presents the results of

the aggregated WSN measurements, with respect to the specification of MeteoSwiss observations

that will be called “WSN hourly mean values” in the text. Additionally, hourly values for

MeteoSwiss observations and forecasts for 2007–09–30 are shown in Table 5.3.

Patterns of hourly WSN values are compared against the MFs and MOs to identify temporal

outliers. Figure 5.1 presents the patterns of instantaneous hourly values of WSN against the

39
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Table 5.1: The hourly instantaneous values of WSN tempreture observations on 2007–09–30
with respect to the specifications of MeteoSwiss forecasts (◦C)

Date | Time WSN25 WSN28 WSN29 WSN31 WSN32

29/09/2007 23:00 0.28 0.30 0.81 0.42 0.48

30/09/2007 00:00 0.21 0.31 0.53 0.36 0.26

30/09/2007 01:00 -0.26 -0.04 0.40 -0.20 -0.15

30/09/2007 02:00 -0.48 -0.43 0.04 -0.54 -0.32

30/09/2007 03:00 -0.71 -0.51 0.26 -0.70 -0.57

30/09/2007 04:00 -0.71 -0.65 0.27 -0.77 -0.53

30/09/2007 05:00 -0.50 -0.47 0.86 -0.59 -0.32

30/09/2007 06:00 -0.22 -0.20 0.58 -0.34 -0.07

30/09/2007 07:00 0.13 0.20 1.21 0.10 0.26

30/09/2007 08:00 0.57 0.49 1.34 0.28 0.59

30/09/2007 09:00 1.04 1.27 1.75 0.98 1.61

30/09/2007 10:00 1.09 1.56 1.58 1.34 1.27

30/09/2007 11:00 1.82 2.20 2.14 2.19 2.09

30/09/2007 12:00 4.57 4.34 4.15 4.78 2.96

30/09/2007 13:00 3.81 5.86 4.23 5.60 4.42

30/09/2007 14:00 7.40 5.34 4.89 7.46 6.67

30/09/2007 15:00 5.57 6.37 5.07 5.86 5.67

30/09/2007 16:00 5.40 5.68 5.98 4.83 5.20

30/09/2007 17:00 6.29 5.20 6.12 5.68 6.37

30/09/2007 18:00 4.97 4.58 5.23 4.48 4.78

30/09/2007 19:00 5.18 5.74 6.25 4.58 5.79

30/09/2007 20:00 2.38 2.63 3.47 2.75 2.77

30/09/2007 21:00 4.71 4.57 5.04 3.79 5.99

30/09/2007 22:00 5.37 5.47 5.61 4.70 5.29

30/09/2007 23:00 4.77 4.92 5.56 4.25 5.06

WSN25: WSN Node 25
WSN28: WSN Node 28
WSN29: WSN Node 29
WSN31: WSN Node 31
WSN32: WSN Node 32

MeteoSwiss forecasts on 2007–09–30. Figure 5.2 illustrates the patterns of hourly mean WSN

values against the MeteoSwiss observations on 2007–09–30.

Temporal outliers are identified by analyzing the similarities in the slopes. The list of slopes that

are calculated from WSN hourly instantaneous values are presented in Table 5.4 for 2007–09–30

and Table 5.5 presents slopes that are obtained from WSN hourly mean values on 2007–09–30.

Similarity assessment is applied on the slope values of WSN and MeteoSwiss products for

corresponding time periods. Those observations of WSN are labeled as outliers in the case

that the slope of the MeteoSwiss products do not place within the tolerance of the WSN slope.

If the slope of MeteoSwiss products at specific hour lay outside the tolerance of the wireless

sensor slopes, relevant WSN observations of that hour are considered outliers or otherwise

labeled as normal. In this study ±0.6 is selected as tolerance since the accuracy of the ambient

temperature sensor is ±0.3.

A report of the detected outliers, with respect to the MeteoSwiss forecasts and WSN hourly

instantaneous values on 2007–09–30 are revealed in Table 5.6. Table 5.7 presents the identified
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Figure 5.1: The patterns of instantaneous temperature values (◦C) of wireless sensor networks
against the MeteoSwiss forecasts on 2007–09–30.
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Table 5.2: The hourly mean values of WSN measurements on 2007–09–30 with respect to the
specification of MeteoSwiss observations (◦C)

Date | Time WSN25 WSN28 WSN29 WSN31 WSN32

29/09/2007 23:00 0.26 0.35 0.69 0.38 0.38

30/09/2007 00:00 0.02 0.12 0.37 0.10 0.09

30/09/2007 01:00 -0.35 -0.21 0.14 -0.35 -0.20

30/09/2007 02:00 -0.42 -0.38 0.28 -0.49 -0.25

30/09/2007 03:00 -0.73 -0.62 0.25 -0.77 -0.57

30/09/2007 04:00 -0.65 -0.59 0.34 -0.72 -0.45

30/09/2007 05:00 -0.40 -0.34 0.59 -0.47 -0.21

30/09/2007 06:00 -0.09 -0.03 0.84 -0.17 0.10

30/09/2007 07:00 0.19 0.21 1.36 0.09 0.33

30/09/2007 08:00 0.64 0.74 1.45 0.49 0.78

30/09/2007 09:00 1.06 1.37 1.61 1.09 1.31

30/09/2007 10:00 1.27 1.85 1.91 1.44 1.35

30/09/2007 11:00 2.28 2.63 2.52 2.57 2.13

30/09/2007 12:00 4.17 4.19 4.01 4.21 3.44

30/09/2007 13:00 6.34 5.69 5.49 7.07 5.40

30/09/2007 14:00 6.57 5.48 5.20 6.14 5.60

30/09/2007 15:00 6.75 6.28 5.66 6.03 5.51

30/09/2007 16:00 5.83 5.60 6.07 5.45 5.92

30/09/2007 17:00 6.37 5.00 5.74 5.42 5.88

30/09/2007 18:00 4.60 4.54 5.30 4.58 4.97

30/09/2007 19:00 4.98 5.44 6.10 4.50 5.70

30/09/2007 20:00 2.66 2.49 4.30 2.44 2.69

30/09/2007 21:00 4.91 5.10 5.57 4.52 5.39

30/09/2007 22:00 5.05 5.44 5.88 4.58 5.22

30/09/2007 23:00 4.57 4.98 5.52 4.05 4.87

WSN25: WSN Node 25
WSN28: WSN Node 28
WSN29: WSN Node 29
WSN31: WSN Node 31
WSN32: WSN Node 32

temporal outliers, with respect to the MeteoSwiss observations and WSN hourly mean values on

2007–09–30. Likewise, Figure 5.3 shows the result of temporal outliers concerning the MF and

WSN hourly instantaneous values on 2007–09–30. Figure 5.4 presents the result of temporal

outliers with respect to the MeteoSwiss observations and WSN hourly mean values for small

cluster of nodes on 2007–09–30.
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Table 5.3: The hourly values of MeteoSwiss forecasts and MeteoSwiss observations on 2007–
09–30 (◦C)

