
EMBEDDING DATA TYPES FOR
CONTINUOUSLY EVOLVING
OBJECTS IN A DBMS

BEZAYE TESFAYE
April, 2013

SUPERVISORS:

Dr.Ir. R.A. de By
Dr. Javier Morales

EMBEDDING DATA TYPES FOR
CONTINUOUSLY EVOLVING
OBJECTS IN A DBMS

BEZAYE TESFAYE
Enschede, The Netherlands, April, 2013

Thesis submitted to the Faculty of Geo-information Science and Earth
Observation of the University of Twente in partial fulfilment of the requirements
for the degree of Master of Science in Geo-information Science and Earth
Observation.
Specialization: GFM

SUPERVISORS:

Dr.Ir. R.A. de By
Dr. Javier Morales

THESIS ASSESSMENT BOARD:

Prof.Dr. Menno-Jan Kraak (chair)
Ir. Victor de Graaff

Disclaimer
This document describes work undertaken as part of a programme of study at the Faculty of Geo-information Science and Earth
Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the author, and
do not necessarily represent those of the Faculty.

ABSTRACT

Recent researches in moving object databases are attempting to achieve the support for movement
information in DBMS. But the lack of support for handling such information is still an issue in
current DBMSs, which becomes a barrier in processing and analyzing movement information.
With the advancement of telemetry technology, where different devices are producing vast amount
of movement data, the need of fulfilling this limitation is becoming bigger and bigger. This makes
the research area of moving objects to become more important to deals with representation of
these huge amount of data coming from different devices. This thesis project aims to provide a
refined abstract and discrete design for the representation of moving point in current DBMS. The
available models are reviewed and used as a starting point. First the abstract design is done followed
by the discrete design. The discrete design paves the way for the implementation of the data type
and operations on it, which can be used as an extension for DBMSs.

Keywords

Spatio-temporal, Databases, Moving objects, PostgreSQL, PostGIS

i

ACKNOWLEDGEMENTS

Above all, I want to thank God for making me strong with his love whenever I feel weak and for
everything he did to me.

I would like to thank my supervisors Dr.Ir. Rolf de By and Dr. Javier Morales. Specially
my first supervisor for proposing this research title in the department. He was always giving me
valuable feedback for every piece of work I did and it was a steeping stone for me to finish this
thesis. So I would like to offer my utmost gratitude to him.

I can not pass with out thanking Ms. Connie Blok for her always kind support at the time I
need help from the department.

I also want to thank my friends Loza, Effie, Sharmin and Tigist. Their caring and support
through out the thesis time is unforgettable for me. I owe my deepest gratitude for Nuno Cesar
de Sa for sharing all my good and bad times and supporting me every single day.

I would also like to thank my family, specially my mom whom I learned how to be a strong
and confident woman. Thank you ETABEYE for everything you are to me.

At last, I would like to thank NUFFIC for offering me a fellowship to pursue this MSc.

ii

TABLE OF CONTENTS

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 General . 1
1.2 Literature review . 1
1.3 Problem definition . 1
1.4 Research objectives . 3
1.5 Research questions . 3
1.6 Methodology . 3

2 Representation of moving points 5
2.1 Introduction . 5
2.2 Abstract representation of a moving point . 5

2.2.1 The approach . 5
2.2.2 Base types and time type . 6
2.2.3 Spatial types . 6
2.2.4 Temporal types . 7

2.3 Discrete representation of moving points . 7
2.3.1 How do we represent a moving point discretely 7
2.3.2 Data structure . 9
2.3.3 Constraints on the moving point type 10
2.3.4 Language construct for a moving point type 10
2.3.5 Language Construct for a moving real 11
2.3.6 Language Construct for period . 11

3 Operations on moving points 13
3.1 Introduction . 13
3.2 Operations on the moving point type . 14

3.2.1 Interaction with Domain . 14
3.2.2 mpt_atperiod . 14
3.2.3 mpt_initial . 15
3.2.4 mpt_final . 16
3.2.5 mpt_present_atinstant . 16
3.2.6 mpt_present_atperiod . 17

3.3 Projection to domain . 17
3.3.1 mpt_trajectories . 17
3.3.2 mpt_locations . 19

3.4 Rate of change . 19
3.4.1 mpt_speed . 19
3.4.2 mpt_velocity . 20

iii

4 Implementation and Results 23
4.1 Introduction . 23
4.2 Setup and environment . 23
4.3 Implementation of a moving point data type 24
4.4 Implementation of functions for moving point type 25

4.4.1 Algorithm for mpt_atinstant . 25
4.4.2 Algorithm for mpt_atperiod . 26
4.4.3 Algorithm for mpt_initial . 27
4.4.4 Algorithm for mpt_final . 27
4.4.5 Algorithm for mpt_present_atinstant 27
4.4.6 Algorithm for mpt_present_atperiod 28
4.4.7 Algorithm for mpt_trajectories . 28
4.4.8 Algorithm for mpt_locations . 29
4.4.9 Algorithm for mpt_speed . 29
4.4.10 Algorithm for mpt_velocity . 30

5 Results 31
5.1 Results . 31
5.2 Demonstration of mpoint . 31
5.3 Function demonstrations . 32

5.3.1 mpt_final . 32
5.3.2 mpt_initial . 32
5.3.3 mpt_atinstant . 32
5.3.4 mpt_present_atinstant . 33
5.3.5 mpt_atperiod . 33
5.3.6 mpt_present_atperiod . 33
5.3.7 mpt_trajectories . 34
5.3.8 mpt_locations . 34

6 Conclusion and Recommendation 35
6.1 Conclusion . 35
6.2 Recommendation . 36

References 37

Appendix One 39

iv

LIST OF FIGURES

1.1 A moving point in xyz plane . 2
1.2 Development Methodology . 4

2.1 A moving object traveling from A to B . 8
2.2 A moving object traveling from A to D . 8
2.3 A data structure for mpoint . 9

3.1 Segments inside m crossing each other . 18

4.1 Serialization of mpoint . 24

v

LIST OF TABLES

2.1 Type system . 5

3.1 Operations on moving point . 13

4.1 Working environment . 23

vi

EMBEDDING DATA TYPES FOR CONTINUOUSLY EVOLVING OBJECTS IN A DBMS

Chapter 1

Introduction

1.1 GENERAL

The need for storing and manipulating changes of real world objects in a DBMS has been a recent
research area in spatiotemporal databases. The research area was first addressed in the second half
of 1990s (Güting & Schneider, 2005). It was first started by carrying out researches in spatial and
temporal databases separately. The reason for this separation was the high complexity of data
structures that needed careful analysis so as to structure dimensions with the representation of
data (Pelekis et al., 2005). In the next sections of this chapter, we review the literature and discuss
the problems of current DBMS in handling spatiotemporal data, the main objectives of this thesis
project towards solving such problems and the method followed to accomplish objectives.

1.2 LITERATURE REVIEW

Since the idea of integrating spatial and temporal aspects in a database emerged, many spatiotem-
poral data models have been proposed (Pelekis et al., 2005). However, as mentioned in (Güting,
Behr, & Düntgen, 2010), most models are not implemented, and are rather left in paper only.

The first models proposed on spatiotemporal data focused on representation of discrete change
of spatial objects. This was a big limitation for representing real world objects that change their ge-
ometries continuously. Later on, (Erwig et al., 1999) proposed a model for the first time to tackle
this problem. The model considers time as integral part of spatial entities, while the other mod-
els use timestamps (Pelekis et al., 2005). Later Parent, Spaccapietra, and Zimányi (1999) proposed
a spatiotemporal conceptual model and based on it, they design abstract and discrete design in
Forlizzi, Güting, Nardelli, and Schneider (1999). Furthermore, orientation and direction of spa-
tial objects during their movement and all spatial data handling mechanisms are only considered
in the models proposed by Parent et al. (1999); Erwig et al. (1999) (Pelekis et al., 2005). Apart from
this, when we consider representing continuous change, most of the approaches cannot cover all
real world processes because of the limited operation set they provide. The only approach that re-
solves many kinds of spatiotemporal queries is the moving object data model proposed by Erwig
et al. (1999) (Pelekis et al., 2005). This model is also implemented for testing the mathematical def-
initions it contains (Güting et al., 2010) in which they discussed the conceptual model in Tryfona
and Hadzilacos (1998).

1.3 PROBLEM DEFINITION

Although most DBMS providers support spatial and temporal extensions so as to store geometries
and time separately, analyzing the changes in spatiotemporal object is not possible by separated
spatial and temporal aspects. Nowadays, information generated from GPS equipped devices like
PDAs (Personal Digital Assistants), cell phones and sensors is creating a huge amount of movement
and change information. Besides, the rapid development of such communication devices which

1

made sharing of spatial information among people easy, it also made this data more complex to be
handled by current databases. We may need to know the location at time t of a person cycling to
one supermarket or we might be interested to know the time when there is a huge traffic jam in
the Hengelosestraat in order to know the relationship of the accident that happened on that day
with respect to the traffic jam. One can also ask, what is the minimum and maximum extent of
Lake Hawassa during the year? To analyze such information, we have to store movement/change
information of real world objects in database systems (Schneider, 2009), but the database and GIS
technologies we are using currently are not able to perform this task. So, we need new query
techniques for managing and processing such information and there must be a capability in current
DBMS for handling objects with continuously time varying location data.

To handle movement of spatial objects over time in databases, many research projects have been
carried out and different data models have been proposed. But most of them are not implemented.
Those that are implemented are only suitable for specialized systems so as to experiment and mea-
sure (Güting et al., 2010) and there is no model implemented fully in a well-known DBMS until
now. Furthermore, applying data mining techniques for analyzing information of spatio-temporal
objects is difficult using the current DBMS. This can be solved when we start storing these objects
in a database.

The change in geometries of spatiotemporal objects can be discrete or continuous. If we take
spatiotemporal objects that move continuously with time, they are called moving objects (Güting
et al., 2000; Pelekis et al., 2005). To model such objects, Güting et al. (2000) proposed two main
abstractions: moving point and moving region. In the moving point abstraction, only the time-
dependent position is of interest. If we want to know which satellite will be close to the route of
some spacecraft in the next two hours, we are dealing with objects represented by moving points.
In the case of moving region, not only the position is of interest but also the extent, and whether
it can shrink or expand. To answer a historical question like “ what was the largest extent of
Axumite empire in Ethiopia?” we need to have a moving region data type in our database that
can store such kind of objects. Furthermore, if we think of a moving point which is projected
onto a plane, yielding a curve and the boundary of a moving region where the linear extent can
be lengthened and shortened with time, they can be considered as moving line (Schneider, 2009;
Cotelo Lema, Forlizzi, Güting, Nardelli, & Schneider, 2003) (see Figure 1.1). We can think of the
distance chord between two moving points over time as a moving line.

Figure 1.1: A moving point in xyz plane

Generally, time and space are important issues for representing phenomena of the real world
and database applications should have the ability of representing real world objects. So, extending
database technology for representation of such objects is needed. This research project aims to

2

address this lack of support for storing and querying moving objects in one well-known DBMS.

1.4 RESEARCH OBJECTIVES

The aim of this research project is to implement a data type for spatiotemporal objects in a well-
known DBMS. To achieve this, the main issues that are addressed are listed in the research objec-
tives and research questions below.

1. To develop a refinement mechanism for the mathematical definitions proposed by Güting
et al. (2000) for moving objects.

2. To develop abstract data type for a moving object, and realize these in a DBMS.

3. To implement operations on a moving object data type in a DBMS.

1.5 RESEARCH QUESTIONS

1. How can the mathematical design proposed by Güting et al. (2000) for moving objects be
converted into implementable design?

2. How can we create abstract data types for moving objects by using standard data types?

3. How can we represent abstract data types of moving objects discretely?

4. What are the basic requirements of the data structure for abstract data types of moving
objects?

5. How can operations of moving object types be defined using existing operations of non-
temporal types?

6. What are the basic operations that can be feasibly implemented on spatiotemporal objects
in a DBMS?

1.6 METHODOLOGY

The initial phase of this research project starts from problem definitions, and then specifications
of the necessary features of the system follow (see Figure 1.2). This helps us as a stepping stone
towards finding solutions for the problems.

The design phase is the vital stage that needs careful work. In this phase, suitable solutions are
mentioned. To address the objectives of this project, a mathematical model that fits is selected.
Based on the comparisons on spatiotemporal models made by Pelekis et al. (2005), apart from
becoming a better choice in terms of temporal, spatial and spatiotemporal semantics, the mov-
ing object model proposed by Güting et al. (2000) is the only model with full set of operations
for querying movement and change of real world objects. The operations are also tested through
implementation (Cotelo Lema et al., 2003). Having all the necessary representations of spatiotem-
poral objects in its mathematical definitions made the work of Güting et al. (2000) as the best
candidate model to start with for the implementation of spatiotemporal types in a DBMS.

Later in the design phase, the moving object model goes through refinement by converting the
mathematical definitions into set of steps that are ready for implementation, and this is used as a
base for developing the abstract data types.

3

Figure 1.2: Development Methodology

While dealing with abstract data types, one of the most important issues is the consideration
of data structures. Since these data types and operations are embedded in a DBMS, these values are
stored in the memory space controlled by the DBMS. As a result of this, the data structure should
use up a minimum of memory blocks (Cotelo Lema et al., 2003).

To develop executable algorithms for the basic operations on the abstract data types, the refined
set of steps from the mathematical definitions and the general algorithms for operations on moving
point and moving region, designed by Cotelo Lema et al. (2003), will be used.

In the implementation phase, the executable algorithms for the selected operations are coded
in a high-level programming language. Throughout the coding process, continuous testing is done.
This avoid misuse of incorrect blocks of code that is used as a template to develop another block.

4

EMBEDDING DATA TYPES FOR CONTINUOUSLY EVOLVING OBJECTS IN A DBMS

Chapter 2

Representation of moving points

2.1 INTRODUCTION

The concept of representing moving objects in a database system is important for many potential
applications. Currently, famous DBMS softwares like Microsoft SQL server, Oracle and Post-
gresql don’t have support for such kind of objects. Because of this lack of capabilities in current
DBMSs, makes that potential applications are not developed.

In order to represent objects that change their location through time in the existing DBMS,
(we call them ‘moving objects’) the design of abstract data types contains two levels of abstractions.
In the first level, all the structures of the types which are used in the representation are defined.
For this purpose, we define all these types in a type system. In the second level, the semantics
of operations on moving types are defined. For example, how do we represent a trajectory of a
moving point?

