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Abstract
This research aims to demonstrate the effect of cooperative solutions to tackle neonatal care capacity
challenges. The research motivated by the observation that neonatal wards are critically overloaded,
resulting in worse performance outcomes for both patient and healthcare employees, and there is a
clear need to seek for solutions outside the hospitals themselves. Two earlier articles that proposed
analytical models for resource planning and optimisation in intensive care units, based on overflow
models in telecommunication systems, form the inspiration of this research.

In neonatal care, multiple patient types are involved that differ in their severity of care. We provide a
mathematical model to enhance capacity planning that distinguishes three different patient types, that
we refer to as the three-patient-type model (TPTM). So far, the TPTM was applied in two policies
in intensive care wards: a virtual MC (VMC) policy by Litvak et al. (2008) and a threshold policy
by Chan et al. (2018). We made adaptions to the TPTM in order to apply the model and its policies
to the context of neonatal care. The goal of the TPTM is to reduce the number of patients who are
refused admission while maintaining adequate levels for patients whom cannot be refused.

This research aims to demonstrate the effect of cooperative solutions to tackle neonatal care capacity
challenges. Two earlier articles that proposed analytical models for resource planning and optimisation
in intensive care units, based on overflow models in telecommunication systems, form the inspiration
of this research. We employ a model that distinguishes three patient types, that we refer to as the
three-patient-type model (TPTM). So far, the TPTM was applied in two policies in intensive care
wards: a virtual MC (VMC) policy by Litvak et al. (2008) and a threshold policy by Chan et al.
(2018). We made adaptions to the TPTM in order to apply the model and its policies to the context
of neonatal care. We propose a numerical approach for the VMC policy, in which we model the
VMC as a separate location which differs from the analytical approach as proposed by Litvak et al.
(2008). Our model is a Continuous-Time Markov Chain (CTMC) that we solve numerically. Due
to the solution space size when more than two hospitals are involved, the CTMC approach becomes
inaccurate. Therefore we also developed a Discrete Event Simulation (DES). In a case study from the
city of Utrecht concerning four hospital the results showed that for two hospitals using the CTMC
approach results in a joint decline of 132 lesser refusals per year at the costs of 78 more overbed-days
per year for the two hospitals involved, while maintaining proper occupancy levels of 85%. Extending
to four hospitals with the DES approach, we observe a joint decline of 49 beds at the costs of 24 more
overbed-days.

A threshold-based patient referral policy, inspired by the threshold policy thatChan et al. (2018)
developed for a network of ICUs, has shown that we can achieve a higher patient acceptance level
and lower fraction of time that the hospitals will spend in overbeds. In this policy we propose a
solution method based on CTCM. We also propose a greedy optimisation method to optimise threshold
reservation settings. In the case study we demonstrate that an our greedy optimisation technique
results in a collective decline of 45 refusals per year and 35 overbed-days per year, for 4 neonatal care
locations involved. We conclude that sharing beds and distributing patients over the hospitals in the
network according to the threshold reservation policy, is beneficial both for the patient as well as from
a nursing perspective, especially keeping in mind the related trends in healthcare regarding a shift
towards integrated care and the development of applications that facilitate better communication and
capacity insights between hospitals. Furthermore, our simulation results show that the introduction
of the VMC lowers the probability of refusing but is at the cost of having overbeds. Therefore, we
do not recommend to introduce a virtual MC policy. The threshold policy exhibits good practical
applicability, but it is necessary to look at ways to enhance the model in order to make the model more
robust. A sensitivity analysis on the input parameters reveals that the threshold policy outperforms
the current situation.
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Chapter 1

Introduction

Recently, the UMC UTrecht, one of the biggest hospitals in the Netherlands, announced that ”Birth
care is under pressure” (UMC Utrecht, 2021). Pregnant women, as well as maternity care workers,
feel burdened by the existing pressure in the maternity care chain. The shortage of nurses in the
Netherlands expects to grow, and an increase in demand is expected; thus, the healthcare capacity will
not be adequate to address the future demand (Ministerie van Volksgezondheid en Welzijn en Sport,
2022). There is a clear need to critically enhance neonatal care capacity planning. In this chapter, we
present an introduction to the research. The research is motivated by the capacity management of a
neonatal department’s Medium Care (MC) unit from the Wilhelmina Kinderziekenhuis (WKZ). More
context to the organisation of neonatal care in the WKZ is provided in Section 1.1. The complex
hospital chain logistics intensify the neonatal capacity problem, particularly in hospitals that know
both second and third line responsibilities. The management of this department is complex, as multiple
types of arrival streams are involved. The capacity problem is not only present in the WKZ, but it
also affects several hospitals in the Utrecht region. Section 1.2 presents information on other hospitals
that we include in this research.

1.1 Context introduction: Neonatal care in the WKZ

The WKZ maternity centre covers all aspects of pregnancy for both the mother and the child. The
neonatal department consists of the Neonatal Intensive Care Unit (NICU), the post Intensive Care or
High Care unit (Post-IC or HC) and the Medium Care unit (MC). Babies born too early or requiring
medical attention after birth admits to one of these wards. The neonates’ age, weight, respiratory
support and other conditions form the overall severity of care that determines the unit the neonate
treats. The WKZ is part of the University Medical Center of Utrecht (UMCU) The organizational
structure is presented in Figure 1.1.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Organisational structure of the division woman and baby of the WKZ

Regarding terminology, we refer to the neonatal department as the department consisting of the
NICU, HC and MC unit. Each individual unit is also referred to as a neonatal ward. For example, the
obstetrics department consists of the delivery rooms, the obstetrics ward, and the pregnancy ward. To
the extent of bed availability, we distinguish three concepts: an available, operational, and an over -
bed. An available bed is the physical presence of the bed, including the resources to operate that
bed, whereas a bed is called operational in case a patient lays on that bed. An overbed is an extra
bed which is initiated when full capacity is reached. When we operate more beds than this limit, one
speaks of overbeds. Overbeds are unattractive for three reasons. First, from the patient perspective,
when more beds are presented than the nurses can handle, there is a risk of lower quality of care
(Ogboenyiya et al., 2020). From the medical staff point of view, overbeds result in a high workload.
Having overbeds is undesirable from a management point of view since it is challenging to obtain
adequate funding to operate if the department produces more than what is specified in the production
agreements.

1.1.1 Medium Care

The NICU has a long-standing capacity issue, and solutions are being explored for that department.
The hospital undervalued other departments in favor of NICU capacity coordinating optimization.
As a result, not only the NICU but also other wards experience capacity problems. One of the
downstream departments, the MC, experience the problems as well which is mostly due to the MCs’
many functionalities. Those are the subject of discussion in this section. The function of the MC
is threefold. First, the MC unit is a scale-down option for patients discharged from the Neonatal
Intensive Care Unit (NICU) or High Care unit (HC). Second, WKZ is obligated to fulfil second-line
care to meet regional demand. Third, the MC functions as an admission possibility for babies having
mothers in third-line care and babies with a high potential for intensive care admission. As a result,
it is difficult for the management to balance capacity concerning the unit’s functions. This is reflected
in the observation that many different patient groups arrive at the MC as reflected in Figure ??. The
following section describes the logistic processes.

1.1.2 Logistical processes in the medium care unit of the WKZ

In this Section we address the situation in the Wilhelmina Children’s Hospital (WKZ). Data for this
case study is derived from registrations in the health information system (HIS) over the year 2020 and
2021 with a focus on neonatal patients, born in 2019, 2020 ad 2021. The data is obtained from the

9



CHAPTER 1. INTRODUCTION

years 2020 and 2021, because in these years, the management of the neonatal ward started keeping
track of the number of refusals. In the model we use actual data from the neonatal department of
the WKZ and Diakonessenhuis and and estimated data from two peripheral hospitals in the Utrecht
region, the Antonius hospital and the Meander hospital. Below, we present the patient flow of the
neonatal department of the WKZ. The total flow of patients in and out of this department is presented
in Figure ??. Note that there is a small readmission rate, both from MC to HC as well as from MC
and HC to NICU, which is indicated in dark red. The total flow of patients in- and out the neonatal
department is presented in Table ??.

1.2 Neonatal care in the Utrecht region

Often, solutions are opted inside the own healthcare organisations. The capacity problem in neonatal
care is not limited to one hospital; many hospitals in the Netherlands experience similar events (Min-
isterie van Volksgezondheid en Welzijn en Sport, 2022). But, there is a saying that “A little flexibility
goes a long way”, meaning that introducing some flexibility opens opportunities beyond their own
hospital. Figure 1.2a presents the location of the four hospitals included in this research.

Figure 1.2: Hospitals included in this research - three hospitals are located in the city of Utrecht and one hospital
(the Meander hospital) is outside the city, but still located in the province of Utrecht

(a) Map of the Netherlands, highlighted is the
province of Utrecht

(b) Province of Utrecht with the included locations
(1=WKZ, 2=Diakonessenhuis, 3=Meander,

4=Antonius)

1.2.1 Previous research in neonatal capacity locations in Utrecht

The neonatal care in the region of Utrecht has been subject to limiting resources for the past years.
Not only an increasing demand, but the addition of decreasing resources, leads to a shortage of beds
that is noticed in daily practice. The city of Utrecht is particularly well-liked among young adults.
As a consequence, it is anticipated that the need for maternity care in the area will grow in the
forthcoming years.
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CHAPTER 1. INTRODUCTION

Simply increasing the resources would solve the problem at once. However, in practice this is hard
to find. Therefore, we have to look at managing the current resources. Previous research on this
topic has shown that personnel planning based on acuity measures may lead to better results in
terms of overloaded shifts (Hoek, 2015), as well as pooling NICU and HC beds in terms of occupancy
(Weernink, 2018). The solutions proposed for the locations themselves are often inadequate to meet the
region’s growing demands, since the solutions only optimize hospital logistics with a given demand from
the locations themselves (Hoek, 2015; Weernink, 2018) and by constraining the amount of incoming
patients, with the consequence that other locations are burdened with extra loads. Therefore, a
regional solution should be found.

Other previous research showed that pooling resources will lead to a lower amount of transports,
which will possibly result in better health care outcomes for preterm infants (Morris, 2021). However,
practical barriers are faced when bringing this research in practice. For example, the pooling of nurses
goes along with many regulations, let aside the personal preference of the team the nurse is working
for. Even though there is evidence that collaboration of hospitals may lead to improvements, (Cattani
& Schmidt, 2005; Van Dijk & van der Sluis, 2009), many hospitals lack a strategy of doing so. Without
a policy that handles concerns of capacity coordination, most hospitals handle the transfer of overflow
patients on an ad-hoc basis.

The problem cluster in Appendix A presents how the various initial problems result in the core
problem: a lack of control regarding capacity among the patient groups involved.

1.3 Contribution of the research and research gap

This research concentrates on strategies for cooperation among MCs in the region of Utrecht. We
provide a mathematical model to enhance capacity planning. Due to the numerous duties the MC
has to fulfil, we discriminate several patient types that the MC employs. In this research, we propose
a model that includes three patient types. We refer to this model as the ”three-patient-type” model.
To this, we extend the three-patient-type model (TPTM) from Litvak et al. (2008) and Chan et al.
(2018) which apply the TPTM in intensive care. The goal of the TPTM is to reduce the number
of patients who are refused admission while maintaining adequate levels for patients who cannot be
refused care in an emergency. The patient types include patients who can be rejected and admitted
elsewhere, those who can be refused and do not come back, and finally those who must be admitted.
If this last patient type arrives to a full ward, it is admitted by creating an overbed.

We apply two policies to the three-patient-type model: the virtual ICU policy, proposed by Litvak
et al. (2008), and the threshold policy, introduced by Chan et al. (2018). The virtual ICU policy, in
which ICUs in a region jointly reserve beds for the admission of a specific patient type, may lead to
the wastage of valuable ICU resources. A patient may be refused at a given hospital, even if a bed
is empty at the same hospital due to that bed being reserved for the virtual ICU. This motivated
Chan et al. (2018) to design a model in which no bed is explicitly reserved for a particular patient
type. Instead, each patient type admits until the total unit’s capacity exceeds a threshold value. By
tuning this threshold value, they maximise the sharing of beds while protecting resources for other
patient types. For both models, we demonstrate the effect on the blocking probability and number of
overbeds in the network when hospitals in a network collaborate.

The research gap is twofold. First, we apply the models in the context of neonatal care. The origin
of patient types and the actions that correspond to the type differs from intensive care patients as
considered in the literature so far. Second, we apply different solution methods than applied to
the TPTM so far. We propose a numerical solution method for the virtual MC policy based on
Copntinuous-Time Markov Chains (CTMC) which distinghuises from the solution approach from
Litvak et al., 2008 because they use a analytical approach in which they model the VMC as an
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CHAPTER 1. INTRODUCTION

Equivalent Random unit (ER). They calculate the expected load to this unit which is used to calculate
the blocking probability to the VMC. We however propose a CTMC that considers the VMC as an
extra location and solve the CTMC for all locations, including the VMC, simultaneously. The load
of the VMC in our CTMC is of similar magnitude as the load of type 1 patients that the locations
receive; we do not make adjustments to this load.

Second, we propose an greedy optimization for the threshold policy to find the optimal setting of
thresholds that yields the most promising results. This differs from the optimisation process of the
threshold policy of Chan et al. (2018). Namely, they optimize the set of thresholds by setting con-
straints to the blocking- and overbed probability and punishing the amount to which the constraint
is exceeded. We do not punish outcomes after a fixed value is exceeded but rather select the option
that yields the best outcomes for the collective blocking- and overbed proportions. Chan et al. (2018)
selects optimal reservation thresholds that yields profits for every location. We however select the
best thresholds for that yields the most promising results for all locations together and check for every
location if the individual locations are not harmed by the proposed setting.

The overall managerial goal is,

To establish strategies for facilitating and improving capacity sharing amongst
neonatal departments at hospitals in the Utrecht area.

Our contributions are the following:

1. To learn from literature about the most recent methods for tackling capacity issues
in neonatal, emergency, and intensive care, that include solutions in collaboration
We start by finding ways to overcome capacity problems in literature. The focus is on stochastic
arrivals for neonatal, emergency, or intensive care units. We use the Scopus database and filter
the relevant articles by reviewing the title, keywords, and abstract based on predefined search
terms. The result of this literature review is presented in Chapter 2. We also strive to find
performance outcome measures that indicate the quality of the found methods. Section 2.5
provides this.

2. To design a model for capacity sharing in neonatal departments that include differ-
ent patient types
We formulate a general model that we refer to as the ’three-patient-type’ model. This model
allows us to vary the actions of patient groups when this patient finds a full ward. Given these
actions, we can decide on capacity allocations among these groups. To this model, we apply two
initiatives for regional collaboration. First, we extend on the virtual ICU policy, second on the
threshold policy. The three-patient-type model of the previous step is extended by introducing
the concept of a joint capacity reservation with peripheral hospitals. Chapter 3 formulates both
policies in a model. Litvak et al. (2008) and Chan et al. (2018) illustrated a reduction of re-
spectively the blocking probability, deferral probability, and a number of overbeds for the ICU
in case of sharing capacity with several hospitals, which forms the motivation to apply these
methods to the neonatal care context.

3. To apply the virtual MC policy on the three-patient-type model, by adapting the
policy from Litvak et al. (2008)
The first policy to apply is the virtual ICU policy. Here, several hospitals jointly reserve a small
number of beds, which we refer to as the virtual MC. Litvak et al. (2008) used an analytical
approach to determine the load and variance of this MC; we formulate a queuing model, and use
Discrete Event simulation to find the blocking probability and number of overbeds in this system
Litvak et al. (2008) showed that cooperation in this form reduced a lower blocking probability
and a number of overbeds.