Hour MeteoSwiss Forecasts MeteoSwiss Observations

29/09/2007 23:00 -1.05 -0.60

30/09/2007 00:00 -1.05 -0.60

30/09/2007 01:00 -1.05 -1.20

30/09/2007 02:00 -1.05 -1.00

30/09/2007 03:00 -0.95 -0.80

30/09/2007 04:00 -1.05 -0.40

30/09/2007 05:00 -0.95 -0.20

30/09/2007 06:00 -0.75 0.10

30/09/2007 07:00 -0.45 0.10

30/09/2007 08:00 -0.25 0.70

30/09/2007 09:00 1.55 1.00

30/09/2007 10:00 3.15 1.40

30/09/2007 11:00 7.85 2.30

30/09/2007 12:00 8.25 3.40

30/09/2007 13:00 7.85 3.50

30/09/2007 14:00 7.25 3.50

30/09/2007 15:00 6.95 4.20

30/09/2007 16:00 5.35 4.50

30/09/2007 17:00 2.95 4.80

30/09/2007 18:00 0.85 2.90

30/09/2007 19:00 0.85 4.20

30/09/2007 20:00 1.15 4.30

30/09/2007 21:00 1.35 3.80

30/09/2007 22:00 1.35 4.10

30/09/2007 23:00 1.45 4.00
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Figure 5.2: The patterns of hourly mean temperature values (◦C) of wireless sensor networks
against the MeteoSwiss observation on 2007–09–30.
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Table 5.4: The slopes calculated from hourly instantaneous values of WSN measurements for
2007–09–30

Date | Time WSN25 WSN28 WSN29 WSN31 WSN32

30/09/2007 0:00 -0.072 0.016 -0.278 -0.062 -0.214

30/09/2007 1:00 -0.472 -0.354 -0.132 -0.554 -0.412

30/09/2007 2:00 -0.216 -0.392 -0.358 -0.342 -0.174

30/09/2007 3:00 -0.228 -0.076 0.218 -0.158 -0.244

30/09/2007 4:00 -0.006 -0.136 0.008 -0.072 0.034

30/09/2007 5:00 0.216 0.172 0.594 0.180 0.208

30/09/2007 6:00 0.282 0.274 -0.276 0.246 0.252

30/09/2007 7:00 0.342 0.402 0.626 0.440 0.334

30/09/2007 8:00 0.448 0.288 0.128 0.184 0.330

30/09/2007 9:00 0.468 0.776 0.410 0.694 1.018

30/09/2007 10:00 0.044 0.294 -0.172 0.368 -0.342

30/09/2007 11:00 0.734 0.638 0.560 0.844 0.824

30/09/2007 12:00 2.750 2.140 2.016 2.590 0.864

30/09/2007 13:00 -0.762 1.518 0.074 0.822 1.462

30/09/2007 14:00 3.592 -0.520 0.666 1.858 2.250

30/09/2007 15:00 -1.828 1.036 0.174 -1.598 -0.998

30/09/2007 16:00 -0.170 -0.690 0.912 -1.028 -0.472

30/09/2007 17:00 0.886 -0.482 0.144 0.844 1.176

30/09/2007 18:00 -1.322 -0.620 -0.894 -1.192 -1.592

30/09/2007 19:00 0.214 1.162 1.026 0.096 1.012

30/09/2007 20:00 -2.800 -3.112 -2.788 -1.830 -3.020

30/09/2007 21:00 2.330 1.942 1.572 1.040 3.218

30/09/2007 22:00 0.656 0.898 0.574 0.906 -0.698

30/09/2007 23:00 -0.600 -0.550 -0.050 -0.450 -0.238

WSN25: WSN Node 25
WSN28: WSN Node 28
WSN29: WSN Node 29
WSN31: WSN Node 31
WSN32: WSN Node 32
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Table 5.5: The slopes obtained from hourly mean values of WSN measurements, MeteoSwiss
forecasts and MeteoSwiss observations on 2007–09–30

Date | Time WSN25 WSN28 WSN29 WSN31 WSN32 MO MF

30/09/2007 00:00 -0.25 -0.23 -0.33 -0.28 -0.29 0.00 0.00

30/09/2007 01:00 -0.37 -0.33 -0.22 -0.45 -0.29 -0.60 0.00

30/09/2007 02:00 -0.07 -0.17 0.14 -0.13 -0.05 0.20 0.00

30/09/2007 03:00 -0.31 -0.25 -0.03 -0.28 -0.32 0.20 0.10

30/09/2007 04:00 0.08 0.03 0.09 0.05 0.11 0.40 -0.10

30/09/2007 05:00 0.25 0.25 0.25 0.25 0.24 0.20 0.10

30/09/2007 06:00 0.31 0.32 0.25 0.30 0.31 0.30 0.20

30/09/2007 07:00 0.28 0.24 0.52 0.26 0.23 0.00 0.30

30/09/2007 08:00 0.45 0.53 0.09 0.40 0.46 0.60 0.20

30/09/2007 09:00 0.42 0.63 0.16 0.59 0.53 0.30 1.80

30/09/2007 10:00 0.21 0.49 0.30 0.35 0.04 0.40 1.60

30/09/2007 11:00 1.01 0.78 0.61 1.13 0.78 0.90 4.70

30/09/2007 12:00 1.89 1.56 1.49 1.64 1.31 1.10 0.40

30/09/2007 13:00 2.17 1.50 1.48 2.86 1.96 0.10 -0.40

30/09/2007 14:00 0.23 -0.21 -0.30 -0.93 0.20 0.00 -0.60

30/09/2007 15:00 0.18 0.80 0.47 -0.11 -0.09 0.70 -0.30

30/09/2007 16:00 -0.92 -0.67 0.41 -0.59 0.41 0.30 -1.60

30/09/2007 17:00 0.54 -0.60 -0.34 -0.02 -0.04 0.30 -2.40

30/09/2007 18:00 -1.76 -0.47 -0.44 -0.84 -0.90 -1.90 -2.10

30/09/2007 19:00 0.38 0.90 0.81 -0.08 0.73 1.30 0.00

30/09/2007 20:00 -2.32 -2.95 -1.81 -2.06 -3.01 0.10 0.30

30/09/2007 21:00 2.25 2.61 1.27 2.08 2.70 -0.50 0.20

30/09/2007 22:00 0.14 0.34 0.31 0.06 -0.18 0.30 0.00

30/09/2007 23:00 -0.48 -0.46 -0.36 -0.53 -0.35 -0.10 0.10

WSN25: WSN Node 25
WSN28: WSN Node 28
WSN29: WSN Node 29
WSN31: WSN Node 31
WSN32: WSN Node 32
MO: MeteoSwiss observation
MF: MeteoSwiss forecast
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Table 5.6: The temporal outliers presentation for hourly instantaneous values that are detected
with respect to the MeteoSwiss forecasts on 2007–09–30 where, � symbol presents normal

measurements

Node ID

Date — Time 25 28 29 31 32

30/09/2007 00:00 � � � � �
30/09/2007 01:00 � � � � �
30/09/2007 02:00 � � � � �
30/09/2007 03:00 � � � � �
30/09/2007 04:00 � � � � �
30/09/2007 05:00 � � � � �
30/09/2007 06:00 � � � � �
30/09/2007 07:00 � � � � �
30/09/2007 08:00 � � � � �
30/09/2007 09:00 Outlier Outlier Outlier Outlier Outlier
30/09/2007 10:00 Outlier Outlier Outlier Outlier Outlier
30/09/2007 11:00 Outlier Outlier Outlier Outlier Outlier
30/09/2007 12:00 Outlier Outlier Outlier Outlier �
30/09/2007 13:00 � Outlier � Outlier Outlier
30/09/2007 14:00 Outlier � Outlier Outlier Outlier
30/09/2007 15:00 Outlier Outlier � Outlier Outlier
30/09/2007 16:00 Outlier Outlier Outlier � Outlier
30/09/2007 17:00 Outlier Outlier Outlier Outlier Outlier
30/09/2007 18:00 Outlier Outlier Outlier Outlier �
30/09/2007 19:00 � Outlier Outlier � Outlier
30/09/2007 20:00 Outlier Outlier Outlier Outlier Outlier
30/09/2007 21:00 Outlier Outlier Outlier Outlier Outlier
30/09/2007 22:00 Outlier Outlier � Outlier Outlier
30/09/2007 23:00 Outlier Outlier � � �

