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I 

ABSTRACT 
In the field of remote sensing, scaling of data has become more practicing in different disciplines. 
Downscaling of data bring revolution for the usage of coarse spatial resolution data products. 
The data products were downscaled to desired fine resolution according to the usage. In this 
study LAI (leaf area index) is downscaled by using cokriging technique. The main aim of this 
research is to explore downscaling cokriging technique by studying the effect of resampling and 
point spread function (PSF).  
 
MODIS LAI product at 1000 m spatial resolution is used as primary variable and MODIS NDVI 
at 250 m is used as covariable to downscale LAI at 250 m. Cokriging is used as the technique for 
downscaling. The first step for downscaling cokriging involves the calculating of sample 
variogram and cross-variogram. To calculate cross-variogram both the variable LAI and NDVI 
should be on same scale. To bring MODIS LAI at 250 m it is resample at 250 m and cross-
variogram is calculated between resample LAI and original NDVI at constant cut-off of 6000 m 
and bin of 15 and variogram and cross-variogram is modelled at common range of 3817.4 m 
using exponential model. To select optimal resampling from different resampling techniques 
(nearest neighbour, bilinear interpolation, cubic convolution and trivial method) variogram 
analysis has been executed. It was found that variance in trivial resampling was highest (sill = 
3.78) which shows high spatial dependence. Trivial resampling is also selected for resampling 
because it resample’s pixel size with original pixel values. Gaussian and uniform PSF are used to 
study the effect of PSF on variogram. Standard deviation  and  were parameterized by 
experimenting with different value of standard deviation.  and  were parameterized at 250 m 
for MODIS LAI at resolution 1000 m and 122.5 m for MODIS NDVI at resolution 250m. 
Further, point support variogram and cross-variogram were estimated to see the effect of both 
(uniform and Gaussian) PSF by keeping rest of the parameter same and using nested exponential 
model. It was found that for LAI 1000 m using uniform PSF sill was 2.85 for the range 3040.5m 
which is more than that by using Gaussian PSF (2.06 for range 3857.0 m). It was found that 
variance is high using uniform PSF for LAI at 1000 m because distance from the pixel or the 
mean is more.  It was observed that for NDVI at 250 m there is very less difference is observed 
by estimated point support variogram which was not observed by modelling of point support 
variogram in and variance for uniform PSF was found higher than by using Gaussian PSF. There 
was no change observed for the cross-variogram because PSF does not have much effect for 
different bands on same support. Due to above change the effect was also observed on the 
centre of downscaling cokriging weights. By using uniform PSF centre of the weight was high 
than that by using Gaussian PSF. There is change observed in the downscaled cokriging image. 
The downscaled image for Gaussian PSF was found smoother than that of uniform PSF. The 
standard deviation in downscaled image for uniform PSF (1.73) was found more than that of 
Gaussian PSF (1.69) which shows that variance is high for the uniform PSF than that of Gaussian 
PSF.  
 
Keywords: Downscaling, cokriging, MODIS LAI, MODIS NDVI, resampling, Point spread 
function (PSF), uniform PSF, Gaussian PSF, variogram   
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1. INTRODUCTION 

1.1. Background 

In the field of remote sensing, scaling of data has become more practicing. According to the 
application, the resolution of the data can be changed either by upscaling or downscaling. 
Upscaling refers to the practice of converting finer spatial resolution data to coarser spatial 
resolution data. For example, ground data are upscaled to match with the pixel of an image 
(Atkinson, 2012). Downscaling is when coarser spatial resolution is converted to finer spatial 
resolution.  These days’ downscaling is of much interest to the researchers for exploration and to 
practitioners for implementing the fusion of different data of varying scales. The reason an 
optimal pixel size is defined by researchers is due to the issue of scaling (Atkinson and Curran, 
1995; Atkinson et al., 1997; Woodcock and Strahler, 1987). The sensor which has the coarse 
resolution has a large coverage and high revisit time, which provides ample information more 
frequently. For example, MODIS has a spatial resolution of 250 m, 500 m and 1000 m and has a 
revisit time of more than 8 days. On the other hand, fine spatial resolution gives more detailed 
information with low revisit time. For example ASTER and LANDSAT series satellite has revisit 
time of 16 and 18 days.  
 
The advantage of downscaling is to extract the detailed information from coarser resolution at 
high temporal resolution. This technique is also cost effective since fine resolution data are 
costlier than coarse resolution data. Atkinson (2012) stated that there are two approaches for 
downscaling:  regression approaches and area to point predictions. In regression approach, finer 
spatial resolution is estimated from a coarser spatial resolution. This is done with the help of 
covariate as a variable. This approach does not consider support and also does not characterize 
pattern of spatial variation while area to point prediction interpolates using both support and also 
characterizes the pattern of spatial variation (Atkinson, 2012). In the present study, area to point 
prediction is used as technique, leaf area index (LAI) is used as a target or primary variable and 
NDVI is used as a covariable for downscaling. 
 
Leaf area index is one of the main variables for characterizing plants’ canopy. Leaf area index 
(LAI) is defined as the area of one side of the leaf per unit area of the ground (Myneni et al., 
2002) It is a biophysical variable which influences vegetation photosynthesis, transpiration and 
land surface energy (Tian et al., 2002). It is an important variable of ecosystem because most of 
the ecosystem models that stimulate carbon and hydrological cycles require LAI as an input 
(Gower et al., 1999). Estimating LAI has become easier by using satellite data like MODIS which 
has a LAI product of spatial resolution of 1000 m for every 8 days. Much research has been 
conducted to estimate LAI for different forest types like coniferous forest, tropical forest, 
deciduous forest and broadleaf forest (Asner et al., 2003) 
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Earlier estimating LAI was a tedious task and usually unhelpful because the scientists needed to 
cut the plants from the soil surface, separate leaves from other part of the plant and measure 
individual leaf area to obtain the average leaf area per plant (Wilhelm et al., 2000). There are two 
methods to estimate LAI i.e. direct and indirect method. Direct methods are destructive method 
and time consuming. Indirect methods are constructive methods and are faster than the 
destructive methods. Indirect methods measure the light transmission through plant canopies 
using various instruments such as the Ceptometer, LiCor LAI-2000, hemispherical photography, 
etc.(Chen and Leblanc, 1997; Fassnacht et al., 1994; Wang et al., 2005). 
 
Several studies have been conducted to estimate LAI by using vegetation indices (Hwang et al., 
2011). Due to presence of chlorophyll in the leaves, it absorbs blue and red radiations and scatter 
near infra-red (NIR) radiation so vegetation indexes are used to estimate LAI. In remote sensing, 
NDVI has been usually used to estimate LAI because of its relationship with LAI (Miller et al., 
1997; Spanner et al., 1990). The phenological changes in LAI are related to NDVI which varies 
every year and in every season and it depends on the growth of the trees. Myneni et al. (2002) 
used NDVI to estimate LAI/FPAR from the MODIS (Moderate resolution imaging 
spectroradiometer) sensor at a coarse spatial resolution of 1000 m. 
 
In this research area to point prediction (prediction of continous variable through prediction) 
approach is used to downscale and cokriging is used as a predictor. In cokriging one or more co-
variables are require for downscaling. These covariable must be highly correlated with primary or 
target variable. This approach involves estimating two variograms of primary and secondary 
variable and cross-variogram between resample primary variable and original covariable on the 
point support. Cokriging is an unbiased predictor and minimizes prediction variance. In cokriging 
linear system of theory is used to define the different supports for same variable (Pardo-
Iguzquiza and Atkinson, 2007). In this study effect of uniform point spread function and 
Gaussian point spread function are studied. The point spread function is used to build a 
theoretical relation between semi-variogram and cross-variogram. “Cokriging system involve estimation 
of linear model of co regionalization of point support covariance and cross-covariance by numerical de-convolution 
and predict the target image by convolution” Pg (91) (Pardo-Iguzquiza et al., 2006) . 
 
In this study, effort is made to downscale LAI from 1000 m spatial resolution to 250 m spatial 
resolution by using cokriging and also study the effect of resampling and PSF on the downscaling 
cokriging. In this study downscaling cokriging is performed by using uniform and Gaussian PSF 
and to study its effect on the downscaling cokriging which is also an innovation of this project. It 
will also help to monitor vegetation for heterogeneous forest at finer scale. Coarser resolution 
imagery covers a large area due to which it loses important spatial structure, topographic variance 
and vegetation patterns (Hwang et al., 2011). So at this resolution it is not sufficient to estimate 
LAI for specific purpose like for monitoring heterogeneous forests. Downscaling of this coarser 
data will resolve this problem. It will be helpful for forest resource department to monitor 
vegetation at finer scale. It will also help to estimate LAI where field is not possible. 
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1.2. Research Identifications 

1.2.1. Research Objectives 
The main objective of this research is to study the effect of resampling and PSF on downscaling 
cokriging technique for LAI estimation.  
Sub-objectives:  

1. To downscale LAI using cokriging by covariable.  
2. To study the effect of resampling on variogram. 
3. To study the effect of PSF on variogram and downscaled LAI image.  

1.2.2. Research Questions 
To achieve the above objective the following questions need to be answered. 

1. What is the suitable covariable and its correlation with LAI? 
2. What is the effect of resampling on variogram and cross-variogram?  
3. What is the effect of PSF on variogram and cross-variogram? 
4. What is the effect of PSF on resultant downscaled image? 

1.3. Innovation aimed at 

The innovation of this project is to perform downscaling cokriging by using uniform and 
Gaussian PSF and also to study the effect of these PSF on downscaling cokriging technique. 

1.4. Thesis Strucure 

This structure of the thesis describes the whole project and the content related to this research in 
chapters: 
 
Chapter 1: Introduction, this section describes general overview about this research work. It 
describe the basic idea of topic, motivation for selecting this topic, problem statement, research 
objectives, and research questions to carry out this task. 
 
Chapter 2: Theoretical Background and Literature Review, this chapter contains theoretical 
background of the study and literature study.  
 