12



CHAPTER 1. INTRODUCTION

4. To apply the threshold policy on the three-patient-type model, by adapting the
policy from Chan et al. (2018)
The risk of under-utilisation of resources, including the possibility to refuse a patient even though
a free bed is available, inspired Chan et al. (2018) to develop a model that does not set beds aside
for specific patient groups. Instead, each group is allowed to enter until the capacity exceeds a
certain threshold level. They showed that this form of collaboration yielded better results than
the policy introduced by Litvak et al. (2008). This forms the motivation to also apply the policy
from Chan et al. (2018) in this research.

5. To show the practical applicability of the developed model in a case study of WKZ
and three peripheral hospitals in the region of Utrecht
The model is applied in a case study of the MC of the WKZ. This research aims to set guidelines
for the MC unit of the WKZ and similar units from three peripheral hospitals in the Utrecht
region. First, we describe the input data for the model based on data from the included hospitals,
and use the input data in the models. To state if the models are of good practice, we test the
quality of the solution based on an objective that consist of the collective blocking probability,
and the fraction of time that the hospitals run one or more overbeds. Furthermore, we make a
translation between these probabilities and the actual data.

6. To show the sensitivity of the aforementioned policies to various input parameters
The best settings for the policies are tested with a fixed value for the arrival rate and length of
stay. In reality however these values might change. For instance, an increase in the arrival rate
may result as a consequence of an RS virus outbreak. We want to discover the behaviour of
our models in scenarios with different input values and find out to what extend our models are
how sensitive to the inputs because we deisre our models to show a robuust behaviour towards
a change in input parameters. By this, we can find whether our proposed settings are still
beneficial compared ot the current situation or if different settings should be chosen.

The remainder of this report is as follows: in Chapter 2, we present literature found on pooling
strategies. Chapter 3 describes the problem and presents the solution approach. In Chapter 4, we
apply the problem to a case study of the neonatal ward from the WKZ. Chapter 5 describes the
experiments, Chapter 6 the results and Chapter 7 the conclusions and recommendations.
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Chapter 2

Literature review

This chapter presents the literature on capacity issues in healthcare. This chapter contributes to the
first research objective, that is ”to learn from literature about the most recent methods for tackling
capacity issues in neonatal, emergency, and intensive care, that include solutions in collaboration”.
Section 2.1 gives a helicopter view of capacity allocation decisions in healthcare. Next, Section 2.2
provides relevant work on the stochastic modelling of patient arrivals and service times. Then we
discuss relevant work regarding the concept of pooling in Section 2.3 and introduce the modelling of
hospital wards by means of Markov chains in Section 2.4. To determine how we identify the quality of
our models, we propose relevant work on performance outcome measures in Section 2.5 and in Section
2.6 we summarize and conclude our litreature review. This section sums up the identified gaps, such
that we can indicate the contribution to the scientific body of knowledge.

2.1 Capacity allocation decisions

Maternity facilities are heavily stochastic systems where capacity requirements such as dimensioning
the ward size (De Bruin et al., 2010), cannot be set deterministically (Pehlivan et al., 2012). As a
solution, Winston and Goldberg (2004) state that queuing theory can be used to find performance
measures that set an analytical relationship between capacity and the required service level. Queuing
theory is used to capture relationships between the patient arrivals, flows through several wards, the
utilization of servers, waiting times and refusals (Green, 2006). An application of queuing theory is
Markov models, which is subject to Section 2.4. Worthington (1991) suggests that increasing service
capacity (the traditional method of attempting to reduce long queues) has little effect on queue length
because, as soon as patients realize that waiting times reduce, the arrival rate increases, which increases
the queue again. As a consequence, sharing resources is often opted as a solution (Ata & Van Mieghem,
2009; Bekker et al., 2017). Furthermore, redesigning the blueprint can help to improve the wards’
performance in terms of access to care (Huang et al., 2014). A blueprint supports the principle of
assigning patients into categories based on similar characteristics. Huang and Kammerdiner (2013)
suggests classifying patients to obtain a group with a low coefficient of variation of their characteristics.
The motivation for this is that a scheduling system, in that case, performs cost-efficient. In blueprint
schedules, we distinguish two types: dynamic and static blueprint schedules. Dynamic schedules are
blueprints that are able to respond to variability in both demand and supply of resources supply
(Hulshof et al., 2013). They have shown promising performances (Huang et al., 2014; Hulshof et al.,
2013). Static blueprints include long-term cyclic plans (Hulshof et al., 2013). A challenging assignment
is to balance fixed and flexible capacity in static blueprints (Kortbeek et al., 2014). Kortbeek et al.
(2014) showed that for a pre-operative appointment clinic, 20 % to 40 % of the capacity should be
flexible in order to cope with fluctuations in patient arrivals. Blueprints offer great opportunities for
tactical planning purposes but the implementation in neonatal care goes along with the limitation the
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neonatal department mostly encounters emergency arrivals (Hoot & Aronsky, 2008). However, the
idea of classification classification of patient types and the application of triage principles to those
types forms promising solutions for neonatal care.

2.2 Modelling patient arrivals and service times

Modelling neonatal patient wards is challenging compared to modelling other hospital flows (Kanai &
Takagi, 2021) due to the urgency of arrivals and unpredictable progression. Kanai and Takagi (2021)
has applied a discrete-time Markov chain model in s non-terminating simulation with a simulated
run length of 2 years, to characterize the flow of neonatal inpatients over several wards in a hospital.
Their probability distributions on the number of patients staying in each ward can be used as input
for modelling the neonatal ward and examine the effect of interventions.

Various situations can occur in case a patient arrives at a station that is completely filled (Keskinocak
& Savva, 2020). These include the following (Hoot & Aronsky, 2008):

• The arriving patient is rejected and leaves the system;
• The arriving patient waits for a bed;
• In case there are no beds, the patient in the best condition is being discharged and a new patient
is admitted;

• The arriving patient is admitted by creating an overbed ;
• The arriving patient is admitted to a different ward than was initially intended.

Frequently, a combination of the above events occurs (Hoot & Aronsky, 2008). In case of urgent
arrivals, no queuing is possible (Zonderland & Boucherie, 2012) thus patients are either served or
blocked; we say that the system is overloaded and the amount of patients being deferred equals the
overflow. Overflow systems are typically difficult to solve (B. van Dijk, 2022) due to the system’s
complexity. Applications are e.g., healthcare (Litvak et al., 2008), call centers (B. van Dijk, 2022),
and telecommunication networks (Asaduzzaman et al., 2010). Overflow models in the neonatal wards
have been studied before by Asaduzzaman et al. (2010) and they allow the size of the overflow to
be adjusted. In practice, however, the number of available beds is limited (B. van Dijk, 2022), thus
we cannot create extra beds. Van Dijk and van der Sluis (2009) provides a different approach, by
limiting the part to what extent one server accepts overflow from other arrival types. In a bounded
overflow scenario, one accepts servers to a fixed bound B ; in a probabilistic scenario, in case a server
is fully occupied, the other server accepts the arrival with a certain probability P. By deciding to what
extent patients are allowed to overflow, optimal capacity allocation decisions are made. The systems
discussed by Van Dijk and van der Sluis (2009) only accept calls designated for other servers in case
the original server is occupied. In practice, this implies that a patient cannot be refused in case the
ward is not yet fully occupied. Thus, the question arises if we can shift calls to other servers even
before maximum capacity is reached. Intensive care wards should strive for an occupancy rate of 80
% (Tierney & Conroy, 2014), since this occupancy rate is believed to be the optimal rate where one
keeps a buffer for emergency arrivals. The optimal occupancy for neonatal wards may differ from this
rate as they the neonatal ward differs from the ICU in terms of patient characteristics (Shah et al.,
2015) but an optimal percentage was not found.

2.3 Jointly reserving beds by means of pooling

The concept of pooling is defined in a variety of ways (Cattani & Schmidt, 2005; Laws, 1992; Wischik
et al., 2008) and it can be used to achieve a variety of objectives (Hoot & Aronsky, 2008). We look
for models that approach to examine the effect of pooling or joint spreading of arrivals.
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Multiple definitions of pooling were found. Laws (1992) defines pooling as a system of two identical
parallel queues where arrivals join the shorter queue. It is also defined as ”making a collection of
resources behave like a single resource” (Wischik et al., 2008). There appears to be a widespread
belief that pooling service capacities are advantageous, at least in terms of performance and capacity
(Cattani & Schmidt, 2005; Van Dijk & van der Sluis, 2009). For example, Cattani and Schmidt
(2005) states that ”pooling of customer demands, along with pooling of the resources used to fill those
demands” yields operational improvements. For identical servers and arrival types, N. M. van Dijk
and van der Sluis (2008) show that indeed, the average waiting time decreases. However, in the case
of various arrival types, the waiting times do not necessary decrease (Bekker et al., 2017; Vanberkel
et al., 2012). It is therefore an open question if pooling is effective in a network of MC locations.

2.3.1 To pool or not to pool?

To assess whether pooling should be initiated, one must balance the benefits against the drawbacks
(Cattani & Schmidt, 2005). Pooling is a potential method to improve a system’s performance without
having to add additional resources (Vanberkel et al., 2012). Besides, by sharing resources, the arrivals’
variability will be reduced, causing servers to require less capacity to maintain a certain service level
(Cattani & Schmidt, 2005; Van Dijk & van der Sluis, 2009; van Doremalen, 2022). Furthermore,
to cope with fluctuations in patient demand, patient access times may be improved when resource
capacity can temporarily be increased by means of pooling (Vermeulen et al., 2009). Lastly, aggre-
gating services is a way to decrease costs and thus gain efficiency through Economies of Scale (EOS )
(Vanberkel et al., 2012). As a remark to the benefits, the arrangement must be mutually beneficial
for providers to agree to pool their resources. If a supplier’s performance suffers as a result of his
participation, he has no reason to do so (Nandigam et al., 2019). Pooling is not always beneficial.
Resources are usually dedicated to a patient type, hence sharing them is not always possible in prac-
tice (Vermeulen et al., 2009). Additionally, employees gain expertise by practising specific procedures
frequently so pooling might lead to a loss of experience (Vanberkel et al., 2012). This gain in efficiency
is referred to as Economies of Focus (EOF ). The authors make a trade-off between EOF and EOS by
means of a discrete time-slotted queuing model. To finalize, in case of a large difference in arrival and
service patterns, pooling resources increases the arrival variability, thus pooling will not be effective
in that case (Bekker et al., 2017; Vanberkel et al., 2012).

2.3.2 Partial resource pooling

Pooling was traditionally seen as a share of complete resources (Laws, 1992). Van Dijk and van der
Sluis (2009) and Nandigam et al. (2019) discuss the concept of partial resource pooling by assigning
”some resources dedicated to each group and the remaining resources shared between them” (Van
Dijk & van der Sluis, 2009). Partial resource pooling opens possibilities for the allocation of resources
among different patient types (Bekker et al., 2017). To this extent, Bekker et al. (2017) distinguish
four possibilities:

• Each patient type is served by a separate ward, depicted in Figure 2.1a;

• All wards serve all patient types by means of single merging, shown in Figure 2.1b;

• The remaining beds are shared among all patients, with a number of dedicated beds for each
patient group. This policy is referred to as the earmarking policy, as shown in Figure 2.1c;

• All beds may serve all patient types, but if the number of vacant beds falls below a particular
level, each ward will refuse certain patient types. This policy is referred to as the threshold policy
and will be discussed in more detail in Chapter 3.
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Figure 2.1: General ways of distribution of patient types among several server groups (Bekker et al., 2017)

(a) Separate wards (b) Single merging (c) Earmarking policy

As an extension to pooling for a single resource type as discussed in (Vanberkel et al., 2012), two
remarkable policies are presented by Litvak et al. (2008) and Chan et al. (2018): the virtual ICU and
the threshold policy, as shown in Figure 2.2. In the virtual ICU policy, several hospitals jointly reserve
capacity, forming a “virtual” hospital shown in Figure 2.2a. In the threshold policy, some patients
are barred from a pre-determined number of beds such that some capacity remains available for other
patient groups. When the threshold is reached, some patients are not allowed to enter. This last policy
allows for more detailed possibilities by implementing thresholds for specific patient groups.

Figure 2.2: Illustration of pooling for multiple server types

(a) Virtual ICU policy by Litvak
et al. (2008)

(b) Threshold policy by Chan
et al. (2018)

The description of the three patient types is as follows. Type 1 patients may be admitted to any
location in the network and are only blocked, if all beds in the entire network dedicated for this
patient type are occupied. Type 2 patients will trigger an overbed if the location is full, since these
patients always have to be admitted. Third, type 3 patients who cannot be treated right after after
arriving are blocked. This relates to patients in neonatology who, for instance, require an MRI scan. If
the ward is already full, the decision is made to delay the care for these patients because the situation
is not life-threatening and does not require immediate treatment. They do not request admission in
other locations, in contrast to type 1 patients.

To illustrate the concept of the threshold policy in more detail, consider the following. Shown in
Figure 2.2 is a district with two hospitals, each having an MC unit, M1. and M2. In situation 2.2a,
an arriving patient of type 1, P1, is sent to the virtual ICU which is formed by beds that are put aside
in M1 and M2. In situation 2.2b, each hospital has a certain amount of beds for patients of type 1,
P1 reserved. Suppose an arriving patient P1 to location is refused since the occupancy level exceeds
the threshold set for that patient type but at location MC2, this is not yet the case. Then, P1 will
be served by location MC2. Chan et al. (2018) proved that assigning capacity in this way reduces the
overall number of refusals while maintaining appropriate occupancy levels in intensive care.
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2.4 Modelling hospital wards: Markov chains

AMarkov process is a stochastic model that depicts a series of potential occurrences where each event’s
likelihood is solely determined by the state it reached in the preceding event (Winston & Goldberg,
2004). Thus, the description of the current state captures all the information impacting on how the
process evolves in future states. In other words, a Markov process is said to be memoryless (Norris,
1998).

A Markov chain can be defined on a discrete-time or continuous-time scale (Norris, 1998). A discrete-
time Markov model switches between states in specified points in time; so, changes in the system can
only happen at one of those fixed time values. In contrast to discrete time steps, a continuous-time
Markov chain changes states continuously over time. A continuous-time Markov chain (CTMC) is a
continuous stochastic process in which, for each state, the process will change state according to a
random variable and then move to a different state as specified by the probabilities of a stochastic
matrix. Consider for example a game of chess; the board position only changes at the finish of a
player’s turn. The system only moves between states if one player has played a move, so at fixed
points in time. Now consider a grocery store. The number of customers in the store evolves over time,
as some enter the store and other customers exit. Many circumstances, such as the cashier speed, and
the grocery list of the customer, make that the length does not change at a fixed point in time, but
is a continuous process. Note that both examples hold the memoryless property of a Markov chain.
The board position at the beginning of the next player’s turn in a game of chess depends only on the
current board position and the current player’s decision. The number of customers in a store for the
next time period only depends on the current number of customers and the circumstances that change
during that next time period.

2.5 Performance outcome measures

Performance outcome measures describe the efficiency of a system (Bamford & Chatziaslan, 2009; Hoot
& Aronsky, 2008). A system’s performance is defined as the sum of its activities during a specified
period (Bamford & Chatziaslan, 2009). Bamford and Chatziaslan (2009) found that the issues with
performance measurement have progressed from monitoring the incorrect actions to measuring too
many actions, resulting in an information overload. We need to find measures that are relevant in
describing the actions of the system.

The number of refused admissions is commonly interpreted as a good service level indicator and
important for the quality of care (Pehlivan et al., 2012). The number of arrivals does not equal
the number of admissions, which is why De Bruin et al. (2010) propose an adapted occupancy rate.
Another indicator that is often used in emergency wards is the number of occupied beds (Hoot &
Aronsky, 2008). Several definitions of occupancy are found. For example, De Bruin et al. (2010)
consider the admissions (including refusals) multiplied by the length of stay, as a fraction of the
number of operational beds.