Table 5.7: The temporal outliers of hourly means values that are detected with respect to the
MeteoSwiss observation on 2007–09–30, where � presents normal measurements

Node ID

Date — Time 25 28 29 31 32

30/09/2007 00:00 � � � � �
30/09/2007 01:00 � � � � �
30/09/2007 02:00 � � � � �
30/09/2007 03:00 � � � � �
30/09/2007 04:00 � � � � �
30/09/2007 05:00 � � � � �
30/09/2007 06:00 � � � � �
30/09/2007 07:00 � � � � �
30/09/2007 08:00 � � � � �
30/09/2007 09:00 � � � � �
30/09/2007 10:00 � � � � �
30/09/2007 11:00 � � � � �
30/09/2007 12:00 Outlier � � � �
30/09/2007 13:00 Outlier Outlier Outlier Outlier Outlier
30/09/2007 14:00 � � � Outlier �
30/09/2007 15:00 � � � Outlier Outlier
30/09/2007 16:00 Outlier Outlier � Outlier �
30/09/2007 17:00 � Outlier Outlier � �
30/09/2007 18:00 � Outlier Outlier Outlier Outlier
30/09/2007 19:00 Outlier � � Outlier �
30/09/2007 20:00 Outlier Outlier Outlier Outlier Outlier
30/09/2007 21:00 Outlier Outlier Outlier Outlier Outlier
30/09/2007 22:00 � � � � �
30/09/2007 23:00 � � � � �
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[a] [b]

[c] [d]

[e]

Figure 5.3: The temporal outlier detection results for WSN hourly instantaneous values with
respect to the MeteoSwiss forecast on 2007–09–30
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[a] [b]

[c] [d]

[e]

Figure 5.4: The temporal outlier detection results for WSN hourly means values with respect
to the MeteoSwiss observations on 2007–09–30
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5.2 Spatial outlier detection using kriging

Spatial outlier detection method uses observations of spatial neighbors for prediction and then

for outlier detection. In this study, the variogram is obtained from Zhang et al. (2012) for the

same dataset. The calibrated sample variogram and the fitted exponential model are shown in

Figure 5.5(a) for 2007–09–30. The properties of the fitted model from Zhang et al. (2012) are

presented in Table 5.8. Moreover, the same variogram is calibrated for predicting the hourly

instantaneous values for the 2007–09–29 data and Figure 5.5(b) illustrates the corresponding

calibrated variogram. Subsequently, predictions can be obtained with respect to the fitted

model where Table 5.9 presents the results of predictions for the small cluster on 2007–09–30

and Table 5.10 shows the prediction results for 2007–09–29.

[a] [b]

Figure 5.5: Illustration of variogram and the exponential fitted model where (a) variogram
for 2007–09–30 and (b) variogram for 2007–09–29

Table 5.8: The properties of the fitted exponential model

Partial Sill Nugget Range

1 0.2 550

Spatial outliers are those observations that lay outside the 95% confidence interval of the pre-

dicted values in the spatial domain. Results show that there are not any spatial outliers for

the nodes of small cluster on 2007–09–30 and node 25 is identified as a spatial outlier on 07:00,

2007–09–29.
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Table 5.9: The instantaneous values of WSN temperature measurements (◦C) and correspon-
dent predictions on 2007–09–30, where “O” presents the instantaneous values of temperature

and “P” presents the predicted values (◦C)

Time — Date Node 25 Node 28 Node 29 Node 31 Node 32
O P O P O P O P O P

30/09/2007 00:00 0.42 0.21 0.49 0.31 0.43 0.53 0.30 0.36 0.44 0.26

30/09/2007 01:00 -0.05 -0.26 0.16 -0.04 0.01 0.40 -0.09 -0.20 -0.05 -0.15

30/09/2007 02:00 -0.30 -0.48 -0.14 -0.43 -0.28 0.04 -0.36 -0.54 -0.26 -0.32

30/09/2007 03:00 -0.45 -0.71 -0.12 -0.51 -0.40 0.26 -0.49 -0.70 -0.43 -0.57

30/09/2007 04:00 -0.45 -0.71 -0.12 -0.65 -0.46 0.27 -0.52 -0.77 -0.42 -0.53

30/09/2007 05:00 -0.24 -0.50 0.26 -0.47 -0.30 0.86 -0.28 -0.59 -0.26 -0.32

30/09/2007 06:00 -0.08 -0.22 0.21 -0.20 -0.10 0.58 -0.08 -0.34 -0.09 -0.07

30/09/2007 07:00 0.32 0.13 0.72 0.20 0.28 1.21 0.31 0.10 0.27 0.26

30/09/2007 08:00 0.55 0.57 0.90 0.49 0.55 1.34 0.65 0.28 0.58 0.59

30/09/2007 09:00 1.25 1.04 1.42 1.27 1.17 1.75 1.28 0.98 1.05 1.61

30/09/2007 10:00 1.35 1.09 1.45 1.56 1.46 1.58 1.32 1.34 1.27 1.27

30/09/2007 11:00 2.16 1.82 2.15 2.20 2.17 2.14 2.02 2.19 2.05 2.09

30/09/2007 12:00 3.91 4.57 4.13 4.34 4.10 4.15 4.13 4.78 4.10 2.96

30/09/2007 13:00 4.86 3.81 4.58 5.86 5.16 4.23 4.54 5.60 4.34 4.42

30/09/2007 14:00 6.58 7.40 5.84 5.34 5.63 4.89 6.31 7.46 6.43 6.67

30/09/2007 15:00 5.61 5.57 5.34 6.37 5.93 5.07 5.74 5.86 5.52 5.67

30/09/2007 16:00 5.03 5.40 5.42 5.68 5.34 5.98 5.49 4.83 5.08 5.20

30/09/2007 17:00 5.92 6.29 5.97 5.20 5.46 6.12 5.95 5.68 5.87 6.37

30/09/2007 18:00 4.75 4.97 4.97 4.58 4.75 5.23 4.86 4.48 4.91 4.78

30/09/2007 19:00 5.27 5.18 5.63 5.74 5.56 6.25 5.59 4.58 5.26 5.79

30/09/2007 20:00 2.86 2.38 3.13 2.63 2.70 3.47 2.66 2.75 2.67 2.77

30/09/2007 21:00 4.69 4.71 4.69 4.57 4.52 5.04 4.93 3.79 4.48 5.99

30/09/2007 22:00 5.01 5.37 5.24 5.47 5.28 5.61 5.40 4.7 5.13 5.29

30/09/2007 23:00 4.72 4.77 5.05 4.92 4.84 5.56 4.96 4.25 4.73 5.06

Table 5.10: The instantaneous values of WSN temperature measurements and correspondent
predictions on 2007–09–29, where “O” presents the instantaneous values of temperature and