In this chapter, amongst the set of moving types, only moving point and moving real are con-
sidered and the representation of these types is done from abstract to discrete. The abstract repre-
sentation has two levels of abstraction specified above and the discrete design follows the method
of representing time varying information of real world object into a format that a computer can
store. So in the next section of this chapter, the abstract design is first explained and the detail of
discrete representation follows.

2.2 ABSTRACT REPRESENTATION OF A MOVING POINT

2.2.1 The approach

For a design of abstract data type for a moving point, there are different auxiliary types that are
needed. For example, if we need to project a moving point onto the xyz plane, we need a linestring
or multilinestring, or if we want to know the time-dependent speed of a moving point, we need a
moving real. So, in the design of the abstract type for a moving point, first we defined types that
are essential, then we define the abstract data type by using existing types that we already defined.
The types that we use are in Table 2.1 applying the same approach as Güting et al. (2000) to define
them.

Table 2.1: Type system

Type Signature
int, real, string, bool → BASE
point, multipoints, linestring,
multilinestring

→ SPATIAL

instant → TIME
mpoint, mreal BASE ∪ SPATIAL → TEMPORAL

5

2.2.2 Base types and time type

Base types: All the base types have the same regular definition except that they all are augmented
by a value which is undefined (Güting et al., 2000).

Definition 2.2.1. If α is any base type, then its carrier set is symbolized by Aα. Then the carrier
sets for the base types: int, real and string are:

Aint := � ∪ {⊥},
Areal := � ∪ {⊥},
Astring := Σ∗ ∪ {⊥}, where Σ is a finite set of alphabet,
Abool := {FALSE , TRUE} ∪ {⊥},

Time type: To represent temporal values, we use time type instant which is for this purpose.
For the definition of instant, we consider time as a linear continuous attribute. This is because
our design is intended for existing types, which we can use to construct an abstract data type to
represent an object with continuous time varying information.

Definition 2.2.2. The real numbers are used to represent instant values, together with an unde-
fined value. The carrier set is defined as:

Ainstant := � ∪ {⊥}

2.2.3 Spatial types

We define spatial types based on the scheme used in Güting et al. (2000) and OGC (1999).

Point:

is a zero-dimensional geometry, used to represent a single location in space (OGC, 1999). The
values of the coordinates are a real values.

Definition 2.2.3. The carrier set of point is defined as:

Apoint := �3 ∪ {⊥}

MultiPoint:

is a zero-dimensional geometry collection of which the elements are only points (OGC, 1999).

Definition 2.2.4. The carrier set of MultiPoint is :

Amultipoint := {P ⊆ �3|P is finite}

Linestring:

is a one-dimensional geometry containing a sequence of points within a real closed interval (OGC,
1999).

Definition 2.2.5. A linestring is a continuous mapping of f : [a, b] → �3 such that

∀a, b ∈ �, ∀x ∈ � : a <= x <= b =⇒ x ∈ [a, b]

It is called simple if it does n’t pass a point more than once, which means: ∀x, y ∈ [a, b] :	 ∃z ∈
�3 such that f(x) = z = f(y)

6

MultiLinestring

is a one-dimensional geometry collection of which elements are only linestrings.

2.2.4 Temporal types

To derive temporal types using the BASE and SPATIAL types, type constructors are used. The
moving type constructor is mainly used for this purpose. For any given type α, the moving type
constructor , applied to α, yields a mapping from time to α (Güting et al., 2000).

Definition 2.2.6. For any BASE or SPATIAL type α, the derived temporal type will be moving(α).
The semantics is defined by the carrier set as:

Amoving := {f | f : Āinstant → Āα is a partial function ∧ Γ (f) is finite}
The condition “Γ (f) is finite” indicates that f only contains a finite number of continuous

components (Güting et al., 2000). A temporal type obtained through the moving constructor is
described by infinite sets of pairs (instant,value) or a function.

Moving point

One of the temporal types that is derived by using the moving type constructor is moving(point).
It is used to represent an object that changes position through time. For example, a car, a pedes-
trian, a bird, etc. So for this temporal object of type moving(point), or in short mpoint, the values
can be partitioned along the time domain into continuous finite pieces as mentioned above. Each
component is defined by a single time interval in which the object’s value is described continu-
ously. We call such a component a ‘SEGMENT’.

Definition 2.2.7. The time interval, which we call ‘period’ from here onwards, that any ‘SEG-
MENT’ defines, is described as a set such that:

period ⊆ Āinstant such that ∀s, e ∈ period, ∀t ∈ Āinstant : s < t < e ⇒ t ∈ period

Definition 2.2.8. The temporal domain of an mpoint contains a set of time intervals for which its
segments are defined as: let mp ∈ Amoving(α)where α = point, then

temp_domain(mp) = {period ⊆ Āinstant}

Moving real

A moving real, in short mreal is a temporal type that is used to represent a sequence of continuously
changing time varying real values. We use this type as a basic supplementary type for mpoint. For
example, if we want to know the distance between any two mpoints or if we want to know the
speed of an mpoint, the result is mreal. So the representation of such a type is important for the
design.

2.3 DISCRETE REPRESENTATION OF MOVING POINTS

2.3.1 How do we represent a moving point discretely

Let us assume that a person with a GPS traveled from location A to location B for three hours.
Figure 2.1 shows the path that the moving point followed.

The movement from A to B is considered as a continuous movement, in which the object trav-
eled in a continuous change of location through time. To create a data structure for this segment,

7

Figure 2.1: A moving object traveling from A to B

since we can’t store continuous data in computer, we will create a discrete representation of the
continuous movement for the moving object by using track points obtained from GPS equipped
devices. Considering continuous movement of the object, to get the value of the moving point at
the time that we don’t have stored information, some form of linear interpolation is used. The
proposed idea for the discrete representation is to take GPS tracks of the object within some time
interval (for example setting the GPS to track the object every two seconds) and use a function that
can do interpolation to get values that are not stored within that time interval during which the
moving point is defined. At the end, we will have an array of records for the GPS tracks containing
x, y coordinates and time.

For example, if a person wants to know the location of the point at time t1 which is within the
time interval of a segment, then a function will be defined on the moving point type to search from
the first array record, check the time through the array until it gets the time that is greater than or
equal to the time of the argument (t1). While searching, if the current array index contains the time
greater than t1, then the function will take the x and y coordinates registered for that array index
and for the previous array index, and then apply linear interpolation using the two coordinate pairs
resulting in the location of the moving point at the required time. But if the current array index
contains the same time value as the required time, then the function will automatically return the
coordinates from the record at that array index.

While a moving point is traveling from A to D, as illustrated in Figure 2.2, we realize that a
location for which the moving point is not defined may exist. For example, between B and C.
For such case we will have multiple segments: one from A to B and another from C to D. But
we have to keep in mind that the moving point travels from A to D. The data structure will then
have two segments. Whenever there is a need of finding the value of the moving point at a specific
time, a function will be available that searches for the correct value or correct pair of points for
interpolation within the segments. Below, the data structure and further description of the data
structure is discussed. We will use mpoint as a name for moving point type afterwards.

Figure 2.2: A moving object traveling from A to D

8

2.3.2 Data structure

To implement a data type that represents a moving point, the structure defined below in Figure 2.3
is used.

Figure 2.3: A data structure for mpoint

Each mpoint in the structure is represented by a record containing num_segts, sr_id, tz_id and
mpt_sgts, which are defined as:

• num_segts: the number of segments the mpoint contains.

• sr_id: spatial reference identifier.

• tz_id: time zone identifier.

• mpt_sgts: a pointer to an array of mpt_segment which is represented as a record containing
num_pts and geom_array

The main advantage of mpt_segment is to represent information of a single mpoint within a
specific time interval. For example as in Figure 2.2, if the object is traveling from location A to B,
and then from location C to D, the representation of this moving object will have two segments.
The first segment contains information for the path from A to B, and the second containing infor-
mation from C to D.

Inside each mpt_segment, num_pts represent the number of point geometries that are included
in the segment and geom_array represent a pointer to the array of geometries. The geometry
type for the array referenced by geom_array is called LWGEOM (Light weight geometry), defined
by POSTGIS. It is the working structure of POSTGIS containing the type, flags, srid and bbox.
Type indicate the type of the geometry (POINT, LINE, etc). So, if the geometry is POINT,
then the type for the LWGEOM will have POINT type. Flags is used to indicate weather Z or M
dimensions are present, these are considered as the third and the fourth dimension of the geometry,
respectively as specified in OGC[add cite]. The bbox shows the extent of the geometry. Each
LWGEOM also has a spatial reference identifier (srid) which is embedded with it.

For the data structure of mpoint, the array of LWGEOM, referenced by geom_array con-
tains POINT type geometries. Each point is represented as a record containing: x-coordinate,
y-coordinate, z-coordinate and time instant as the fourth dimension in which the M dimension
specified in POSTGIS is used to represent time.

The spatial reference identifier is embedded with LWGEOM as well as in mpoint structure
because each mpoint should contain one spatial reference identifier and each POSTGIS LWGEOM
also needs the same, meaning that we can’t change the structure, and the duplication of spatial
reference identifier will remain.

9

2.3.3 Constraints on the moving point type

• c_mpt_segment:

– c_num_pts: each num_pts should have the same value as the length of the geome-
try array which is referenced by geom_array. This is because since the advantage of
the num_pts is to store how many points are included inside the segment, it has to
match with the array size containing elements of LWGEOM type which is referenced
by geom_array.

– c_geom_array: the array of LWGEOM must be arranged in chronological order using
the fourth dimension of each element (time instant as explained earlier).

• c_mpoint:

– c1_num_segts: num_segts must have the same value as the length of the mpt_segment
array which is referenced by mpt_sgts.

– c2_num_segts: num_segts inside the mpoint is always an integer greater than or equal
to zero.

– c1_sr_id: inside mpoint, the value of the spatial identifier (sr_id) is an existing primary
key in spatial reference table inside PostgreSQL.

– c1_tz_id: the time zone identifier (tz_id) must be an integer which represents a known
time zone identifier stated in tz database which contain the world’s time zones.

– c1_mpt_sgts: elements of the array of mpt_segment pointed by mpt_sgts must be in
chronological order, based on the time interval of each mpt_segment. The time in-
terval can be realized in such a way that the start and end time of the segment are
the fourth dimension of the first and last array element that is pointed by geom_array
inside the segment respectively.

– c2_mpt_sgts: each consecutive mpt_segment inside the array pointed to by mpt_sgts
must not overlap

– c3_mpt_sgts: in case of two consecutive segments where end time of the first segment
and the start time of the second segment is the same, then the end time of the first
segment will no longer be part of the time interval of the first segment and will be
inclusive as the start of the second segment (see figure below). This will allow us to
maintain disjointness between consecutive segments.

– c4_mpt_sgts: any element of the array of mpt_segment which is pointed by mpt_sgts
cannot contain a pointer to an array of LWGEOM having zero length.

2.3.4 Language construct for a moving point type

The language construct for mpoint which is defined below is based on the notation of OGC Well
Known Text representation of geometry.

<Mpoint Tagged Text> :=
<Srid Tagged Text> ;
<Tzid Tagged Text> ;
MPOINT <Mpoint Text>

<Srid Tagged Text> :=
SRID <Srid Text>

<Tzid Tagged Text> :=

10

TZID <Tzid Text>
<Srid Text> := unsigned integer
<Tzid Text> := unsigned integer
<Mpoint Text> := EMPTY |(<Mpt_Segment Text> , <Mpt_Segment Text > *)
<Mpt_Segment Text> := (<Point> , < Point > *)
<Point> := (<x> <y> <z> <m>
<x> := double precision literals
<y> := double precision literals
<z> := double precision literals
<m> := <YYYY> + ’-’+ <MM> + ’-’+ <DD> <hh> + ’:’<mm> + ’:’+ <ss>
<YYYY>:= unsigned integer
<MM>:= unsigned integer
<DD>:= unsigned integer
<hh>:= unsigned integer
<mm>:= unsigned integer
<ss>:= unsigned integer

2.3.5 Language Construct for a moving real

<Mreal Tagged Text> :=
Mreal <Mreal Text>

<Mreal Text> := EMPTY |(<r> <t> ,<r> < t> *)
<r> := double precision literals
<t> := <YYYY> + ’-’+ <MM> + ’-’+ <DD> <hh> + ’:’<mm> + ’:’+ <ss> <tzid>
<YYYY>:= unsigned integer
<MM>:= unsigned integer
<DD>:= unsigned integer
<hh>:= unsigned integer
<mm>:= unsigned integer
<ss>:= unsigned integer
<tzid>:= unsigned integer

Additionally, we define multi_mreal for multiple mreal values as:

<Multi_mreal Text> := EMPTY |(<Mreal>,<Mreal>*)

2.3.6 Language Construct for period

<Period Tagged Text> :=
<Initial_time Text> ;
<Final_time Text> ;
<Tzid Text> ;

<Period Text> := (<Initial_time>, < Final_time>, <Tzid>)
<Initial_time Text> := <YYYY> + ’-’+ <MM> + ’-’+ <DD> <hh> + ’:’<mm> + ’:’+ <ss>
<YYYY>:= unsigned integer
<MM>:= unsigned integer
<DD>:= unsigned integer
<hh>:= unsigned integer

11

<mm>:= unsigned integer
<ss>:= unsigned integer
<Final_time Text> := <YYYY> + ’-’+ <MM> + ’-’+ <DD> <hh> + ’:’<mm> + ’:’+ <ss>
<YYYY>:= unsigned integer
<MM>:= unsigned integer
<DD>:= unsigned integer
<hh>:= unsigned integer
<mm>:= unsigned integer
<ss>:= unsigned integer
<Tzid Text> := unsigned integer

12

EMBEDDING DATA TYPES FOR CONTINUOUSLY EVOLVING OBJECTS IN A DBMS

Chapter 3

Operations on moving points

3.1 INTRODUCTION

The need for discrete representation of moving objects arises from the limited capacity of storage
devices as well as the discrete nature of devices that are used for measurement of time varying
information (Moreira, Ribeiro, & Abdessalem, 2000). To address this limitation, query operations
must consider the behavior of such objects to give a better result.

In our design, even though the abstract and discrete design to represent a moving point are the
crucial steps to be done first, it will be meaningless unless we have a design of query operations for
the next step. This is because after representation, the next thing is naturally the need for manip-
ulating the represented information. This mainly needs implementation of functions containing
different operations. So in this chapter, we discuss the design of these functions on the moving
point type.