Creemers and Lambrecht (2008) use the total flow time as an outcome measure, that is, the total
waiting time plus the processing time. Other models focus on minimizing costs Harrison and López
(1999) and Mahar et al. (2011), with the result that these models are highly sensitive to the cost
structure. The cost structure of the neonatal facility is complex. Besides, in peripheral hospitals, a
different objective holds regarding the profit objective which makes incorporating the cost structure
complicated (Harrison & López, 1999). Furthermore, (Mahar et al., 2011) incorporates the quality
of service by a constraint that forces a target level. Song et al. (2020) study the effects of off-service
placement, that is, the situation in which a patient is laid to an open bed at a unit designated for other
patient types due to full capacity at the desired ward. Lastly, Hulshof et al. (2013) use the objectives
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to achieve equitable access for patients and to meet production targets or serve the strategically agreed
number of patients.

We conclude that various performance measures can be found. Measuring and reporting on the use of
capacity is not straightforward, as the measurements are open to bias and misinterpretation (Bamford
& Chatziaslan, 2009). Hence, a clear definition of the performance outcome measure is required.

2.6 Conclusion

This chapter contributed to the research goal ”To learn from literature about the most recent methods
for tackling capacity issues in neonatal, emergency, and intensive care, that include solutions in col-
laboration”. We saw that applications of partial resource pooling have previously been studied in the
context of call centers or telecommunication networks, and recently, the application to healthcare has
received increasing attention. Although partial resource pooling models have been studied (Nandigam
et al., 2019), (Williams et al., 2015), or similar models that allow patients to be served by other
servers (Asaduzzaman et al., 2010; Van Dijk & van der Sluis, 2009), only few consider constraints
to the maximum amount of available beds (Chan et al., 2018; Litvak et al., 2008). Many models
apply pooling for the overflow, in which patients who are unable to access their original (destination)
server are assisted by another server. In case the original server still has the capacity, exchanging
patients is limitely analyzed thus forming the theoretical contribution of the research. To the best of
our knowledge, the overflow to peripheral hospitals by means of pooling in the neonatal context is not
yet discussed in the literature.

Since we are dealing with stochastic arrivals and residence times, applying queuing theory is a promis-
ing method to start (Winston & Goldberg, 2004). Given the three-patient-type model from Litvak
et al. (2008) this is a promising method to start. The virtual ICU policy may be of great interest to
the neonatal care, as it offers options for resource sharing wile keeping appropriate service levels for
all patient types (Litvak et al., 2008). Furthermore, the model presented by Chan et al. (2018), can be
extend determine to what extent hospitals should jointly reserve beds for this patient arrival type by
means of threshold reservation settings. It was found that both policies fits neonatal ward including its
various arrival types the most, including the desire to make a particular amount of capacity accessible
for pooling. There is a need to distribute the arrivals among the peripheral hospitals which can be
achieved by a joint reservation of capacity (Pehlivan et al., 2012). The subsequent sections discuss the
modelling of this joint reservation, based on the model proposed by Chan et al. (2018): the threshold
policy.
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Chapter 3

Problem description and solution approach

In this chapter we formulate a model that distinguishes three patient types, based on their behaviour
upon arrival. We call this model the Three-Patient-Type-Model (TPTM). To the extent of this
model, we apply two policies that incorporate regional collaboration to the three-patient-types. First,
we elaborate on the virtual MC policy. Second, we discuss the threshold policy. For the virtual MC
policy, we use two solution approaches. The first solution approach is a numerical approach based on
Continuous-Time Markov Chains (CTMC). This approach was found to be a suitable approach for
two hospitals, but when increasing the number of locations, the solution space becomes too big to
be solved in a feasible time. Therefore we choose to apply a Discrete Event Simulation (DES). The
threshold policy is solved numerically using CTMC. The objective that determines the quality of our
solution is the sum of all blocking probabilities, and the fraction of time that each hospital spends
while having overbeds. A graphical overview of the used methods is presented below.

TPTM
Distinguishes three patient types based on the action
that they execute when facing a full ward
upon arrival (Section 3.1)

Virtual MC policy
Several hospitals jointly reserve a small
number of beds (Section 3.2)

Approximation: DES
To find the objective by approximation
for 4 hospitals (Section 3.2.4)

Numerical approach: CTMC
To find the objective numerically
for two hospitals (Section 3.2.1)

Threshold policy
Each location reserves a threshold;
that is that patients of that type are admitted
until so (Section 3.3)

Numerical approach: CTMC
To find the objective for a set
of thresholds for 4 hospitals
(Section 3.3.1)
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3.1 The three-patient-type-model

The MC locations are often short of capacity. Typical solutions in case of bed shortage are: transferring
a patient to another hospital, refusing a patient, or admitting the patient by creating an overbed.
Patients arriving at at any MC in the network are of one of these three classes, which differ in the
decision for admittance to the MC. Let t ∈ 1, 2, 3 represent the respective patient types. We assume
that once the patients of type 3 are unable to receive treatment, this last group is ”removed” from the
system. A summery of the patient types and corresponding actions that they face when they have a
full ward is as follows.

Type 1 Refusal, and try for admission in other hospital. If no bed is available in any of the locations, this patient is refused
Type 2 Always admitted by creating an overbed
Type 3 Refusal, and no possibility re-try for admission somewhere else in the network

We introduce a network where the set I represents the locations in a network. In total, the network
has i = 1...I hospital locations. Each location is responsible for serving its own catchment area of
patients. Let pi,t denote the fraction of type t patients at location i. The fraction of type 1, type
2 and type 3 patients is respectively indicated with pi,1, pi,2, and pi,3, where pi,1 + pi,2 + pi,3 = 1,
∀i ∈ I.

λi,t denotes be the arrival rate (the average number of patients arriving per day) of patient type t to
location i. Let µi denote the service rate (the average number of patients treated per day), of location
i. We assume that the service rate is similar for every patient in location i, so, we do not discriminate
between the patient type and therefore do not include an index for the patient types t. We assume
that the time between two subsequent arrivals follows an exponential distribution. This assumption
is verified in Appendix B. If the inter-arrival time follows an exponential distribution with rate λi,t

time units, then, the average arrival rate per time unit is said to be Poisson distributed with rate 1
λi,t

(Winston & Goldberg, 2004). Furthermore, we assume that the service time follows an exponential
distribution with rate µi, which Appendix B justifies.

The arrival rate, λi,t is the fraction of patients of type t at location i, pi,t from the total arrival rate
to location i, that we denote with Λi. In other words, λi,t = pi,t ∗ Λi∀t ∈ T, ∀i ∈ I. By estimating λi,t

in this way we ensure that
∑T

t=1 λi,t = Λi ∀i ∈ I.

Under the assumptions of Poisson arrivals and exponential service rates, we model the system as an
M/M/c queue. This is a stochastic process whose state space is the set {0, 1, 2, 3,...} where each value
corresponds to the total number of patients, including those who are currently in service. Figure 3.1
schematically depicts the patient flows for two hospitals.
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Figure 3.1: Illustration of the three-patient-type model in a network with two locations. Each zone has one MC
location. Let λi,t be the arrival rate of patients of type t arriving to location i. External emergency patients arrive at
location 1 with a rate of λ1,1. If MC 1 is full, the patient will attempt admission to the MC 2. Internal emergency
patients and elective patients arrive to MC 1 with rates of respectively λ1,2 and λ1,3. A temporary overbed will be
created in response to an internal emergency patient who cannot be placed in a regular MC bed, and the elective

patient will be refused

Litvak et al. (2008) and Chan et al. (2018) refer to the three types as external emergency, internal
emergency and elective patients. The models from the authors focus on the intensive care unit (ICU).
We apply the TPTM to neonatal care. Since we apply the TPTM to a different context, the assump-
tions of the TPTM from the authors hold under different conditions. A comparison of our model and
the models from Litvak et al. (2008) and Chan et al. (2018) is presented in Table 3.1.

Models from Litvak et al.
(2008) and Chan et al. (2018)

Models in this research Motivation

Application to the ICU Application to the Medium
Care unit of a neonatal de-
partment

The actions that occur for each patient type for
accommodation in the ICU network, are similar
to the actions in the MC unit

Internal emergency patients emerge
from the zone in which the hospi-
tal is located and restrict to ser-
vice solely in the hospital located
in their zone of origin

Internal emergency patient
can arrive via other hospi-
tals and do not restrict to
service in their origin zone

Patients categorize based on their origin type.
Transporting newborns includes a lot of risk thus
is not desirable; once they require treatment di-
rectly after being born, they cannot be rejected
thus we scale them under ’internal emergency pa-
tient’. Additionally, patients requiring treatment
at the WKZ (ones with a close risk of third-line
care) cannot be rejected thus are assigned to this
category

Elective patients are patients
that require ICU treatment after
surgery. Since this surgery can be
delayed, their ICU admission can
be postponed as well

Elective patients come for
check-ups, scans or other
medical issues that can be
postponed

Patients planned via a waiting list scale under
elective patients. To the best of our knowledge,
these patients are the only patients that can be
considered elective for the situation in neonatal
care

Elective patients are deferred, and
re-join the queue at a later moment

Elective patients are blocked
and forever lost

In the model from Chan et al. (2018), the arrival
rate of type 3 patients is not adjusted for refused
type 3 patients, thus the arrival rate does not
change if a patient of type 3 re-joins the queue.
We therefore consider, the type 3 patients that
cannot be accommodated upon arrival, blocked
and lost.

Table 3.1: Comparison of the TPTM by Litvak et al. (2008) and Chan et al. (2018), and the adapted version in this
research
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TPTM Model objective

The objective is to minimize the blocking probability, that we denote with P b
i , for type 1 and 3

patients, and the probability of having overbeds for type 2 patients, that we denote with P o
i .

Notation Name

Sets
T Set of patient types
I Set of hospital locations

Indices
i ∈ I Hospital locations
t ∈ T Patient types

Variables

P b
i Blocking probability for type 1 and 3 patients in location i

P o
i Probability of having overbeds for type 2 patients in location i

PB Total blocking probability
PO Total fraction of time spend in overbeds

Parameters
λi,t Arrival rate of patients of type t arriving to location i
Λi Total arrival rate to location i
µi Service rate of patients in location i
pi,t Fraction of type t patients at location i

Table 3.2: Overview of the TPTM notations

Regarding resource sharing, we highlight two policies: the Virtual MC and the threshold policy. Both
policies have different ways of assigning capacity to patient groups based on their resource-sharing
models. The quality of the policies is determined by an objective, that we denote with Z. Z consists
of the following elements:

Z =

{
Fraction of incoming type 1 and 3 patients that cannot admit, hence are refused;

Proportion of time the hospital is running one or more overbeds

The first item is also denoted as the ”blocking probability”; to the second item, we refer to as the
”overbed probability”.

Assumptions on the TPTM

The TPTM goes with several assumptions that are listened below.

1. There is an unlimited capacity for overbeds
To be able to treat all type 2 patients, we assume that there is no capacity restriction on this
type. This implies that nurses can take care of an unlimited amount of patients. So, if the
current amount of patients in the system > Ci, an overbed is created for this patient type.

2. Patients of type 2 and 3, can only be served in the hospital from their catchment
area
We assume that patients of type 2 cannot be refused and type 3 patients are neither sent away
to an other location. Thus, these patients are always treated in hospital location i, where z = i.

3. Each location should operate at least 1 bed
Closing one of the facilities that is a part of the TPTM is not ethically appropriate because each
hospital is accountable for servicing its own catchment area and a portion of the patients cannot
be refused.
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3.1.1 Obtaining the objective in two different policies

With both policies, we obtain Z in a different way. To give an understanding of the difference in the
two policies, Table 3.3 describes the difference in terms of a general description, practical meaning
and goals.

Table 3.3: Difference of the virtual MC and threshold policy, in terms of general description, practical implication and
the goal of the policies

Policy Description Practical meaning: How
does the policy look like
in practice?

Goal of the policy: How
does the policy find Z

Virtual MC
policy

Hospitals in a network
jointly reserve capacity for
the admission of type 1
patients

Beds will be distributed over
the hospitals in the region,
creating a virtual MC

To find the amount of capac-
ity to assign to each patient
group at each location, in-
cluding the size of the vir-
tual ICU, in which Z is min-
imized

Threshold
policy

No capacity is explicitly re-
served for a patient type,
but type 1 patients are ex-
cluded from the last thresh-
old value of beds.

Type 1 patients can admit to
any location in the network,
as long as the current capac-
ity of that location does not
exceed the threshold value.

To find the optimal thresh-
old values, in which Z is
minimized
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3.2 Virtual MC policy

Consider a network of four hospitals that jointly reserve a small number of beds for the admission
of type 1 patients that cannot be placed in their original location. A form of a stochastic model of
such a network is a Markov chain, with the state being the number of patients, and the admission
and discharge modeled as possible transitions between the states. For an extensive discussion on the
concept of Markov chains, we refer to Section 2.4. We formulate a Continuous-Time Markov Chain
(CTMC) for the virtual MC (VMC) policy. Since the CTMC is only able to capture the behaviour
of the network for a small number of locations, we introduce Discrete Event Simulation (DES) to
evaluate a network with more than two locations.

3.2.1 CMTC: Birth- and death processes

Our formulation of the CTMC is based on a birth-death process, that is a special case of a CTMC
where the state transitions are of only two types: ”births”, which increase the state variable by one
and ”deaths”, which decrease the state by one. For an elaborate overview on CTMCs we refer to
Section 2.4. We define ni as the number of patients in a normal bed at MC i, and oi as the number
of patients in an overbed at MC i. Furthermore, we denote v as the number of patients in the virtual
MC. The number of patients that can be admitted to a normal bed is constrained by the capacity of
MC i, that we denote with Ci. Furthermore, the number of patients that can be admitted to a bed
in the virtual MC is constrained by the capacity of the virtual MC, that we denote with Cvmc. Thus,
we have a state space S = {n1, o1, n2, o2, ..., ni, oi, v|ni ≥ 0, ni ≤ Ci, v ≤ Cvmc,∀i ∈ I}.

We are interested in the fraction of time spent in each blocking- and overbed state and therefore want
to find the steady-state distribution π. We denote Q as the transition rate matrix. In Q, we denote
the rate in which the system moves from state S to state S′ with the transition rate qSS′ .

The birth processes in Q are as follows:

qSS′ =


λi,1 + λi,2 + λi,3 if S’ = (..., ni + 1, ...), and ni < Ci,∀i ∈ I

λi,2 if S’ = (..., oi + 1, ...), and ni ≥ Ci, ∀i ∈ I

λi,1 if S’ = (..., vi + 1), and ni ≥ Ci, ∀i ∈ I

The death processes in Q are:

qSS′ =

{
µi ∗ S if S’ = (..., ni − 1, ...),∀i ∈ I

0, otherwise.

Table 3.4 presents additional notations for the CTMC.

Notation Name

ni Number of patients in a normal bed in location i while being in state S
oi Number of patients in an overbed bed in location i while being in state S
v Number of patients in the virtual MC while being in state S
S State space
qSS′ Transition rate from state S to state S′

Q Transition rate matrix
π Steady state vector or stationary distribution
Ci Capacity of location i
Cvmc Capacity of the virtual MC

Table 3.4: Overview of model notations for the virtual MC

To give a better understanding of the Markov chain, in Figure 3.2 we illustrate an example of a tran-
sition rate diagram with two hospitals, each having a capacity of two. The numbers that correspond

25



CHAPTER 3. PROBLEM DESCRIPTION AND SOLUTION APPROACH

to the arrows in this Figure are used to support the following context.

We transit from S={0,0,0,0,0} to a state where one patient is in either one of the locations with rate
λi,1 + λi,2 + λi,3, and transit back with rate µi (1, 2). We can also transit between states where
respectively one or two hospitals have one patient (7, 8). For simplification, we only focus on the first
hospital. In S={2,0,0,0,0} full capacity is reached. The only birth and death process is to transit to a
state with one patient in the virtual MC (3) with rate λi,1 and µi, or to a state with one overbed (6)
with rates λi,2 and µi. A transition between states S= {2,0,0,0,1} and S= {2,1,0,0,0} is also possible
with the arrival of a new type 2 patient with rate λi,2 or discharge with rate µi (10).