“P” presents the predicted values (◦C)

Time — Date Node 25 Node 28 Node 29 Node 31 Node 32
O P O P O P O P O P

30/09/2007 00:00 -1.86 -1.47 -1.79 -1.32 -1.13 -1.68 -1.42 -1.67 -1.61 -1.67

30/09/2007 01:00 -1.73 -1.50 -1.67 -1.07 -0.53 -1.62 -1.53 -1.54 -1.79 -1.63

30/09/2007 02:00 -1.88 -1.46 -1.49 -1.02 -0.37 -1.54 -1.75 -1.46 -1.51 -1.68

30/09/2007 03:00 -1.83 -1.36 -1.32 -0.91 -0.27 -1.42 -1.47 -1.41 -1.60 -1.59

30/09/2007 04:00 -2.09 -1.76 -1.87 -1.37 -0.89 -1.82 -1.79 -1.84 -2.08 -1.88

30/09/2007 05:00 -1.54 -1.50 -1.77 -0.97 -0.32 -1.66 -1.62 -1.46 -1.76 -1.58

30/09/2007 06:00 -1.95 -1.69 -1.94 -1.28 -0.74 -1.83 -1.89 -1.73 -1.85 -1.81

30/09/2007 07:00 -1.73 -1.55 -1.86 -1.02 -0.33 -1.76 -1.70 -1.56 -1.75 -1.70

30/09/2007 08:00 -1.54 -1.55 -1.74 -1.27 -0.92 -1.68 -1.63 -1.51 -1.57 -1.65

30/09/2007 09:00 -0.00 0.51 1.14 0.32 0.05 0.79 1.14 0.30 0.00 0.32

30/09/2007 10:00 1.44 1.63 2.30 1.41 1.18 1.92 1.89 1.64 1.55 1.54

30/09/2007 11:00 2.18 2.37 3.00 2.58 2.89 2.69 2.44 2.47 1.96 2.41

30/09/2007 12:00 3.10 3.03 3.64 3.15 3.24 3.41 3.29 3.15 2.51 3.19

30/09/2007 13:00 4.34 4.04 4.71 4.19 4.12 4.54 4.77 4.14 3.04 4.33

30/09/2007 14:00 4.77 4.74 5.58 4.87 4.88 5.29 5.30 4.83 3.86 4.95

30/09/2007 15:00 5.61 4.95 5.92 5.16 5.17 5.68 5.50 5.30 3.98 5.47

30/09/2007 16:00 5.70 5.46 5.96 5.72 5.85 5.86 5.96 5.57 4.58 5.73

30/09/2007 17:00 5.82 4.73 4.41 4.60 4.13 4.78 5.08 4.91 4.47 5.26

30/09/2007 18:00 2.65 2.51 2.63 2.78 2.96 2.73 2.66 2.57 1.93 2.75

30/09/2007 19:00 1.68 1.58 1.34 1.77 1.88 1.51 1.82 1.52 1.20 1.64

30/09/2007 20:00 0.86 0.78 0.88 1.03 1.29 0.90 0.81 0.85 0.44 0.88

30/09/2007 21:00 0.38 0.43 0.19 0.69 1.01 0.31 0.37 0.41 0.31 0.37

30/09/2007 22:00 0.11 0.32 0.07 0.48 0.71 0.16 0.16 0.25 0.38 0.17

30/09/2007 23:00 0.28 0.49 0.29 0.62 0.80 0.37 0.42 0.40 0.47 0.36
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5.2.1 Evaluation of spatial model

Cross-validation is applied in order to estimate the prediction errors. The mean prediction

error (MPE) and root mean square error (RMSE) values are calculated to investigate the bias

and accuracy of the predictions. For the spatial model, MPE is -0.033 and RMSE is 0.759

on 2007–09–30. Moreover, the cross-validation evaluation of the predictions presents a more

reliable spatial model on 2007–09–29, because the model is calculated based on the 2007–09–29

data where the MPE for relevant day is 0.013 and the RMSE is 0.597. The low MPE revealed

that the model is unbiased and the low RMSE indicates that the model is accurate.

Aforementioned results reveal that assumption of approximately constant spatial structure over

time is correct, while a same variogram results show accurate predictions on 2007–09–29 and

2007–09–30. By assuming the approximately same spatial correlation structure over time, tem-

perature in this study should be irrespective of time scale, wind, precipitation and humidity.

From the results in Section 5.2.1 one can see that by using the variogram averaging method the

same variogram can work properly for different time scales and is further proof of approximately

constant spatial structure over time. In addition, by applying the method of variogram averag-

ing and using pre-calculated variograms the computation rate can be reduced considerably. The

primary, drawback of the spatial correlation based outlier detection is that it cannot identify

temporal outliers that are happened in multiple nodes, simultaneously.
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5.3 Event detection

The method of event detection is explained in Section 4.3. Table 5.11 shows the amount and

direction of correlation between WSN small cluster nodes. Consequently, all the nodes can

participate in event detection.

Table 5.11: The correlation between wireless sensor nodes [25–28–29–31–32]

Node Name

25 28 29 31 32

Node 25 1.00 0.96 0.92 0.97 0.97
Node 28 0.96 1.00 0.93 0.97 0.96
Node 29 0.92 0.93 1.00 0.92 0.94
Node 31 0.97 0.97 0.92 1.00 0.96
Node 32 0.97 0.96 0.94 0.96 1.00

Events on 2007–09–30 are identified with respect to the result of temporal outliers for MeteoSwiss

forecasts (Table 5.6) and MeteoSwiss observations (Table 5.7). Subsequently, correlation based

neighbor-voting is applied to identify events that are presented in Table 5.12 for MeteoSwiss

forecasts and Table 5.13 MeteoSwiss observations.

Table 5.12: The result of detected events for MeteoSwiss forecasts on 2007–09–30 where, �
symbol presents normal measurements and � symbol presents events

Node ID

Date — Time 25 28 29 31 32

30/09/2007 00:00 � � � � �
30/09/2007 01:00 � � � � �
30/09/2007 02:00 � � � � �
30/09/2007 03:00 � � � � �
30/09/2007 04:00 � � � � �
30/09/2007 05:00 � � � � �
30/09/2007 06:00 � � � � �
30/09/2007 07:00 � � � � �
30/09/2007 08:00 � � � � �
30/09/2007 09:00 � � � � �

30/09/2007 10:00 � � � � �

30/09/2007 11:00 � � � � �

30/09/2007 12:00 � � � � �
30/09/2007 13:00 � � � � �

30/09/2007 14:00 � � � � �

30/09/2007 15:00 � � � � �

30/09/2007 16:00 � � � � �

30/09/2007 17:00 � � � � �

30/09/2007 18:00 � � � � �
30/09/2007 19:00 � � � � �

30/09/2007 20:00 � � � � �

30/09/2007 21:00 � � � � �

30/09/2007 22:00 � � � � �
30/09/2007 23:00 Fault Fault � � �
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Table 5.13: The result of detected events for MeteoSwiss observations on 2007–09–30 where,
� symbol presents normal measurements and � symbol presents events

Node ID

Date — Time 25 28 29 31 32

30/09/2007 00:00 � � � � �
30/09/2007 01:00 � � � � �
30/09/2007 02:00 � � � � �
30/09/2007 03:00 � � � � �
30/09/2007 04:00 � � � � �
30/09/2007 05:00 � � � � �
30/09/2007 06:00 � � � � �
30/09/2007 07:00 � � � � �
30/09/2007 08:00 � � � � �
30/09/2007 09:00 � � � � �
30/09/2007 10:00 � � � � �
30/09/2007 11:00 � � � � �
30/09/2007 12:00 Fault � � � �
30/09/2007 13:00 � � � � �
30/09/2007 14:00 � � � Fault �
30/09/2007 15:00 � � � Fault Fault

30/09/2007 16:00 � � � � �
30/09/2007 17:00 � Fault Fault � �
30/09/2007 18:00 � � � � �
30/09/2007 19:00 Fault � � Fault �
30/09/2007 20:00 � � � � �

30/09/2007 21:00 � � � � �
30/09/2007 22:00 � � � � �
30/09/2007 23:00 � � � � �
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5.4 Results of re-labeling

In Section 4.4 re-labeling approaches are described based on running average-based, Mahalanobis

distance-based and density based labeling techniques.