Chapter 3: Study area and data used, this chapter describes selection of study area and description 
of the study area. It also contains the description of data used and software used.  
 
Chapter 4: Methodology, this chapter describes complete workflow of the study and description 
of each and every steps of methodology.  
 
Chapter 5: Results, this chapter contains results which I obtained using above methodology. 
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Chapter 6: Discussion, this chapter explain results and also its implications. 
 
Chapter 7: Conclusion and Recommendation, this section describes the answer of the research 
questions in conclude form. Some important points are recommended after experience got from 
this whole work and recommendation for future work.  
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2. CONCEPTUAL AND THEORETICAL 
BACKGROUND  

2.1. Terrestrial ecosystem 

Terrestrial ecosystem has an essential role in the overall carbon cycle. It is responsible for the 
exchange of  which brings changes in atmospheric concentration. Terrestrial ecosystem 
affects the climate in number of ways that act over extent and duration scales. Forests are the 
most resourceful terrestrial ecosystem on Earth, providing essential goods and services upon 
which the humanity is very much dependent (Song, 2013). Due to changes in the area and 
changes during time in forest ecosystem affect global carbon cycle and also responsible for the 
climate change (Goodale et al., 2002). Increase in carbon content in forest ecosystems is a 
forewarning to take the most important step against global warming. Satellite remote sensing 
provides a unique way to obtain the distributions of LAI over large areas.  
 
Leaf area index (LAI) is generally used to describe the photosynthetic and transpirational surface 
of plant canopies. LAI can be defined as the leaf surface area per unit ground area. It is an 
important variable in controlling many biological and physical processes. (Running et al., 1999) 
LAI is an essential input variable which is used for many climate and ecological models. 

 
Green leaves are good absorbers of solar radiation. Compared with non vegetative surfaces, 
absorption in green leaves are more in visible spectrum for photosynthesis and less in near 
infrared radiation. Reflectance in red and near infrared wavebands has been used to formulate 
various vegetation indices because they indicate all the conditions of the vegetation surface (Qi et 
al., 1994). Among the various vegetation indices, NDVI (Wang et al., 2005), is most frequently 
used to derive LAI . There have also been several investigations on this relationship between 
satellite-derived vegetation indices and LAI for various forest type and species (Spanner et al., 
1990(b); Spanner et al., 1990(a)). 

 
 

Figure 2-1 : Terrestrial ecosystem (Ollinger, 2003) 
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2.2. Biophysical variables  
2.2.1. Leaf Area Index  
 
Leaf area index is most important biophysical variable of ecosystem models (Propastin and 
Erasmi, 2010). Spatial distribution of LAI on Earth’s surface is helpful in understanding various 
biophysical processes within a terrestrial ecosystem, such as photosynthesis, respiration, 
transpiration, carbon and nutrient cycle and rainfall interception ((Fassnacht et al., 1997; Hu et al., 
2003; Miller et al., 1997); Peng et al. (2003)). LAI describes physiological, climatological and 
biogeochemical conditions due to vegetation conditions (Asner et al., 1998). Asner et al. (2003) 
stated that LAI can be estimated, modelled, and analysed at different resolution scales (from a 
small tree to whole forest and from whole forest to whole continents level because it has no 
unit). LAI is strongly correlated to vegetation species, growing stage, seasonal variance, field 
conditions and management practices. 
 
To estimate LAI many methods were used from several years. Jonckheere et al. (2004) describes 
different methods to estimate LAI which are categorized into 2 categories i.e.: 

 Direct method  
 Indirect method 

The accuracy of direct method is more than that of indirect method because leaves are cut and 
measured manually. The main disadvantage of this method is that it is time consuming and for 
large scale it is not feasible. There is more error in this method because of repeating 
measurements. This method is further divided into sub categories i.e.: 

 Harvesting and non-harvesting methods(which is well explained in (Jonckheere et 
al., 2004)) 

 Leaf area determination techniques (which is well explained in (Jonckheere et al., 
2004)) 

Indirect methods are faster than direct method. In this method leaf area can be determined by 
another variable. Jonckheere et al. (2004) stated that in field, indirect method is subdivided into 
two categories i.e. 

 Estimating LAI from indirect contact. 
 Inclined point quadrant 
 Allometric method 

 Estimating LAI from indirect non-contact (optical method). 
 Digital plant canopy imager 
 Plant canopy analyzer 
 TRAC  
 Hemi-view 



Downscaling leaf area index using downscaling cokriging on optical remotely sensed data 
 

  Page | 7 

2.3. Vegetation Indices 
Vegetation indices were developed to study the qualitative and quantitative coverage of 
vegetation by using remote sensing techniques (optical). Bannari et al. (1995) explained that 
spectral response of vegetation is the collection of vegetation type, soil reflection, environment 
effects, shadow, soil color, and moisture. Vegetation indices were developed to decrease the 
above effects and enhance vegetation response. Qi et al. (1994) stated vegetation indices and 
band ratio were developed to estimate more information on vegetation and its structure (i.e. 
canopy geometry, architecture, and health) by using two or more than two spectral bands of 
electromagnetic spectrum and which is not possible by using single spectral band. Simple ratio 
(SR) and normalized difference vegetation index (NDVI) are the most common vegetation 
indices to estimate LAI and other surface parameters from space-borne and air-borne remote 
sensing (Rouse J.W., 1974). 
 
NDVI has an important role in remote sensing to study the spatial structure of vegetation. Its 
value ranges between -1 to +1. -1 represent that there is no vegetation and +1 represents the 
presence of dense vegetation and zero shows the barren land. Baret and Guyot (1991) stated that 
NDVI is highly related to ecological parameters, carbon dioxide, LAI, photosynthesis and NPP 
(net primary productivity). It enhances the contrast between soil and vegetation and minimizes 
the illumination conditions. NDVI is the ration of red and NIR reflectance and expressed as: 
 

NDVI =    Equation 2.1 

 
 is the reflectance in the NIR spectral band 

 is the reflectance in the Red spectral band   

2.4. LAI-NDVI relationship 
Leaves reflect strongly in near-infrared region and weakly in blue and red band due to absorption. 
Thus LAI has positive relation with near-infrared reflectance and negative relation with red 
reflectance. The ratio of red to near-infrared reflectance is used to express the increasing 
difference between red and near-infrared reflection with increasing LAI (Curran, 1980). Maki et 
al. (2005) studied the relationship between LAI and NDVI using MODIS LAI product. In this 
study to understand the relationship between NDVI and LAI, NDVI was calculated by scattering 
from arbitrarily inclined leaves (SAIL) radiative transfer model and LAI was evaluated. That led 
to two results: (a) plant affected the canopy level NDVI during leaf expansion and leaf 
senescence periods, and (b) the relationships between NDVI and LAI of summer and that of 
autumn are different because of discoloration of the leaf during leaf senescent period. These 
results indicate that it is necessary to take into account the influence of the understory plant for 
estimating canopy LAI from NDVI during leaf expansion and leaf senescent periods, and it is 
also necessary to consider discoloration of the leaf during leaf senescent period.  
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Wang et al. (2005) explains the relationship between NDVI and LAI to the year 1996 to 2001 at a 
deciduous forest site. The NDVI–LAI relationship can vary both seasonally and inter-annually in 
respect of the variations in phenological development of the trees and in response to temporal 
variations of environmental conditions. Strong linear relationships are obtained during the leaf 
production and leaf senescence periods for all years, but the relationship is poor during periods 
of maximum LAI. The relationship is also affected by background NDVI, but this could be 
minimized by applying relative NDVI. Comparisons between AVHRR and VEGETATION 
NDVI revealed that these two had good linear relationships (R2=0.74 for 1998 and 0.63 for 
2000). However, VEGETATION NDVI data series had some unreasonably high values during 
beginning and end of each year. MODIS enhanced vegetation index (EVI) was the only index 
that exhibited a poor linear relationship with LAI during the leaf senescence period in year 2001. 
Finally it was concluded that the relationship established between the LAI and NDVI in a 
particular year may not be applicable in other years, so attention must be paid to the temporal 
scale when applying an NDVI–LAI relationships. The LAI NDVI relationship is used in this 
study to downscale LAI. Downscaling is also termed as disaggregation and also like a resample 
image at desired pixel size but downscaling is not exactly a resampling.   

2.5. Resampling 
Image resampling is the technique to interpolate new pixel value’s from the original pixel value 
when image is modified in term of row and column (Wade and Sommer 2006). Reduction and 
enlargement of the images causes change in pixel value but the extent of an image remain 
unchanged. The resampling effects are the real concern in image processing regarding its image 
quality. The quality is defined good when the interpolation of a new pixel value must be closer to 
original pixel value (Studley and Weber, 2010). There are three techniques for resampling i.e.  

 Nearest neighbor 
 Bilinear interpolation 
 Cubic convolution 

Nearest neighbour resampling technique is more popular in remote sensing. This technique uses 
the same nearest original pixel value to the new pixel value of the interpolated image. This 
technique does not changes or modify its pixel value (Baboo and Devi, 2010). The main 
advantage of this technique is that it is simple, implementation speed is high and original value 
does not change. The disadvantage of this technique is that it causes positional error along linear 
features. This positional error is due to realignment of pixels (eXtension, 2008). In the figure 
below the orange dot is the original value of the pixel and the red dot is the new pixel value. This 
new pixel is interpolated by the nearest orange dot without changing its value.   
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Figure 2-2 : Nearest Neighbour resampling (Studley and Weber, 2010) 

Bilinear Interpolation is a technique where weighted average of the four nearest pixels is 
considered to interpolate a new pixel value in the resample image. This technique creates a new 
value to a pixel rather providing the same pixel value. Goldsmith (2009) stated that bilinear 
interpolation smoother the image and also produces better positional accuracy. The disadvantage 
of this technique is that it changes original pixel value and introduces a new pixel value which 
may not be present in the image. The figure below explains the bilinear interpolation. 