0,0,0,0,0 1,0,0,0,0

0,0,1,0,0

2,0,0,0,0

1,0,1,0,0

2,0,0,0,1

2,0,1,0,0

2,1,0,0,0 2,1,0,0,1

1

1

22

33

4

4

5 5

6

6

77

8

8

10

10

9

9

Figure 3.2: VMC policy - Transition diagram of a M/M/s system. Shown are the transition rates from state S to
state S’ for two hospitals with a capacity of two.

Next, we describe how we fill the matrix Q and to find the steady state vector, π.

3.2.2 Numerical approach for calculating the stationary distribution

Given the transition rates, we are interested in the stationary distribution or steady state vector π
such that we can calculate the time spent in each blocking- and overbed state. Therefore, we fill a
transition rate matrix Q with the values from the transition rates. Q is a square matrix where states
S are displayed on the column vector and the states S′ on the row vector.

If Q is positive, it approaches a steady state which is given by the eigenvector π associated with
eigenvalue λ = 1 (Seneta, 1980). In Appendix E we elaborate on the relationship between eigenvectors
and Markov chains and explain why this statement is true.

From the eigenvector definition, we see that if v is an eigenvector, Av = λv holds. The transition
matrix Q applied to the steady state vector π recognizes as π being an eigenvector of Q with an
eigenvalue λ of 1, such that Qπ = λπ ↔ Qπ = π. Intuitively it makes sense that this formula is true;
consider a system that has a distribution over all of its possible states, and that distribution is equal
to the system’s steady state. Now suppose that you apply the transition matrix Q to your system.
Since your system was already in steady state prior to this action, it should follow that the result
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of this action is also equivalent to your steady state. This is reflected in the formula Qπ = π. This
means we have to solve Qπ = π to find π. Algorithm 1 describes this procedure how we do so.

At the start of our algorithm, the matrix Q is filled with transition rates. In order for Q to become a
Markov matrix, we have to normalize the values for each row, such that the sum of each row = 1. This
implies that for every state S, all the probabilities of leaving to state S′ sum up to 1 such that you
ensure you will leave state S. This is executed in steps (1)...(6). Next, in (7) we transpose Q for the
following reason. Solving Qπ = π equals solving π(Q− I) = 0, where I represents the identity matrix.
This statement is justified in Appendix E. Since Q is now a Markov matrix, it holds that det(Q-I)
= 0 (Seneta, 1980). This again implies that, Q = Q.T (transpose), so π(Q − I) ↔ π(Q.T − I). We
transpose Q and substract the identity matrix I from Q in respectively steps (8) and (9).

Furthermore, since π represents our stationary distribution of Q, we have to incorporate a constraints
that ensures that the sum of all elements in π = 1 (Seneta, 1980), which we will ensure by an extra
row vector to Q with ones (8). Appendix E describes why this procedure ensures the constraint is
fulfilled. Next, initialise the array π with zero’s, except the last value which is 1 (9). Finally, after
completing all modifications to Q, we are able to calculate Qπ using a linear solver. We implemented
the algorithm on a Lenovo T460s computer with 32gb memory and using the Numpy Linear solver
package.

Algorithm 1 Numerical approach for calculating π

Input: transition rate matrix Q
Output: stationary distribution vector v

1: for row in Q: do
2: for column in Q: do
3: RowSum ← Q[row,column]
4: end for
5: Q[row,column] ← Q[row,column] / RowSum
6: end for
7: Q ← Q.T
8: Q ← Q - I
9: Q ← + Array with one’s

10: v ← Empty array with zero’s
11: v[last item] ← 1
12: solve Qπ

3.2.3 Calculating the objectives with π

The objective consists of the system’s blocking probability and the fraction of overbeds in the system.
From the TPTM formulation, we recall that these objectives are respectively denoted with P b

i and P o
i .

To find P b
i , we have to ask ourselves the question: ”When exactly is a patient blocked?” The answer

to that question depends on the patient type. A type 1 patient is blocked if and only if the hospital
itself and the virtual MC is full. A type 2 patient is never blocked and a type 3 patient is blocked, if
the hospital itself is full. We recall that pi,t denotes the fraction of type t patients at location i. The
probability that a patient is being blocked while arriving to location i is,

PB
i,1 = p(arrival of type 1|we are in a state where type 1 cannot be accommodated) (1)

= pi,1 ∗
∑

(π(ni, oi, ..., v)|ni ≥ Ci & v = Cvmc) ∀i ∈ I (2)
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PB
i,3 = p(arrival of type 3|we are in a state where type 3 cannot be accommodated) (3)

= pi,3 ∗
∑

(π(ni, oi, ..., v)|ni ≥ Ci) ∀i ∈ I (4)

Finally, we calculate PB
i as the sum of the two types,

PB
i = PB

i,1 + PB
i,3 ∀i ∈ I (5)

We calculate the second KPI, the ”proportion overbeds” as follows. The proportion overbeds is also
known as the proportion of time that the system spends in a state where one or more overbeds is
presented. We denote this proportion with PO

i . This outcome measure only holds for type 2 patients,
since it is assumed that only this type may be accountable for overbeds. Then,

PO
i = p(We are in a state where we have overbeds) (6)

=

I∑
i=1

π(ni, oi, ..., v)|oi > 0 ∀i ∈ I (7)

We remark that states with overbeds only exists where ni ≥ Ci. Therefore, we do not have to require
that ni ≥ Ci in the states for calculating PO

i .

Dealing with a large solution space

With more hospital locations and increasing size of the virtual MC, the number of possible configura-
tions increases. With four hospital locations and 10 to 12 beds per location, an analytical solution for
the set of equations 3.2.3 to 3.2.3 difficult to realize due to the size of the solution space. Since the
hospital only has a certain number of resources to operate overbeds, limiting the maximum number
of overbeds is one technique to reduce the size of the solution space. Figure 3.3 presents the value of
πj for j ∈ [0, 1, .., 19]. This Figure shows that the states (πj |j > 15) are very close to zero. In fact,
the system spends only 0.078 % of the time in a state πj where j > 15. Therefore we neglect states
with more than 5 overbeds.

Figure 3.3: Distribution over the states for location i = 1 with a maximum of 9 overbeds allowed. Shown is that the
fraction spent in states π(ni, oi, ..|oi > 15) is very low

.

After this reduction, Table 3.5 presents the number of possible states in which the virtual MC consist
of respectively 1 and 2 beds per location. When we include four hospitals and each hospital donates
two beds to the VMC, Algorithm 1 has to provide πj for 67321 states. Since the sum of all elements
of π = 1, each state’s value is extremely small and hence quite inaccurate.
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Description Number of possible states

1 location 10
2 locations with no virtual MC 225
2 locations, size of the virtual MC = 2 297
2 locations, size of the virtual MC = 4 340
3 locations with no virtual MC 4096
3 locations, size of the virtual MC = 3 4744
3 locations, size of the virtual MC = 6 4671
4 locations with no virtual MC 65536
4 locations, size of the virtual MC = 4 50625
4 locations, size of the virtual MC = 8 67321

Table 3.5: Number of possible states with an increasing amount of locations and capacity of the virtual MC

We conclude that an numerical approach as presented in Algorithm 1 is difficult to realize. Therefore,
we we developed a simulation model to study the whole network.

3.2.4 Discrete Event Simulation approach

There are many types of simulation models (Hill, 2007). The behavior of the neonatal ward is most
accurate represented by a discrete system, that is a system in which the state variables change instan-
taneously at separated points in time. We choose to perform a discrete event simulation. An event in
this simulation may for example be, the admission or discharge of a patient. The DES was developed
in Technomatrix Plant Simulation software1. In the subsequent subsections we describe the model
settings that are required to execute the DES.

Model settings

To design the model, we determine: (1) the warm-up period and (2) the number of replications.

Warm-up period
At the start of the simulation, the ward is empty. There are no patients in the system yet so every
patient can be admitted, which means that the blocking probability is zero. This data is not a good
reflection of reality and should therefore not be included in determining the outcome measures. For
this reason, a warm-up period is required, such that the system is in steady state behavior after this
period is passed.

To determine the warm-up period, we use Welch’s graphical method. Five independent runs of each
10 years were performed, and the average number of patients per day in the system was calculated for
every run. Next, we plotted the moving averages with windows of 5, 10, 100, 200 and 500 over time.
Figure 3.4a shows the results of Welch’s graphical method for the windows of 5, 10, 100, 200 and 500.
Figure 3.4b shows the results for w=500 only.

1Tecnomatrix Plant Simulation Version 15.2 ©Siemens
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Figure 3.4: Average number of patients per day over 5 years

(a) Different window lengths (b) Window length of 500

We observe that after roughly 167 days, the number of patients in the network stabilizes. To be sure
that out outcomes are not dependent on an empty system anymore, we choose a warm-up period of
365 days (1 year).

Number of replications
The arrival- and service times are stochastic parameters. We want to ensure that the simulation
parameters reflect the true population’s parameters. We seek for the sample size so that we can apply
the central limit theorem. An aspect of this theorem is namely that the average of the sample mean
and standard deviation, equals the population mean and standard deviation.

In every run, we take a sample for the arrival and service rates. In total, we make 20 independent
replications. In each replication, we measure three performance indicators:

• The number of refused patients per i

• The number of overbeds per i

• The daily average number of patients as a percentage of the total capacity

The average number of patients as a percentage of the capacity, is what we refer to as the occupancy.
We choose a number of replications until the width of the confidence interval relative to the average, or
the Confidence Interval Half Width (CIHW) is sufficiently small for both the performance indicators.
To decide what is sufficiently small, we choose a confidence level of 95%, and a relative error of
γ = 0.05 thus a corrected target value γ′ of 0.0526. Figure 3.5 shows the progression of the CIHW as
the number of runs increases. For P o

i and P o
i , 2 replications per experiment are sufficient to assure

Figure 3.5: CIHW against the number of replications for the whole network
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that that the simulation parameters reflect the true population’s parameters. For the occupancy, we
need to perform at least 3 replications. To make sure that we perform enough replications to reflect
the true population’s parameters for all performance indicators, we choose to perform 5 replications
per experiment.

Simulation flowchart

A flowchart that shows the logic of the simulation model is shown in Appendix C. This appendix shows
various events in the simulation model that all trigger a sequence of steps to be followed. The first
event is the arrival of a patient. The arrivals take place based on a derived distribution as presented
in Appendix B. The patient type of the arriving patient determines which sequences of actions will
be followed. The other event that triggers actions, is the discharge of a patient. When this patient is
a type-2 patient and there are patients in overbeds, the patient moves from ”overbed” to a ”normal
bed” because the overbed is not an actual overbed anymore.

Correcting for occupation

Besides the KPI’s blocking probability and overbed-fraction, we are also interested in the effect of the
VMC on the occupancy rates. We want to make sure that the occupancy rates are high enough to
achieve the production agreements but not so high that they endanger the standard of care. Accord-
ing to Tierney and Conroy (2014), conventional hospital wards operate best when they aim for an
occupancy percentage of 80%. However, there is no known set value for neonatal wards (Shah et al.,
2015), so we suggest that an occupancy of about 80% should be strived for in order for our approach
to not negatively impact the quality of treatment.

The occupancy of the VMC is not compensated for the real locations since the VMC is modelled as
a separate location at first. The beds in the VMC are essentially those that are given from the real
locations, In order to discover the true locations’ occupancy, we must correct for the share of beds
that belong to the VMC but are in fact located at hospital i. The simplest way how we do so, is to
illustrate an example using numbers. Suppose that location 1 donates 2 beds to the VMC and location
2 donates 3 beds. The capacity of locations 1 and 2, are 10 and 12, respectively. Now suppose the
VMC has an occupancy of 80 % and both locations have an occupancy of 90 %. Location 1 has 10-2
= 8 beds left of its own and 2 beds of the VMC. Then, we calculate the total occupancy as (8/10) *
90 % + (2/10)*80 % = 88 %. By calculating the occupancy in this way, we correct for the share of
beds that different locations donate to the VMC.
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3.3 Threshold policy

In this section we formulate the policy inspired by the threshold policy from Chan et al. (2018). We
formulate a one-dimensional CTMC with transition rates, qj,j+1 and qj,j−1 based on the threshold
constraints. For that CTMC we find the steady state vector π and calculate the same two objectives
as in the virtual MC: the blocking probability and overbed probability, P b

i and P o
i .

3.3.1 Transition rates and calculating the steady state vector

Chan et al. (2018) introduce the threshold policy, in which a threshold that specifies to what occupancy
level patients are allowed to enter. Let ri,t be the threshold value of location i, for patient type t.
Suppose there are j patients in total in the hospital; a patient of type t will only be accepted if,

j < ri,t for t = {1, 3}, i = 1, 2, . . . , I (8)

If j ≥ ri,t patient of type t,t = {1, 3}, cannot enter anymore, Type 1 patients will then proceed to an
other hospital. In this Section we seek to optimize the values for every ri,t such that the objective,
the sum of all blocking- and overbed probabilities, is minimized. Table 3.6 provides an overview of
the model notations for this policy.

Notation Name

πi,j Fraction of time spent in state πi,j , with j patients in location i
j Number of patients in the system
n Number of times a patient tried to admit somewhere else, after refusal at the original location
Γi,n Routing policy for patients from location i that attempted n times for admission before
S State space
qj,j+1 Transition rate from state j to state j + 1
qj,j−1 Transition rate from state j to state j − 1
Ci Capacity of location i
ri,t Threshold for patients of type t in location i
xi Arrival intensity of type 1 patients to location i in patients per day
ai,n Arrival rate of type 1 patients from location i that attempted for admission n times before
bi,t Local blocking probability of location i for type t, for t = 1, 3
pi,t Fraction of type t patients arriving to location i
k Iteration counter

Table 3.6: Overview of model notations in the threshold policy, new

We set up a CTMC to find PB
i , and PO

i . We are interested in the states in which an arriving patient
finds a full ward. Unlike to the CTMC in the virtual MC, we do not set up a multi-dimensional
Markov chain for the whole network, but we create an one-dimensional Markov chain per location in
the network. The reason for this is as follows. In the virtual MC policy, we model the network as
n+ 1 locations, where the last location is the virtual MC. The size of the virtual MC depends on the
size of the other locations, so the locations cannot be treated independent. For the threshold policy
however we do not share beds among each other. We treat the hospitals as independent locations.
We model the system with the following characteristics. Let state j denote the number of patients in
the system. Let qj,j+1 denote the transition rate of state j to state j+1. Then, the transition diagram
looks as follows:
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0 1 2 ... j j+1 ...
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Figure 3.6: Threshold policy - Transition diagram of a M/M/s system. Shown are the transition rates from state j to
state j+1

In this policy, multiple patient types having different arrival- and service rates, apply for a bed at
one location. Similar to Chan et al. (2018), we combine the different arrival- and service rates in this
one-dimensional Markov chain. The transit from state j to state j+1 means that we are in a state with
1 patient more in the system. Instead of expressing the transition rates in rates of λ and µ amounts
per time unit, Chan et al. (2018) uses the load ρ = λ

µ to transfer from state j to j+1, and uses j as
the transfer rate to transfer from a state j to j -1.