Re-labeling in temporal domain is performed for three labeling technique for small cluster of

nodes on 06:00˜14:00, 2007–09–30. Table 5.14 presents the result of re-labeling for temporal

density based labeling technique. Result of re-labeling for temporal Mahalanobis distance-based

labeling are illustrated in Table 5.15. Table 5.16 shows the result of temporal re-labeling for

running average-based labeling technique.

Table 5.14: The result of re-labeling for temporal density based labeling technique on 2007–
09–30

Node ID A B C D

25 - 13:00 - -

28 - - - -

29 - - - -

31 - 13:00 - -

32 - - - -

A: Hourly mean Majority
B: Hourly mean Minimum
C: Instantaneous Majority
D: Instantaneous Minimum

Table 5.15: The result of re-labeling for temporal Mahalanobis distance-based labeling tech-
nique on 2007–09–30

Node ID A B C D

25 - 13:00 - -

28 - - - -

29 - 13:00 - -

31 - 13:00 - 14:00

32 - 13:00 - 14:00

A: Hourly mean Majority
B: Hourly mean Minimum
C: Instantaneous Majority
D: Instantaneous Minimum

Table 5.16: The result of re-labeling for temporal running average-based labeling technique
on 2007–09–30

Node ID A B C D

25 - 12:00, 13:00, 14:00 - 14:00

28 - 12:00, 13:00, 14:00 - 12:00, 14:00

29 - 12:00, 13:00 - -

31 - 12:00, 13:00, 14:00 - 14:00

32 - 13:00, 14:00 - 14:00

A: Hourly mean Majority
B: Hourly mean Minimum
C: Instantaneous Majority
D: Instantaneous Minimum
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5.5 Temporal outlier detection accuracy

This section presents the results of temporal outlier detection in terms of DR and FPR by using

re-labeled data as is described in Section 4.4.

Table 5.17 shows the results of DR and FPR for temporal outliers using the three labeling

techniques for WSN hourly instantaneous values with respect to the MeteoSwiss forecasts on

2007–09–30, by using the minimum approach of re-labeling for the hourly instantaneous period.

Table 5.18 shows the DR and FPR by using the minimum approach of re-labeling for the hourly

mean period. Moreover, based on relabeled data there are not any outliers for hourly mean or

instantaneous periods in the majority approach, thus the DRs are calculated as zero percent

and FPRs are 100%.

Table 5.17: The temporal outlier detection accuracy of hourly instantaneous values with
respect to the MFs on 2007–09–30 by using minimum approach of instantaneous period

Node ID Density-based Mahalanobis distance-based Running average-based
DR% FPR% DR% FPR% DR% FPR%

25 0 100 0 100 20 100

28 0 100 0 100 20 100

29 0 100 0 100 0 100

31 0 100 16 100 16 100

32 0 100 20 100 20 100

Table 5.18: The temporal outlier detection accuracy of hourly instantaneous values with
respect to the MFs on 2007–09–30 by using minimum approach hourly mean period

Node ID Density-based Mahalanobis distance-based Running average-based
DR% FPR% DR% FPR% DR% FPR%

25 0 100 0 100 40 60

28 0 100 0 100 40 75

29 0 100 0 100 20 100

31 16 100 16 100 50 100

32 0 100 20 100 40 75

Table 5.19 shows the DR and FPR for temporal outliers using the three labeling techniques for

WSN hourly mean values, based on MeteoSwiss observations and with respect to the majority

re-labeled data on the hourly the instantaneous period. Table 5.20 presents the DR and FPR

for temporal outliers of WSN hourly mean values based on the minimum approach of re-labeled

data with respect to the hourly time period. Moreover, based on re-labeled data there are not

any outliers for hourly mean or instantaneous majority approach, again the DRs are calculated

as zero percent and FPRs are 100%.
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Table 5.19: The temporal outlier detection accuracy of hourly mean values with respect
to the MOs on 2007–09–30 based on the minimum approach of re-labeled data and hourly

instantaneous time period

Node ID Density-based Mahalanobis distance-based Running average-based
DR% FPR% DR% FPR% DR% FPR%

25 0 28 0 28 0 28

28 0 12 0 12 0 12

29 0 100 0 100 0 100

31 0 28 50 14 50 14

32 0 14 0 14 0 14

Table 5.20: The temporal outlier detection accuracy of hourly mean values with respect to
the MOs on 2007–09–30 based on the minimum approach of re-labeled data and hourly mean

time period

Node ID Density-based Mahalanobis distance-based Running average-based
DR% FPR% DR% FPR% DR% FPR%

25 50 14 50 14 100 0

28 0 12 0 12 0 12

29 0 12 100 0 100 0

31 50 14 50 14 100 0

32 0 12 100 0 100 0

5.6 Event detection accuracy

The accuracy of the detected events is assessed in terms of DR and FPA based on the equations

in Section 4.5.2. Events are assigned in the re-labeled data based on correlation based neighbor-

voting, where the majority of nodes represent outliers in same time instant. Events are evaluated

based on hourly mean and minimum approach of re-labeled data, as there were no events within

re-labeled data based on the majority approach and instantaneous time intervals; these are

presented in Section 5.4. Table 5.21 presents the accuracy of hourly mean events with respect

to the MeteoSwiss observations and Table 5.22 shows the accuracy of hourly instantaneous

events with respect to the MFs.

Table 5.21: The events detection accuracy of hourly mean values with respect to the MOs on
2007–09–30 by using minimum approach of hourly period

Node ID Density-based Mahalanobis distance-based Running average-based
DR% FPA% DR% FPA% DR% FPA%

25 0 0 100 0 100 100

28 0 0 100 0 100 0

29 0 0 100 0 100 0

31 0 0 100 0 100 0

32 0 0 100 0 100 0
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Table 5.22: The event detection accuracy of hourly instantaneous values with respect to the
MFs on 2007–09–30 by using minimum approach hourly instantaneous period

Node ID Density-based Mahalanobis distance-based Running average-based
DR% FPA% DR% FPA% DR% FPA%

25 0 0 0 0 50 0

28 0 0 20 0 40 0

29 0 0 0 0 40 100

31 0 0 16 0 60 100

32 0 0 20 0 20 0
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5.7 Event characterizing

Spatial and temporal developments of events were presented in Table 5.12 for MeteoSwiss fore-

casts and in Table 5.13 for MeteoSwiss observation in hourly scales. Events of MeteoSwiss

observations are chosen to further explore information, as it presents a higher detection rate.