The design of operations follows two principles as stated in Güting et al. (2000). First, a func-
tion should be as generic as possible. This is done by relating each type in the type system that is
used for the design of the abstract data type of moving point to 1D, 2D or 3D and by considering
all values as single elements or subsets of the respective space(Lema, Forlizzi, Güting, Nardelli, &
Schneider, 2003). For example, we can take the point type, which represents a single object in 3D,
whereas line describes subsets of the three-dimensional space containing 3D points.

The second principle is to include the most important operations in the design. Even though
the type system contains different types, we only consider a few operations. Since there is no
clear way of achieving the closure of the most useful phenomena, the selection of these operations
is mainly from simple set theory and first-order logic. This is because they are the most basic
components of query languages which are useful to get a valuable information.

Considering the above principles, we divide the main operations on the moving point type
into three groups: operations on projection of domain, operations to deal with interaction with
domain, and operations on rate of change.

In the next sections we discuss the full detail of operations that are listed in the Table 3.1.

Table 3.1: Operations on moving point

Type Operations
Interaction with domain mpt_atinstant, mpt_atperiod, mpt_initial,

mpt_final, mpt_present_atinstant,
mpt_present_atperiod

Projection to domain mpt_location, mpt_trajectory
Rate of change mpt_speed, mpt_velocity

13

3.2 OPERATIONS ON THE MOVING POINT TYPE

For the purpose of explanation in the next subsections, we define empty_mpt and empty_mr.
empty_mpt is used to represent an empty mpoint geometry, that is a moving point with no reg-
istered location, which implies, the mpoint structure has no segment elements. We use empty_mr
to represent an empty mreal.

3.2.1 Interaction with Domain

mpt atinstant

Arguments :
m : mpoint and i : instant

Returns :
p

′
: geometry(point) and i

′
: instant

Description: By using mpt_atinstant function, we determine from m at what location it was at
instant i. This function associates an instant of time with the location of a moving point. The
signature of the function is defined as:

mpoint × instant → point × instant

The function will take a moving point and time instant as its arguments and return the location
of the moving point at the specified time instant as (point, instant) pair. The instant i is assumed
to be in the time zone registered for the moving point m.

Preconditions :

• i must have a format of ‘YYYY-MM-DD hh:mm:ss Tzid’ following ISO standard (ISO,
2004).

Postcondition:

• a point geometry and instant pair, where the point is represented by its three dimensions
(x, y and z) and an instant of the form of ‘YY-MM-DD hh:mm:ss Tzid’ which follows ISO
(2004) rules will be returned upon calling the function if the moving point is defined at the
given instance of time.

• (NULL, i
′
) will be returned if the given input instant i is not within the temporal domain of

m.

• the input i and the output i
′

are always the same.

3.2.2 mpt atperiod

Arguments :
m : mpoint and ρ : period

Returns :
m

′
: mpoint

14

Description: The function is used to restrict the given moving point m to the given time interval
ρ. It returns an mpoint with known positions only within ρ. It will help us to answer a question
like where is the moving object m within the time interval ρ = (t1, t2).

We define the signature of the function as:

mpoint × period → mpoint

Precondition:

• ρ which represents a time interval must be of the form ‘(YYYY-MM-DD hh:mm:ss, YYYY-
MM-DD hh:mm:ss, Tzid)’ as defined in the language construct for period.

• each component of the format ’YYYY-MM-DD hh:mm:ss Tzid’ in the input ρ must follow
the rule stated in the precondition of mpt_atinstant for the input instant.

• if we represent the input ρ as (t1, t2), then t1 <= t2.

Postcondition:

• if the input mpoint is defined within i, i.e, if there is at least one known position at an instant
of time within ρ, then m

′
has a temporal domain which is a subset of interval ρ.

i.e

temp_dom(m′) = ρ ∩ temp_dom(m)

and

∀t ∈ temp_dom(m′) : mpt_atinstant(m, t) = mpt_atinstant(m′
, t)

• if the given m is not defined for any time instant within the time interval ρ, then an empty_mpt
will be returned.

ρ ∩ temp_dom(m) = ∅ =⇒ m′ = empty_mpt

3.2.3 mpt initial

Arguments :
m : mpoint

Returns :
p

′
: point and i

′
: instant

Description: this function is used to retrieve the first registered location and the time associated
with it for the moving point m. This will let us to know where and when m was initially. Its
signature is:

mpoint → point × instant

For a moving point having registered location with the minimum time (min_t) associated with it:

mpt_initial(m) = mpt_atinstant(m, min_t(temp_dom(m))

Precondition:

15

• None

Postcondition:

• at the time of the function call, a 3D point geometry and instant pair will be returned if the
input moving point has at least one registered location.

• The i will be of the form ’YYYY-MM-DD hh:mm:ss Tzid’ as in ISO (2004) to represent
time.

• (NULL, NULL) will be returned if the moving point is not defined at any instant (if m is
empty_mpt).

3.2.4 mpt final

Arguments :
mpoint

Returns :
p

′
: point and i

′
: instant

Description: this function is used to retrieve the last defined location of the input moving point
m. Its signature is defined as:

mpoint → point × instant

For a moving point having registered location with the maximum time (max_t) associated with
it:

mpt_initial(m) = mpt_atinstant(m, max_t(temp_dom(m))

Precondition:

• None

Postcondition:

• if the moving point m is defined at least at a single time instant, then a (p′, i ′) pair will be
returned.

• i
′

is always in the form of ’YYYY-MM-DD hh:mm:ss Tzid’ as in ISO (2004).

• if m is in stand-still, then mpt_initial = mpt_final.

• (NULL, NULL) will be returned if m is an empty_mpt.

3.2.5 mpt present atinstant

Arguments :
m : mpoint and i : instant

Returns :
b

′
: boolean

16

Description: this function is used to determine whether there is a known position for the given
moving point m at the specified time instant.Its signature is:

mpoint × instant → boolean

Precondition:

• The instant value must be in the form of ’YYYY-MM-DD hh:mm:ss Tzid’ as it is stated in
ISO (2004) for date and time format.

Postcondition:

• TRUE is returned if m’s position is known at the given instant, i.

• FALSE is returned if m’s position is not known at the given instant i.

3.2.6 mpt present atperiod

Arguments :
m : mpoint and ρ : period

Returns :
b

′
: boolean

Description: this function is used to determine whether there is at least one known position for
the input m within the specified time interval ρ.

mpt_present_atperiod(m, rho) = ∃t ∈ ρ : mpt_present_atinstant(m, t)

Its signature is:

mpoint × period → boolean

Precondition:

• ρ must be in the form of ’(YYYY-MM-DD hh:mm:ss, ‘YYYY-MM-DD hh:mm:ss Tzid)’ and
it must be based on the rule stated in mpt_atperiod precondition for the input time_interval
above.

Postcondition:

• TRUE is returned if m’s position is known at least at a single instant of time within ρ.

• FALSE is returned if m’s position is not known for any instant within ρ.

3.3 PROJECTION TO DOMAIN

3.3.1 mpt trajectories

Arguments :
m: mpoint

Returns :
g

′
: multilinestring/linestring

17

Description: this function is used to display the path in the xyz plane over which the moving
point traveled within the time interval that it is defined. Depending on the given moving point
the returned geometry can be a linestring or multilinestring. A non-empty mpoint for which every
segment produces a linestring, will itself produce a multilinestring. If there are one or more stand-
stills in the segments in m, the function will ignore all the stand-stills. We should also be aware that
if the function returns multilinestring the produced linestrings inside the multilinestring cannot be
expected to be simple geometries under the OGC definitions (OGC, 1999). This is because if we
see figure 3.1, the object can cross the same location it passed before. The signature is defined as:

mpoint → multilinestring/linestring

Figure 3.1: Segments inside m crossing each other

Precondition:

• None

Postcondition:

• if the given moving point m contains no registered location, then g
′

will be an empty mul-
tilinestring.

• if m contains a single segment with only one registered location of m, then the segment will
be ignored and an empty multilinestring will be returned.

• if m contains a single segment with more than one registered location of m, then the segment
will represent a linestring as a footprint.

• if m contains more than one segment in which all the segments represent stand-stills, then
g

′
will be an empty multilinestring.

• if m contains more than one segment where each segment produces a footprint of m as a
linestring, then g

′
will represent a multilinestring where all the linestrings produced are in

chronological order. g
′

cannot be expected to be simple always based on the definition of
‘simple’ in OGC (1999).

• if m contains more than one segment where some of the segments produce linestrings while
the others produce point, then g

′
will be a multilinestring if there are more than one linestring

produced or it will be linestring if there is only one linestring produced from the segments.
All stand-stills in one or more of the segments will be ignored.

• any segment inside the given moving point m which produces a geometry footprint as a
linestring will have 3D points which are in chronological order.

18

3.3.2 mpt locations

Arguments :
m : mpoint

Returns :
multi_pt : multipoint/point

Description: the function mpt_locations, for a given input mpoint m, returns the set of isolated
points at which m was known to be at a stand-still. By ‘isolated point’, we mean locations for which
the footprint of a single segment is just a point, and we exclude from these stand-stills occurring
in segments for which the footprint is a linestring.

mpoint → multipoint/point

Precondition:

• No precondition

Postcondition:

• an empty multipoint will be returned if there is no registered position for m.

• if the moving point contains a segment with a single registered location, then a 3D point will
be returned.

• a multipoint is returned if m contains a single segment which have more than one registered
location. The multipoint will contain 3D points.

• if m contains more than one segments and each segment represents a geometry footprint
as a point, then a multipoint will be returned having no repetitive locations. All stand-stills
duplicated in one or more segments will appear only once in the output. So the output
multipoint is always simple as it is defined in OGC (1999).

• if m contains more than one segment where some of the segments contain multiple registered
locations while the other zero or more segments contains only stand-stills, then a multipoint
will be returned by removing any duplicate location, if such exists.

3.4 RATE OF CHANGE

3.4.1 mpt speed

Arguments :
m : mpoint

Returns :
mr

′
: mreal

Description: this function computes the speed of a moving point as a moving real. In each segment
inside the moving point structure, the speed between each consecutive positions is calculated and
the result is given as two real values: one for the displacement and the other for the difference
between the time associated to the locations (Δt1 = t2 − t3, where t1 is the time associated with
the first location and t2 is the time associated with the second location). So for a single moving
point, the speed calculation returns a sequence of real values together with time like (d1 Δt1, d2

19

Δt2, d3 Δt3, d4 Δt4, ...), where d1, d2, ... represent the speed between two consecutive positions
andΔt1,Δt2, .. represent the change in time between the positions. The signature is defined as :

mpoint → mreal

Precondition :

• None

Postcondition:

• if m has no registered location, then empty_mr will be returned, i.e.

(m = empty_mpt) =⇒ empty_mr

• if m has one segment that represents stand-still, then mreal with zero value will be returned.

• if m has one segment with more than one registered location, then mr will be of the form
(d1 Δt1, d2 Δt2, ..., dn Δtn), where n = total number of registered locations - 1.

• if m contain more than one segment where all represent stand-stills, then mr will be (0Δt1,
Δt2,...).

• if m contain more than one segments which are all containing more than one registered
locations, then the speed calculation between any consecutive locations within each segment
will have a value greater than zero.

• All real values inside mr
′

will have units in ms−1.

3.4.2 mpt velocity

Arguments:
m : mpoint

Returns :
m

′
: mpoint

Description: this function computes the velocity of a moving point as a sequence of vector values
for each segment of the moving point. It calculates the velocity between two consecutive points in
the x, y and z direction. This shows the rate of change of the location of m in each direction which
we call a vector value within the time specified with both locations. So each segment inside the
moving point is represented by a sequence of values of velocities in each direction together with
the change in time, i.e.(Vx1 Vy1 Vz1 Δt1, Vx2 Vy2 Vz2 Δt2, ..., Vxn Vyn Vzn Δtn). The result finally
can be represented as a moving point by assigning default value for the Tzid and Srid. The output
of this function tells what is the rate of change of m between two locations (within time interval) in
each direction. But even though its an abuse to use, for simplicity we are using mpoint to represent
the output by giving default value for Tzid and Srid to represent the output of mpt_velocity.

((Vx1 Vy1 Vz1 Δt1, Vx2 Vy2 Vz2 Δt2, ...), (Vx3 Vy3 Vz3 Δt3, Vx4 Vy4 Vz4 Δt4, ...), ...)
The signature is then defined as :

mpoint → mpoint

Precondition :

20

• None

Postcondition:

• if the input m has no registered location then m
′

will be empty_mpt will be returned.

• if m contains a single segment with one registered location, then m
′

will be empty_mpt.

• if m contains a single segment having more than one registered location, then the velocity
in each direction for any consecutive location will be greater than or equal to zero.

• if m has more than one segment where all of them represent stand-stills, then m
′
will contain

a velocity of zero in each direction for all the segments.

• if m contains more than one segment where some of the segments represent stand-stills while
the others do not, then the velocity computation in each direction for every consecutive
locations which represent stand-stills will be zero.

• if m contains more than one segment which are all containing more than one registered
location, then the velocity calculation in each direction between any consecutive locations
in each segment will have a value greater than or equal to zero.

• the velocity in each direction inside a segment for any consecutive location in m always has
a unit expressed in ms−1.

21

22

EMBEDDING DATA TYPES FOR CONTINUOUSLY EVOLVING OBJECTS IN A DBMS

Chapter 4

Implementation and Results

4.1 INTRODUCTION

In the previous chapters, we discussed the abstract and discrete design for the implementation of a
moving point type and functions for it. The main concern of those chapters is in discussing how
to represent a moving point: the abstract definition and the data structure in the discrete level,
and descriptions of functions. The description of functions explains only what the functions do
and what kind of outputs we obtain from them. In this chapter, we discuss how these functions
and the moving point type are implemented as an extension to a DBMS as well as the choice of
the working environment and the steps that are taken for setting up. Algorithms are described to
show the implementation detail. Furthermore, we discuss the result of the implementation.

4.2 SETUP AND ENVIRONMENT

For the implementation, the first step was to choose the operating system and software needed.
For the selection, the main resource was a previous thesis on the same subject that was carried
out by Eftekhar (2012). On the basis of this, together with literature review the selection is made.
Table 4.1 shows the overall list of software and languages that are used.