If we are in state j, and we transfer to state j + 1, patients type 1 and 3 can only enter when

(j < ri,t) for t = {1, 3};∀i ∈ I (9)

So for example, if condition 9 does not suffice for i = 1, you can only reach a higher state if a patient
of type 2 and/or 3 is admitted. To model this, we use an indicator function 1{·}, which is 1 in case
condition 9 is true and 0 otherwise. Given that we are in state j, we transit from state j to state j+1
as follows.

qj,j+1 = xi1{j < Ci − ri,1}+ λi,2 + λ3,i1{j < Ci − ri,3} ∀i ∈ I (10)

Where xi represents the arrival rate of type 1 patients to location i. Type 1 patients can enter an
other hospital in case the hospital that belongs to their catchment area, has exceeded its threshold.
The variable xi covers both the type 1 arrival rate from within the catchment area, as well as from
outside their catchment area. the patients from outside the catchment area progress trough various
locations via a routing policy. In Section 3.3 we discuss how we set up such a routing policy and how
find xi. For now, we continue with the transition rates and setting up the CTMC.

If we are in state j, we transit to state j-1 if one patient leaves the system;

qj,j−1 = ui ∗ j (11)

The implementation of Equation 10 is given in Algorithm 2. Given the location i, xi and λi,2 and λi,3,
we calculate qj,j+1 based on the value of j (4-10). After finishing all the birth rates, we continue with
the implementation of Equation 11 which is given in (14).
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Algorithm 2 Calculating qj,j+1 and qj,j−1

Input: location i, xi and λi,2 and λi,3

Output: qj,j+1 and qj,j−1, for j = {0,1,...,15} for i
1: for j = 1,2,...,20: do
2: for qj,j+1: do
3: if j < ri,1 and j < ri,3: then
4: qj,j+1 ← xi + λi,2 + λi,3

5: else if j < ri,1: then
6: qj,j+1 ← xi + λi,2

7: else if j < ri,3: then
8: qj,j+1 ← λi,2 + λi,3

9: else if j ≥ ri,1 and j ≥ ri,3: then
10: qj,j+1 ← λi,2

11: end if
12: end for
13: for qj,j+1: do
14: qj,j+1 ← j ∗ µi

15: end for
16: end for

To solve the model within a feasible time, we reduce the solution space by neglecting states in which
more than 15 patients (1). Figure 3.7 shows that the values of state πj , — j > 15 for i = 1 are
very close to 0; in fact, the system spends only 0.066% of the time in a state πj where j > 15, which
supports the decision to neglect these states. An additional advantage is that now both the CTMC
of the VMC and the threshold policy both allow a maximum of 5 overbeds so it is valid to compare
both policies later on.

Figure 3.7: Distribution over states for i=1 with r1,t = 0, ∀t ∈ T . The time spent in states ≤ 15 is very small (0.066
%), thus we neglect those.

From the transition rates we calculate the probability for each state that we denote with πj , by

using the fact that
∑I

j πj = 1. If we found so, we continue to calculate the objectives. The blocking
probability for a location bi,t, is calculated as the sum of the states in which the hospital cannot accept
an arriving type t patient anymore, t ∈ 1, 3. Thus,

bi,t =

∞∑
j=ri,t

πj t ∈ 1, 3, ∀i ∈ I (12)
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bi,t is denoted as the ”local” blocking probability because this is the blocking probability for a location,
but not for the patient. In calculating the global blocking probability PB

i we ought to note the
following. We know that, to calculate xi for one location, we require bi,1 of all other locations since
these blocking probabilities determine to what extent the locations will receive each others type 1
patients. However, at the same time, bi,1 for one location is obtained after executing Algorithm 2 and
obtaining the steady states πj . Before we dive in the details of ED, we first explain how we incorporate
the routing policy for type 1 patients in order to find xi and bi.

Routing policy of type 1 patients

The following applies to patient type 1. When a patient from the catchment area of location i, cannot
enter their own hospital, this patient will try to enter elsewhere. The order in which patients from
one location proceed to another location, is determined via a predefined routing policy. Only if all
locations in the network no longer have a place, then, this patient is refused. The routing policy is
an adapted version of the three-patient-type model from Chan et al. (2018). The routing policy gives
an order in which patient from catchment area z progress trough the network. The order is given by
the matrix Γz,n, where z is the catchment area and n depicts the number of times that the patient
has previously attempted to enter a hospital. For type 1 patients, we define ai,n, that is the arrival
rate of type 1 patients from location i, that have attempted admission to other hospitals n times
before.

It is important to make a distinction between the blocking probability that the patient experiences, and
the blocking probability from a hospitals’ point of view. A hospital from a certain location could have a
very high blocking probability, but the blocked patients arriving to that hospital have the opportunity
to enter somewhere else. Thus, the blocking probability that they experience, differs from the hospital
from their location. Let bΓi,n−1 be the blocking probability at the hospital that patients from the
catchment area of location i attempted for admission the (n− 1)-th time. Then,

ai,0 = λi,1 (13)

ai,n = ai,n−1bΓi,n−1 , n > 0 (14)

Let xi denote the total arrival intensity of type 1 patients to location i, that is

xi =

G∑
z=1

∑
n:Γz,n=l

ai,n (15)

To explain how the routing policy behaves, we illustrate an example. Suppose that location 1 has 10
type-1 arrivals per day from their own catchment area, and this location has a blocking probability of
20 %. Then, 2 patients per day cannot enter location 1 and proceed to location 2, which will receive
2 patients per day extra. Because we assume Poisson arrivals, we can sum the arrival rates from all
locations. A detailed overview of the application of matrix Γi,n can be found in Appendix D.

In a network with four locations, there are numerous possible routes. For instance, we can decide on
a set procedure where patients are transferred first to the hospital that is closest to them, then to
the next closest, and finally to the hospital that is farthest away. However, in reality, there is not a
fixed policy. The choice of which hospital to call first depends on a variety of circumstances that are
outside the purview of this study. Hospitals call one hospital after the other. We randomly select the
routing policies and select a different routing policy for each run to represent the real-world scenario
most accurate. The PolicyNr from Algorithm 3 is the indicator which routing policy is chosen for
that run.
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Algorithm 3 Update xi

Input: b
(k−1)
i for i = 1 · · · I, location to update xi for i, PolicyNR

Output: xi
1: xi ← RoutingPolicy(PolicyNR)

3.3.2 Application of the routing policy in the network

The output, b1, depends on xi but at the same time, xi depends on the result of b1. To handle this,
we use a similar approach as Chan et al. (2018) proposes. The authors use exponential decomposition
(ED) to tackle the problem of finding xi and bi simultaneously (Franx et al., 2006). ED is applied
to the network by treating xi for each MC as mutually independent (Franx et al., 2006). ”Mutually
independent” means that the locations are considered independent when calculating their steady-
state vectors, but their input depends on each other, so we calculate the steady-state vectors one after
another. The goal of the ED is to find xi∀i ∈ I such that the resulting bi,1∀i ∈ I will return the same
xi. The steady-state vector πj that returns the bi,1 from Equation 12, is the output of Algorithm 4.
In this algorithm, we solve xi for one location i, which provides bi for that i, and using that bi in order
to calculate xi for a new location. We do so until the stopping criterium is met. We use the same

stopping criterium as Chan et al. (2018) use in their ED, namely, that b
(k−1)
i − b

(k−2)
i < 10−8.

Algorithm 4 Calculating the corrected πj given ri,t for every i and t

Input: ri,t for every i and t ; Rn = Random routing policy nr
Output: Corresponding steady state vector πj

1: while b
(k−1)
i − b

(k−2)
i > 10−8 for every i : do

2: i ← Random Location
3: xi ← Update(xi, Rn, b

(k−1)
i,t )

4: Transition rates array ← CalculateTransitionRates(xi, i)
5: πi,j ← CalculateStates(Transition Rate Array, i)
6: bi,t ← CalculateObjectives(States array, i)
7: end while
8: Return πj

It important that the PolicyNr does not change during the executing of this algorithm for the following
reason. If we would apply different routing policies, we would have that the stopping criteria are based
on different routing policies. The values xi depend on the routing policy that is applied, thus it would
not be fair to change routing policies while optimizing bi.

Although we handle the locations independently of one another, they are dependent on one another
in order to calculate xi. To incorporate this, we take a location for which we have an estimation on
bi, and we take that bi as the input for a new location i+1. Then we recalculate xi for i+1 based on
bi,1 from the previous location i. Until the stopping criterion is reached, this procedure is repeated.
Figure 3.8 shows the progression of bi after multiple replications, for every i ∈ I. We observe that

roughly 3 iterations per location are required to fulfill the stopping criteria, b
(k−1)
i − b

(k−2)
i < 10−8.

This implies that we need at least 3*4 = 12 iterations in total. Since the next location to update is
chosen from a random uniform distribution, 12 iterations is a bare minimum. We choose to perform
100 iterations at least.
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Figure 3.8: Progression of bi for every i, which shows that we need at least 3 iterations per location to satisfy the
stopping criterion.

In reality, there is no fixed preference regarding the decision where to the patient will try to enter after
being denied at a previous location. It relies on a variety of factors, including the level of acuity, the
travel distance, the availability of ambulances and many more. All of these factors are not captured
within the model. To mimic a real-world scenario to the best extent, we need to evaluate multiple
routing policies per set of thresholds ri,t. In each run, we change the routing policy. To determine how
many runs are required, we apply Welch’s graphical procedure which is shown in Figure 3.9. We pick
a random routing policy and optimize bi given that routing policy, until we have reached the stopping

criterion b
(k−1)
i − b

(k−2)
i < 10−8. Then, we apply Algorithms 5 and 6 to find PB

i,1 and PO
i,1. In Section

3.3.2 these algorithms are discussed, but for now we focus on the procedure of finding a minimum
number of runs. We store these and we continue by selecting a new routing policy and optimize bi
again. We choose a number of replications until the width of the confidence interval relative to the
average, or the Confidence Interval Half Width (CIHW) is sufficiently small for both the performance
indicators P b

i and P o
i . To decide what is sufficiently small, we choose a confidence level of 95%, and

a relative error gamma = 0.05 thus a corrected target value gamma’ of 0.0526. From Figure 3.9a we
observe that 6 runs are enough to ensure the average result of PB

i,1 is stable; that is, the effects of
different routing policies are accounted for well enough. It was found that we need at least 7 runs to
obtain stable results for the PO

i,1.

Figure 3.9: Welch’s graphical procedure to determine the number of runs in the CTMC

(a) Average P b
i per location after multiple runs (b) Average P o

i per location after multiple runs
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Calculating the objective

When the steady state vectors are found, given we have executed at least 8 runs to ensure the stopping
criterion from the ED and 7 runs to capture differences in the routing policies, we can calculate the
global blocking- and overbed probabilities, that we respectively denote with PB

i,1 and PO
i,1. First, we

discuss how we calculate PB
i,1.

The fraction of the time spent in a state where more patients are present than the threshold value
gives, is the same as the probability that an arriving patient finds the system in that state. However,
not all arriving patients are blocked; patients are only blocked if the threshold for that type for that
location is exceeded. The blocking probability for type 1 patients is then, the probability that a type
1 patient arrives to location i, given that location i is in a state where j ≥ ri,t and all other locations
are also in a state where j ≥ ri,t. This is because, once a type 1 patient is refused, there might
still be a bed available somewhere else; thus, the blocking probability is the product of the blocking
probabilities from all locations in I. Furthermore, The probability that an arriving patient to location
i is a type t patient is given by pi,t. Therefore,

PB
i,1 = pi,1

I∏
i=1

bi,1 ∀i ∈ I (16)

Algorithm 5 presents how we implement Equation 3.3.2 to obtain the blocking probability from the
steady state vector. This algorithm requires the steady state vectors πj from all locations, but will
return only P b

i for one location. This is because we require the local blocking probabilities bi,t from
all locations in the network for the blocking probability from a patient arriving to a location in their
catchment area i.

For every location i (1), we use the state vector πj to add up the states for which condition 9 holds;
this gives us the local blocking probability bi,t for that location. We perform this two times, for t = 1
and 3 (4), (6). Next, after having obtained bi,t for every i, we apply Equation 3.3.2 to calculate the
product of all locations which gives us the probability that all locations are full for patient type 1. We
know that the probability of a patient type 1 being refused, equals the probability that an arriving
patient is a type t patient while we are in a state where j ≥ ri,t ∀i ∈ I. Therefore, we then multiply
this product with the probability that an arriving patient to location i is of type 1 for, which is denoted
by pi,1. Lastly, the total blocking probability for patient from the catchment area of location i is given
by the sum of the blocking probability of types 1 and 3 (11).

P b
i = bi,1 + bi,3 ∀i ∈ I (17)
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Algorithm 5 Calculate blocking probability

Input: states from Algorithm 2; ri,t for every i and t
Output: PB

i,t for a given i and t = 1, 3
1: for i = 1, 2, · · · , I: do
2: for j in states: do
3: if states[j] ≥ ri,1: then
4: bi,1+ = states[j]
5: else if states[j] ≥ ri,3: then
6: bi,3+ = states[j]
7: end if
8: end for
9: end for

10: PB
i,1 ← pi,1

∏I
i=1 bi,1; P

B
i,3 ← pi,3bi,3 ∀i ∈ I

11: P b
i ← PB

i,1 + PB
i,3 ∀i ∈ I

We use a similar approach in calculating the fraction of time that is spent while having overbeds. This
however is from a hospital point of view; we do not incorporate the probability that a type 2 patient
arrives in calculating so. The fraction of time that a hospital spends having one or more overbeds is
denoted by P o

i and is given by:

P o
i =

∞∑
j=Ci+1

πj (18)

The hospital is having one overbed, if the current number of patients in the system j exceeds the
capacity with 1. This is why we sum over states from j = Ci + 1 on. The Algorithm 6 describes how
P o
i is found, given the steady state vector πj for a location i.

Algorithm 6 Calculate overbed probability

Input: states from Algorithm 2
Output: PO

i,t for a given i
1: for j in states: do
2: if states[j] ≥ Ci: then
3: PO

i,t+ = states[j]
4: end if
5: end for

So far, we have seen how we calculate P b
i and P o

i with a given set of thresholds. We are interested
in a set of thresholds for every i and t that minimizes the overall blocking- and overbed probability.
It was found that evaluating all possible thresholds in a range from 0 to Ci was not possible due to
the size of the solution space. Therefore we propose a combination of two approaches, to balance
between exploring all possible thresholds and exploiting promising sets. This is discussed in Section
3.3.3.

3.3.3 Model settings

In this Section we discuss two approaches to find the best possible set of thresholds. Ideally we would
evaluate all possible sets of thresholds for every i and t but that would take the algorithm too long to
compute. This is caused by the following factors:
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1. Per set of thresholds, we need at least 8 replications to achieve the stopping criterion of the ED;

2. The stopping criterion must hold for every i ∈ I which causes that we need at least 10 replications
per routing policy per threshold;

3. Per set of thresholds, we need to perform at least 7 different routing policies, to capture the
variability that is caused by a different routing policy

Table 3.7 shows an estimation on the average running time in days. The estimated running time is
calculated by measuring the running time of the first 10 configurations and scale this up to the total
number of possible states.

Table 3.7: Estimated running time with an increasing number of states. As the range of possible values per ri,t
increases, the running time increases significantly.

Evaluated thresholds in range Possible states Estimated running time (days)

rit = {0,1} for every i 28 = 256 0.04
rit = {0,1,2} for every i and t 6561 1.52
rit = {0,..,3} for every i and t 65536 1.82
rit = {0,..,4} for every i and t 390625 10.85
rit = {0,..,5} for every i and t 1679616 69.98
rit = {0,..,6} for every i and t 5764801 333.61
rit = {0,..,5} for every i and t 16777216 2905.03
rit = {0,..,8} for every i and t 33093567 6894.49

We do not desire for the algorithm to take multiple days to run. Therefore, we have to come up with a
smart solution in which as many possible states are investigated, within a feasible running time. The
first action to take is to shorten the range of possible values for ri,t.