Events that were detected based on MeteoSwiss observations are utilized to perform degradation

of time resolution, where outliers for all the nodes were detected on 13:00 and degradation is ap-

plied to re-label the data in finer resolution on 12:50˜13:40, based on MeteoSwiss specifications

for observations.

The event characterizing is explored in Section 4.6. Table 5.23 delineates events of small cluster

that occurred in all nodes on 12:50˜13:40. Node 25 presented a non-stop event for whole the

hour, while the other nodes’ events disappeared once at least. The event started from nodes 25,

28, 29, 32 and after six minutes was observed in node 31. The event lasted for one hour and

finished at the same time in all the nodes.

Table 5.23: Events characteristics in fine resolution based on MeteoSwiss observations on
12:50∼13:40, 2007–09–30 where, � presents events and � symbol presents faults

Node ID

Date — Time 25 28 29 31 32

30/09/2007 12:50 � � � � �

30/09/2007 12:52 � � � � �

30/09/2007 12:54 � � � � �

30/09/2007 12:56 � � � � �

30/09/2007 12:58 � � � � �

30/09/2007 13:00 � � � � �

30/09/2007 13:02 � � � � �

30/09/2007 13:04 � � � � �

30/09/2007 13:06 � � � � �

30/09/2007 13:08 � � � � �

30/09/2007 13:10 � � � � �

30/09/2007 13:12 � � � � �

30/09/2007 13:14 � � � � �

30/09/2007 13:16 � � � � �

30/09/2007 13:18 � � � � �

30/09/2007 13:20 � � � � �

30/09/2007 13:24 � � � � �

30/09/2007 13:26 � � � � �

30/09/2007 13:28 � � � � �

30/09/2007 13:30 � � � � �

30/09/2007 13:32 � � � � �

30/09/2007 13:34 � � � � �

30/09/2007 13:36 � � � � �

30/09/2007 13:38 � � � � �

30/09/2007 13:40 � � � � �
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5.8 Model complexity and energy efficiency

Energy efficient WSNs should be assessed in terms of energy complexity as well as accuracy.

In order to evaluate complexity of the method, the detection technique should be assessed in

terms of communication overhead, computation and memory complexity.

To detect events, temporal outlier detection should be performed, firstly. While the temporal

detection is locally accomplished in each node, no communication overhead is needed. The

computational complexity in temporal outlier detection should be considered in two conditions:

using MeteoSwiss forecasts and using the temporal model that is built based on MeteoSwiss

observations. The computation complexity for MeteoSwiss forecasts can be connived due this

fact no much computation is needed. For MeteoSwiss observations and using them to build a

initial temporal model, computation complexity depends on fitting and updating the model.

The memory complexity differed for MeteoSwiss observations and forecasts while it is mainly

about the storing of observations of WSN and MeteoSwiss forecast and it is negligible. For event

detection method, each node sends the message to the neighbors when an outlier is observed.

The maximum communication overhead for each node is O(n.v.m), where n is the total number

of correlated neighbors, v is the number of variables and m is the number of detected temporal

outliers.

The main source of energy consumption in WSNs is communication. Thus, this research only

focuses on communication overhead to evaluate the energy efficiency. To calculate the energy

consumption in terms of communication, properties of utilized device (Instruments, 2007) are

presented in Table 5.24.

Table 5.24: The properties of single-chip 2.4 GHz IEEE 802.15.4 compliant RF transceiver
applied in wireless sensor networks (Instruments, 2007)

Mac layer IEEE 802.15.4

speed: Transmit bit rate 250 kbps

Operation frequency 2.4 GHz

Packet size 128 bytes

Radio model TI CC2420

Transmit current at 0dBm 17.4 mA

Transmit current at -25dBm 8.5 mA

Receive current 18.8 mA

Supply voltage (1.6~2.0 V)

The energy consumption in communication overhead is calculated by (Torres, 2006):

E = P × T, P = I × V, T =
Packet Size

Transmit bit rate
(5.1)
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Subsequently, required power for sending each message is 34.8×10−3W since maximum current

is considered for the network due to the distances of the nodes. Required power for receiving each

message is calculated as 37.6 × 10−3W. By considering the possible maximum communication

overhead, it is assumed within each hour there would be outlier in all the nodes and total power

for sending and receiving four messages is obtained as 289.6× 10−3W. Besides, T is calculated

as 4×10−3S with respect to the packet size and transmit bit rate. Finally, consumed energy for

the assumed condition is resulted as 1158.4× 10−6J. Additionally, initial energy for each node

considered as five J which is a common setup.





Chapter 6

Discussion

6.1 Data pre-processing

Cleaning the data from gross errors and observations that may have resulted from faulty or

blocked nodes is vital as they may corrupt the detection methods, especially those detection

methods that use the data to train. However, identifying the faults and errors from different

sources is only part of the problem and dealing with these errors and faults is critical. Due to

inexpensive and imprecise nature of sensors, faults happen regularly and they usually occur in

successive sequences. For example, dead band errors usually happen in a time period. Generally,

based on the degree of the fault and the source of the fault one may use or ignore them. Using

fault observations introduces an error to the detection method, especially in the case of modeling.

However, ignoring the faults may cause a potential loss of information. Faults can happen in

eighter short or long time periods and they may also occur in single or multiple nodes. It should

draw attention that the choice of applied methods for replacing the faults are highly affected

by several elements such as: type of sensed variable, geographic properties of study site, spatial

distribution of neighboring sensors and time of the observations (Schlatter, 1975; Bennett et al.,

1984; Thiebaux and Pedder, 1987). This current research focuses on identifying the faults,

however dealing with them is beyond the scope. Faults that have occurred in multiple adjacent

nodes and within a long time period cannot be replaced easily by methods such as, spatial

interpolation weighting methods, for the estimation of ignored values to create the serially

complete data, or temporal correlation methods that use neighboring observations in time to

estimate the ignored values. Moreover, missing values should be added to aforementioned

sources of errors and faults, which impose more complexity for replacing the data.
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6.2 Re-Labeling

While the initial labeled dataset was recorded in two-minute frequency, data are re-labeled to

obtain hourly labels, with respect to the instantaneous and hourly mean time periods. Therefore,

outliers that are not located in interested time frames based on MeteoSwiss specifications, were

ignored in labeling results.

The main concern about these labeling techniques is that they are inherently just other outlier

detection methods and they include some degree of uncertainty. The running average-based

technique identifies outliers based on adjacent observations in time and does not look at the en-

tire dataset. To adequately assess a method, a non-similar methods’ results should be utilized.

Thus, the running average-based is not a reliable method for evaluating the result of applied

temporal outlier detection since both utilize a similar approach for outlier detection. On the

other hand, Mahalanobis distance-based and density-based techniques label outliers in the pres-

ence of the entire dataset and do not consider the temporal order (Zhang et al., 2012). Thus,

Mahalanobis distance-based and density-based techniques can present more reliable results for

temporal outlier detection. Additionally, the running average-based technique works with re-

spect to the surrounding values in time, providing further evidence that it is also not a proper

method for spatial outlier detection. Finally, the choice for a particular labeling technique may

lead to different result for outlier and event detection method thus the focus should be on the

applicability as well as the accuracy of the methodology.