Table 4.1: Working environment

OS Windows
DBMS PostgreSQL 9.2
Compiler Microsoft Visual Studio 2010
Geometry library PostGIS 2.0
Programming language C
Query language SQL

As the main aim of this thesis project is to obtain an extension of the current DBMS softwares
to handle moving objects, we choose one DBMS from the available DBMSs: PostgreSQL. The
choice is made mainly because it is an open source software of which the source code is available
for free and currently, it is also a powerful DBMS that many companies are using (Group, 2013a).
It is compatible with all operating systems and comes with many GUI tools. So, for a developer
who would like to extend, it is free to extend the software.

In the selection of a programming language, even though PostgreSQL allows the use of high
level programming languages like C++, the language that fits totally with the implementation of
new functions and types in PostgreSQL is C. But still PostgreSQL has its own C++ extensibility
if one follows strictly the guidelines stated in Group (2013c). So we choose C, which is actually
the language in which PostgreSQL is developed.

23

Since Microsoft Visual C++ is one of the PostgreSQL platforms (Group, 2013b), we used the
2010 version of it for the purpose of compiling and linking code. Furthermore, PostGIS is the
spatial extension of PostgreSQL and contain many useful types and functions that we can use to
develop the type and functions we designed, we used the PostGIS library. The scheme that PostGIS
uses for the implementation of types and functions is based on OGC (1999) and this helped us as
a framework to work with in the implementation.

4.3 IMPLEMENTATION OF A MOVING POINT DATA TYPE

As stated in PostgreSQL 9.2 documentation, to create a new type, there must be two functions
that are used as a skeleton to create it: an input and an output function. They are mainly used to
describe how the type appear as a text when the user insert and retrieve data and how it is organized
internally. In other words, the input function is used for an internal representation (for both using
it in memory and storing it to disk), while the output function is used to retrieve the data from
the internal representation.

Generally, when we create a type in PostgreSQL, it should have textual representation, so that
the value can be expressed by string in sql statement. so the input function is used to accept this
text representation from the user and then transform it into internal representation. In contrary,
when a user wants to retrieve the value of an attribute of the new type from a table using select
statement, the output function will be implicitly invoked to retrieve the value from the internal
representation and displays the textual representation (or binary format if the user asks).

To create input and output functions for mpoint, we followed the language constructs defined
in the previous chapter. For the purpose of writing and reading data, we created functions to seri-
alize and deserialize. Whenever the user wants to enter data, the serialization function is triggered
by the input function. Figure 4.1 shows how the serialization of mpoint works.

Figure 4.1: Serialization of mpoint

24

4.4 IMPLEMENTATION OF FUNCTIONS FOR MOVING POINT TYPE

In this section, we explain the details of how the implementation of functions on mpoint is done
in an algorithmic way. To use terms in the algorithms, we use the definitions below:

• i represents an instant

• mpt represents an mpoint

• time_interval represents a period

• num_sgts represents number of segments in mpt

• num_pts represents number of registered locations.

• mpt_sgts represents an array of mpt_segment.

4.4.1 Algorithm for mpt atinstant

The algorithm for mpt_atinstant works in three steps. In the first step, the timezone identifier in
the input mpoint is checked for match with the timezone identifier of the input instant. In the
second step, the search for the correct segment that is defined within a time interval containing
i is retrieved. In the last step, within the segment that is found in step two, the location of the
given mpoint is searched and returned if it is stored, otherwise, the algorithm searches two closest
locations that can be used for interpolation to get the required location. The instant given as an
input should be within the time interval of the two locations used for interpolation.

Step1: Validating time zone identifier

This step is used to check whether the time zone in the input time instant, i is the same as the time
zone associated with the given mpoint mpt. It is described in pseudocode as follows:

if (i.tzid = mpt.tzid) then
continue

else
display error message

end if

Step2: Searching for the correct segment

In this step, based on the time interval that each segment has in the given mpt, the algorithm
searches for the correct segment that is defined within a time interval that contains the given instant
i

for int index = 0 → num_sgts − 1 do
if i is within mpt_seg[index].time_interval then

return mpt_seg[index];
end if

end for

Step3: Finding the required location

Once the segment is found in Step2, again a search is done to get the required position. If the
location is not stored, then the closest two locations that can be used for interpolation will be taken
and the result location will be returned. The algorithm is described using pesudocode below.

25

for int index = 0 → num_sgts − 1 do
if geom_array[i].time >= i then

if geom_array[i].time = i then
return geom_array[i];

else
new_point ← interpolate(geom_array[i − 1], geom_array[i])
return new_pont;

end if
end if

end for

4.4.2 Algorithm for mpt atperiod

The algorithm is used to restrict a given mpoint to the given time interval. The algorithm has
three steps to return locations of the given mpoint within the given time interval. The first step
is to validate the time zone specified in the input period. The second step searches for segments of
which the time interval overlaps with the input time interval. The last step creates a new mpoint
containing the returned segments of step2.

Step1: Validating timezone identifier

In this step, the algorithm checks whether the time zone identifier specified in the input time
interval is the same as the time zone identifier of the input mpoint.

if (time_interval.tzid == mpt.tzid) then
Continue

else
Display error message

end if

Step2: Search segments

In this step, the algorithm searches for segments inside the given mpoint having time interval over-
lapping with the input time interval.

n = 0;
for int index = 0 → num_sgts − 1 do

first_location ← mpt_sgts[index].geom_array[0]
last_location ← mpt_sgts[index].geom_array[num_pts − 1]
if (first_location.time >= time_interval.initial_time)and(last_location.time <=

time_interval.final_time) then
new_mpt_sgts[n] ← mpt_sgts[index];
n + +;

end if
end for

Step3: Create new mpoint

In the final step, by using the returned segments of the previous step, which is new_mpt_sgts. This
step creates new mpoint new_mpt which has the same srid and tzid as the input mpoint.

new_mpt.tzid ← mpt.tzid;
new_mpt.srid ← mpt.srid;

26

new_mpt.mpt_sgts ← new_mpt_sgts[n];
return new_mpt;

4.4.3 Algorithm for mpt initial

This algorithm is used to retrieve the initial registered location of the given mpoint. It first checks
whether the given mpoint is an empty mpoint (with no registered location) or not. If it is not, then
the algorithm retrieves the location stored in the first segment of mpt and return it together with
the time associated with it.

if (mpt.num_sgts = 0) then
return (NULL, NULL)

else
first_segment ← mpt.mpt_seg[0];
initial_location ← first_segment.geom_array[0];
initial_time ← initial_location.time;
return (initial_location, initial_time);

end if

4.4.4 Algorithm for mpt final

The algorithm mpt_final is used to retrieve the final registered location of the given mpoint. It
first checks weather the given mpoint is an empty mpoint or not. If it is, then it will return
(NULL, NULL) as a result to specify the given mpoint has no registered location. Otherwise,
it returns the last location where the given moving point was together with the time instant asso-
ciated with it

if (mpt.num_sgts = 0) then
return (NULL, NULL)

else
last_segment ← mpt.mpt_seg[num_sgts − 1];
final_location ← last_segment.geom_array[num_pts − 1];
final_time ← final_location.time;
return (final_location, final_time);

end if

4.4.5 Algorithm for mpt present atinstant

The algorithm is used to check if the input mpoint was present at the given instant or not. To
do this, it searches a segment that contains the input time instant. If it finds one, then it returns
TRUE to specify that the given mpoint was present at the the given instant, otherwise, FALSE .

for int index = 0 → num_sgts − 1 do
first_location ← mpt_sgts[index].geom_array[0]
last_location ← mpt_sgts[index].geom_array[num_pts − 1]
if (first_location.time <= i)and(last_location.time >= i) then

return TRUE
else

return FALSE
end if

end for

27

4.4.6 Algorithm for mpt present atperiod

The algorithm is used to check if the input mpoint has registered locations within a specific time
interval or not. The algorithm first accepts an mpoint and time_interval as inputs, then searches
for a segment of which the input time interval is within the time_interval of the segment, which
means the time interval that the segment is defined may or may not coincide to the input time
interval. If it finds a segment that fulfill this, it returns TRUE , otherwise, returns FALSE . This
is stated in an algorithmic way below.

n = 0;
for int index = 0 → num_sgts − 1 do

first_location ← mpt_sgts[index].geom_array[0]
last_location ← mpt_sgts[index].geom_array[num_pts − 1]
if (first_location.time >= time_interval.initial_time)and(last_location.time <=

time_interval.final_time) then
new_mpt_sgts[n] ← mpt_sgts[index];
n + +;

end if
end for
if n = 0 then

return FALSE ;
else

return TRUE ;
end if

4.4.7 Algorithm for mpt trajectories

The algorithm is used to retrieve the path that a moving point traveled as a multilinestring or
linestring. The algorithm works in two steps. First it checks if the given mpoint contains at least
one registered location. If not, then it will return an empty multilinestring. If it contains reg-
istered locations, it will display either a linestring or multilinesting based on the cases stated in
the postcondition description in Chapter three. The algorithm below shows how the function is
implemented.

if mpt.num_sgts = 0 then
return empty multilinestring

else
count = 0
for index = 0 → num_sgts − 1 do

if mpt_seg[index].num_pts = 1 then
do nothing

else
for j = 0 → num_pts − 1 do

point_coll[n ← mpt_sgts[index].geom_array[j]
end for
create a linestring from point_coll[n and set it as new_linestring
new_linestrings[count] ← new_linestring
count++;

end if
end for
if count > 0 then

28

return new_linestrings as linestring;
else

return new_linestrings as multilinestring;
end if

end if

4.4.8 Algorithm for mpt locations

The algorithm for the implementation of mpt_locations only returns a multipoint or a point. Since
the main aim of the function is to return at which locations was the given mpoint, the function
removes any duplicate locations if these exists. The algorithm below describes how it is imple-
mented.

if mpt.num_sgts == 0 then
return empty multipoint

else
int count = 0

for index = 0 → num_sgts − 1 do
for j = 0 → num_pts − 1 do

new_points[count] ← mpt_sgts[index].geom_array[j]
count + +;

end for
end for
if count = 1 then

return new_point as a point
else

remove all repeated locations in new_point
return new_point as a multipoint

end if
end if

4.4.9 Algorithm for mpt speed

The algorithm calculates the speed between any consecutive location for each segment of the given
mpoint as a real value. The algorithm below explain how the function works.

int count = 0;
if thenmpt.num_sgts == 0

return empty mreal
else

for int index = 0 → num_sgts − 1 do
for int pos = 0 → num_pts − 1 do

point1 ← mpt_sgts[index].geom_array[pos]
point2 ← mpt_sgts[index].geom_array[pos + 1]
x1 ← point1.x
y1 ← point1.y
z1 ← point1.z
x2 ← point2.x
y2 ← point2.y
z2 ← point2.z
t1 ← point1.time

29

t2 ← point2.time
distance ← √

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

speed ← distance
t2,t1

mreal[count].real_value ← speed
mreal[count].time ← difference_time(t2, t1)
count + +;

end for
end for
return mreal

end if

4.4.10 Algorithm for mpt velocity

The algorithm mpt_velocity calculates the velocity in x, y and z direction between any consecutive
locations of the given mpoint and returns it as an mpoint.

int count = 0;
if thenmpt.num_sgts == 0

return empty mpoint
elseint n == 0;

create new mpoint as new_mpoint
for int index = 0 → num_sgts − 1 do

for int pos = 0 → num_pts − 1 do
point1 ← mpt_sgts[index].geom_array[pos]
point2 ← mpt_sgts[index].geom_array[pos + 1]
x1 ← point1.x
y1 ← point1.y
z1 ← point1.z
x2 ← point2.x
y2 ← point2.y
z2 ← point2.z
t1 ← point1.time
t2 ← point2.time
velocity_x ← x2−x1

t2−t1
;

velocity_y ← y2−y1
t2−t1

;
velocity_z ← (z2−z1)

t2−t1
time_diff ← difference_time(t2, t1);
new_geom_array[n].x ← velocity_x
new_geom_array[n].y ← velocity_y
new_geom_array[n].z ← velocity_z
new_geom_array[n].time ← time_diff
n + +;

end for
new_sgts[count].geom_array ← new_geom_array[n]
count + +;

end for
new_mpoint.mpt_sgts ← new_sgts
return new_mpoint which is an mpoint with default tzid and srid

end if

30

EMBEDDING DATA TYPES FOR CONTINUOUSLY EVOLVING OBJECTS IN A DBMS

Chapter 5

Results

5.1 RESULTS

In the previous chapter, we discussed the implementation of a mpoint data type and function that
can be applied on them in algorithmic way. In this chapter, we demonstrate the output of the
implementation with examples. For further detail the source code is attached on the appendix.

5.2 DEMONSTRATION OF MPOINT

Let us say that a company X is organizing a car competition and wants to register the information
of the cars in a database to store the information during the competition. So, a GPS receiver is
installed in all cars in the competition and and they are activated from the beginning of the race,
to track the cars. For the demonstration, let us create a table called ‘cars’, which can be used to
store the information of the cars. We make one of the attribute as mpoint type to represent the
geometry of the car.

Create new table:

CREATE TABLE c a r (car_model VARCHAR(2 0) ,
car_geom mpoint) ;

Insert data into table:

INSERT INTO c a r (car_model , car_geom)
VALUES(‘ FIAT500 ’ , ‘ s r i d =4326; t z i d =1;MPOINT((2 . 8 3 . 6 8 . 1 2012−03−12

1 2 : 0 5 : 4 0) , (2 . 8 3 . 6 8 . 1 2012−03−12 1 2 : 0 9 : 4 0) , (2 . 5 3 . 5 8 . 0
2012−03−12 1 2 : 0 9 : 4 5 , 2 . 0 3 . 1 8 . 7 2012−03−12 1 2 : 0 9 : 5 0 , 3 . 2 5 . 5
9 . 0 2012−03−12 1 2 : 0 9 : 5 5) , (4 . 2 4 . 5 9 . 3 2012−03−12 1 2 : 1 9 : 0 0)) ’)

Retrieve data from the table:

SELECT car_geom
FROM c a r

output:

car_geom
−−−
" s r i d =4326; t z i d =1;MPOINT((2 . 8 0 0 0 0 0 3 . 6 0 0 0 0 0 8 . 1 0 0 0 0 0 2012−03−12

1 2 : 0 5 : 4 0) , (2 . 8 0 0 0 0 0 3 . 6 0 0 0 0 0 8 . 1 0 0 0 0 0 2012−03−12 1 2 : 0 9 : 4 0)
, (2 . 5 0 0 0 0 0 3 . 5 0 0 0 0 0 8 . 0 0 0 0 0 0 2012−03−12 1 2 : 0 9 : 4 5 , 2 . 0 0 0 0 0 0

31

3 . 1 0 0 0 0 0 8 . 7 0 0 0 0 0 2012−03−12 1 2 : 0 9 : 5 0 , 3 . 2 0 0 0 0 0 5 . 5 0 0 0 0 0
9 . 0 0 0 0 0 0 2012−03−12 1 2 : 0 9 : 5 5) , (4 . 2 0 0 0 0 0 4 . 5 0 0 0 0 0 9 . 3 0 0 0 0 0
2012−03−12 1 2 : 1 9 : 0 0)) "

The above output shows the use of the input and out put functions discussed above section. The
insert statement is used for the ‘INSERT INTO’ statement and the output function is used for
‘SELECT FROM’ statement.