Since the threshold is set per patient type, and each patient type represents only a portion of the
overall capacity (pi,t, it is not necessary to test every threshold in the range from [0, Ci]. Consider
that we want each patient category to have a 0% refusal rate. We can determine how many beds we
require to obtain 0% refusal rate for a given patient type, using the Erlang loss model (Weernink,
2018; Zonderland & Boucherie, 2012). If all patients of this type could be admitted with this quantity,
a ri,t higher than this quantity of beds would be of little use. Table 3.8 shows an overview of the in-
and outputs for the Erlang loss model and Equation 19 desribes how we calculate Pb with a given
number of beds m.

Table 3.8: Notations for the Erlang loss model (Zonderland & Boucherie, 2012)

Input Value

λ The arrival intensity of patient type t to location i = pi,t ∗ Λi

µ The service rate
ρ Expected load = λ

µ

m Number of operational servers
i Number of occupied servers

Output Value

Pb Blocking probability for patient t
N Occupied beds as a fraction of total operational servers

Pb =
ρm

m!∑m
i=1

ρi

i!

(19)

Since type 2 patients cannot be refused, we require a slightly different approach to use the Erlang
loss model. We increase the number of beds until a blocking probability of 0% is achieved . Table 3.9
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presents the results of the Erlang loss model, in which each number indicates the amount of beds that
is required to obtain a blocking probability of 0 %.

Table 3.9: Required capacity to obtain a blocking probability of 0 % for that patient type t in that location i.
Evaluating ri,t higher than these numbers is not necessary.

Required capacity of t = 1 Required capacity of t = 3

WKZ 8 4
Diakonessenhuis 7 5
Meander 7 5
Antonius 7 5

Given these ranges for ri,t, ∀I ∈ I, ∀t ∈ T , we obtain still a high running time. Therefore it is not
feasible to evaluate all sets of thresholds. To strike a balance between exploring the solution space
and exploiting promising areas, we provide a constructive heuristic which returns a promising set of
thresholds that is used as input for a greedy improvement heuristic that we propose. The construction
heuristic is displayed in Algorithm 7. In this Algorithm we generate 100 random sets of thresholds for
every i and t. Given each set, we execute Algorithms 5 and 6 to find Z. This Algorithm returns a list
of a set of thresholds and its corresponding Z. From this list we select the set that correspond with the
lowest Z but taken into account that all occupancy rates are lower than 85 %. Taking this condition
into account is necessary to ensure the quality of care is guaranteed (De Bruin et al., 2010).

Algorithm 7 Constructive heuristic to find a promosing set of thresholds

1: for k in 100: do
2: Generate set for every ri,t, ∀I ∈ I, ∀t ∈ T
3: Z ← Sum of all blocking- and overbed probabilities
4: Execute Algorithms 5 and 6 to find Z
5: store Z
6: end for

Greedy optimisation

To the the optimal set that Algorithm 8 returns, we provide a greedy optimisation approach to find
if we can find any improvement. To exploit around the most promising set from the 100 runs, we
gradually change the threshold of one location of one patient type, by an increase or decrease of 1
in line (4). The amount to which ri,t is changed is indicated by the ChangeParameter. Hereby is
taken into account that ri,t is in the range of 0 to Ci; if ri,t + ChangeParemeter > Ci, then a new
ChangeParemeter is selected.

If the total set of thresholds, including the updated ri,t will return a lower objective Z than was found
so far, we keep this ri,t and re-enter the Algorithm. If not, then, we discharge this ri,t. This ensures
that we do not evaluate worse solutions.

You could argue that this might keep us stuck in a local optimum. After all, we don’t allow hill-
climbing moves by accepting a worse solution. However, by evaluating 100 random sets of thresholds
first we assume that we have explored the whole solution space widely enough to ensure that we are
in a local optimum.
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Algorithm 8 Improvement heuristic

1: for k in RunLength: do
2: Select random location i and type t, i ∈ I, t ∈ 1,3
3: ChangeParameter ← -1 if randomnumber < 0.5; 1 else
4: ri,t ← + ChangeParameter
5: Use Algorithms 5 and 6 to find Z
6: if Z ¡ Best Z: then
7: Best Z ← Z
8: else if Z ≥ Best Z: then
9: ri,t ← - ChangeParameter

10: end if
11: end for

3.4 Conclusion

First of all, this chapter contributed to the third goal, ”To apply the virtual MC policy on the three-
patient-type model, by adapting the policy from Litvak et al. (2008)”. To this extend, we constructed
the TPTM and discussed two policies to apply to the TPTM: the virtual MC (VMC) policy and the
threshold policy. Two solution methods are applied to the VMC. The first solution method involves
Contiguous-Time Markov chains and allows for a numerical analysis of the performance of the network
that includes a VMC. Since this policy does not allow for evaluation when more than two hospitals
are involved, a Discrete Event Simulation has been developed as well. Furthermore, this chapter has
contributed to the fourth research goal, ”To apply the thresholdpolicy on the three-patient-type model,
by adapting the policy from Chan et al. (2018)”. To this second policy, we proposed a solution method
based on Continuous-Time Markov chains as well. Contrary to the CTMC from the VMC, we use
one-dimensional Markov chains that allow for easier evaluation as opposed to using the eigenvector
definition in the VMC policy. To optimise the set of threshold yielding the most profitable results, we
proposed a greedy optimisation technique that combines exploring all threshold-sets, while exploiting
the promising sets.

42



Chapter 4

Case study

The previous chapter presented a model formulation that will be applied in a case study. This chapter
presents input data for the model in which we address the situation in the Wilhelmina Children’s
Hospital (WKZ) and three peripheral hospitals in the region of Utrecht, the Diakonessenhuis, Meander
and Antonius hospital. This chapter contributes to the fifth research goal, ”To show the practical
applicability of the developed model in a case study of WKZ and three peripheral hospitals in the region
of Utrecht”. Data for this case study is derived from registrations in the health information system
(HIS) over the year 2020 and 2021 with a focus on neonatal patients, born in 2019, 2020 and 2021.
The data is obtained from the years 2020 and 2021, because in these years, the management of the
neonatal ward started keeping track of the number of refusals. In the model, we use actual data from
the neonatal department of the WKZ and estimated data from three peripheral hospitals in the Utrecht
region, the Antonius hospital, respectively the Diakonessenhuis and the Meander hospital.

4.1 Input parameters

This section describes how we obtain the input parameters. The parameters are obtained by historical
data over the years 2020 and 2021. We look over this period for the following two reasons. First,
in these years there was a loss of staff due to the Covid pandemic. We thus mimic a tight scenario.
Second, in 2020 and 2021 there was a proper record of the refusals. If we neglect the refusals, the
arrival rate in the model is lower than the actual arrival rate at the neonatal department and our
models do not show accurate results. To obtain the true arrival rate, we must add the refusals to the
total arrival rate. From the WKZ and the Diakonessenhuis, we are able to find data directly; for two
other peripheral hospitals, we make estimations on the arrival rate λi,t and service rate µi,t based on
data from the Diakonessenhuis.

4.1.1 Probabilities for transport, refusal and overbed in a full ward

We denoted pi,t as the fraction of type t patients at location i. Based on data of 2020 and 2021, we
are able to estimate the ratios for the WKZ and the Diakonessenhuis. We assume that the ratios of
the Diakonessenhuis hold for the other peripheral hospitals included in this research as well. Table 4.1
presents the probabilities that, given that we are in state full, a patient is respectively transported,
placed in an overbed, or refused. Appendix ?? presents context to this estimations.

4.1.2 λ and µ

For both the WKZ and the peripheral hospitals, we cannot accurately determine the inter arrival time
λ, because there is no time registered for the indirect refusals and the overbeds. For this reason we
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Probability indicator p1,t p2,t = pi,2 = pi,3

P (transfer|no place) 0.3 0.54
P (overbed|no place) 0.5 0.4
P (refusal|no place) 0.2 0.06

Table 4.1: pi,t per location i per type t

calculate the λ based on the average number of arrivals in our scope of 2 years and we assume that it
follows a Poisson distribution. The number of arrivals, corrected for the refusals, is indicated in Table
??. We refer to Appendix ?? for an elaborate discussion on the estimation of the true arrival rate.
Additionally to the refusals at the MC, a significant number of patients are turned away from the
NICU and obstetrics. There is a flow to the MC for these departments. Fewer patients enter the MC
through the flow because they are rejected at that primary department. The patient flow that we miss
as a result is referred to as indirect refusals and is subject to discussion in Appendix ??. Furthermore,
Appendix B shows an elaboration on the assumptions on Poisson arrivals and exponential interarrival
times.

4.1.3 Available capacity for each location i

In this section, we describe the input Ci, the capacity for each location i. The average bed occupancy,
which we define as the number of operational beds as a percentage of the available beds,
was respectively 95.3% and 87.2% for the NICU and the MC over the years 2020 and 2021, the NICU
ward including the HC ward.

The capacity of the MC of the WKZ varies between 8 to 12 beds, with an average of 10 beds. A
daily assessment moment on the capacity check, reveals this. However, the real occupancy changes
during the day, making it challenging to associate an exact number with it. The fluctuation in care
intensity, which is challenging to measure in neonatology due to the complexity of the care, is the cause
of the occupation’s fluctuation. When there are 10 beds available, the daily assessment shows that
10% of the days from 2020 and 2021, one or more overbeds were present. The presence of overbeds
contributes to a high occupation. As the neonatal department has an emergency function due to the
acuteness of arrivals and almost no planned care, such a high occupancy rate is unacceptable from
the emergency care accessibility point of view (Ogboenyiya et al., 2020). This emphasizes the need to
consider occupation as an additional KPI in this study. Table 4.2 shows the capacity that we assume
each location has. Although the actual capacity fluctuates throughout the day, we assume a fixed
value, such that this does not complicate the modelling purposes.

WKZ Diakonessenhuis Meander Antonius

Ci 10 11 11 11

Table 4.2: Capacity per location i

4.2 Conclusion

In this chapter, we found input data for to apply the models to a case study. We used real data
from the WKZ and Diakonessenhuis and estimated data from two peripheral hospitals in the region of
Utrecht. This input data is required to achieve the fifth research goal, that is, ”To show the practical
applicability of the developed model in a case study of WKZ and three peripheral hospitals in the region
of Utrecht” We presented input values for the available capacity, the arrival rate, length of stay and
the share of patient types that each region includes. For the three peripheral hospitals included in
this research we assume similar input parameters.
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Chapter 5

Results

In this chapter we present the experiments. First, we will present a baseline measurement of all three
models in Section 5.1. This baseline measure is required to test the validity of the models. Second,
we present the results of the virtual MC policy for both the CTMC as well as the DES model. Third,
the results of the threshold policy are discussed. We use ”percentage point” (p.p.) as an indicator
to show differences in policies. Using “percentage point” is a proper measure to indicate an amount
of change, while the use of “percent” rather describes a relative change, but we believe that showing
the absolute amount of changes is more insightful for the management of the neonatal wards. For
example, an decrease from 20 % to 10% means a decrease of 50% while, in fact, the KPI is still 10 %.
We end this chapter with a sensitivity analysis on our best models found. The goal of this analysis is
to test the robuustness of our models against changes in various input parameters.

5.1 Baseline measurement

To be able to judge the performance of the Virtual MC and threshold policy, we need to compare
the results of the policies in which no intervention is set, with the actual performance. The relevant
KPI’s in this measurement are the blocking probability, the number of overbeds as a fraction of total
beds and the occupation. The VMC-DES results are presented with a 95 % confidence interval (CI),
meaning that we are 95 % sure that the true value of the KPI is in this interval. The CTMC in the
baseline measure has a standard deviation of 0 because the result in every run is the same. Therefore,
baseline measure for the CTMC does not include a CI.

The actual refusal probability is obtained by dividing the number of direct and indirect refusals to the
total arrivals over the years 2020 and 2021. In the baseline measurement for the threshold policy, we
set ri,t = Ci ∀i ∈ I, ∀t ∈ T . Furthermore, we set ai,n = 0 ∀n ∈ Γ, such that each location will solely
serve the patients from its own zone and no collaboration takes place. Figure 5.1 shows the result of
the baseline measure on the blocking probability. The Figure shows that the CTMC of both policies
show similar results for the WKZ but differ slightly for the Diakonessenhuis. Furthermore, although
the average of the DES is slightly higher, the CTMC is in the confidence interval of the DES. The
actual data shows that the blocking probability for the WKZ is 1,5 p.p. higher in reality than the
models provide. We assume a fixed value for capacity for the models in the baseline measure, which
may be the reason why the actual situation differs somewhat from the forecast of the models. In
practice, the capacity relies on the acuity of care and the available staff. We noticed that the capacity
can range between 8 to 12 beds, which cause that there might be more refusals than the models predict
in case of a tight scenario.
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Figure 5.1: Baseline measurement of PB
i for i = 1, 2

In the daily records that are kept on the number of available and occupied beds, the number of
available beds varies, we assume a fixed value for the capacity. Of all days in 2020 and 2010 that the
capacity was 10 (128), 13 were found with an occupancy of more than 10 beds, so that means that
overbeds were run 10% of the time in real life. Regarding the fraction of overbeds, we notice that
the threshold policy says that the baseline measure is 2 p.p. higher than the VMC models predict,
as well as the reality for the WKZ. Whereas the threshold policy showed a lower prediction for the
blocking probability, the fraction of time spent in overbeds is slightly higher. This is caused by the
fact that we balance between refusing and having overbeds, so if one KPI is higher, the other is lower
and vice versa. The difference in performance of the baseline measurement and the actual data can
again be explained by the variety of available beds which is captured in reality but not in the baseline
models.

Figure 5.2: Baseline measurement of PO
i for i = 1, 2

Lastly, we conduct a baseline analysis on the occupation rates in the three policies. We notice a similar
occupation in three models, as well as the actual data. This is shown in Figure 5.3.
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Figure 5.3: Baseline measurement of the occupation of locations i = 1, 2

5.1.1 Conclusion of the baseline measure

We conclude that a minor difference in base performance is present among the different models. This
can be caused by variations in available capacity which are captured in the actual data but not in
the models, that assume a fixed capacity. Although the blocking and overbed probability show minor
percentage point differences amongst the models, we assume that the models in the baseline measure
perform similarly. We consider this as a valid assumption because the difference in the overall objective
Z, that consist of the sum of blocking- and overbed probabilities, is considerable small. Table 5.1 shows
the difference in p.p. between the different policies. We find that these values are very close to 0, why
we assume a similar performance on the baseline model.

Table 5.1: Difference in p.p. in Z between the different policies (1= Treshold - CTMC; 2=MC - CTMC; 3=VMC -
DES, 4=Actual data WKZ (2020, 2021))

Policy 1 2 3 4

1 0.0063 0.0025 0.0019
2 0.0063 0.0038 0.0019
3 0.0025 0.0038 0.0044
4 0.0019 0.0019 0.0044

Assuming that the models perform similarly in the baseline measure, we will continue to present
the results when examining how the baseline measures performed in comparison to the improvement
models.

5.2 Virtual MC policy

This section presents the results from the virtual MC policy. First, we present the results of the policy
obtained from a numerical approach in the CTMC in two hospitals. Second, we present the results
from the Discrete Event Simulation. By the introduction of the VMC, locations will have to run over
beds sooner because they will have to give up capacity due to the VMC’s presence. Therefore, the
basic setting, in which there is no VMC, achieves the lowest number of overbeds, as both models
will demonstrate later on. The introduction of the VMC has shown for both models to increase the
time spent with overbeds. It is not the question which setting regarding the VMC size decreases both
the blocking probability (PB) and the time that locations will turn overbeds (PO) but rather which
setting can lower the possibility of refusal the most while increasing the time with overbeds the least.
In that, the setting is not only saying which capacity the VMC should have, but also How many beds
the locations should give up in order to attain the desired outcome.
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5.2.1 CTMC

We compare the performance of the VMC with the current performance as indicated in the baseline
measure for two hospitals, the WKZ and the Diakonessenhuis. To this extent, a maximum reduction
of overall objective Z of 8 p.p. was found. Table 5.2 presents the optimal number of beds that both
locations should keep for themselves, and the size of the VMC, which is that only the Diakonessenhuis
donates one bed to the VMC (and the WKZ none). When implementing this setting, the blocking
probability lowers but the hospitals have to spend more days in a state with overbeds.