6.3 Temporal outlier detection

Detecting outliers based on temporal correlation of WSNs measurements can result high detec-

tion rates (Zhang et al., 2012). Due to insufficient historical data, temporal correlation models

cannot usually be calculated accurately in the absence of diurnal and seasonal patterns. Insuf-

ficient numbers of historical data can also be resulted because of removing the faults due to

inexpensive sensor devices, communication problems, duplicate values, gross errors, dead band

errors and missed values. Moreover, there are some applications that need temporary deploy-

ments, so large amount of historical data would not be expected. Hence, a lack of historical

data is usually a primary concern in the WSN area.

In order to overcome the aforementioned constrains, this research introduces quite novel ap-

proach for temporal outlier detection. Nowadays, climatic stations and forecasts are widely

available. Thus, it may be assumed, in the presence of climatic stations and forecasts, the
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temporal correlation based outlier detection can be performed. Climatic stations that utilize

accurate sensors and sense multiple variables can provide two general types of products, raw ob-

servations and forecasts. This research proposed, using climatic observations as historical data

to build the temporal correlation model or using climatic forecasts in WSN nodes, to identify

temporal outliers. Suitability of these products is assessed in terms of detection rate and false

positive rate.

The following issues should be considered when choosing the aforementioned products to apply

in the WSN area. The raw observations and forecasts that are provided by climatic stations

cannot be as local as WSNs for the entire network, which is a key point of WSNs existence. On

the other hand, WSN devices are not as accurate as climatic sensors, since climatic sensors are

not faced with energy and expense constrains. Consequently, even when operating in a same site

the sensors of WSN and climatic stations may observe different values so that comparing absolute

values may not result in accurate outliers. However, similar patterns between WSN nodes and

climatic station or climatic forecast grid points may exist. To temporal outlier detection climatic

forecasts and observations should present approximately similar patterns with respect to the

WSN, where not only the distance from WSN but also the similarities of the environments are

extremely crucial.

In this research, the slopes approach was utilized to assess the similarity of patterns, where

energy hunger methods cannot be applied. The slope approach, in this case, is fitting as it can

ignore the effect of vertical shifts of values and global scaling. Additionally, using slope can

reduce the effect of localization for climatic products.

Results provided by Table 5.17, Table 5.18, Table 5.19 and Table 5.20 reveal that accurate

detections resulted from climatic observations (MeteoSwiss observations) in the presence of high

DR and low FPR. It should be noted that the MeteoSwiss sensing station is closer to the WSN

in comparison with MeteoSwiss forecast grid point (Figure 3.5). Consequently, MeteoSwiss

patterns are more similar to WSN patterns in terms of shape and values, as are illustrated in

Figure 5.1 and Figure 5.2.

MeteoSwiss forecasts resulted from 7 × 7km grid mesh that were produced by the COSMO–7

model. The selected MeteoSwiss forecast grid point is the most representative grid point of

the MeteoSwiss sensing station because the orography is more similar than at other grid points

and it is the nearest grid point to the WSN. While using COSMO–2 models would produce

more localized forecasts the COSMO–2 was not operational on 2007 and thus the COSMO–

7 forecast was utilized. As it is illustrated in Figure 5.2, MeteoSwiss forecasts, MeteoSwiss
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observations and WSN follow quite similar patterns in shape and value on 00:00˜08:00 and the

main differences appear on 10:00˜15:00. To answer which elements cause the differences, relative

humidity of MeteoSwiss forecasts and observations are explored by Table 6.1. As the table

reveals, from 10:00˜15:00 forecasts and observations for humidity differed approximately 10%

˜15% as did the temperatures in the same period. It can be concluded that forecasts were made

based on an event from 10:00˜15:00, that did not happen, yet caused an increase of temperature.

Thus, false positives that were resulted on 10:00˜15:00, based on MeteoSwiss forecasts, presents

an uncertainty of forecasts regarding the assuring occurrence of events (Table 5.6). Comparing

Table 5.6 and Table 5.7 shows that partially similar outliers were observed from 16:00˜21:00. It

should draw attention that a high false positive rate for MeteoSwiss forecasts maybe caused by

of an advanced time period of forecasts and, forecasts within shorter time spans should include

less uncertainty. In this study forecasts were provided 36 hours in advanced from 00:00˜24:00,

2007–09–30, conceptually, forecasts for 2007–09–29 should be more precise and an evidence is

provided by Figure 4.2 where quite more similar patterns are represented for WSN, MFs and

MOs in shape. Moreover, by using forecast values in WSNs outliers and events can be detected

in an unsupervised fashion and semantics can be assigned to the detected events based on

occurring or not occurring an event. Additionally, forecast variable as well as other climatic

contextual information can be introduced to the WSN.

MeteoSwiss observations presented more reliable DR and FPR with respect to the forecasts.

Subsequently, MeteoSwiss observations can potentially be utilized to build the temporal correla-

tion models. While resulted predictions do not present a completely localized representation of

WSN measurements, their degree of localization can be improved by updating and calibrating

the model via WSN measurements.

6.4 Spatial outlier detection

To overcome small size of samples, variogram averaging method of Sterk and Stein (1997) was

utilized under the assumption of similar spatial correlation over time. Based on the results

presented in Section 5.2.1, the assumption was justified while, the spatial predictions for two

different days present accurate and similar results. Besides, utilizing a same variogram for

different days could reduce the consumption of computation energy in nodes.

Spatial outlier detection by using spatial correlation could not identify outliers, efficiently. The

main drawback of the applied method is, it cannot detect outliers when they happen in multiple
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Table 6.1: Hourly values of air humidity 2 meter above ground for MeteoSwiss forecasts and
MeteoSwiss observations on 2007–09–30.

Date | Time A B

30/09/2007 00:00 89.2 97.9

30/09/2007 01:00 95.8 100

30/09/2007 02:00 100 99.5

30/09/2007 03:00 100 100

30/09/2007 04:00 97.9 99.3

30/09/2007 05:00 98.6 99.5

30/09/2007 06:00 97.5 98.8

30/09/2007 07:00 98.5 99.3

30/09/2007 08:00 99.1 97.1

30/09/2007 09:00 96.5 97.6

30/09/2007 10:00 93.1 100

30/09/2007 11:00 80.8 98.7

30/09/2007 12:00 80.3 95.7

30/09/2007 13:00 81.3 97.1

30/09/2007 14:00 83.3 98.9

30/09/2007 15:00 84.7 95.8

30/09/2007 16:00 91.4 90.6

30/09/2007 17:00 99.1 84.8

30/09/2007 18:00 100 97.4

30/09/2007 19:00 100 85.1

30/09/2007 20:00 100 79.8

30/09/2007 21:00 100 84.8

30/09/2007 22:00 100 86.0

30/09/2007 23:00 100 85.2

A: Air humidity 2 m above ground, MeteoSwiss forecasts (%)
B: Air humidity 2 m above ground, MeteoSwiss observations (%)

correlated nodes since events are usually geographically correlated. Thus, the method can

identify faults while, faults are not spatially correlated.

6.5 Event detection

The applied event detection method, can distinguish long-term errors from events by using

contextual information provided by MeteoSwiss forecasts since those faults do not happen si-

multaneously in multiple nodes. Events can be distinguished from long-term faults by the

proposed method while, those event detection methods that utilize temporal correlation mod-

els cannot distinguish events from long-term faults. Furthermore, due to imprecise nature of

wireless sensors that are applied in WSNs context, it is likely to occur faults in multiple nodes

simultaneously. Faults in multiple nodes can be distinguished by performing the event detection

method for multiple variables of a network.