So mpont data type is used once we have our data in the format of the textual representation
of the type, like we did above.
5.3 FUNCTION DEMONSTRATIONS

To demonstrate the implemented functions, we use the same example we describe on the previous
section by using possible questions that can be raised.

5.3.1 mpt final

One of the possible question that can be raised if the car with a model number ‘FIAT500’ did not
finish the competition is, where was its last stop? This can be find by using the function mpt_final.
The SQL codes below show this usage.

SELECT m p t _ f i n a l (car_geom)
FROM c a r
WHERE car_model = ‘ FIAT500 ’

m p t _ f i n a l
−−−
(POINT Z(4 . 2 0 0 0 0 0 4 . 5 0 0 0 0 0 9 . 3 0 0 0 0 0) ,2012−03−12 1 2 : 1 9 : 0 0 4 3 2 6)

This shows us the final registered location of the car.

5.3.2 mpt initial

In the contrary, we might also want to know the initial location we can query:

SELECT m p t _ i n i t i a l (car_geom)
FROM c a r
WHERE car_model = ‘ FIAT500 ’

m p t _ i n i t i a l
−−−
(POINT Z(2 . 8 0 0 0 0 0 3 . 6 0 0 0 0 0 8 . 1 0 0 0 0 0) ,2012−03−12 1 2 : 0 5 : 4 0 4 2 6)

5.3.3 mpt atinstant

In order to know the location of the car which is in competition at a specific time, we can apply
this function over the car_geom attribute in the car table. For example if we want to know the
position of a car with model number ‘FIAT500’ at time 2012-03-12 12:09:47, then we can query:

SELECT m p t _ a t i n s t a n t (car_geom , ‘2012 −03 −12 1 2 : 0 9 : 5 0 4 3 2 6 ’)
FROM c a r
WHERE car_model = ‘ FIAT500 ’

32

m p t _ a t i n s t a n t
−−−
(POINT Z(2 . 3 0 0 0 0 0 3 . 3 4 0 0 0 0 8 . 2 8 0 0 0 0) ,2012−03−12 1 2 : 0 9 : 4 7 4 2 6)

5.3.4 mpt present atinstant

To know if a given mpoint has registered location at a specific time instant, we can use the function
mpt_present_atinstant. For example to check if a car was present at a given instant 2012-03-12
12:09:56:

SELECT m p t _ p r e s e n t _ a t i n s t a n t (car_geom , ‘2012 −03 −12 1 2 : 0 9 : 5 6 4 3 2 6 ’)
FROM c a r
WHERE car_model = ‘ FIAT500 ’

m p t _ a t i n s t a n t
−−−
FALSE

5.3.5 mpt atperiod

This function allows to know the path that the moving point traveled. For example if we want
to know where the car with a model number ‘FIAT500’ was within specific time interval, we can
write a query like this:

SELECT mpt_a tper iod (car_geom , ‘(2012 −03 −12 12:09:45 ,2012 −03 −12
1 2 : 0 9 : 5 5 , 4 3 2 6) ’)

FROM c a r
WHERE car_model = ‘ FIAT500 ’

m p t _ a t i n s t a n t
−−−
" s r i d =4326; t z i d =1;MPOINT((2 . 5 0 0 0 0 0 3 . 5 0 0 0 0 0 8 . 0 0 0 0 0 0 2012−03−12

1 2 : 0 9 : 4 5 , 2 . 0 0 0 0 0 0 3 . 1 0 0 0 0 0 8 . 7 0 0 0 0 0 2012−03−12
1 2 : 0 9 : 5 0 , 3 . 2 0 0 0 0 0 5 . 5 0 0 0 0 0 9 . 0 0 0 0 0 0 2012−03−12 1 2 : 0 9 : 5 5)) "

5.3.6 mpt present atperiod

To know if a given mpoint has registered location within the specific time interval, we can use the
function mpt_present_atperiod. If there is atleast one registered location within the given time
interval, the function returns TRUE, otherwise FALSE is returned. For example to check if a car
was present within a time interval (2012-03-12 12:09:45,2012-03-12 12:09:50,4326):

SELECT m p t _ p r e s e n t _ a t p e r i o d (car_geom , ‘(2012 −03 −12
12:09:45 ,2012 −03 −12 1 2 : 0 9 : 5 5 , 4 3 2 6) ’)

FROM c a r
WHERE car_model = ‘ FIAT500 ’

m p t _ a t i n s t a n t
−−−
TRUE

33

5.3.7 mpt trajectories

This function is used to know the path a moving point is traveled. Following the description
specified in chapter three, if we query the trajectory of the car with model number ‘FIAT500’, the
out put is a linestring.

SELECT m p t _ t r a j e c t o r i e s (car_geom)
FROM c a r
WHERE car_model = ‘ FIAT500 ’

m p t _ t r a j e c t o r i e s
−−−
LINESTRING Z(2 . 5 0 0 0 0 0 3 . 5 0 0 0 0 0 8 . 0 0 0 0 0 0 , 2 . 0 0 0 0 0 0 3 . 1 0 0 0 0 0

8 . 7 0 0 0 0 0 , 3 . 2 0 0 0 0 0 5 . 5 0 0 0 0 0 9 . 0 0 0 0 0 0)

5.3.8 mpt locations

This function is used to retrieve the registered locations of the given moving point. Based on the
descriptions specified in Chapter three, if we query the function mpt_locations of the car with
model number ‘FIAT500’, the out put is a multipoint.

SELECT m p t _ l o c a t i o n s (car_geom)
FROM c a r
WHERE car_model = ‘ FIAT500 ’

m p t _ l o c a t i o n s
−−−
MULTIPOINT Z(2 . 8 0 0 0 0 0 3 . 6 0 0 0 0 0 8 . 1 0 0 0 0 0 , 2 . 5 0 0 0 0 0 3 . 5 0 0 0 0 0

8 . 0 0 0 0 0 0 , 2 . 0 0 0 0 0 0 3 . 1 0 0 0 0 0 8 . 7 0 0 0 0 0 , 3 . 2 0 0 0 0 0 5 . 5 0 0 0 0 0
9 . 0 0 0 0 0 0 , 4 . 2 0 0 0 0 0 4 . 5 0 0 0 0 0 9 . 3 0 0 0 0 0)

34

EMBEDDING DATA TYPES FOR CONTINUOUSLY EVOLVING OBJECTS IN A DBMS

Chapter 6

Conclusion and Recommendation

6.1 CONCLUSION

In this research project, we reviewed the current available spatiotemporal models. Even though
there is no perfect model in representing real world objects in a database system, the abstract de-
sign of Güting et al. (2000) is the better model that can be used to extend current DBMSs towards
handling movement information in comparison to the other models (Pelekis et al., 2005). So,
considering the design methods proposed by Güting et al. (2000) as a stepping stone in designing
abstract and discrete representation can improve the current DBMSs. It proposes a foundation
on the representation of moving objects. On this research, we did some refinement on the math-
ematical definitions proposed by Güting et al. (2000). This allowed us to define a clear abstract
design for a moving point data type and operations. Then, we design the discrete representation
which mainly focuses on how the proposed data type and functions containing operations can be
implemented within the memory administered by the DBMS. We started by describing the use of
each function and then proposed their algorithmic implementation.

As PostgreSQL extension we impelemented a moving point type, which we define it as a real
world object that changes its position through time but not its extent. Functions that are used to
manipulate and analyze information of this type are also implemented.

For the implementation of the moving point data type, we use the method of segmentation.
The segmentation of information for a single moving point considers the natural possible cases,
for example when a GPS receiver fails to obtain positions for a period of time or when the moving
point stop at some point and continue moving. It assumes and follows the principle of a constant
time step between any two consecutive locations within a segment.

In the design of the data structure, segments of a moving point type are stored in different
memory locations and we used pointers to these segments from the data structure of mpoint. For
example, let us say that an mpoint contains an array of pointers of size three. Each pointer in the
array points to segments located to different memory locations. The toasting mechanism of Post-
greSQL is automatically applied for segments with much data. If we store one million locations
in each segment, PostgreSQL automatically compresses the data to minimize the memory con-
sumption because we use variable size array in our implementation. But if the segments were in
the same database array, the compression would be much easier as well as it will minimize much
space. The reason that we could’t make our implementation in a way that follows the array of
segments i that when we serialize and de-serialize the data we have to identify and flag each seg-
ment in the data structure, otherwise it will be difficult to identify segments separately. This adds
additional unwanted variables in mpoint structure. For simplicity on accessing data and design, we
serialize segments separately and used a pointer array in the mpoint data structure to retrieve the
information in each segment. PostgreSQL compresses each segment to minimize memory con-
sumption when ever the data is large. This is done automatically by PostgreSQl because we are
using variable size array for storing each segment. If our structure made the segments in the same
database array, it would have been easier to compress all the segments together which can results

35

in more reduction of memory consumption.
Generally, in this thesis project, the implementation is done for representation of a moving

point, the research objectives are fulfilled and the discrete design is a clear guide to continue with
the rest of unfinished moving types like moving region. Furthermore, the thesis project proves
that using Güting et al. (2000) as a stone is the right choice.

6.2 RECOMMENDATION

The contribution of this thesis paper is a refined abstract and discrete design by taking the abstract
design proposed by Güting et al. (2000) as a start.

The design and implementation is focused on a moving point type and some operations on it.
The thesis does not cover all the possible implementations of functions since there is no limited
number of functions that can be implemented on moving point type. Only functions that contain
operations from set theory and first order logic and the ones we consider are useful to answer
potential questions and feasible to implement within the time frame of the thesis are implemented.
So its still open to implement more functions for this type and the source code for the moving
point type found in the appendix can be used for this purpose as far as one follows the selection of
softwares and programing language that is used in this thesis.

Since moving point is the base for the other moving types: moving region and moving line,
this thesis can be used as a stepping stone for the design and implementation of such geometries.
So as a future work, implementation of these types and functions associated with them is highly
recommended as a follow up of this research project. Furthermore, Güting et al. (2000)’s work
contains the abstract design of these geometries and by following the methods followed for the
implementation of moving point on this thesis, one can implement more moving object types.

36

EMBEDDING DATA TYPES FOR CONTINUOUSLY EVOLVING OBJECTS IN A DBMS

References

Cotelo Lema, J. A., Forlizzi, L., Güting, R. H., Nardelli, E., & Schneider, M. (2003). Algorithms
for moving objects databases. , 46(6), 680-712.

Eftekhar, A. (2012). Development of moving feature data types in a major dbms. Unpublished
master’s thesis, University of Twente, the Netherlands.

Erwig, M., Güting, R. H., Schneider, M., & Vazirgiannis, M. (1999). Spatio−temporal data types:
An approach to modeling and querying moving objects in databases. GeoInformatica, 3,
269-296.

Forlizzi, L., Güting, R. H., Nardelli, E., & Schneider, M. (1999). A data model and data structures
for moving objects databases. In (pp. 319–330).

Group, P. G. D. (2013a). Featured users. Retrieved from http://www.postgresql.org/about/
users/

Group, P. G. D. (2013b). Feature matrix. Retrieved from http://www.postgresql.org/about/
featurematrix/

Group, P. G. D. (2013c). Using c++ for extensibility. Retrieved from http://www.postgresql
.org/about/featurematrix/

Güting, R. H., Behr, T., & Düntgen, C. (2010). Secondo: A platform for moving objects database
research and for publishing and integrating research implementations. IEEE Data Eng. Bull.,
56-63.

Güting, R. H., Böhlen, M. H., Erwig, M., Jensen, C. S., Lorentzos, N. A., Schneider, M., &
Vazirgiannis, M. (2000, March). A foundation for representing and querying moving objects.
ACM Trans. Database Syst., 25(1), 1-42.

Güting, R. H., & Schneider, M. (2005). Moving objects databases. Morgan Kaufmann Publishers.
ISO. (2004). Iso 8601:2004. data elements and interchange formats — information interchange —

representation of dates and times.
Lema, J. A. C., Forlizzi, L., Güting, R. H., Nardelli, E., & Schneider, M. (2003). Algorithms for

moving objects databases.
Moreira, J., Ribeiro, C., & Abdessalem, T. (2000). Query operations for moving objects database

systems. In Proceedings of the 8th acm international symposium on advances in geographic
information systems. New York, NY, USA: ACM.

OGC. (1999). Opengis simple features specification for sql revision 1.1.
Parent, C., Spaccapietra, S., & Zimányi, E. (1999). Spatio−temporal conceptual models: data

structures + space + time. In Proceedings of the 7th acm international symposium on advances
in geographic information systems (p. 26-33). New York, NY, USA: ACM.

Pelekis, N., Theodoulidis, B., Kopanakis, I., & Theodoridis, Y. (2005). Theodoridis. literature
review of spatiotemporal database models. The Knowledge Engineering Review, 19, 235-274.

Schneider, M. (2009). Moving objects in databases and gis: State-of-the-art and open problems. In
G. Navratil, W. Cartwright, G. Gartner, L. Meng, & M. P. Peterson (Eds.), Research trends
in geographic information science (p. 169-187). Springer Berlin Heidelberg.

Tryfona, N., & Hadzilacos, T. (1998). Logical data modeling of spatiotemporal applications: Def-
initions and a model. In Ideas, international database engineering and applications symposium
(pp. 14–23). Press.