C1 C2 Cvmc

10 10 1

Table 5.2: Number of beds for the location, and the size of the VMC for the lowest objective

Figure 5.4 presents the results of the baseline measure and the best objective for two locations in
terms of blocking probability. The results show that, when the Diakonessenhuis dedicates one bed to
the pool, the blocking probability from the patients from the catchment area of the WKZ decreases
by 8 p.p. (percentage point), and drops by 15 p.p. for the Diakonessenhuis. An decrease of 8 p.p.
in PO

i,t on a population size of 1612 arrivals in two years for the WKZ, means that the number of
refusals drops by 128 in two years time, which is equivalent to treating 1.24 patients per week more.
A reduction of 15 p.p. means 153 less refusals to the Diakonessenhuis in two years time or, similar,
treating 1.47 patients per day more. From the perspective of PB, the VMC is very profitable for both
locations. One might suggest that it is even more profitable for the WKZ because this location does
not contribute any beds and the WKZ catchment area is bigger in population size. However, the share
of type 1 patients from the WKZ’s catchment area is lower in comparison with the share of type 1
patients from the Diakonessenhuis’ catchment area (30 % versus 54 %), so this will fade away the
consequences of the bigger population size.

Figure 5.4: Virtual MC Policy - CTMC - Blocking probability (%) for patients from the WKZ and Diakonessehuis
catchment area

The results for the fraction of time spent while having overbeds show a less promising picture as shown
in Figure 5.5. The results give the impression that introducing a VMC is worse for the WKZ (increase
of 4 p.p.) and also for the Diakonessenhuis (increase of 10 p.p.). An increase of 1 p.p. for a timeframe
of two years means that 7.3 days more, will have to be spend with one or more overbeds. Turning
overbeds is a huge burden for the staff. The WKZ has to spend 29 days more in this circumstance,
which is relatively seen, 40% more. For the Diakonessenhuis this is even worse; the overbed-fraction
increases with 73 days or relatively seen 143 %. It is logical that the Diakonessenhuis experiences the
worst outcome, since they deliver one bed and the WKZ does not.
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Figure 5.6: Virtual MC policy - CTMC - Average result of PB and PO for capacity the WKZ has left

We find it a strange observation that the WKZ’s fraction of time spending overbeds increases while
this location does not deliver any beds to the VMC. As the input parameters between the baseline
measure and the measure with Best Z do not change, it is not to expect that the location delivering
no beds to the VMC experiences overbeds.

Figure 5.5: Virtual MC Policy - CTMC - Fraction of overbed-days(%) for patients from the WKZ and Diakonessehuis
catchment area

The VMC setting that showed the most decline in objective was found when the WKZ does not donate.
To investigate the model behaviour more torouhgly, we check what PO will be when the WKZ does
deliver beds. Figure 5.6 presents the average values of PB and PO on that the WKZ donates. For
every capacity value of the WKZ, we run the capacity scenarios for Diakonessenhuis when they donate
0 to 4 beds. Although PO on average is the lowest when no beds are donated (equivalent to a capacity
of 10) compared to the donation of beds, we still encounter an increase to what we would expect
to be zero. By the introduction of the VMC there are more routing possibilities so there will be
more states. The objective is a sum of many states; the more states the CTMC consists of, the less
accurate the model becomes. From the observation of a rise in PB for the WKZ we conclude that the
CTMC solution approach of the VMC policy is not sufficiently accurate which causes the model to
overestimate or underestimate certain outputs.

Finally, the occupation rates increase with 10% for both locations, which comes down to 84 %. This is
shown in Figure 5.7. Similar to our observations in a lack of accuracy in PO we are not certain if this
result is valid, however, it is believed that lower than 85 % still form proper conditions in neonatal
wards (Ogboenyiya et al., 2020).
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Figure 5.7: Virtual MC Policy - CTMC - Occupation (%) for patients from the WKZ and Diakonessehuis

The numerical approach for a network with two locations has shown that the introduction of the
VMC has benefits and drawbacks that vary by KPI. We consider what the VMC accomplishes for the
network as a whole to strike a balance between all the variables. In a 2-hospital scenario, the optimal
setting was found when only the Diakonessenhuis donates one bed. In a near-optimal setting, the
setting where both hospitals donate a bed each, the Diakonessenhuis will profit even more in terms of
blocking probability, but this is at the cost of an increase in overbed-fraction as shown in Table 5.3.
The WKZ in this case has considerably less beneficial results, why the collective objective is worse
than the collective objective where only the Diakonessenhuis donates.

Table 5.3: VMC, CTMC - Difference in objective between the optimal and near-optimal settings

∆PB
1 ∆PO

1 ∆PB
2 ∆PO

2

Best setting (Diakonessenhuis donates 1 bed) -8 4 -15 10
Near-optimal setting (both locations donate 1 bed each) -6 10 -16 11

5.2.2 DES

Each location donates a similar amount of beds to the VMC

The impact of each location donating the same number of beds to the VMC was examined first, in a
range from 1 to 9 beds. We do not look at the effect of more than 9 beds, because we assume that
each location should be opened. For further explanation on this assumption we refer to Section 3.1.
Figure 5.8a presents the effect of an increasing amount of donated beds on the blocking probability
PB
i . Figure 5.8b shows the effect of this intervention on PO

i .
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Figure 5.8: Virtual MC policy - Effect on PB
i and PO

i when each hospital contributes respectively 1 to 9 beds to the
VMC

(a) PB
i per location (p.p.) (b) PO

i per location (p.p.)

When three beds are relocated, we observe that the refusal rate at the peripheral hospitals first falls
by roughly 5 p.p. before beginning to rise again. With each additional bed that the WKZ vacates
after donating 1 bed, the chance that the WKZ will deny the arrival rises proportional. So, the WKZ
would not benefit from jointly reserving beds in this way, solely considering the blocking probability.
Figure 5.8b shows a contrary picture for the fraction of time that each hospital spends having one
or more overbeds. Every hospital becomes more and more crowded, and this trend lines up with the
total number of overbeds listed. This is a logical result, which is caused by the fact that we take
away free capacity for type 2 patients, so the more capacity is taken away, the sooner an overbed will
be created. Aditionally, it makes sense that the WKZ would experience this effect the most strongly
given that they have 1 bed less capacity. There is only 1 bed left when they contribute 9 beds, and
an overbed is also employed in 40% of the time.

Figure 5.9: Virtual MC policy - Effect on the occupancy (%) each hospital contributes donates respectively 1 to 9
beds to the VMC

Optimizing the amounts of donated beds

The best objective was found with the setting as presented in Table 5.4. Remarkable is that this
setting lets the WKZ not put aside any beds, whereas the other hospitals do so. The Diakonessenhuis
has to contribute most beds, namely 11-8 = 3. The optimal size of the VMC is 6 beds. This is more
than what is expected in line the two-hospital scenario in which each hospital puts one bed aside.

C1 C2 C3 C4 Cvmc

10 9 9 8 7

Table 5.4: Number of beds for the location, and the size of the VMC for the lowest objective
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We again delve into each KPI to find what this optimal setting means for each location. For each
KPI, we present the outcome in the baseline measure, the configuration in which each location puts
one bed aside and the configuration with the best objective. The second factor is included since it
illustrates what would be consistent with the CTMC’s recommendation for the ideal arrangement of
bed distributions.

The analysis on the blocking probability for the VMC policy, as shown in Figure 5.10, reveils that
this optimal setting is beneficial for all hospitals in terms of PB

i . When we compare the effect of
the best configuration, and the configuration of donating one bed, we observe a decrease in PB

i for
three hospitals (the WKZ, Diakonessenhuis and Antonius) but the Figure shows a slight increase to
the Meander hospital as well, although this blocking probability is still significant lower than they
currently experience. The CI show that the effect of the VMC on PB

i result is significant for all
locations. A decline of 5 p.p. implies that yearly, 40 patients can be treated more in the WKZ. The
4 p.p. decline in peripheral locations implies that they can treat 20 patients more per year.

Figure 5.10: Virtual MC policy - DES - Blocking probability (%) in the current, one-donated-bed and best setting

Since the WKZ does not supply beds to the VMC, it is reasonable to assume that the WKZ will treat
the majority of patients from its own region. The Diakonessenhuis, on the other hand, would have
to give up the majority of the beds, which would force them to utilize the VMC’s capacity more,
lowering the rejection rate for patients from their region. It has been determined that this is the best
setting for the collective probability of refusing and having overbeds. It is anticipated that the chance
of overbeds may demonstrate an increase due to that capacity is taken away from the locations so
they will have to make overbeds in more percent of the time than they do in the baseline. This is the
consequence of the fact that each hospital reserves beds, so less beds are left for their own catchment
area of patients. The more capacity that is put aside, the sooner their capacity limit is reached so the
sooner they would also have overbeds. The increment is the highest for the Diakonessenhuis (3 p.p
which correspond to 11 days per year) and the Meander (4 p.p or 14 days per year). As expected, the
WKZ does not experience more overbeds when the VMC is introduced.
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Figure 5.11: Virtual MC policy - DES - Fraction of overbed-days (%) in the current, one-donated-bed and best setting

Finally, Figure 5.11 shows a slight reduction of 2 p.p. in occupation for all peripheral locations in case
the optimal setting for the VMC is used. This decrease is significant for the Antonius, but not for the
Meander and Diakonessenhuis. The WKZ will experience no difference in occupation. This implies
that the VMC does not have any worse consequences in terms of occupation.

Figure 5.12: Virtual MC policy - DES - Occupation (% occupied beds as a fraction of available beds) in the current,
one-donated-bed and best setting

So far we saw the effect on the introduction of the VMC on three KPIs. We have noticed that a
reduction of blocking probabilities comes at the cost of increasing time spent in overbeds. To test if
the capacity settings from Table 5.4 are capable of striking a proper balance, we check if the solution
from this settings in terms of PB and PO is on the Pareto frontier.

Figure 5.13 shows, for all evaluated capacity settings, the absolute differences from this capacity setting
towards the baseline measure, in PB and PO. The points’ colors represent the ratio in absolute change
in PB to the absolute change in PO. The darker the points’ color, the lower the increase in PO in
relation with the decrease of PB, so the more beneficial the capacity settings are. So, the darker the
datapoint, the more closer this point is to the Pareto frontier. Points on this line form a set of all
Pareto efficient solutions, which allows us to make proper trade-off in case of two KPIs. The points
on the X=Y axis correspond to a ratio of 1, meaning that the change from baseline tow the result
from this setting in PB is equal to the change from baseline to this setting in terms of PO.
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Figure 5.13: Virtual MC policy - DES - Pareto frontier of the collective change in overbed-days (%) against the
collective change blocking probability (%), n = 221

The point at (0,0) indicates our baseline measurement, meaning no difference in PO
i and PB

i is present.
This dot has the lowest value for the collective fraction of time in overbeds; there are no datapoints
where the difference in PO

i between the intervention and the baseline model, are smaller than 0. This
is in line with our expectations because the VMC requires that the locations put aside beds, which
makes that the full capacity is reached sooner; having no VMC is then the best when optimizing for
overbeds soleley.

In the optimal settings from Table 5.4, PB decreased from 73% to 57% at the cost of an increase of
PO
i from 31% to 40%. Figure 5.13 shows this point in green. For this point, the ratio of decrease in

PB
i to increase of PO

i is 0.5625. There is one point however, which ratio is smaller; this is the point
where PB

i drops from 73% to 70.58% and PO
i increases from 31% to 32.25%, which yields a ratio of

0.5177. This points corresponds to the setting where only the Diakonessenhuis donates 1 bed to the
VMC; the other locations keep their original capacity. The reason that our model did not select this
solution, is that the overall impact in Z is very small due to that the changes in PB and PO are very
small.

A dilemma with Figure 5.13 is that it shows the the difference to the current situation in terms of
probabilities but not in terms of acutal refused patients and overbed-days. The first viewpoint is easier
to use in the model, but it is hard for decision-makers to get an idea of the true meaning of these
probabilities. The second viewpoint is more understandable for the management of the neonatal ward.
Our objective is determined based on the lowest value for the probabilities, PB + PO but we also want
to express how good this objective is, from the viewpoint of tangible data and to check if we find a
better solution when looking from this last viewpoint. Figure 5.14 shows the increase in overbed-days
against the decrease in refusals for two years time. The points correspond to a solution and the green
dot indicates our selected solution. From this Figure we notice that our selected solutions is a proper
trade-off, when you consider one overbed-day as important as one refusal. This Figure supports the
management to make a proper trade-off in case they decided to implement the VMC policy.
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Figure 5.14: Virtual MC policy - DES - Pareto frontier of the overbed-days against the number of refusals, n = 221,
data for a timeframe of 2 years

The optimal approach features 175 fewer refusals as opposed to 75 more days spent in bed. Our chosen
solution is not the best when you evaluate 1 refusal to 1 day in an overbed. The Diakonessenhuis
setting, which donates 1 bed (and other locations none), results in 76 fewer refusals compared to 21
more overbed-days, yielding the greatest relative profit in refusals.

5.3 Threshold policy

This section presents the results from the threshold policy. First, we executed greedy constructive
heuristic. To this extent, we performed 100 experiments, with each a new random set of thresholds in
the range that is given in Table 3.9. After 100 runs, we executed our greedy optimization approach.
Figure 5.15 shows the progress of Z against the run number. We started this greedy optimization with
the best set of thresholds that was provided from greedy constructive heuristic. The black line shows
the average of Z with a window of 5. After roughtly 50 runs, Z stabilizes and no improvement to Z was
noticed. To ensure that we exploited the promising areas properly, we continued executing another
50 runs. After this procedure, we found the best objective with a given set of thresholds as presented
in the second row of Table 5.5. However, this setting caused the occupation of the Diakonessenhuis
to increase to 94 %. Therefore we declined this setting and accepted the second best setting which is
indicated in the last row in Table 5.5. In the second best setting, all occupation rates are below 85
%.

r1,1 r1,3 r2,1 r2,3 r3,1 r3,3 r4,1 r4,3

After 100 random runs 8 9 9 11 11 9 11 8
Best reservation setting after greedy optimization 9 9 10 10 10 9 10 9
Second best reservation setting after greedy optimization 8 9 9 9 10 8 10 9

Table 5.5: Configurations for every ri,t from the 100 random runs, with the best objective

The total objective from this the best setting that was accepted, had a 19 p.p. reduction in Z compared
to the baseline measure.
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Figure 5.15: Progression of Z in the greedy improvement heuristic

Figure 5.16 presents the results of the blocking probability for each location from the setting that
resulted in best Z. as well as the results of the baseline measure that represent the current situation
at the neonatal wards. The different colours indicate the different locations. The dark colours represent
the baseline measure and the light colours represent the outcomes for the best setting. The error bar
represents the standard deviation of the blocking probability from the experiments with that set of
thresholds. From this Figure we conclude that the best setting from the 100 runs does result in a lower
blocking probability for all peripheral locations. The biggest decline is noticed in the Diakonessenhuis
with 4 p.p which is equivalent to 20 patients per year. The results are significant for the peripheral
locations but not for the WKZ because the mean of PB

1 of best setting lies within the CI of the
baseline.

Figure 5.16: Threshold policy - Blocking probability (%) in the baseline and best setting

Figure 5.17 presents the fraction of time that the hospitals will to deal with overbeds in the baseline
and best settings. A decline of 4 p.p., and 2 p.p., were respectively found for the WKZ and the
peripheral hospitals. For the WKZ this implies 15 overbed-days lesser (rounded to two weeks), for the
peripheral hospitals 7 overbed-days (or one week).