 
Figure 2-3 : Bilinear Interpolation resampling (Studley and Weber, 2010) 

Cubic convolution is the technique which estimates a new pixel value by calculating the distance 
weighted average of sixteen nearest pixel. This method smoother images more than the bilinear 
and nearest neighbour resampling techniques. The main disadvantage of this technique is that it 
takes 10 to 12 times longer processing time than nearest neighbour (eXtension, 2008).  The figure 
below explains cubic convolution method. 
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Figure 2-4 : Cubic convolution resampling (Studley and Weber, 2010) 

2.6. Downscaling 

2.6.1. Introduction 
In remote sensing, sensors and geophysical surveys are important sources of information about 
the Earth surface and its properties. There are many satellite sensors of different spatial, spectral, 
and temporal resolutions. The spectral resolution is the band in electromagnetic spectrum like 
Landsat spectral resolution has seven bands and hyper spectral sensor has more than 100 bands 
so spectral resolution of hyper spectral is more than that of Landsat.  
 
Satellite sensors which have coarse spatial resolution also had multiple classes within one pixel. 
Spectral un-mixing is the solution to determine the fraction of each class present in coarse pixel. 
The disadvantage of spectral un-mixing is that it yields only the fraction but does not locate them. 
 
In this study LAI is downscaled. LAI product is available at a coarser resolution (> 1 km) at high 
temporal resolution. So there is always a question what should be the spatial resolution of LAI 
needed for the specific application (like monitoring vegetation, transpirational and photo-
synthetically process of particular forest, etc.). LAI is important for many applications (like 
climate modelling, ecosystem modelling, vegetation dynamics, etc) directly or indirectly. Pandya 
et al. (2006b) suggested that for agricultural purpose LAI is needed at the fine resolution. For this 
purpose MODIS LAI product is not suitable because of its coarse spatial resolution. However 
the LAI product is available in coarse resolution but for fine resolution product is not available. 
Downscaling is one of the methods to retrieve fine spatial resolution LAI product. Downscaling 
is to convert coarse spatial resolution to fine spatial resolution as given in figure 2. Mustafa et al. 
(2011) stated that for validation of coarse resolution accurate high resolution LAI data is required 
and also he stated that there are uncertainties present in coarse resolution data.  



Downscaling leaf area index using downscaling cokriging on optical remotely sensed data 
 

  Page | 11 

2.6.2. Downscaling Techniques 
There are several techniques available to estimate LAI from optical data. Atkinson (2012) 
explained that two downscaling techniques i.e. regression approaches and area to point 
prediction. Regression approach estimates finer resolution imagery with the help of covariate 
without considering the support. This method does not use the support effect and also does not 
characterize spatial variation trend of finer image. This method was developed by (Stathopoulou 
and Cartalis, 2009) to downscale AVHRR LST (land surface temperature) of 1 km resolution to 
Landsat TM band 6 of 120 m spatial resolution. They conducted this study using four case 
methods of scaling factor for downscaling. These scaling factors were TM effective emissivity, 
TM LST, combined use of TM LST and TM effective emissivity and use of high resolution 
estimate of AVHRR LST. They found that AVHRR LST show a optimal result with original 
generated LST value at 120 m. Pouteau et al. (2011) downscale MODIS 1 km resolution to 100 m 
by multiple regression and boosted regression tree (BRT) approaches. They used BRT model to 
downscale regional frost occurrence map for agriculture and land resource management. They 
also used a correlation between night land surface temperature and minimum air temperature for 
downscaling. Zhan et al. (2011) developed a method comprises regression approach with 
modulation approach. Kustas et al. (2003) developed TsHARP model based on inverse linear 
relationship between fine resolution NDVI and coarse resolution LST and Jeganathan et al. 
(2011) also developed TsHARP model by localizing the model fitting. Zurita-Milla et al. (2009) 
used spectral mixture analysis on multi-temporal images to downscale 300 m to 25 m resolution 
using categorical data.  
 
In the above downscaling technique they did not consider support of the data. Area to point 
prediction used interpolation technique to downscale the coarse resolution as input variable into 
a same variable as a fine resolution variable. It considers the support of the data i.e. pixel support 
or point support of the data.  Area to point kriging predicts on the support which is smaller than 
the original data.  
 
Pardo-Iguzquiza et al. (2006) developed a downscaling technique using cokriging as predictor    
which is multivariate alternative to area to point kriging. They use ETM+ image for downscaling. 
This technique was developed for general application not for specific application. Cokriging is 
used in this technique because it is unbiased predictor. It involves two or more than two 
variables. It also minimizes the prediction variance and takes account of pixel support, point 
spread function (PSF) of the sensor, spatial correlation in an image, and cross-correlation 
between the images (Pardo-Iguzquiza et al., 2006). In this prediction, semi-variogram of target 
variable and covariable is estimated and the cross-variogram between them is estimated. They 
used sub-pixel information and modelling of covariance and cross-covariance.  Pardo-Iguzquiza 
and Atkinson (2007) upgrade the method by using deconvolution method on estimated 
variogram and then deriving two downscaling weights which act as a high pass filter and low pass 
filter for the high resolution image and low resolution image. Further image fusion is applied to 
achieve downscaled image. The advantage of this technique is that it uses point support 
variogram model to downscale the image to the resolution of covariable. In this study the effect 
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of PSF on downscaling is considered.  Pardo-Iguzquiza et al. (2006) consider point support 
function in deconvolution for downscaling algorithm. 
2.7. Point spread function 
Digital images are imperfect replica of the true objects. This imperfection is due to imaging 
system, signal noise, atmospheric effect mainly scattering, and shadows. A blurring effect in the 
digital images is due to aberration of lens, recording medium resolution, and atmospheric scatter. 
These effects together specified as point spread functions (Wolf and Dewitt, 2004) . Image of a 
point source is called point spread function (PSF). It describes the response of the sensor to 
radiance light from the given direction (Feng et al., 2004). PSF also describes pixel’s non-uniform 
spatial information. Huang et al. (2002) studied the effect of sensor PSF on land product of 
MODIS in which the effect of uniform PSF and Gaussian PSF illustrated in figure 4 were 
studied.  

 
Figure 2-5 : Uniform PSF (Pardo-Iguzquiza and Atkinson, 2007) 

 
Figure 2-6 : Gaussian PSF (Pardo-Iguzquiza and Atkinson, 2007) 
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The quality of the image is more affected by the PSF, Gaussian PSF smoothen the image more 
than that of ideal PSF. The ideal PSF is the PSF which has uniform response from inside the 
pixel only and it is not affected by the response from outside of pixel while actual PSF is the PSF 
which has the effects from the surrounding. Actual PSF is the PSF of sensor. In this case 
Gaussian fit is more optimal and this Gaussian PSF is approximately same as actual PSF In this 
case Gaussian PSF is approximately same as actual PSF. Gaussian PSF changes pixel value while 
ideal PSF doesn’t change the value from the original pixel value. PSF plays an important role 
during deconvolution it tunes the deconvolution process. It accurately estimates the pixel value 
from its surrounding. In this study uniform and Gaussian PSF are used for the deconvolution 
process. The role of deconvolution in this study is to built the relation between pixel support 
covariances and point support covariances (Pardo-Iguzquiza and Atkinson, 2007). 
 
In this study an attempt is made to study the technicality of the downscaling cokriging algorithm 
and to estimate LAI at finer scale. 
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3. STUDY AREA AND DATA DESCRIPTION 

To study the downscaling cokriging technique we require optical data of coarser spatial resolution 
and finer spatial resolution. We select barkot forest region for our study because forest plays an 
important role in global carbon cycle and ecological process.   

3.1. Study Area 
3.1.1. Selection of study area 
Forest area near Dehradun district is selected as study area for this research. This area is 
surrounded by forests like Mohand forest, Barkot forest, Thano forest etc. The main focus of 
this study will be on Barkot forest is a tropical forest having sal species in major. Sal (Shorea 
robusta) is one of the important species of timber which is delicate and highly threatened from 
land use and development and also management practices (Singh, 2010). 
 
3.1.2. Study area description 
The study area is located in Dehradun, Uttarakhand, which  is located between (30°31'55.20"to 
29°54'27.54") N and (77°34'24.31" to 78°17'8.57") E at an average elevation of 647.09m. 
Dehradun is surrounded by dense forests, Rajaji national park and many species of vegetation. 
The study area has enormous and diverse vegetation in form of forests, agriculture land, road side 
plantations, etc. The study area is well connected to metalled roads which are connected to many 
link roads. These link roads are well connected to villages which make access to interior of the 
study site. The study site is connected to two rivers i.e. Song and Jakhan rivers. The average 
annual temperature of the area is 20° C and average annual rainfall of 2080mm. May and June are 
the hottest month and December and January are the coldest month of the year.  
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Figure 3-1 : Study area   
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3.2. Data used 

3.2.1. Satellite data 
Moderate-Resolution Imaging Spectroradiometer (MODIS) is a space-borne satellite sensor 
having 36 spectral bands of wavelength from 0.4 μm to 14.4 μm. It works in three spatial 
resolutions on 250 m, 500 m, and 1 km. There are 2 bands at 250 m, 5 bands at 500 m and 29 
bands at 1 km. It is having a high temporal resolution (every 1 to 2 days). There are 3 platform 
Terra, Aqua and combined platform of Terra and Aqua. MODIS product is delivered in 
sinusoidal projection with 10° grid. It covers the whole globe in 36 tiles along east-west axis and 
18 tiles along north-south axis of 1200 x 1200 km (Pandya et al., 2006a). MOD15A2 LAI/FPAR 
and MOD13Q1 product is used in this study which is a level 4 product. Level 4 products are final 
processed data which passes all the correction like geometric, radiometric, etc. Figure 3-2 shows 
the tiles covering the products, green color tile represent land product, blue tile represent ocean, 
pink tile represent sea-ice product and orange tile are land tile but product is not generated 
(Myneni et al., 2003) 

 

 

Figure 3-2 : The tiles covering MODIS product (Myneni et al., 2003) 

 
 MOD15A2 (MODIS LAI) is 8 day terra product of 1 km. It is used as a primary variable 

for downscaling. Time of acquisition for this product is 11:00 AM IST and date is 16th 
October, 2011. MOD15A2 product is a 5 layer image i.e. LAI of 1 km pixel size, has 5 
layers i.e. LAI product, FPAR product, FparLai_QC, FparExtra_QC, Std. deviation. The 
scale factor for LAI is 0.10 and for FPAR it is 0.01.  
 