In this study due to this fact MeteoSwiss products were in hourly scale thus detected events

were also in hourly resolution. Based on the users requirements and interested events hourly

detection and subsequently proposed method can be (near) real-time.
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Generally, there is no prior knowledge about the upcoming events thus detection methods should

be unsupervised. On the other hand, retrieving information about the spatial and temporal

properties of detected events and type of events are essential. Thus, events are investigated in

finer resolution to retrieve detailed information about temporal and spatial properties of events.

6.6 Accuracy of detected outliers and events

Low detection rate of MeteoSwiss forecasts does not warn the method is inapplicable. In the

absence of reference data inappropriate dataset was applied for method evaluation while the

reference data should be a ground truth or chosen from other methods results with respect to

the current dataset and methodology. It should also be noted that, detected outliers and events

are matter of definition and based on the application domain and end user requirements the

method can detect events and outliers, specifically. In other words, each definition of outlier

and event can result different events and distinct interpretations can be made for outliers and

events. Additionally, low detection rate for MeteoSwiss forecasts also can be resulted because

of different definitions for outliers and events of labeled data and proposed method.

6.7 Model complexity and energy efficiency

Applying energy efficient methods for outlier and event detection increases the networks life-

time which is a prerequisite for an accurate detection. Lack of energy in nodes can lead to

inaccurate observations or even can cause incomplete data transmission. The main concern

over energy efficiency and complexity are expressed for communication overhead. The proposed

temporal outlier detection is energy efficient in terms of communication overhead. The commu-

nication complexity depends on the transmission rate since applied method for temporal outlier

detection identifies outliers locally. Typically, being energy efficient is described by comparing

different methods and one of them is considered as energy efficient method, eventually. In this

research, to detect events correlated adjacent nodes behavior is studied and uncorrelated nodes

behavior is ignored which can lead to considerable reduction of transmission. Definitely, the

less energy consumption results more energy efficient method. Furthermore, a trade-off exists

between energy consumption and accuracy. The conventional event detection methods that

utilize neighbors information do not consider the correlation approach which leads to using only

effective information. Thus, proposed method is energy efficient while transmission was limited

to only effective and correlated nodes.
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Conclusion

The main objective of this research is to develop energy efficient and accurate techniques to

identify outliers and events with respect to the spatial and temporal properties of the wireless

sensor networks (WSNs) data. In order to address the aforementioned objective, a number of

specific objectives and corresponding research questions were formulated in Section 1.2.2. Spe-

cific objectives and the research questions are addressed through the literature review, achieved

results and discussion section of the thesis.

7.1 To define outliers and events

Temporal outliers were defined as those WSN observations that differed from MeteoSwiss fore-

casts or observations, in terms of patterns. Spatial outliers were defined as those observations

that were different from the predicted values provided by spatial correlation modeling. Subse-

quently, events were defined by the correlation based neighbor-voting approach and temporal

outliers were labeled as events where the majority of the correlated sensors simultaneously rep-

resented the outlier. Thus, co-occurring of temporal outliers in the same time instant, within

the majority of the correlated nodes, represented change of outliers to events.

7.2 To detect an event

Temporal and spatial correlation that exist betweenWSNmeasurements were applied to perform

event detection.

69
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Based on temporal correlation properties, observation close to each other in time are more

similar. In this research, temporal model was not introduced from WSN. Temporal correlation

between consecutive values of MFs and WSN measurements are utilized to establish temporal

patterns in order to identify temporal outliers. Similarity between temporal patterns of WSN

and MeteoSwiss products were assessed to identify temporal outliers. While a sufficient amount

of historical data was not available, MeteoSwiss forecast values were applied to identify temporal

outliers. Moreover, MeteoSwiss observations were utilized to evaluate the capability of them to

perform the initial temporal models for WSN.

Based on regionalized theory, observations close to each other in space are more similar. Geostas-

tical analysis was applied to model the spatial correlation and to identify spatial outliers. Var-

iogram averaging method (Sterk and Stein, 1997) which extends the spatial variablity analysis

to space–time domain, was utilized in the absence of minimum required sample size. Spatial

outliers were defined as those observations that deviated from predicted values with respect to

the tolerance obtained from the confidence interval. Spatial correlation based models did not

show high detection rate in dense and limited areas where high correlation between nodes ex-

ists. Thus, temporal outliers that occurred in multiple nodes in the same time instant cannot be

identified as outliers using spatial correlation based outlier detection methods. In this research,

only information concerning nodes correlation was applied to identify events. Consequently,

events were defined based on the co-existence of temporal outliers in correlated spatial neighbor

nodes within the same time frame.

7.3 To characterize an event

Detected events can be characterized in terms of spatial extent and temporal evolution. Ta-

ble 5.23 shows the events of small cluster occurred in all nodes on 12:50˜13:40. Node 25 repre-

sented a non-stop event for whole the hour, whereas the other nodes events disappeared once at

least. The event started from nodes 25, 28, 29, 32 and then after six minutes observed in node

31. The event lasted one hour and finished at the same time in all the nodes.

7.4 To evaluate the detected outliers and events

In the absence of hourly labeled data, re-labeling was performed on three labeling technique:

density based, Mahalanobis distance-based and running average-based. Existing labels of Zhang



Chapter 7. Conclusion 71

(2010) were re-label based on two time periods (hourly mean and instantaneous values) and two

aggregation approaches (majority and minimum) that were explained in Section 4.4.

Accuracy of temporal outliers was assessed with respect to the re-labeled data and the different

criteria and results are presented in Section 5.5. Temporal outliers that resulted from Me-

teoSwiss forecasts did not present high detection rates (DR) and low false positive rates (FPR).

Maximum accuracy for temporal outlier detection of MeteoSwiss forecasts was obtained by us-

ing re-labeling data from the minimum approach during the hourly mean period which was 38%

DR and 82% FPR. On the other hand, accurate detection was shown by the minimum approach

of re-labeled data during the hourly mean time period with 80% DR and 2% FPR, using the

running average labeling method for temporal outlier detection of MeteoSwiss observations.

Accuracy of events was assessed with respect to the re-labeled data and assigning event labels

based on the correlation based neighbor-voting approach. Subsequently, maximum accuracy

for events was determined by MeteoSwiss forecasts which observed a 42% DR and 40% false

positive alarm (FPA) for the running average-based technique. Additionally, maximum accuracy

for events determined by MeteoSwiss observation was obtained by 100% DR and 0% FPA for

Mahalanobis distance-based labeling technique.

Complexity and energy efficiency of applied method were assessed. In WSNs the majority of

energy is consumed by communication. Within the confines of this research, communication is

needed in the presence of outliers and for correlated nodes. Based on the analysis performed in

Section 5.8, this research can conclude that the applied method is energy friendly.

7.5 Recommendation

Developing a labeling technique that can distinguish between different types of outliers and

identify events is proposed for future work since conventional methods are mainly another outlier

detection methods. Choosing an adequate labeling technique for each method and dataset is

essential and requires further work. In this research, temporal outlier detection is performed

based on comparing the patterns in similar time instantaneous. In large networks events may

occur in different time instantaneous, thus temporal outlier detection should also be sensitive

for searching the patterns in different time periods. Performing the event detection based

on building the temporal correlation model that is built by climatic observations cannot be

implemented due to the time constraint in this research and is an open topic for future research.
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