37

38

EMBEDDING DATA TYPES FOR CONTINUOUSLY EVOLVING OBJECTS IN A DBMS

Appendix One

−−−

Header F i l e s
−−−

i n c l u d e <p o s t g r e s . h>
i n c l u d e <fmgr . h>
i n c l u d e <lwgeom_pg . h>
i n c l u d e <t imestamp . h>
i n c l u d e " d e s e r i a l _ m p o i n t . h"
i n c l u d e " mpt_headers . h"

—————————————————————————
Input Function

—————————————————————————

PG_FUNCTION_INFO_V1(mpoint_in) ;
Datum

mpoint_in (PG_FUNCTION_ARGS)
{

char ∗ s t r= PG_GETARG_CSTRING(0) ;
i n t i ;
GSERIALIZED ∗ r e s u l t ;
i n t num_pts=0;
i n t num_segts=0 , s r i d , t z i d ;
bool f i n i s h e d = f a l s e ;

LWGEOM ∗ geom_array ;
mpt_segment ∗ p t _ s e g t s ;
double X, Y, Z ,M;
i n t year , month , day , hour , minute , second , pos , count=0;
t i m e _ t T ;
char mpt_as_4D [2 5 6] ;
s i z e _ t s i z e ;
LWGEOM_PARSER_RESULT l w g _ p a r s e r _ r e s u l t ;
LWGEOM ∗ lwgeom ;
s s c a n f _ s (s t r , " s r i d=%d;%n",& s r i d ,& pos) ;
s t r+=pos ;
s s c a n f _ s (s t r , " t z i d=%d ;MPOINT((%n" ,& t z i d ,& pos) ;

s t r+=pos ;
whi l e (! f i n i s h e d)
{

39

s s c a n f _ s (s t r ,"% l f %l f %l f %d−%d−%d %d:%d:%d%n",&X
,&Y,&Z,& year ,&month,&day ,&hour ,&minute ,& second
,& pos) ;

T=tm_to_t imet (& year ,&month,&day ,&hour ,&minute ,&
second) ;

M=T ;
s p r i n t f (mpt_as_4D , "POINT(% l f %l f %l f %l f) " ,X, Y, Z ,M

) ;

i f (lwgeom_parse_wkt (& l w g _ p a r s e r _ r e s u l t ,
mpt_as_4D , LW_PARSER_CHECK_ALL) == LW_FAILURE
)

{
PG_PARSER_ERROR(l w g _ p a r s e r _ r e s u l t) ;

}
e l s e {

lwgeom = l w g _ p a r s e r _ r e s u l t . geom ;
i f (s r i d)

l w g e o m _ s e t _ s r i d (lwgeom , s r i d) ;
i f (lwgeom_needs_bbox (lwgeom))

lwgeom_add_bbox (lwgeom) ;
i f (num_pts == 0) {

geom_array = (LWGEOM∗) ma l loc (
s i z e o f (LWGEOM)) ;

} e l s e {
geom_array = (LWGEOM∗) r e a l l o c (

geom_array , (1 + num_pts) ∗
s i z e o f (LWGEOM)) ;

}
geom_array [num_pts] = ∗ lwgeom_clone_deep (

l w g _ p a r s e r _ r e s u l t . geom) ; //make a copy
++num_pts ;
l w g e o m _ p a r s e r _ r e s u l t _ f r e e (&

l w g _ p a r s e r _ r e s u l t) ;
}

s t r += pos ;
i f (s t r [0]== ’) ’)
{

i f (num_segts == 0) {
p t _ s e g t s = (mpt_segment ∗) ma l loc (

s i z e o f (mpt_segment)) ;
} e l s e {

p t _ s e g t s = (mpt_segment ∗) r e a l l o c (
p t _ s e g t s , (1 + num_segts) ∗
s i z e o f (mpt_segment)) ;

}
p t _ s e g t s [num_segts] . num_pts = num_pts ;

40

p t _ s e g t s [num_segts] . geom_array=geom_array ;
num_pts=0;
++num_segts ;
s t r += 1 ;
i f (s t r [0]== ’) ’)

f i n i s h e d = t r u e ;
e l s e i f (s t r [0] == ’ , ’)

s t r+=2;
}
e l s e {

s t r += 1 ;
}

}

r e s u l t = g s e r i a l i z e d _ f r o m _ m p o i n t (p t _ s e g t s , s r i d , t z i d ,
num_segts , &s i z e) ;

f o r (i = 0 ; i < num_segts ; ++i)
f r e e (p t _ s e g t s [i] . geom_array) ;

f r e e (p t _ s e g t s) ;
PG_RETURN_POINTER(r e s u l t) ;

}

—————————————————————————

Out Function

—————————————————————————

PG_FUNCTION_INFO_V1(mpoint_out) ;

Datum
mpoint_out (PG_FUNCTION_ARGS)

{
c o n s t GSERIALIZED ∗g = (GSERIALIZED∗)PG_GETARG_POINTER(0) ;
mpoint mpt ;
mpt_segment ∗mpt_sg t s ;
i n t i ;
char ∗ r e s u l t = (char ∗) p a l l o c (1 0 2 4) ;
∗ r e s u l t = 0 ;
m p o i n t _ f r o m _ g s e r i a l i z e d (g , &mpt , &mpt_sg t s) ;
m p o i n t _ a s _ t e x t (mpt_sgt s , r e s u l t , mpt . num_segts , mpt . s r _ i d ,

mpt . t z _ i d) ;
f o r (i = 0 ; i < mpt . num_segts ; ++i)

f r e e (mpt_sg t s [i] . geom_array) ;
f r e e (mpt_sg t s) ;
PG_RETURN_CSTRING(r e s u l t) ;

}

—————————————————————————

41

Supportive functions

—————————————————————————

i n c l u d e <p o s t g r e s . h>
i n c l u d e " d e s e r i a l _ m p o i n t . h"
−−−

S e r i a l i z e SEGMENT
−−−

GSERIALIZED∗ g s e r i a l i z e d _ f r o m _ m p t _ s e g m e n t (LWGEOM ∗geom , i n t s r i d ,
i n t num_pts , s i z e _ t ∗ s i z e)

{
i n t i s _ g e o d e t i c = 0 ;
GSERIALIZED∗ gout ;
char ∗ p t r ;
i n t i ;
∗ s i z e = VARHDRSZ + s i z e o f (i n t) ;
gout = (GSERIALIZED∗) p a l l o c (∗ s i z e) ;
p t r = ((char ∗) gout) + VARHDRSZ;
∗ ((i n t ∗) p t r) = num_pts ;
p t r += s i z e o f (i n t) ;
f o r (i = 0 ; i < num_pts ; ++i)
{

s i z e _ t g s i z e ;
GSERIALIZED∗ g ;
char ∗ g o u t _ b e f o r e _ r e a l l o c ;
{

LWPOINT ∗ po in t = (LWPOINT∗) geom ;
i f (point −>type == POINTTYPE)
{

double X = l w p o i n t _ g e t _ x (p o i n t) ;
double Y = lwpo in t_ge t_y (po in t) ;

}
}
i f (s r i d)

l w g e o m _ s e t _ s r i d (geom , s r i d) ;
g = g s e r i a l i z e d _ f r o m _ l w g e o m (geom , i s _ g e o d e t i c , &

g s i z e) ;
SET_VARSIZE (g , g s i z e) ;
∗ s i z e += s i z e o f (s i z e _ t) + g s i z e ;
g o u t _ b e f o r e _ r e a l l o c = (char ∗) gout ;
gout = (GSERIALIZED∗) r e p a l l o c (gout , ∗ s i z e) ;
p t r = p t r + (long i n t) (((char ∗) gout) −

g o u t _ b e f o r e _ r e a l l o c) ;
∗ ((s i z e _ t ∗) p t r) = g s i z e ;
p t r += s i z e o f (s i z e _ t) ;
memcpy (ptr , g , g s i z e) ;

42

p t r += g s i z e ;
++geom ;

}
SET_VARSIZE (gout , ∗ s i z e) ;
r e t u r n gout ;

}
−−−

S e r i a l i z e MPOINT
−−−

GSERIALIZED∗ g s e r i a l i z e d _ f r o m _ m p o i n t (mpt_segment ∗mpt_sgt s , i n t
s r i d , i n t t z i d , i n t num_segts , s i z e _ t ∗ s i z e)

{
i n t i s _ g e o d e t i c = 0 ;
GSERIALIZED∗ gout ;
i n t i ;
char ∗ p t r ;
mpoint mpt ;
mpt . s r _ i d = s r i d ;
mpt . t z _ i d = t z i d ;
mpt . num_segts = num_segts ;
∗ s i z e = VARHDRSZ + s i z e o f (mpoint) ;
gout = (GSERIALIZED∗) p a l l o c (∗ s i z e) ;
p t r = ((char ∗) gout) + VARHDRSZ;
∗ ((mpoint ∗) p t r) = mpt ;
p t r += s i z e o f (mpoint) ;
f o r (i = 0 ; i < num_segts ; ++i)
{

s i z e _ t g s i z e ;
GSERIALIZED∗ g ;
char ∗ g o u t _ b e f o r e _ r e a l l o c ;
i n t num_pts = mpt_sg t s [i] . num_pts ;

LWGEOM ∗ geom = mpt_sg t s [i] . geom_array ;
g = g s e r i a l i z e d _ f r o m _ m p t _ s e g m e n t (geom , s r i d , num_pts

, &g s i z e) ;
∗ s i z e += s i z e o f (s i z e _ t) + g s i z e ;
g o u t _ b e f o r e _ r e a l l o c = (char ∗) gout ;
gout = (GSERIALIZED∗) r e p a l l o c (gout , ∗ s i z e) ;
p t r = p t r + (long i n t) (((char ∗) gout) −

g o u t _ b e f o r e _ r e a l l o c) ;
∗ ((s i z e _ t ∗) p t r) = g s i z e ;
p t r += s i z e o f (s i z e _ t) ;
memcpy (ptr , g , g s i z e) ;
p t r += g s i z e ;

}

SET_VARSIZE (gout , ∗ s i z e) ;

43

r e t u r n gout ;
}
−−−

De− s e r i a l i z e MPOINT
−−−

void m p o i n t _ f r o m _ g s e r i a l i z e d (c o n s t GSERIALIZED ∗g , mpoint ∗mpt ,
mpt_segment ∗∗mpt_sg t s)

{
char ∗ p t r = (char ∗) g ;
i n t j ;
p t r += VARHDRSZ;
∗mpt = ∗ ((mpoint ∗) p t r) ;
p t r += s i z e o f (mpoint) ;
∗mpt_sg t s = (mpt_segment ∗) ma l loc (mpt−>num_segts ∗ s i z e o f (

mpt_segment)) ;
f o r (j =0; j<mpt−>num_segts ;++ j)
{

i n t num_pts ;
i n t i ;
s i z e _ t g s i z e ;
p t r += VARHDRSZ;
g s i z e = ∗ ((s i z e _ t ∗) p t r) ;
p t r += s i z e o f (s i z e _ t) ;
num_pts = ∗ ((i n t ∗) p t r) ;
p t r += s i z e o f (i n t) ;
(∗ mpt_sg t s) [j] . num_pts = num_pts ;
(∗ mpt_sg t s) [j] . geom_array = (LWGEOM∗) ma l loc (

num_pts ∗ s i z e o f (LWGEOM)) ;
f o r (i = 0 ; i < num_pts ; ++i)
{

s i z e _ t g s i z e = ∗ ((s i z e _ t ∗) p t r) ;
p t r += s i z e o f (s i z e _ t) ;
(∗ mpt_sg t s) [j] . geom_array [i] = ∗

l w g e o m _ f r o m _ g s e r i a l i z e d ((GSERIALIZED∗)
p t r) ;

p t r += g s i z e ;
}

}
}
−−−

MPOINT_AS_TEXT
−−−

void m p o i n t _ a s _ t e x t (mpt_segment ∗mpt_sgt s , char ∗ r e s u l t , i n t
num_sgts , i n t s r _ i d , i n t t z _ i d)

44

{
char s t r [1 0 2 4] ;
i n t i , j ;

s p r i n t f (s t r , " s r i d=%d ; t z i d=%d ;MPOINT((" , s r _ i d , t z _ i d) ;
s t r c a t (r e s u l t , s t r) ;
f o r (i =0; i<num_sgts ; ++i)
{

f o r (j =0; j< mpt_sg t s [i] . num_pts ; ++j)
{

LWPOINT ∗ po in t = (LWPOINT∗) &(mpt_sg t s [i
] . geom_array [j]) ;

i f (point −>type == POINTTYPE)
{

double X = l w p o i n t _ g e t _ x (p o i n t) ;
double Y = lwpo in t_ge t_y (po in t) ;
double Z = l w p o i n t _ g e t _ z (p o i n t) ;
double M = lwpoint_get_m (po in t) ;
t i m e _ t T = M;
char utime [1 0 0] ;
s t r f t i m e (utime , 100 , "%Y−%m−%d %H

:%M:%S " , l o c a l t i m e (&T)) ;
s p r i n t f (s t r , "% l f %l f %l f %s " , X,

Y, Z , utime) ;
s t r c a t (r e s u l t , s t r) ;
i f (j < mpt_sg t s [i] . num_pts − 1)

s t r c a t (r e s u l t , " , ") ;
}

}
i f (i < num_sgts − 1)

s t r c a t (r e s u l t , ") , (") ;
}
s t r c a t (r e s u l t , ")) ") ;

}
−−

a t i n s t a n t
−−

LWGEOM ∗ a t i n s t a n t (mpt_segment ∗mpt_sgt s , i n t num_sgts , i n t s r _ i d ,
i n t t z _ i d , char ∗ s t r)

{
t i m e _ t T, T1 , T2 ;
i n t year , month , day , hour , minute , second , i n p u t _ t z i d , count=0 ,

l a s t _ i n d e x ;
double X, Y, Z , t_p1 , t _ i n t e r p o l a t e ;

45

POINT4D point4D1 , point4D2 , point4D ;
LWGEOM_PARSER_RESULT l w g _ p a r s e r _ r e s u l t ;
char c o o r d i n a t e= ’M’ , mpt_as_4D [2 0 0] ;
t ime_ t s t a r t _ t , end_t , t ime_po in t1 ;