  MOD13Q1 is a 16 day NDVI product of 250 m from MODIS Terra sensor. This 
product is used as a covariable and participates in downscaling the primary variable by 
using downscaling cokriging. The product comprises NDVI, EVI, vegetation indices 
quality details, red reflectance band, NIR reflectance band, blue reflectance band, MIR 
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reflectance band, view zenith angle, sun zenith angle, relative azimuth angle, composite 
day of the year, and pixel reliability summary QA for 16 day at 250 m spatial resolution. It 
is in sinusoidal projection with 10° grid (DAAC, 2013).    
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4. MATERIALS AND METHODOLOGY 

The main task of this study is to explore the downscaling cokriging technique using uniform and 
Gaussian point spread functions and to downscale LAI for the resources department. MODIS 
provide LAI product at 1000 m which is coarse spatial resolution and is not sufficient to study 
vegetation density at this scale (Hwang et al., 2011). So downscaling of the available coarse 
resolution product to fine resolution or desired resolution will resolve the above problem. For 
this study downscaling cokriging is used to downscale MODIS LAI product of 1000 m spatial 
resolution to 250 m spatial resolution. In this level it is downscaled to 250 m spatial resolution 
with the help of MODIS NDVI product of 250 m spatial resolution. It is necessary to calculate 
correlation between primary variable and covariable for cokriging.   

4.1. Estimating correlation between LAI, NDVI, reflectance band (red, 
NIR) 

To estimate correlation between primary variable and covariable is important in downscaling 
cokriging technique. In cokriging covariable must be correlated to the primary variable. MODIS 
LAI product, MODIS NDVI product and MODIS surface reflectance is used to estimate 
correlation. MODIS NDVI product is given at 250 m spatial resolution and MODIS surface 
reflectance is given at 500 m spatial resolution so both the products are aggregated to MODIS 
LAI 1000 m spatial resolution and then liner model of regression is applied to estimate 
correlation between them. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4-1 : Estimation of correlation between LAI and NDVI, red reflectance. 

MODIS LAI 
(1000 m) 

MODIS NDVI 
(250 m) 

MODIS surface 
reflectance( 500m) 

Aggregated to 1000 m  Aggregated to 1000 m  

Correlation between LAI, NDVI and reflectance band 
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4.2. Resampling LAI from 1000 m to 250 m for calculating sample 
variogram 

To calculate sample cross-variogram both variable at coarse and fine resolution should be on 
same scale, so to bring both the variable on common scale resampling has been conducted. In 
this, four type of resampling has been experimented i.e. nearest neighbour, bilinear interpolation, 
cubic convolution and trivial resampling. After resampling by these four techniques, cross-
variogram has been calculated at constant cut-off of 6000 m, common bin of 15 and then best fit 
model is obtained at common range of 3817.4 m. To see the effect of resampling on variogram 
the difference in sill and nugget is observed. Then the results are compared and better resampling 
has been selected.   

4.3. Modelling semi-variogram and cross-variogram for convolution and 
de-convolution using uniform PSF and Gaussian PSF. 

Cokriging is unbiased predictor which minimizes the prediction variance. It considers the pixel 
support i.e. the pixel size of the image through semi-variogram and cross-variogram. This 
cokriging requires estimation of covariance and cross-covariance first. Pixel supports are 
modelled as the random function (RF) and further realization of these random functions is 
considered. All the realization images should be co-registered to avoid the mismatch of the pixel 
at different resolutions. MODIS NDVI 250 m is used as covariable for downscaling MODIS 
LAI 1000 m to 250 m spatial resolution. Pardo-Iguzquiza et al. (2006) explain the cokriging 
prediction by estimating the weights as:  
 

( ) = ( ) +  Equation 4.1 
 
 

( ) Random variable of  spectral band estimated by cokriging for (MODIS at 250 
m) pixel size with spatial location { }.              

( ) Random variable of coarse spatial resolution with pixel size V (MODIS LAI at 
1000 m) and spectral band k. The weight assigned to random variable of the  
pixel is .  

( ) Random variable of spectral band of fine spatial resolution image for  pixel 
size. The weight assigned to random variable of the  pixel is . 

N N of these pixels are used to predict spectral band k with support V in prediction 
of  ( ) 

M M of these pixels are used to predict spectral band   with support  in prediction 
of  ( ). Furthermore, variable are assumed o be second order stationary with 
constant mean. 

 Weights assign to the random function  at location ( ) which is used to 
predict at location  
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 weights assign to the random function  at location ( ) which is used to 
predict at location  

 
Cokriging system can be expressed a matrix: 

CL = B  Equation 4.2 
 
C is the matrix containing covariances or cross-covariances of experimental images 
L is the matrix containing the unknown weights 
B is the matrix which contains the cross-covariances which are not accessible experimentally 
(More information on these matrix is given by Pardo-Iguzquiza and Atkinson (2007).) 
 
The unknown weights can be calculated as matrix C and B are calculated.  

L =  B Equation 4.3 
 
Due to two problem in matrix B i.e. firstly the parabolic behaviour in covariances and cross-
covariances which is caused by positive area of pixel support which doesn’t capture this 
behaviour and secondly all covariances and cross-covariances must be positive definite it is not 
solved empirically (Pardo-Iguzquiza and Atkinson, 2007). So the above problem is solved by 
using theory of linear system and concept of random function with point support. Theory of 
linear system built a relation between point support covariance and pixel support covariance by 
using convolution of point covariance with the point spread function of the sensor (Pardo-
Iguzquiza and Atkinson, 2007). In this study uniform PSF and Gaussian PSF is used. The 
uniform PSF has the constant all over the pixel which is given as:  

(y) =  Equation 4.4 

     
(y) represents the response of the pixel  at point support. 

y represent a point support  
 represents the support size 

 
Gaussian PSF is given by Pardo-Iguzquiza et al. (2010) as: 

(s) = σ σ
′
 Equation 4.5 

   
is the standard deviation along x axis 
 is the standard deviation along y axis 

These  and were chosen at 250 m for coarse spatial resolution and 122.5 m for fine spatial 
resolution after parameterizing these standard deviation. These standard deviations are 
parametrized by selecting many values for standard deviation and then estimating point support 
variogram were analyzed to check the variance. The standard deviation which gives the least 
variance is selected and further used to estimate PSF. Also these values were selected on basis of 
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scale factor on which primary and covariable is downscaled like LAI need to be downscaled at 
250 m and standard deviation close to centre of the pixel of NDVI was selected.    
  
Applying theory of linear systems to build the relation between covariance, 

     
  

                   =    
Equation 4.6 

 
 
* is the convolution operator is used to multiply number of arrays of different or same sizes but 
of same dimensionality to produce another array of same dimensionality.  
  is known as deterministic correlation and  

(s) is the point support covariance of the image of the kth band 
s is the vector between centre of the two pixel of area V 
 
With the above method i.e. convolution, covariance and cross-covariance can be estimated with 
any support. Further, deconvolution method is used to obtain point covariance and point cross-
covariance with the help of estimated point support covariance and cross covariance (Pardo-
Iguzquiza and Atkinson, 2007). These theoretical semi-variogram and cross-variogram models are 
fitted to estimate covariances and cross-covariances models. These models are used in 
deconvolution process and also these nested models can be used to provide more information 
about the kind of model which should be used for point support covariances and cross-
covariances. 
Deconvolution process explained by (Pardo-Iguzquiza and Atkinson, 2007) is used to estimate 
point covariances and cross-covariances. These point covariances and cross-covariances are 
estimated by using experimental covariances and cross-covariace or model fitted to them. Since 

(s) is unknown so (s) is used to predict (s) which is given Pardo-Iguzquiza and 
Atkinson (2007) as: 
  Equation 4.7 
 
               Equation 4.8 
 

 is the modeled covariance  
 
In similar model covariances and cross-covariance can be estimated which are more stable. 
Further optimization of de-convolution is carried out to obtain the optimized model for point 
covariances and cross-covariances. It is an iterative procedure to minimize some distance with 
the help of desired model. So this minimization procedure is iteratively used for each structure in 
order to obtain the set of covariances and cross-covariances which must be positive definite. 
These positive definite in term of positive point support covariance and cross-covariance  are 
built by linear model of co-regionalization. Linear model of co-regionalization ensures that there 
should not be a negative variance and checks the matrix is positive definite. (More on linear 
model of co-regionalization is given by (Pardo-Iguzquiza and Atkinson, 2007). 
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4.4. Cokriging system to estimate the downscaling cokriging weights and 
to obtain the downscaled image. 

To obtain the unbiased prediction the weight should be unbiased and also minimize the 
prediction variance, as given below: 
E{ ( )} = E{ ( )} =  Equation 4.9 
 
E{ ( )} is the estimated variable which is assumed to be second order stationary with 
constant mean. 
From equation 2 and 11 
         +  Equation 4.10 
 
For unbiased predictor  = 1 and  = 0 which means the sum of the weights of 
variable  should be equal to one and sum of the weights of the variable  should be equal to 
zero. These weights behave like a low pass filter and high pass filter and these filters are applied 
to get desired fine spatial resolution image. This high pass filter is applied on the coarser image 
(MODIS LAI 1000 m) and low pass filter is applied to finer resolution image (MODIS NDVI 
250 m) and then image fusion is applied to fuse both the images shown in figure 4-2. 