LWGEOM ∗ lwgeom ;
bool f i n i s h= f a l s e , found= f a l s e ;
i n t f i r s t =0 , l a s t , middle , cu r r en t_num_sg t s ;
i n t f i r s t _ l o c , l a s t _ l o c , midd le_ loc , to ta l_num_pts ,

index_ found_seg ;
s s c a n f _ s (s t r ,"%d−%d−%d %d:%d:%d %d",& year ,&month,&day ,&

hour ,&minute ,& second ,& i n p u t _ t z i d) ;
i f (((year <=9999 && year >= 0 0 0 0)&&(month>=01 && month
<=12)&&(day >=01 && day <=31)&&(hour>=00 && hour<=23)
&&(minute>=00 && minute<=59)&&(second >=00 && second
<=59))&&(i n p u t _ t z i d==t z _ i d))

{
T= tm_to_t imet (& year ,&month,&day ,&hour ,&minute ,&

second) ;
t _ i n t e r p o l a t e=T ;
cur r en t_num_sg t s=num_sgts / 2 ;
l a s t=num_sgts −1;
middle=(f i r s t + l a s t) / 2 ;
l a s t _ i n d e x=mpt_sg t s [middle] . num_pts −1;
whi l e ((! f i n i s h) && (f i r s t <= l a s t))
{

LWPOINT ∗ f i r s t _ p t = (LWPOINT∗) &(mpt_sg t s [
middle] . geom_array [0]) ;

LWPOINT ∗ l a s t _ p t = (LWPOINT∗) &(mpt_sg t s [
middle] . geom_array [l a s t _ i n d e x]) ;

i f (f i r s t _ p t −>type == POINTTYPE)
{

s t a r t _ t = lwpoint_get_m (f i r s t _ p t)
;

}

i f (l a s t _ p t −>type == POINTTYPE)
{

end_t = lwpoint_get_m (l a s t _ p t) ;

}

i f ((t _ i n t e r p o l a t e <= end_t) && (
t _ i n t e r p o l a t e >= s t a r t _ t))

{
f i n i s h = t r u e ;

46

}
e l s e i f (t _ i n t e r p o l a t e < s t a r t _ t)
{

l a s t=middle − 1 ;
middle=(f i r s t + l a s t) / 2 ;

}
e l s e
{

f i r s t = middle + 1 ;
l a s t = num_sgts − 1 ;
middle=(f i r s t + l a s t) / 2 ;

}
l a s t _ i n d e x=mpt_sg t s [middle] . num_pts −1;

}
i f (f i n i s h) {

i ndex_ found_seg = middle ;
to t a l _num_pt s = mpt_sg t s [i ndex_ found_seg] .

num_pts ;
f i r s t _ l o c =0;
l a s t _ l o c =to ta l_num_pts −1;
m i d d l e _ l o c=(f i r s t _ l o c + l a s t _ l o c) / 2 ;

whi l e ((! found) && (f i r s t _ l o c <=l a s t _ l o c))
{

LWPOINT ∗ po in t_midd l e = (LWPOINT∗)
&(mpt_sg t s [i ndex_ found_seg] .

geom_array [m i d d l e _ l o c]) ;
i f (po int_middle −>type ==

POINTTYPE)
{

X = l w p o i n t _ g e t _ x (
po in t_midd l e) ;

Y = lwpo in t_ge t_y (
po in t_midd l e) ;

Z = l w p o i n t _ g e t _ z (
po in t_midd l e) ;

t_p1 = lwpoint_get_m (
po in t_midd l e) ;

t ime_po in t1 = t_p1 ;
}
i f (t_p1 == t _ i n t e r p o l a t e)
{

found = t r u e ;
}
e l s e i f (t_p1 < t _ i n t e r p o l a t e)
{

47

f i r s t _ l o c = m i d d l e _ l o c +1;
m i d d l e _ l o c=(f i r s t _ l o c +

l a s t _ l o c) / 2 ;

}
e l s e
{

l a s t _ l o c = m i d d l e _ l o c − 1 ;
m i d d l e _ l o c=(f i r s t _ l o c +

l a s t _ l o c) / 2 ;
}

}
i f (found)
{

s p r i n t f (mpt_as_4D , "POINT(% l f %l f %
l f) " ,X, Y, Z/∗ , point4D .m∗/) ;

i f (lwgeom_parse_wkt (&
l w g _ p a r s e r _ r e s u l t , mpt_as_4D ,
LW_PARSER_CHECK_ALL) ==
LW_FAILURE)

{
PG_PARSER_ERROR(

l w g _ p a r s e r _ r e s u l t) ;
}
e l s e {

lwgeom = l w g _ p a r s e r _ r e s u l t
. geom ;

i f (s r _ i d)
l w g e o m _ s e t _ s r i d (

lwgeom , s r _ i d)
;

i f (lwgeom_needs_bbox (
lwgeom))

lwgeom_add_bbox (
lwgeom) ;

}

r e t u r n lwgeom ;
}
e l s e
{

LWPOINT ∗ po in t_midd l e1 = (LWPOINT
∗) &(mpt_sg t s [i ndex_ found_seg
] . geom_array [m i d d l e _ l o c]) ;

48

i f (po int_midd le1 −>type ==
POINTTYPE)

{
point4D1 . x = l w p o i n t _ g e t _ x

(po in t_midd l e1) ;
point4D1 . y = lwpo in t_ge t_y

(po in t_midd l e1) ;
point4D1 . z = l w p o i n t _ g e t _ z

(po in t_midd l e1) ;
point4D1 .m = lwpoint_get_m

(po in t_midd l e1) ;
T1 = point4D1 .m;

}
i f (T1 < t _ i n t e r p o l a t e)
{

LWPOINT ∗ po in t2 = (LWPOINT
∗) &(mpt_sg t s [
i ndex_ found_seg] .
geom_array [m i d d l e _ l o c
+ 1]) ;

i f (point2 −>type ==
POINTTYPE)

{
point4D2 . x =

l w p o i n t _ g e t _ x (
po in t2) ;

point4D2 . y =
lwpo in t_ge t_y (
po in t2) ;

point4D2 . z =
l w p o i n t _ g e t _ z (
po in t2) ;

point4D2 .m =
lwpoint_get_m (
po in t2) ;

T2 = point4D2 .m;
}

}
e l s e
{

LWPOINT ∗ po in t2 = (LWPOINT
∗) &(mpt_sg t s [
i ndex_ found_seg] .
geom_array [m i d d l e _ l o c
− 1]) ;

i f (point2 −>type ==
POINTTYPE)

49

{
point4D2 . x =

l w p o i n t _ g e t _ x (
po in t2) ;

point4D2 . y =
lwpo in t_ge t_y (
po in t2) ;

point4D2 . z =
l w p o i n t _ g e t _ z (
po in t2) ;

point4D2 .m =
lwpoint_get_m (
po in t2) ;

T2 = point4D2 .m;
}

}
p o i n t _ i n t e r p o l a t e (&point4D1 , &

point4D2 , &point4D , 1 , 1 ,
c o o r d i n a t e , t _ i n t e r p o l a t e) ;

s p r i n t f (mpt_as_4D , "POINT(% l f %l f %
l f) " , point4D . x , point4D . y ,
point4D . z /∗ , point4D .m∗/) ;

i f (lwgeom_parse_wkt (&
l w g _ p a r s e r _ r e s u l t , mpt_as_4D ,
LW_PARSER_CHECK_ALL) ==
LW_FAILURE)

{
PG_PARSER_ERROR(

l w g _ p a r s e r _ r e s u l t) ;
}
e l s e {

lwgeom = l w g _ p a r s e r _ r e s u l t
. geom ;

i f (s r _ i d)
l w g e o m _ s e t _ s r i d (

lwgeom , s r _ i d)
;

i f (lwgeom_needs_bbox (
lwgeom))

lwgeom_add_bbox (
lwgeom) ;

}

r e t u r n lwgeom ;
}

}

50

e l s e
{

r e t u r n NULL;

}
}
e l s e i f (i n p u t _ t z i d != t z _ i d)
{

e r e p o r t (ERROR,
(e r r c o d e (ERRCODE_FEATURE_NOT_SUPPORTED) ,
errmsg (" Input t z i d mismatch with the

t imezone i d of the mpoint "
))) ;

}
e l s e {

e r e p o r t (ERROR,
(e r r c o d e (ERRCODE_FEATURE_NOT_SUPPORTED) ,
errmsg (" I n v a l i d inpu t "
))) ;

}
}

−−−

a t p e r i o d
−−−

mpoint ∗ a t p e r i o d (mpt_segment ∗mpt_sgt s , i n t num_sgts , i n t s r _ i d , i n t
t z _ i d , Per iod ∗ p e r i o d)

{
bool f i n i s h= f a l s e ;
i n t i =0;
mpoint ∗new_mpt ;
mpt_segment ∗new_mpt_sgts= (mpt_segment ∗) ma l loc (s i z e o f (

mpt_segment)) ;
t i m e _ t s t a r t _ t , end_t , t _ s t a r t , t_end , p r e v _ l a s t _ t ,

n x t _ f i r s t _ t , n x t _ f i r s t , n x t _ l a s t ;
i n t f i r s t =0 , l a s t , middle , l a s t _ i n d e x , cur r en t_num_sg t s ;
i n t num_segts=0;
LWPOINT ∗ f i r s t _ p t , ∗ l a s t _ p t , ∗ s t a r t _ p o i n t , ∗ end_point , ∗

prev_pt , ∗ nxt_pt , ∗ n x t _ f i r s t _ p t , ∗ n x t _ l a s t _ p t ;
new_mpt= (mpoint ∗) p a l l o c (s i z e o f (mpoint)) ;
l a s t=num_sgts −1;
// l a s t _ i n d e x=mpt_sg t s [middle] . num_pts −1;
new_mpt−>num_segts = num_segts ;

whi l e (! f i n i s h && i<num_sgts)

51

{
l a s t _ i n d e x = mpt_sg t s [i] . num_pts −1;
f i r s t _ p t = (LWPOINT∗) &(mpt_sg t s [i] . geom_array [0])

;
l a s t _ p t = (LWPOINT∗) &(mpt_sg t s [i] . geom_array [

l a s t _ i n d e x]) ;

i f (f i r s t _ p t −>type == POINTTYPE)
{

s t a r t _ t = lwpoint_get_m (f i r s t _ p t) ;

}

i f (l a s t _ p t −>type == POINTTYPE)
{

end_t = lwpoint_get_m (l a s t _ p t) ;

}
i f ((s t a r t _ t >= per iod −> i n i t i a l) && (end_t <=per iod

−> f i n a l))
{

i f (num_segts > 0) {

new_mpt_sgts = (mpt_segment ∗)
r e a l l o c (new_mpt_sgts , (1 +
num_segts) ∗ s i z e o f (
mpt_segment)) ;

}
new_mpt_sgts [num_segts]= mpt_sg t s [i] ;
++num_segts ;

}
i f (s t a r t _ t > per iod −> i n i t i a l)
{

f i n i s h = t r u e ;
}
i++;

}
new_mpt−>s r _ i d=s r _ i d ;
new_mpt−>t z _ i d=t z _ i d ;
new_mpt−>num_segts=num_segts ;
new_mpt−>mpt_sg t s=new_mpt_sgts ;

r e t u r n new_mpt ;
}
−−−

tm_to_t imet

52

−−−

t i m e _ t tm_to_t imet (i n t ∗ year , i n t ∗ month , i n t ∗ day , i n t ∗ hour
, i n t ∗ minute , i n t ∗ second)

{
t i m e _ t r e s u l t ;
s t r u c t tm t i m e i n f o ;
t i m e i n f o . tm_year = ∗ yea r − 1 9 0 0 ;
t i m e i n f o . tm_mon = ∗month −1;
t i m e i n f o . tm_mday = ∗day ;
t i m e i n f o . tm_hour = ∗hour ;
t i m e i n f o . tm_min = ∗minute ;
t i m e i n f o . tm_sec = ∗ second ;
t i m e i n f o . t m _ i s d s t = −1;
r e s u l t = mktime (&t i m e i n f o) ;
r e t u r n r e s u l t ;

}
−−

Input f u n c t i o n f o r p e r i o d
−−

i n c l u d e " p e r i o d . h"
i n c l u d e " mpt_headers . h"

PG_FUNCTION_INFO_V1(p e r i o d _ i n) ;

Datum
p e r i o d _ i n (PG_FUNCTION_ARGS)

{
char ∗ s t r = PG_GETARG_CSTRING(0) ;
i n t year1 , month1 , day1 , hour1 , minute1 , second1 ;
i n t year2 , month2 , day2 , hour2 , minute2 , second2 ;
i n t t z i d ;
Per iod ∗ r e s u l t ;
i f (s s c a n f _ s (s t r , "(%d−%d−%d %d:%d:%d , %d−%d−%d %d:%d:%d

, %d) " , &year1 , &month1 , &day1 , &hour1 ,&minute1 , &
second1 , &year2 , &month2 , &day2 , &hour2 , &minute2 , &
second2 , &t z i d) != 1 3)

e r e p o r t (ERROR,
(e r r c o d e (ERRCODE_INVALID_TEXT_REPRESENTATION) ,
errmsg (" i n v a l i d i n p u t s y n t a x f o r p e r i o d : \"% s \ " " ,
s t r))) ;

r e s u l t = (Pe r iod ∗) p a l l o c (s i z e o f (Per iod)) ;
r e s u l t −> i n i t i a l = tm_to_t imet (& year1 , &month1 , &day1 , &

hour1 ,&minute1 , &second1) ;

53

r e s u l t −> f i n a l = tm_to_t imet (& year2 , &month2 , &day2 , &hour2
, &minute2 , &second2) ;

r e s u l t −>t z i d = t z i d ;
i f (d i f f t i m e (r e s u l t −>f i n a l , r e s u l t −> i n i t i a l)< 0)

e r e p o r t (ERROR,
(e r r c o d e (ERRCODE_INVALID_TEXT_REPRESENTATION) ,
errmsg (" f i n a l s m a l l e r than i n i t i a l . "))) ;

PG_RETURN_POINTER(r e s u l t) ;
}
−−
output f u n c t i o n f o r p e r i o d

−−−

PG_FUNCTION_INFO_V1(p e r i o d _ o u t) ;

Datum
p e r i o d _ o u t (PG_FUNCTION_ARGS)

{
Per iod ∗ p e r i o d = (Pe r iod ∗) PG_GETARG_POINTER(0) ;
char ∗ r e s u l t ;
char i n i t i a l [2 0] ;
char f i n a l [2 0] ;
r e s u l t = (char ∗) p a l l o c (9 0) ;
s t r f t i m e (i n i t i a l , 20 , "%Y−%m−%d %H:%M:%S " , l o c a l t i m e (&

per iod −> i n i t i a l)) ;
s t r f t i m e (f i n a l , 20 , "%Y−%m−%d %H:%M:%S " , l o c a l t i m e (& per iod