In this fusion, 3 x 3 window is applied on the coarse resolution and 4 x 4 window is applied on 
the fine resolution image. The sixteen pixels from the centre of the pixel of coarse resolution are 
estimated and 4 x 4 window estimate pixel from the neighbourhood. Due to both coarse and fine 
resolution image comes at same resolution and then both the images are fused to obtain 
downscaled image at 250 m.  
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Figure 4-2 : Fusion of coarser and finer resolution image by applying cokriging weights to obtain 
downscaled MODIS LAI image at 250 m spatial resolution 

 

4.5. Comparison of  downscaled images obtained using uniform and 
Gaussian PSF 

To analyze quality of downscaled MODIS LAI 1000 m image to 250 m spatial resolution 
descriptive statistics i.e. mean, median, standard deviation, minimum and maximum has been 

Weights of 3 x 3 window applied 
on coarser image (MODIS LAI 
1000 m)  

Weights of 4 x 4 window applied 
on finer image (MODIS NDVI 
250 m)  

MODIS LAI 1000 MODIS NDVI 250 

LAI at 250 m 
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calculated. Histogram and Box plot analysis were carried out to analyze the distribution of LAI 
value after downscaling by using uniform and Gaussian PSF. Auto-correlation of downscaled 
image has been calculated for spatial dependence and also use for comparison both the 
downscaled image.     

4.6. Summary of  the method 
Methodology adopted in this research to achieve all the objectives is summarized below:- 
 

 In this MODIS LAI 1000 m spatial resolution image is used to downscale to 250 m. 
 MODIS data is given in sinusoidal projection. So, re-projection of MODIS data from 

sinusoidal to UTM projection is executed onto a WGS 84 datum by using MODIS 
conversion tool kit. The data are resampled by nearest neighbour techniques at the same 
time of re-projection. 

 To select the covariable to downscale by using cokriging it is necessary to find the 
correlation between target variable and covariable. For this purpose correlation is 
estimated between MODIS LAI, MODIS NDVI, and MODIS surface reflectance. 
MODIS LAI has spatial resolution of 1000 m, MODIS NDVI has spatial resolution of 
250 m and MODIS surface reflectance has spatial resolution of 500 m. So, all variable are 
aggregated to the common resolution to estimate correlation. Linear model of regression 
is applied to these variables in R software to estimate the p-value and R-squared value. 

 The sample variogram of MODIS LAI 1000 m and MODIS NDVI 250 m were 
calculated. For the sample cross-variogram first MODIS LAI 1000 m has been 
resampled. To resample MODIS LAI at 250 m NN, CC, BI and trivial methods were 
used. Trivial resampling method pixels are degraded with equal value which is given in 
figure (4.3). Cross-variogram between LAI and NDVI at 250 m is calculated by using 
these techniques at common cut-off of 6000 m and bin of 15. Then these sample 
variogram were modelled using exponential model at common range of 3817.4. The 
effect of resampling was observed by comparing the sill and nugget and optimal 
resampling is selected by these comparisons.   
Here trivial resampling of MODIS LAI 1000 m to 250 m has been executed in which 
pixel are resample at 250 m in equal pixel value i.e. given in figure below: 
 
 

 
 
5 

  
 
 

 
 

Figure 4-3 : Resampling by using trivial method. 

5 5 5 5 

5 5 5 5 

5 5 5 5 
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Pixel of (1000 x1000) m 
spatial resolution with value 
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Degraded Pixel of 1000 m 
to (250 x 250) m spatial 
resolution with value 5  
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 These variogram and cross-variogram were used to prepare parameter files for 
downscaling algorithm by Pardo-Iguzquiza et al. (2006) by using uniform (or the ideal 
PSF) and Gaussian PSF. For Gaussian PSF  and are parameterized first and then 
optimal  and  are selected to estimate point support variogram and point support 
crosss-variogram.  

 To study the impact of PSF on variogram estimated point support variogram and point 
support cross-variogram were analyzed. 

 Then these regularized estimated point support variogram and cross-variogram are used 
to estimate cokriging weights using uniform and Gaussian PSF. 

 Applying 3 x 3 weights (high pass filter) on the coarser image (MODIS LAI 1000 m) and 
4 x 4 weights (low pass filter) are applied on finer resolution image (MODIS NDVI 250 
m) for both uniform and Gaussian PSF.     

 Then by image fusion finer resolution image MODIS LAI is obtained at 250 m for both 
the PSF.  

 To study the impact of PSF on downscaling cokriging histogram and boxplot were 
estimated to show the difference in both the images and also descriptive statistics were 
compared for images obtained by both the PSF.  
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Figure 4-4 : Method adopted in this study 

MODIS LAI 1000 m  MODIS NDVI 250 
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at cutoff = 6000 m, range = 3817.4 and bin 
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Downscaling Algorithm 
by Pardo-Iguzquiza.et.al. 
(2006) using uniform PSF 
 

Downscaling Algorithm 
by Pardo-Iguzquiza.et.al. 

(2006) using Gaussian 
PSF 

MODIS LAI at 1000 m is 
degraded to 250 m for cross-
variogram in equal pixel value. 

Preparing parameter file for 
downscaling algorithm for 
uniform PSF 

Preparing parameter file for 
downscaling algorithm for 
Gaussian PSF 

Plotting of estimated point support variogram for 
comparison for both uniform and Gaussian PSF   

Descriptive statistical analysis of downscaled image 
obtained by using uniform and Gaussian PSF   
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4.7. Software used 
Table 4.1: Description of software used 

S.No Software Used for 

1 MODIS Conversion Tool-kit  Re-projection MODIS data from 
sinusoidal to UTM projection 

2 Envi 5.0, ArcGIS 10 Creating subset of image, creating 
ASCII file, define projection of 
downscaled image 

3 Force 2.0 (Fortran based compiler) Downscaling cokriging algorithm 

4 R Software Estimating variogram, cross-
variogram, descriptive statistics, 
estimating auto-covariances.  

5 Notepad To prepare parameter files for 
downscaling algorithm 

4 Microsoft office 2007 Creating table , writing thesis 
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5. RESULTS 

This chapter includes the main outcome of this study. In this chapter the downscaling algorithm 
is explored by using point spread function and also its effect of variogram and downscaling 
image. The results are divided under four major sections: 

 Correlation of LAI with NDVI, NIR and Red bands 
 Impact of resampling on the variogram and cross-variogram 
 Impact of PSF on variogram 
 Impact of PSF on downscaled image 

5.1. Correlation of   LAI with NDVI, NIR and Red bands from optical 
image 

Correlation is used to find the relationship between two or more than two variables. In this study 
relationship is quantified by the correlation coefficient between LAI, NDVI, Near Infrared and 
red band which is shown in table 5.1.  

  
Table 5.1 : Correlation of LAI with the variables NDVI, NIR and Red reflectance 

Variable  p-value R (correlation 
coefficient) 

NDVI <0.01 0.58 
NIR <0.01 0.47 
Red <=0.001 0.08 

5.2. Impact of  resampling on the variogram 
In this study downscaling has been conducted from 1000 m spatial resolution to 250 m spatial 
resolution rather than 1000 m to 500 m because NDVI product is available at 250 m spatial 
resolution and at 500 m spatial resolution NDVI product is not availabe. To downscale LAI, 
cokriging is used because in cokriging covariable are used for prediction. In downscaling 
cokriging technique, cross-variogram is used to estimate cross covariances for convolution and 
deconvolution process, therefore for estimating the cross-variogram between MODIS LAI and 
NDVI must be on same resolution. So to bring coarser resolution at desired fine resolution 
MODIS LAI at 1000 m has been resampled. To see the effect of resampling sample cross-
variogram were calculated by using four resampling techniques nearest neighbouring, bilinear 
interpolation, cubic convolution and trivial method on the variogram and cross variogram. To see 
the effect of resampling on variogram and cross-variogram each resampling has executed on LAI 
to resample and sample cross-variogram has been calculated which has been given below in the 
form of table and figure. Each sample variogram and cross-variograms are calculated by using 
common cut-off of 6000 and bin of 15 and then exponential model has been best fit at common 
range of 3817.4 m. For linear model of coregionalization the model is fixed to common range 
which is examine visually.   
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By using Nearest Neighbouring (NN) resampling on LAI, the nearest value is assigned to a pixel 
due to which there is not much change in the original value. The Figure (5-1) and table 5.2 shows 
the sill range and nugget of variogram of resampled LAI.  

 
 
 
 
 
 
 
 
 
 

 
Figure 5-1 : Cross-variogram between MODIS NDVI 250 m and resampled LAI 250 m using 

NN resampling 

Table 5.2 : Fitting of model to cross-variogram between MODIS NDVI 250 m and resample 
LAI 250 m for NN resampling 

 
By using Bilinear interpolation (BI) resampling, there is change observed in the value of sill and 
nugget which is shown in figure 5-2. It is also observed that the model is not properly fit at this 
constant range and shows more variance which is shown in figure (5-2) and table (5.3) 
 
 
 
 
 
 
 
   
 
 
 
  
Figure 5-2 : Cross-variogram between MODIS NDVI 250 m and resample LAI 250 m using BI 

resampling 
 
 
 
 
 

 Model Psill Range 
M_LAI_250 Exponential 3.72 3817.44 
M_NDVI_250 Exponential 0.01 3817.44 
M_LAI_250.M_NDVI_250 Exponential 0.19 3817.44 
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Table 5.3 : Fitting of model to cross-variogram between MODIS NDVI 250 m and resample 
LAI 250 m for BI resampling 

 
 
By using Cubic convolution (CC) resampling, there is change observed in the sill and nugget. It is 
also observed that the model is not properly fit at this constant range and shows less variance 
which is shown in figure (5-3) and table (5.4) 
 
 
 
 
 
 
 
 
 
 
 
   

 
Figure 5-3 : Cross-variogram between MODIS NDVI 250 m and resample LAI 250 m using CC 

resampling 

Table 5.4 : Fitting of model to cross-variogram between MODIS NDVI 250 m and resample 
LAI 250 m for CC resampling 

 
By using trivial resampling, pixel is resampled at 250 m into equal original pixel values. The effect 
of trivial resampling is given in table (5.5) 
 
 
 
 
 
 
 
 
 

 Model Psill range 
M_LAI_250 Exponential 2.09 3817.44 
M_NDVI_250 Exponential 0.013 3817.44 
M_LAI_250.M_NDVI_250 Exponential 0.14 3817.44 

 Model Psill range 
M_LAI_250 Exponential 3.20 3817.44 
M_NDVI_250 Exponential 0.01 3817.44 
M_LAI_250.M_NDVI_250 Exponential 0.15 3817.44 
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Figure 5-4 : Cross-variogram between MODIS NDVI 250 m and resample LAI 250 m using 
trivial resampling 

Table 5.5 : Fitting of model to cross-variogram between MODIS NDVI 250 m and resample 
LAI 250 m for trivial resampling. 