−> f i n a l)) ;
s n p r i n t f (r e s u l t , 90 , "(% s , %s , %d) " , i n i t i a l , f i n a l ,

per iod −>t z i d) ;
PG_RETURN_CSTRING(r e s u l t) ;

}

−−

PG_FUNCTION_INFO_V1(m p t _ a t i n s t a n t) ;

Datum
m p t _ a t i n s t a n t (PG_FUNCTION_ARGS)

{

c o n s t GSERIALIZED ∗g = (GSERIALIZED∗)PG_GETARG_POINTER(0) ;
char ∗ s t r= PG_GETARG_CSTRING(1) ;
mpoint mpt ;
mpt_segment ∗mpt_sg t s ;

54

LWGEOM ∗geom ;
GSERIALIZED ∗ r e s u l t ;
m p o i n t _ f r o m _ g s e r i a l i z e d (g , &mpt , &mpt_sg t s) ;
geom = a t i n s t a n t (mpt_sgt s , mpt . num_segts , mpt . s r _ i d , mpt .

t z _ i d , s t r) ;
i f (geom == NULL) {

char ∗ r e s = (char ∗) p a l l o c (1 0 2 4) ;
char s t r 1 [1 0 2 4] ;
∗ r e s =0;
s p r i n t f (s t r 1 , " (NULL,% s) " , s t r) ;
s t r c a t (r e s , s t r 1) ;
PG_RETURN_CSTRING(r e s) ;

}
e l s e
{

LWGEOM ∗ lwgeom ;
char ∗wkt ;
char ∗ f i n a l _ r e s u l t = (char ∗) p a l l o c (1 0 2 4) ;
char s t r 2 [1 0 2 4] ;
s i z e _ t wkt_ s i z e ;
∗ f i n a l _ r e s u l t = 0 ;
POSTGIS_DEBUG(2 , "LWGEOM_asEWKT c a l l e d . ") ;
r e s u l t = g e o m e t r y _ s e r i a l i z e (geom) ;
lwgeom = l w g e o m _ f r o m _ g s e r i a l i z e d (r e s u l t) ;
wkt = lwgeom_to_wkt (lwgeom , WKT_EXTENDED, DBL_DIG,

&wkt_ s i z e) ;
lwgeom_free (lwgeom) ;
s p r i n t f (s t r 2 , " (% s ,% s) " , wkt , s t r) ;
s t r c a t (f i n a l _ r e s u l t , s t r 2) ;
PG_RETURN_CSTRING(f i n a l _ r e s u l t) ;

}
}

−−

PG_FUNCTION_INFO_V1(mpt_a tper iod) ;
Datum

mpt_a tper iod (PG_FUNCTION_ARGS)
{

c o n s t GSERIALIZED ∗g = (GSERIALIZED∗)PG_GETARG_POINTER(0) ;
char ∗ s t r= PG_GETARG_CSTRING(1) ;
i n t year1 , month1 , day1 , hour1 , minute1 , second1 , i n p u t _ t z i d ,

t z _ i d , pos ;
i n t year2 , month2 , day2 , hour2 , minute2 , second2 ;
t i m e _ t i n i t i a l , f i n a l ;
i n t i ;

55

s i z e _ t s i z e ;
mpoint mpt , ∗ new_mpt ;
mpt_segment ∗mpt_sg t s ;
Pe r iod ∗ p e r i o d ;
char ∗ r e s u l t ;
p e r i o d = (Pe r iod ∗) p a l l o c (s i z e o f (Per iod)) ;
r e s u l t = (char ∗) p a l l o c (1 0 2 4) ;
∗ r e s u l t = 0 ;
m p o i n t _ f r o m _ g s e r i a l i z e d (g , &mpt , &mpt_sg t s) ;
t z _ i d=mpt . t z _ i d ;
s s c a n f _ s (s t r , " (% d−%d−%d %d:%d:%d,%d−%d−%d %d:%d:%d,%d%n",&

year1 ,&month1 ,&day1 ,&hour1 ,&minute1 ,& second1 ,& year2 ,&
month2 ,&day2 ,&hour2 ,&minute2 ,& second2 ,& i n p u t _ t z i d ,& pos
) ;

i f (((year1 <=9999 && year1 >= 0 0 0 0)&&(month1>=01 && month1
<=12)&&(day1 >=01 && day1 <=31)&&(hour1>=00 && hour1
<=23)&&(minute1>=00 && minute1<=59)&&(second1 >=00 &&
second1 <=59)) &&((year2 <=9999 && year2 >= 0 0 0 0)&&(
month2>=01 && month2 <=12)&&(day2 >=01 && day2 <=31)
&&(hour2>=00 && hour2<=23)&&(minute2>=00 && minute2
<=59)&&(second2 >=00 && second2 <=59))&&(i n p u t _ t z i d==
t z _ i d))

{
i n i t i a l= tm_to_t imet (& year1 ,&month1 ,&day1 ,&hour1 ,&

minute1 ,& second1) ;
f i n a l = tm_to_t imet (& year2 ,&month2 ,&day2 ,&hour2 ,&

minute2 ,& second2) ;

i f (i n i t i a l <= f i n a l)
{

per iod −> i n i t i a l= i n i t i a l ;
per iod −> f i n a l= f i n a l ;
per iod −>t z i d= i n p u t _ t z i d ;

new_mpt = a t p e r i o d (mpt_sgt s , mpt . num_segts ,
mpt . s r _ i d , mpt . t z _ i d , p e r i o d) ;

g s e r i a l i z e d _ f r o m _ m p o i n t (new_mpt−>mpt_sgt s ,
new_mpt−>s r _ i d , new_mpt−>t z _ i d , new_mpt
−>num_segts , &s i z e) ;

m p o i n t _ a s _ t e x t (new_mpt−>mpt_sgt s , r e s u l t ,
new_mpt−>num_segts , new_mpt−>s r _ i d ,
new_mpt−>t z _ i d) ;

f o r (i = 0 ; i < mpt . num_segts ; ++i)
f r e e (mpt_sg t s [i] . geom_array) ;

f r e e (mpt_sg t s) ;
PG_RETURN_CSTRING(r e s u l t) ;

}
e l s e

56

e r e p o r t (ERROR,
(e r r c o d e (ERRCODE_FEATURE_NOT_SUPPORTED) ,
errmsg (" The inpu t t ime i n t e r v a l i s not

c o r r e c t "
))) ;

}

e l s e
e r e p o r t (ERROR,
(e r r c o d e (ERRCODE_FEATURE_NOT_SUPPORTED) ,
errmsg (" I n v a l i d inpu t "
))) ;

}

−−−

m p t _ p r e s e n t _ a t i n s t a n t
−−

bool a t i n s t a n t (mpt_segment ∗mpt_sgt s , i n t num_sgts , i n t s r _ i d , i n t
t z _ i d , char ∗ s t r)

{
t i m e _ t T, T1 , T2 ;
i n t year , month , day , hour , minute , second , i n p u t _ t z i d , count=0 ,

l a s t _ i n d e x ;
double X, Y, Z , t_p1 , t _ i n t e r p o l a t e ;
POINT4D point4D1 , point4D2 , point4D ;
LWGEOM_PARSER_RESULT l w g _ p a r s e r _ r e s u l t ;
char c o o r d i n a t e= ’M’ , mpt_as_4D [2 0 0] ;
t ime_ t s t a r t _ t , end_t , t ime_po in t1 ;

LWGEOM ∗ lwgeom ;
bool f i n i s h= f a l s e , found= f a l s e ;
i n t f i r s t =0 , l a s t , middle , cu r r en t_num_sg t s ;
i n t f i r s t _ l o c , l a s t _ l o c , midd le_ loc , to ta l_num_pts ,

index_ found_seg ;
s s c a n f _ s (s t r ,"%d−%d−%d %d:%d:%d %d",& year ,&month,&day ,&

hour ,&minute ,& second ,& i n p u t _ t z i d) ;
i f (((year <=9999 && year >= 0 0 0 0)&&(month>=01 && month
<=12)&&(day >=01 && day <=31)&&(hour>=00 && hour<=23)
&&(minute>=00 && minute<=59)&&(second >=00 && second
<=59))&&(i n p u t _ t z i d==t z _ i d))

{
T= tm_to_t imet (& year ,&month,&day ,&hour ,&minute ,&

second) ;
t _ i n t e r p o l a t e=T ;

57

cur r en t_num_sg t s=num_sgts / 2 ;
l a s t=num_sgts −1;
middle=(f i r s t + l a s t) / 2 ;
l a s t _ i n d e x=mpt_sg t s [middle] . num_pts −1;
whi l e ((! f i n i s h) && (f i r s t <= l a s t))
{

LWPOINT ∗ f i r s t _ p t = (LWPOINT∗) &(mpt_sg t s [
middle] . geom_array [0]) ;

LWPOINT ∗ l a s t _ p t = (LWPOINT∗) &(mpt_sg t s [
middle] . geom_array [l a s t _ i n d e x]) ;

i f (f i r s t _ p t −>type == POINTTYPE)
{

s t a r t _ t = lwpoint_get_m (f i r s t _ p t)
;

}

i f (l a s t _ p t −>type == POINTTYPE)
{

end_t = lwpoint_get_m (l a s t _ p t) ;

}

i f ((t _ i n t e r p o l a t e <= end_t) && (
t _ i n t e r p o l a t e >= s t a r t _ t))

{
f i n i s h = t r u e ;

}
e l s e i f (t _ i n t e r p o l a t e < s t a r t _ t)
{

l a s t=middle − 1 ;
middle=(f i r s t + l a s t) / 2 ;

}
e l s e
{

f i r s t = middle + 1 ;
l a s t = num_sgts − 1 ;
middle=(f i r s t + l a s t) / 2 ;

}
l a s t _ i n d e x=mpt_sg t s [middle] . num_pts −1;

}
i f (f i n i s h) {

i ndex_ found_seg = middle ;
to t a l _num_pt s = mpt_sg t s [i ndex_ found_seg] .

num_pts ;

58

f i r s t _ l o c =0;
l a s t _ l o c =to ta l_num_pts −1;
m i d d l e _ l o c=(f i r s t _ l o c + l a s t _ l o c) / 2 ;

whi l e ((! found) && (f i r s t _ l o c <= l a s t _ l o c))
{

LWPOINT ∗ po in t_midd l e = (LWPOINT∗)
&(mpt_sg t s [i ndex_ found_seg] .

geom_array [m i d d l e _ l o c]) ;
i f (po int_middle −>type ==

POINTTYPE)
{

X = l w p o i n t _ g e t _ x (
po in t_midd l e) ;

Y = lwpo in t_ge t_y (
po in t_midd l e) ;

Z = l w p o i n t _ g e t _ z (
po in t_midd l e) ;

t_p1 = lwpoint_get_m (
po in t_midd l e) ;

t ime_po in t1 = t_p1 ;
}
i f (t_p1 == t _ i n t e r p o l a t e)
{

found = t r u e ;
}
e l s e i f (t_p1 < t _ i n t e r p o l a t e)
{

f i r s t _ l o c = m i d d l e _ l o c +1;
m i d d l e _ l o c=(f i r s t _ l o c +

l a s t _ l o c) / 2 ;

}
e l s e
{

l a s t _ l o c = m i d d l e _ l o c − 1 ;
m i d d l e _ l o c=(f i r s t _ l o c +

l a s t _ l o c) / 2 ;
}

}
i f (found)
{

r e t u r n t r u e ;
}
e l s e
{

59

r e t u r n f a l s e ;
}

}
e l s e
{

r e t u r n f a l s e ;
}

}
−−

m p t _ p r e s e n t _ a t p e r i o d
−−

bool a t p e r i o d (mpt_segment ∗mpt_sgt s , i n t num_sgts , i n t s r _ i d , i n t
t z _ i d , Per iod ∗ p e r i o d)

{
bool f i n i s h= f a l s e ;
i n t i =0;
mpoint ∗new_mpt ;
mpt_segment ∗new_mpt_sgts= (mpt_segment ∗) ma l loc (s i z e o f (

mpt_segment)) ;
t i m e _ t s t a r t _ t , end_t , t _ s t a r t , t_end , p r e v _ l a s t _ t ,

n x t _ f i r s t _ t , n x t _ f i r s t , n x t _ l a s t ;
i n t f i r s t =0 , l a s t , middle , l a s t _ i n d e x , cur r en t_num_sg t s ;
i n t num_segts=0;
LWPOINT ∗ f i r s t _ p t , ∗ l a s t _ p t , ∗ s t a r t _ p o i n t , ∗ end_point , ∗

prev_pt , ∗ nxt_pt , ∗ n x t _ f i r s t _ p t , ∗ n x t _ l a s t _ p t ;
new_mpt= (mpoint ∗) p a l l o c (s i z e o f (mpoint)) ;
l a s t=num_sgts −1;
new_mpt−>num_segts = num_segts ;
whi l e (! f i n i s h && i<num_sgts)
{

l a s t _ i n d e x = mpt_sg t s [i] . num_pts −1;
f i r s t _ p t = (LWPOINT∗) &(mpt_sg t s [i] . geom_array [0])

;
l a s t _ p t = (LWPOINT∗) &(mpt_sg t s [i] . geom_array [

l a s t _ i n d e x]) ;

i f (f i r s t _ p t −>type == POINTTYPE)
{

s t a r t _ t = lwpoint_get_m (f i r s t _ p t) ;

}

i f (l a s t _ p t −>type == POINTTYPE)
{

end_t = lwpoint_get_m (l a s t _ p t) ;

60

}
i f ((s t a r t _ t >= per iod −> i n i t i a l) && (end_t <=per iod

−> f i n a l))
{

i f (num_segts > 0) {

new_mpt_sgts = (mpt_segment ∗)
r e a l l o c (new_mpt_sgts , (1 +
num_segts) ∗ s i z e o f (
mpt_segment)) ;

}
new_mpt_sgts [num_segts]= mpt_sg t s [i] ;
++num_segts ;

}
i f (s t a r t _ t > per iod −> i n i t i a l)
{

f i n i s h = t r u e ;
}
i++;

}
i f (f i n i s h)
{

r e t u r n t r u e ;
}
e l s e {

r e t u r n f a l s e ;
}

}

61