 
These tables 5-2 5-3 5-4 and 5-5 shows the change in sill and nugget at common range. 
Resampling by trivial method shows the highest variance among all four resampling applied. 
There is very close difference in the sill and nugget observe in the trivial method and NN 
resampling. Since there is no change in the pixel value trivial method is used as resampling for 
calculating sample cross-variogram and these sample variogram and cross-variogram point 
support covariance and cross-covariance is estimated by deconvolution in cokriging system.   

5.3. Impact of  PSF on variogram 
Here for this study uniform PSF and Gaussian PSF are executed with downscaling cokriging. To 
study the impact of Gaussian PSF, (sigma x) and (sigma y) in equation 4.5 were first to set 
in order to estabilish the width and shape of the PSF. The width and shape of the PSF is 
responsible to characterize the imaging response to point signals. For this research, and  are 
kept equal for coarse resolution (LAI) at 250 m and 122.5 m for fine resolution (NDVI). To 
parameterize and many values were used which shows its effect on spatial variability. There 
is more variance is observed in 250 m and 122.5 m sigma values. Further, these PSF has an effect 
on deconvolution which can be studied by point support variogram and cross-variogram. To 
model estimated point support variogram and cross-variogram nested exponential model was 
estimated. The estimated point support variogram from the downscaling cokriging for both the 
downscaled images of MODIS LAI 1000 m with uniform and Gaussian PSF were different for 

 Model Psill range 
M_LAI_250 Exponential 3.78 3817.44 
M_NDVI_250 Exponential 0.013 3817.44 
M_LAI_250.M_NDVI_250 Exponential 0.21 3817.44 
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empirical variogram of LAI and NDVI and same for cross-variogram. The point support 
variogram and cross-variogram are given below in figure 5-5 (a) and (b), 5-6 (a) and (b), 5-7 (a) 
and (b)  

 
(a)      (b) 

Figure 5-5 : (a) Estimated point support variogram for MODIS LAI from 1000 m for uniform 
PSF (b) Estimated point support variogram for MODIS LAI from 1000 m for Gaussian PSF 

 
(a)       (b) 

Figure 5-6 : (a) Estimated point support variogram for MODIS NDVI from 250 m for uniform 
PSF (b) Estimated point support variogram for MODIS NDVI from 250 m for Gaussian PSF 

 
(a)       (b) 

0
0.5

1
1.5

2
2.5

3
3.5

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

Se
m

i-v
ar

ia
nc

e 

Lag 

Uniform PSF 

0
0.5

1
1.5

2
2.5

3

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

Se
m

i-v
ar

ia
nc

e 
Lag 

Gaussian PSF 

0
0.002
0.004
0.006
0.008

0.01

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

Se
m

i-v
ar

ia
nc

e 

Lag 

Uniform PSF 

0
0.002
0.004
0.006
0.008

0.01

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

Se
m

i-v
ar

ia
nc

e 

Lag 

Gaussian PSF 

0

0.05

0.1

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

Se
m

i-v
ar

ia
nc

e 

Lag 

UniformPSF 

0

0.05

0.1

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

Se
m

i-v
ar

ia
nc

e 

Lag 

Gaussian PSF 



Downscaling leaf area index using downscaling cokriging on optical remotely sensed data 
 

  Page | 33 

Figure 5-7 : (a) Estimated point support cross-variogram between MODIS NDVI 250 m and 
resample LAI from 250 m for uniform PSF(b) Estimated point support cross-variogram between 

MODIS NDVI 250 m and resampled LAI from 250 m for uniform PSF 

 
Table 5.6 : Modelled point support variogram for estimated point support variogram for MODIS 

LAI 1000 m 

                     MODIS LAI 1000 m  
 Uniform PSF Gaussian PSF 
 First 

structure 
Second 
structure 

First 
structure 

Second 
structure 

Sill  1.75 2.85 1.75 2.06 
Range (X) 481.52 3040.57 715.96 3857.09 

 
 

Table 5.7 : Modelled point support variogram for estimated point support variogram for MODIS 
NDVI 250 m 

                     MODIS NDVI 250 m  
 Uniform PSF Gaussian PSF 
 First 

structure 
Second 
structure 

First 
structure 

Second 
structure 

Sill  0.002 0.002 0.002 0.008 
Range (X) 842.1 997.9 842.1 997.9 

 
 
Table 5.8 : Modelled point support cross-variogram for estimated point support cross-variogram 

between MODIS NDVI 250 m and LAI resample at 250 m 

 
 

 
 
 
 
 
 
 
To see the effect of PSF on the variogram and cross variogram PSF is executed during   
downscaling cokriging. These downscaled images are analyzed by estimated point support 
variogram from the downscaled cokriging. After applying uniform and Gaussian PSF on MODIS 
LAI 1000 m it was found that there is change in estimated short range (Range (X)) for both the 

    Cross variogram of MODIS LAI NDVI 250 m  
 Uniform PSF Gaussian PSF 
 First 

structure 
Second 
structure 

First 
structure 

Second 
structure 

Sill  0.0015 0.097 0.0015 0.097 

Range (X) 601.4 1201.5 601.4 1201.5 
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PSF which is described in table 5-6. It is observed that range for the Gaussian PSF is more than 
the uniform PSF and also sill for Gaussian PSF is more than that of uniform PSF.  
 
Using uniform and Gaussian PSF for NDVI does not show any change in sill and range as 
shown in table 5-7 but there is difference in the variogram where variance and lag was different 
which is shown in figure 5-6 (a) and 5-6 (b) and also minimum variance is very slightly less for 
uniform PSF i.e (0.000181) than Gaussian PSF i.e. (0.000154) which is negligible. 
 
There is also no change seen in the sill and range of the estimated cross-variogram after using 
uniform and Gaussian PSF. As shown in table 5-8 it has been noticed that the sill and the range 
for both are similar for the first structure of uniform and Gaussian PSF and the sill and the range 
for second structure are also similar. There is also approximately no change in variogram as 
shown in figure 5-8 (a) and (b). 

5.4. Impact of  PSF on downscaling cokriging 
There is impact of PSF on estimating the cokriging weights. The point support models are used 
for calculating these weights for both finer (MODIS LAI 1000 m) and coarser resolution images 
(MODIS NDVI 250 m). These weights act as a high pass filter and low pass filter. Once these 
weights are calculated then they are applied as a window to obtain desired fine resolution image. 
These weights are estimated with the use of support on the predicted variable given in equation 
4.2. 
 
It can be seen that there is change in the weights after applying the uniform and Gaussian PSF. 
The example of weight for 3 x 3 window applied on MODIS LAI 1000 m using uniform PSF is 
given in table 5-9 (a) and weight for 4 x 4 window applied on MODIS NDVI 250 m using 
uniform PSF is given in table 5-9 (b). Same using Gaussian PSF the example of weights for 3 x 3 
window applied on MODIS LAI 1000 m and weights for 4 x 4 window applied on MODIS 
NDVI 250 m is given in table 5-10 (a) and 5-10 (b). The sum of the weights of the high pass filter 
applied on MODIS LAI 1000 m estimated image are nearly 1.0 and sum of the weights of low 
pass filter applied on MODIS NDVI 250 m estimated image are nearly zero which implies the 
unbiased condition to set up a unbiased cokriging system.  
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Table 5.9 :(a) Example of Cokriging weights of 3 x 3 window which act as high pass filter for 
coarser resolution image (MODIS LAI 1000 m) obtained by using uniform PSF (b) Example of 

Cokriging weights of 4 x 4 window which act as low pass filter for finer resolution image 
(MODIS NDVI 250 m) obtained by using uniform PSF 

A11 

 

A12 

0.083 0.357 -0.146 0.042 0.407 -0.137 

0.198 0.668 -0.033 -0.098 0.924 -0.031 

0.030 -0.182 0.027 0.063 -0.186 0.017 

   
A13  A14 

0.003 0.380 -0.054 -0.001 0.217 0.123 

 -0.180 0.916 0.043  -0.162 0.734 0.222 

 0.030 -0.132 -0.008  0.002 -0.070 -0.065 

        (a) 
 

a11  a12 

-1.039 -0.667 -0.820 -0.751 -1.103 -0.738 -0.821 -0.637 

0.835 0.373 -1.760 0.319 0.933 0.451 -1.688 0.332 

 -0.396 1.352 5.855 2.518 -0.191 1.211 5.837 2.541 

0.159 -0.595 -2.845 -2.537  0.411 -0.731 -3.057 -2.747 

  

 
a13  a14 

-1.145 -0.707 -0.767 -0.478 -0.935 -0.610 -0.692 -0.578 

1.058 0.410 -1.789 0.281 0.977 0.368 -1.830 0.176 

 -0.358 1.261 5.947 2.458 -0.516 1.347 5.955 2.433 

0.073 -0.854 -3.206 -2.184  -0.206 -0.830 -3.066 -1.991 

(b) 
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Table 5.10 : (a) Example of Cokriging weights of 3 x 3 window which act as high pass filter for 
coarser resolution image (MODIS LAI 1000 m) obtained by using Gaussian PSF: (b) Example of 

Cokriging weights of 4 x 4 window which act as low pass filter for finer resolution image 
(MODIS NDVI 250 m) obtained by using Gaussian PSF 

B11  B12 

0.285 0.228 -0.111 0.130 0.317 -0.122 

0.013 0.583 0.016 -0.149 0.830 0.049 

0.063 -0.047 -0.032 0.087 -0.108 0.034 

 
B13  B14 

0.035 0.396 -0.079 -0.003 0.412 0.028 

-0.169 0.722 0.144 -0.095 0.349 0.321 

0.047 -0.070 -0.027 - 0.012 0.034 -0.035 

(a) 
b11  b12 

-2.476 -0.791 -0.746 -1.092 -1.394 -0.847 -1.063 -0.891 

1.500 0.540 -2.551 0.721 1.026 0.831 -2.287 0.723 

 -0.226 1.186 7.426 3.451 -0.174 1.156 8.099 3.313 

0.558 -0.321 -3.472 -3.706  0.927 -0.831 -4.724 -3.863 

 
b13  b14 

-1.368 -1.409 -1.124 -0.358 -2.424 -1.347 -0.747 -0.463 

1.118 0.114 -2.510 0.409 1.602 0.843 -2.794 0.396 

 -0.085 1.651 8.342 2.498 -0.020 1.582 7.669 2.659 

0.268 -1.539 -4.792 -2.214  -0.121 -0.906 -3.553 -2.374 

(b) 
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These changes in weights may also show the effect of uniform and Gaussian PSF on downscaling 
cokriging because these weights are used to set up the ordinary cokriging system. These weights 
are also responsible for the prediction minimum variance and unbiased condition.  
To study the effect of PSF on downscaling cokriging image descriptive statistics have been 
calculated i.e. histogram, box plot, minimum, maximum, 1st quartile, 2nd quartile, mean, median 
and standard deviation which is given in Table 5-11. This table explains changes at downscaling 
levels at uniform PSF and Gaussian PSF. The impact of PSF can be noticed on downscaled 
image in figure 5-8 and 5-9.  

 

 
Figure 5-8 : Downscaled image of MODIS LAI at 250 m using uniform PSF 

 
Figure 5-9 : Downscaled image of MODIS LAI at 250 m using Gaussian PSF 

.  

LAI 

LAI 



Downscaling leaf area index using downscaling cokriging on optical remotely sensed data 
 

Page | 38   

 

 
(a)       (b) 

Figure 5-10 : (a) Histogram of LAI showing occurrence of downscaled MODIS LAI at 250 m 
using uniform PSF (b) Histogram of LAI showing occurrence of downscaled MODIS LAI at 250 

m using Gaussian PSF 

 

 

 
(a)      (b) 

Figure 5-11 : (a) Boxplot of LAI showing distribution of downscaled MODIS LAI at 250 m using 
uniform PSF(b) Boxplot of LAI showing distribution of downscaled MODIS LAI at 250 m using 

Gaussian PSF 

  

Histogram in figure 5-10 (a) and 5-10 (b) is showing the distribution of LAI at different 
downscaling level and it also shows LAI value from 4.5 to 5 has high occurrence in downscaled 
250 m using uniform PSF and in figure 5-10 (b) the downscaled image with Gaussian PSF of 250 
m has high occurrence in LAI value 4 to 5. From the histogram it can also be noticed that the 
range of LAI value are more in gaussian PSF than that of uniform PSF.   
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5.4.1. Comparison between downscaled image using uniform PSF and Gaussian PSF 
Descriptive statistic has been calculated at different downscaling level which is given below in 
Table 5-11: 

Table 5.11 : Spatial distribution of downscaled LAI value obtained by using uniform and 
Gaussian PSF 

 With uniform PSF With Gaussian PSF 

Disaggregation 
level 

 4 x 4  4 x 4 

Pixel size (m) 1000 250 1000 250 
Minimum 0.6 -0.108 0.6 -0.755 
1st Quartile 1.775 1.808 1.775 1.911 

Mean 3.405 3.407 3.405 3.408 
Median 3.950 3.636 3.950 3.621 

3rd Quartile 4.90 4.854 4.90 4.855 
Maximum 6.0 7.408 6.0 8.032 

SD 1.64 1.73 1.64 1.691 
 
Descriptive statistics shows changes in the minimum, maximum, 1st quartile, 3rd quartile and 
standard deviation for downscaled image obtained using uniform and Gaussian PSF which can 
be observed in the box plot in figure 5.17 (a) and 5.17 (b). This has also been observed that there 
is approximately no change in mean and median and also there is increase in standard deviation 
while the resolution is increased using uniform and Gaussian PSF. To show the spatial 
dependence in downscaled image using uniform and Gaussian PSF auto-covariance is estimated 
for the 10th row in the image for maximum lag 10 which is given in table 5.11. Auto-covariance is 
the mesure of spatial dependece between different lags. This autocovariance is calculated by 
calculating covariance at sucessive lags. This auto-covariance shows the spatial association and 
spatial correlation between the variable. This auto-covariance depicts spatial variation and spatial 
dependence in the image. It is observed that as the lag is increasing correlation and auto-
covariance is decreasing. It is found that using uniform PSF there are some negative value at lag 9 
and 10.   
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Table 5.12: Auto-covariance between downscaled image using uniform and Gaussian PSF 
 

Using Uniform PSF 
 

Using Gaussian PSF 
Lag Cov r(correlation) Cov r(correlation) 

0 2.95 1 2.89 1 
1 2.86 0.96 2.74 0.94 
2 2.56 0.86 2.52 0.87 
3 2.11 0.71 2.24 0.77 
4 1.60 0.54 1.86 0.64 
5 1.13 0.38 1.56 0.54 
6 0.70 0.23 1.22 0.42 
7 0.34 0.11 0.87 0.30 
8 0.07 0.02 0.57 0.19 
9 -0.08 -0.02 0.36 0.12 
10 -0.15 -0.05 0.20 0.07 

5.5. Summary of  the Results 
The results obtained from this research are summarized on the effect of resampling on 
variogram, effect of PSF on variogram and downscaling cokriging. 
  
It was found that trivial method is better to resample coarse resolution (LAI) to calculate sample 
cross-variogram. This technique shows more variance than the other resampling techniques. The 
uniform PSF shows the more spatial dependence than the Gaussian PSF.  
 
Due to spatial variability or change in variance in point support variogram and cross-variogram 
the cokriging weights were found different for both the PSF and further which show changes in 
the downscaled cokriging image. These changes in the spatial distribution are explained by 
calculating minimum, maximum, mean, standard deviation in the LAI values. To show the spatial 
dependence auto-covariance was estimated which shows that uniform PSF has more spatial 
dependence than the Gaussian PSF.   
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6. DISCUSSION 

The research has demonstrated the effect of resampling and PSF on downscaling cokriging 
technique by showing the selection of covariable by estimating the coefficient of correlation, the 
effect of resampling on variogram and cross-variogram, effect of PSF on variogram and cross 
variogram and effect of PSF on downscaling cokriging. 

6.1. Correlation of  LAI with NDVI, NIR and Red bands from optical 
image 

Cokriging is multivariate area-to-point prediction approach. Downscaling using cokriging require 
a covariable to downscale LAI (primary variable). This covariable must have a relationship with 
primary variable. In this study for selecting the covariable correlation analysis has been done. 
Correlation analysis has been executed between primary variable LAI and covariable NDVI, Near 
Infrared reflectance band and red reflectance bands which are shown in table 5.1. From 
correlation analysis the relationship between LAI and NDVI is found positive (r = 0.58) and 
significant (p < 0.01). (Kale et al., 2005) found in his study that for relationship between LAI and 
NDVI the minimum correlation is r = 4 and maximum correlation is r = 7.4. In the month of 
October Barkot forest is full of vegetation due to which NDVI is high. Due to this high NDVI 
the correlation with LAI is high. Correlation of NIR (r = 0.47) is found less than NDVI with 
LAI at significant (p < 0.01) which is less than correlation with NDVI. A small relationship was 
found between LAI and red reflectance (r = 0.001) at significant (p < = 0.001). (Kaufman et al., 
2002) stated that low correlation for the red reflectance is due to mixed vegetation and bright soil 
and red reflectance show high absorption in vegetation due to chlorophyll absorption. So 
relationship between LAI and NDVI is found more in compare to NIR and red reflectance.  

6.2. Impact of  resampling on the variogram and cross variogram 
In this study coarser resolution image (MODIS LAI 1000 m) and finer resolution image (MODIS 
NDVI 250 m) is combinined to predict finer resolution image of MODIS LAI at 250 m. To 
estimate cross-variogram for estimating cross-covariance coarser and finer resolution were 
brought to a common resolution by resampling technique. NN, CC, BI and trivial resampling 
methods were executed to resample pixel of coarser resolution to finer resolution. The sample 
cross-variogram were calculated to see the effect of resampling at the common cut-off of 6000 
m, bin of 15 and then modelled by using exponential model at a common range of 3817.4 m. 
This common range was choosen visually for linear model of coregionalization.  
 
It was observed from the table 5-2, 5-3, 5-4, 5-5 that the sill and nugget are varying for all 
resampling methods in sample cross-variogram. It was observed that model was best fit to NN 
resampling and trivial resampling. The sill from trivial and NN resampling was found to be 
higher than that of CC and BI  resampling which depicts that the variance is high at the range of 
3817.4 in NN and trivial resampling. This high variance may be due to the resampled LAI value. 
In trivial method the values remain same, while in the nearest neighbour resampling the values 
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was approximately the same because it interpolates by taking the average of the nearest pixel 
value whereas the variance in CC and BI resampling is low due to which there is less spatial 
structure. So, for this research the trivial method was used in calculating sample variogram. 

6.3. Impact of  PSF on variogram and cross-variogram 
The impact of the PSF on the variogram was studied by estimating the variogram to estimate 
point support variogram. These point support variogram were estimated for both the image using 
uniform and Gaussian PSF. In this study point support variogram were modelled by nested 
exponential structure of variogram at a common cut-off of 6000 m and bin of 15. It has been 
observed that for MODIS LAI 1000 m modelled point support variogram has a sill for first 
structure of 1.75 for uniform and Gaussian PSF at different range of 481.52m and 715.96 m and 
sill for second structure is 2.85 for uniform PSF and 2.068 for Gaussian PSF at range of 3040.57 
m and 3857.09 m which is shown in table 5-6. It could be due to weight contributing in the pixel 
for Gaussian function which is more in the centre of pixel than the border of the pixel and for 
uniform PSF weights are uniform in the centre and at the border of the pixel. This change in sill 
may be due to the distance from the centre of the pixel is high. The distance from the centre of 
pixel is more for uniform PSF rather than Gaussian PSF which is shown in figure 5-5 (a) and (b). 
It can be noticed that for the same distance there is change in the variance which is due to change 
of pixel value which is high using uniform PSF.  
 
Impact of PSF was not seen in the modelled point support variogram from MODIS NDVI 250 
m as shown in table 5.7. The sill and the range of the first structure of uniform PSF and Gaussian 
PSF are same and for second structure sill and range are same, but there is a change in point 
supports variogram which can be observed in figure 5-6 (a) and (b). This change may be due to 
effect of  and which affects the imaging response of the image where the response within 
the pixel is uniform and very less response from the outside of the pixel which may be due to 
atmospheric effect and geometry of the view (Huang et al., 2002) 
 
Also no change has been noticed in the sill and the range of modelled estimated point support 
cross-variogram after using uniform and Gaussian PSF. As shown in table 5.8 it has been noticed 
that sill and range for the first structure of uniform PSF are similar and sill and the range for the 
second structure of uniform PSF and Gaussian PSF are similar and there is a no change in the 
point support cross-variogram also because there is no effect of PSF in point support cross-
covariances (Pardo-Iguzquiza et al., 2006)  

6.4. Impact of  PSF on downscaling cokriging 
To study the effect of PSF on downscaling cokriging the change in the weights are analyzed. As 
PSF plays an important role in setting up the unbiased cokriging weights for the ordinary 
cokriging system. Cokriging predictor is the function of cokriging weights and random variable. 
These random variables are related to variance which implies that variance is related to the 
cokriging weights. This indicates that if variance is high then weights will be high (Pardo-
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Iguzquiza et al., 2011). The variance is high using uniform PSF rather than Gaussian PSF. From 
the table 5-9 and 5-10 it is observed that for uniform PSF and Gaussian PSF weights are different 
which is due to variance and for uniform PSF weights are more than that of Gaussian PSF. It can 
be also observed from the table 5-9 (a) and 5-10 (a) that the centre value of weights obtained by 
using uniform PSF is more than that of Gaussian PSF. Gaussian PSF is related to standard 
deviation in the pixel while uniform PSF does not involve the standard deviation. This indicates 
that the mean of the centre pixel of Gaussian support is more than that uniform PSF which 
affect the centre of the weights in inversely, as this mean is subtracted from the random function 
in the cokriging predictor so large is the mean small will be the weights. 
 
It is also observed from the figure 5-8 and 5-9 that due to weights applied for downscaling, a 
blurring effect is visualized in downscaled image using gaussian PSF. It can be observed that the 
variance is less using Gaussian PSF than using uniform PSF due to which it is more difficult to 
visualize the object. This is due to the less spatial variability and smoothness in the image.  
 
To study the effect of PSF on the downscaled images histogram has been estimated. Histogram 
in figure 5.10 (a) and 5.10 (b) it is observed that distribution of LAI value is approximately same 
for both the downscaled image using uniform and Gaussian PSF. In descriptive statistics from 
table 5-11 it is observed that there changes in minimum, maximum, 1st quartile, 3rd quartile and 
standard deviation in downscaled image using uniform and Gaussian PSF. This variation show 
there is a spatial variability in the downscaled LAI value though there is no clear pattern found. It 
is observed that standard deviation is more in uniform PSF which shows that there are more 
changes in LAI value than the Gaussian PSF though it depends on the distance from the centre 
of the pixel. It is also observed from table 5-12 that with the increase in the distance between the 
point pairs covariance decreases and also correlation also decreases. It is also observed that using 
Gaussian PSF covariance and correlation between the variables are higher and positive which 
shows the data at a closer distance are more similar to each other and using uniform PSF it is less 
spatially dependent because of gradual change in pixel in downscaled image using gaussian PSF.      
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7. CONCLUSION AND RECOMMENDATIONS 

7.1. Conclusions 
The main objective of this research is to study the effect of resampling and PSF on downscaling 
cokriging technique for LAI estimation. To achieve this objective four research questions were 
carried out in this study. An attempt is made to answer these research questions and conclusion 
for each question is given as: 
 
1. What is the suitable covariable and its correlation with LAI? 
 
NDVI and LAI relationship has been used to estimate LAI which has been seen in many 
researches as mentioned in literature review point 2.5. From this study it was found that out of 
variable considered i.e. infro-red, red and NDVI, NDVI is a suitable covariable to downscale 
LAI, though it shows a good relationship with LAI. Red reflectance and NIR reflectance does 
not show good relationship with LAI.  It can be seen from the table 4.1 that correlation between 
LAI and NDVI is r = 5.8. 
  
2. What is the effect of resampling on variogram and cross-variogram? 
 
It was shown from the results 5.2 that there is change observed by applying the different 
resampling techniques. The NN and trivial method shows a high variance which means that there 
is more spatial structure. The trivial method is used for calculating the sample cross-variogram 
because of more spatial structure and the values did not changes after resampling of LAI from 
1000 m to 250 m.  
 
3. What is the effect of PSF on variogram and cross-variogram? 
 
It was found from this study that for coarser resolution there is a change noticed in the estimated 
point support variogram using uniform PSF and Gaussian PSF. This change is due to the mean 
and standard deviation within the pixel. The change in the PSF is due to the response by distance 
from the centre of the pixel. The effects are also due to effect within the pixel and outside of the 
pixel while no change was observed in the cross-variogram.     
 
4. What is the effect of PSF on resultant downscaled image? 
 
To study the effect of PSF on downscaled image change in weight were observed at different 
PSF i.e. uniform and Gaussian PSF. Cokriging weights are related to covariance and cross-
covariance. It was observed that variance is high in uniform PSF so the weights were high for the 
uniform PSF. These variances can be observed from the analysis of estimated point support 
variogram by observing sill, nugget and range. It is also found that quality of the image also 
depends on the PSF. Gaussian PSF shows the better quality than by using uniform PSF  
 
 
Finally it is concluded that for NDVI is a suitable covariable to downscale LAI. Resampling by 
trivial method is optimal because it does not affect the LAI value after resampling. Point support 
function involved in the prediction has an effect on the estimating point support covariance and 
cross-covariance. The effect of PSF can be studied on estimating point support variogram and 
cross-variogram. The effect of PSF on the downscaled cokriging image can be observed by 
change in the cokriging weights. This change in the weights is due to variation in the covariance 
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and cross-covariance, centre mean of the pixel and the distance between point pairs. It is also 
observed that downscaled image using Gaussian PSF is more spatially dependent than using 
uniform PSF due to more variance in constant PSF.  

7.2. Recommendation 
The downscaling cokriging downscaling is performed on a target variable by using covariable. 
More than one covariable can be used to perform downscaling. Ground measurement and 
thematic maps may be considered as covariable. Different study area can be used. User define 
PSF may be used to study the PSF effect. This study may be carried out with different window 
size and study its effect. Different standard deviation may be experiment and field must be used 
for the validation.     
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APPENDIX 

 
Appendix 1: R-code to estimate variogram of LAI and NDVI and cross-variogram between 
LAI and NDVI  
 
a) Reload package in R software 
> require(gstat) 
> require(raster) 
> require(rgdal) 
  
b) Display Image 
> LAI_image <- raster("LAI.img") 
> NDVI_image <- raster("NDVI.img") 
 
c) Estimating variogram from LAI image  
> M_LAI <- "LAI.img" 
> dataset_LAI <- GDAL.open(M_LAI) 
> dataset_LAI 
> displayDataset(dataset_LAI, band=1, reset.par=FALSE) 
> datatable_LAI <- getRasterTable(dataset_LAI, band = NULL, offset = c(0, 0),region.dim = 
dim(dataset_LAI)) 
> datatable_LAI_new <- datatable_LAI[!is.na(datatable_LAI[,3]),] 
> datatable_LAI_new 
> coordinates(datatable_LAI_new) <- ~x+y 
> M_LAI.ev <- variogram(band1~1, data=datatable_LAI_new, cutoff=6000) 
 
d) Estimating variogram from NDVI image 
> M_NDVI <- "NDVI.img" 
> dataset_NDVI <- GDAL.open(M_NDVI) 
> dataset_NDVI 
> displayDataset(dataset_NDVI, band=1, reset.par=FALSE) 
> datatable_NDVI <- getRasterTable(dataset_NDVI, band = NULL, offset = c(0, 0),region.dim 
= dim(dataset_NDVI)) 
> datatable_NDVI_new <- datatable_NDVI[!is.na(datatable_NDVI[,3]),] 
> datatable_NDVI_new 
> coordinates(datatable_NDVI_new) <- ~x+y 
> M_NDVI.ev <- variogram(band1~1, data=datatable_NDVI_new, cutoff=6000) 
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e) Estimating Cross-variogram  
> g <- gstat(NULL, "M_LAI_250", band1~1, datatable_LAI_new_resample) 
> g <- gstat(g, "M_NDVI_250", band1~1, datatable_NDVI_new) 
> g 
> cross.variogram <- variogram(g, cutoff=6000) 