We recall that the blocking probabilities relate to the patients from the hospitals’ catchment area,
whereas the overbeds relate to the hospital itself. Comparing outcomes for PO

1 and PB
1 we notice that

patients from the WKZ’ catchment area are relatively most likely to admit to their own hospital. The
lower ri,t, the sooner you are likely to reject patients or turn overbeds. It is then understandable that
the WKZ is relatively least often overburdened.

56



CHAPTER 5. RESULTS

Figure 5.17: Threshold policy - Fraction of overbed-days in the baseline and best setting

Finally, Figure 5.18 presents the results for the occupation in the baseline setting and the setting with
the best Z from 100 experiments. We observed a small increase of 1 p.p. for the WKZ and 3 p.p. for
the peripheral locations; the occupation for the peripheral hospitals is 88 % but we have seen that the
occupation in the baseline measure is lower than the actual data so we assume that an occupation of
88 % as a result from this policy does not have consequences for patient safety.

Figure 5.18: Threshold policy - Occupation (number of occupied beds as a percentage of the capacity) in the baseline
and best setting

In conclusion, using the threshold values shown in Table 5.5 yields the findings shown below. Jointly,
across all hospitals, the chance of refusal falls by a total of 9 p.p., and the probability of overbeds
drops collectively by 8 p.p., but at the cost of a small increase of the occupation rates. All results
are significant. Compared to the VMC policy, there is no need to outweigh the increase in overbeds
against the decline refusal probability because the threshold policy causes PO to decline at points
where PB declines as well. We are still interested in the most promising solution and to find this we
plot the difference in baseline and optimal settings. The points in Figure 5.19 represent the outcome
of the change in collective PO

i to the baseline, and the corresponding change n collective PB
i to the

baseline measure. In this Figure we neglected the sets of thresholds that yielded an increase in PO
i

and/or PB
i . The more the collective decrease of PB

i and PB
i , the darker the dot in this scatter plot.

This is a different representation of the dots’ color than the colors from the Pareto chart in Figure
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5.13. Contrary to the VMC policy, we are here are not interested in the ratio because we know there
are points where both PB

i and PB
i are decreasing compared to the baseline.

The black dots form the Pareto efficient frontier, which consists of all points that Z that were lowest
from the baseline and the green dot indicates the solution that was found with our model. It can be
seen that our selected solution is on the Pareto efficient Frontier, meaning this is an optimal solution
amongst all optimal solutions in minimizing Z.

Figure 5.19: Treshold policy - Pareto frontier of the set of solutions provided by the greedy improvement heuristic
(n=66). Each point presents the PO

i with corresponding PB
i

Figure 5.19 presents a situation in that it depicts the difference from the existing situation in terms of
probability but excludes actual denied patients and overbed days. The first point of view is simpler
to include into the model, but it is difficult for decision-makers to understand the full significance
of these possibilities. The administration of the neonatal ward can directly benefit from the second
point of view which is a translation of the probabilities to actual numbers of refused patients and
overbed-days. Our goal is set based on the lowest sum of the probabilities, PB + PO, but there is
also a need to investigate whether our selected optimal set of thresholds is most beneficial in terms of
actual patient refusals and overbed-days. The green dot indicates our solution, which yields in 70 lesser
overbed-days and 90 patients less refused in two years time. We find that our selected solution, out of
all the optimal ones, strikes a good balance between patient profits (by reducing blocking probability)
and nursing profits (by means of lesser overbeds). For instance, a different solution is provided by
-180 fewer refusals and -12 fewer overbed days, which is more promising than our selected solution for
the overall image, but this option is not very advantageous from the viewpoint of the nurse because
having overbeds is a burden.
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Figure 5.20: Treshold policy - Pareto frontier of the set of solutions provided by the greedy improvement heuristic
(n=66, two years time). Each point presents the PO

i with corresponding PB
i

From the understandable standpoint, it appears that our solution—indicated by the green dot—is not
the ideal one when you take into account that one refusal has the same effect as one day spent in
overbed. If you were to optimize for this, the best reservation settings are quite close to our setting
after greedy optimisation. This is given in Table 5.6.

r1,1 r1,3 r2,1 r2,3 r3,1 r3,3 r4,1 r4,3

Second best setting after greedy optimization 8 9 9 9 10 8 10 9
Setting when you optimize for similar overbed-days and refusals 8 9 10 1- 10 9 9 9

Table 5.6: Configurations for every ri,t from the 100 random runs, with the best objective

5.4 Sensitivity analysis

After running the experiments, the most promising settings will be selected for a sensitivity analysis
on certain input parameters. This is done to test the robustness of the model in case estimations
of input parameters are not representative for real-life. The input parameters chosen to include in
the sensitivity analysis are the arrival rate (λ and the LoS (µ). The experiments selected will be run
with a 2.5, 5 and 10 % decrease and a 2.5, 5 and 10 % increase compared to the values used in the
experiments. We look at the effect of an increase on the collective chance of refusal and the chance of
over-beds.

We compare the behavior of the base model (which mimics the current situation) with that of the
optimal model following a change of λ or µ. It seems obvious that the performance of the optimum
model degrades with a change in λ or µ, which is why we analyze the behaviour of both the optimal
model and the base model. To determine whether our best solution performs better under different
conditions other than the current situation does, we want to compare this performance to the same
change in lambda or mu at the base measurement.

5.4.1 VMC-DES

Figure 5.21 presents the performance of the most promising setting and the baseline model with a
change in λ. The x-axis depicts the change in input parameter and the y-axis presents λ. Shown in
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Figure 5.21b is that an change in λ in the model with the best settings (”Best Z”) compared to a
similar change of the same λ in the base model, the model with the VMC outperfoms the current
situation in terms of PB. To illustrate an example, A 7.5 % decrease in λ in the current situation
would yield a similar result as compared to zero decrease in λ for the model with a VMC.

On an increase and decrease on λ we observe that the best model is performing worse than the baseline
model does when it comes to time spent in overbeds as depicted in Figure 5.21a. With a 10% increase
or decrease in λ the model best model is still performing better than the baseline model would in the
current settings. Given that the VMC affects the overbed proportion, it does seem reasonable that
changing the input parameters would have a negative impact in the VMC scenario as opposed to the
baseline scenario.

Figure 5.21: VMC policy - sensitivity analysis on the number of patients

(a) Joint blocking probability (%) to a change in λ (b) Joint fraction of overbed-days (%) as percentage
to a change in λ

Figure 5.22 shows the sensitivity of the VMC model to the baseline model to a change in µ. In terms
of the VMC’s sensitivity to a change in µ, we see that the VMC continues to perform better in PB

while the same adjustment in terms of PO performs worse. Given that the VMC affects the overbed
proportion, it does seem reasonable that changing the input parameters would have a negative impact
in the VMC scenario as opposed to the baseline scenario.

Figure 5.22: VMC policy - sensitivity analysis on the length of stay

(a) Joint blocking probability (%) to a change in µ (b) Joint fraction of time in overbed (%) to a change
in µ

Sumarized, the VMC model yields a better performance in PB when λ and µ are changed, than the
current situation would. This is contrary for PO, where the current situation outperforms the model
with the VMC.
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5.4.2 Threshold-CTMC

In Figure 5.23a we observe that when a relative change in λ occurs, the baseline model mostly performs
better, until λ increases more than 5 %.

Figure 5.23b presents the relative difference in collective overbed probability on both models, by an
increasing and decreasing λ. So, contrary to the VMC, when a change in λ the threshold policy
outperforms the current situation.

Figure 5.23: Threshold policy - sensitivity analysis on the length of stay

(a) Joint blocking probability (%) to a change in λ (b) Joint fraction of overbed-days (%) to a change in
λ

Lastly we evaluate the effect of a change in µ on the PB and PO up to an change in the arrival rate
of 10%. The threshold policy outperforms the baseline for both in terms of PB and PO. Regarding
PO the threshold policy shows a better performance than the baseline measure with a 10 % decline in
PO does. When µ grows, the baseline measure’s PO performance differs substantially from the ideal
conditions when threshold is being used.

Figure 5.24: Threshold policy - sensitivity analysis on the length of stay

(a) Joint blocking probability (%) as percentage of
the change in µ

(b) Joint fraction of time in overbed (%) as
percentage of the change in µ

5.5 Conclusion

In this Chapter we performed three analysis: a baseline measure to validate the models, an analysis
on the three models (VMC-CTMC, VMC-DES and Treshold-CTMC) and a sensitivity analysis. This
Chapter contributed to the fourth research goal, that is to show the practical applicability of the
developed model in a case study of the WKZ and its regional hospitals. We demonstrated that the
virtual MC does not cover the practical applicability for two reasons. First, the patient service is
improved by a lower blocking probability but this is against the cost of requiring more overbed-days.
Second, although the joint objective outperforms the current situation, not every hospital does profit
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on every objective and this last subject is very important when it comes to motivating other hospitals
to apply the policy. We saw that the CTMC model for the VMC policy gives more extreme results.
So, although PB decreased considerably more in the CTMC approach than in the DES approach, the
PO is remarkably increased. The CTMC only has two hospitals, which helps to explain this. When
compared to four hospitals, the impact of reducing the VMC’s capacity is larger for two hospitals.

We saw that the threshold policy yields promising results which are not only collectively good but
also on the individual location level. Table 5.7 presents an overview of the profits in three models
in terms of PB and PO. Furthermore, we summarise our findings per policy per solution approach
briefly below.

Table 5.7: Overview results for all policies - in tangible data. All results are compared to the current situation in
which no policy exists.

Policy type
Conclusions on interventions

PB PO

1 bed aside best 1 bed aside best

VMC - CTMC -132 patients/year -138 patients/year + 78 overbed-days/year +104 overbed-days/year
VMC - DES -49 patients/year -88 patients/year +24 overbed-days/year +38 overbed-days/year
TR - CTMC - -45 patients/year - - 35 overbed-days/year

5.5.1 Baseline measurement

A similar performance among the three models was found. Therefore we conclude that the models
perform equal under no intervention.

5.5.2 VMC - CTMC

Although the network benefits as a whole, there are differences per location per objective. This effect
is less pronounced in the DES; there, the differences between the locations per objective are smaller.
This is due to the fact that a VMC in a network with two locations has a major impact on the capacity
of these two locations. With a greater number of locations, there are more possible settings that the
VMC can take advantage of.

5.5.3 VMC - DES

When you compare the introduction of a VMC with the current situation, it will always turn out
that the current situation offers the least fraction of time that hospitals spend in overbeds, because
all capacity is available for every patient type. The introduction of the VMC causes that capacity is
taken away from type 2 patients but also opens possibilities for other patient types to experience a
lower probability of being refused.

When each location contributes a similar amount of beds to the VMC, the network has to deal with
more overbeds which is a logical consequence because less capacity is available for type 2 patients
which do cause more overbeds. This effect however is small when each location puts aside just one
bed. Thereby, it is very beneficial to donate one bed in terms of blocking probability.

An even more optimal scenario, in which each hospital contributes just a small amount of beds varying
in a range from 1 to 3, shows that the network is able to treat 1.03 patients per day more. This is
however at the cost of turning more overbeds; 33 more days per year, the network has to operate in
overbeds.
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5.5.4 TR - CTMC

The optimal setting showed that excluding some patients in a range from one to 3 beds result in
lesser refusals and lesser time in overbeds. To be more specific, a decline of 29 days per year lesser
overbeds and an increased number of 4 admissions per week was noticed in the whole network when
implementing the thresholds as presented in Table 5.5. Furthermore, the network is able to treat 4
patients per week more.

5.5.5 Sensitivity analysis

The sixth research objective is to demonstrate how sensitive the policies are to different input factors.
In order to bring this research into practice, it is important to show how the models behave in terms of
PB and PO because of the following reason. The models are developed using fixed λ and µ values. It
is essential that the proposed policies continue to function well in the scenario that λ and/or µ deviate
from their distributional basis since the real value might deviate from it (as shown in Appendix B).
We showed that, in terms of PB, the policies outperform the current situation in all cases for λ and µ.
However, in terms of overbed-days, the current situation manages changes in input parameters better
than the proposed models do so.
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Conclusions

In this Chapter, we present the conclusions of our research. This research was conducted to investi-
gate cooperation possibilities for neonatal care locations. Due to many functions that the WKZ’s MC
location fulfills, in combination with an increase in demand as well as decrease of resources, the MC
is often short of capacity, resulting in refusing patients or admitting them by overbeds. The challenge
goes beyond the hospitals own locations, therefore, the managerial goal of the research was,
to establish strategies for facilitating and improving capacity sharing amongst neonatal departments at
hospitals in the Utrecht area

We analysed the current situation regarding capacity in Chapter 1, where we showed that the MC of
the WKZ has a broad scope of arriving patient types due to the many duties it performs. Chapter 2
showed us that the overflow to peripheral hospitals by means of pooling in the neonatal context is not
yet discussed in the literature and two promising models, which were developed to manage overflow in
ICU wards, are of great interest to adapt to the context of neonatal care. A mathematical formulation
of the TPTM, as well as solution methods for two policies to the TPTM, were discussed in Chapter
3. Chapter 4 provided input data to the case study, and Chapter 5 showed the results of the policies
applied to the case study. In this Chapter we provide our conclusions from this research. First, in
Section 6.1, we present the scientific contribution. Second, in Section 6.2, we present the practical
contribution of this research.

6.1 Scientific contribution

We are the first to apply the TPTM to the context of neonatal care. For the virtual MC policy we
proposed solution methods: a numerical solution using Continuous-Time Markov Chains (CTMC)
and a Discrete Event Simulation (DES). For the threshold policy, we developed a CTMC as well,
in which we used ED as a solution method. A baseline measurement shows that all three models
perform equally and show similar outcomes with the current situation that the neonatal ward of the
WKZ faces. Sensitivity analysis reveils that the threshold policy is more sensitive to changes, which
is caused by the fact that the optimal set of thresholds depends from the locations.

6.2 Practical contribution

This research considered both the KPI per location, as well as the The KPIs however varied per
hospital and there is need to ensure that all locations profit from the collaboration.

Although the performance of the VMC is not satisfactory, this still opens possibilities of lowering
blocking probabilities if the management would opt to optimize for this objective.
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The second policy applied in this research, is the threshold policy. In this policy, each location puts a
limitation on the number of patients to accept from each type. Compared to the virtual MC policy,
this policy has shown better performance. This is mainly due to a that the policy is more specific to
each patient type, instead of limiting all patient types which is the case in the virtual MC policy.

To conclude, the results of this study provide a quantitative basis to support the decision making in
a network of hospitals with critically overloaded neonatal care wards. The study provides guidelines
for cooperative solutions to tackle the current situation in neonatal care. Among capacity managers
there is general saying that ”a little flexibility goes a long way”. Our numerical results have shown
that collaborating, by means of small threshold reservation settings, yields significant lower blocking
probabilities and less time that the hospitals have to spend having overbeds.

65



Chapter 7

Limitations and further research

This chapter presents the limitations of the research and related trends in healthcare to which this
research relates. Furthermore, we opt for further research ideas. First we present the research limi-
tations in Section 7.1 which concentrates around a lack of data and the model limitations to capture
the actual systems’ behaviour. Second, in Section 7.2 we compare our results with the results that are
known from literature. Then, in Section 7.3, we debate future work opportunities. Finally, Section
7.4 provides suggestions to implement this work into practice.

7.1 Limitations to this research

The research presented in this thesis is subject to several limitations, most of which are centered
around a lack of data or uncertainty in the data regarding patient arrivals or length of stays, as well as
available capacity from the locations. There are many barriers to face when implementing this research
into practice. These barriers include management issues, as well as legal and monetary issues. The
cost structure of neonatal wards is complex due to the severity of care. Therefore, legal, as well as
monetary issues are also outside the scope of this research.

7.1.1 Lack of data

The arrival rate and length of stay are necessary for the selection of proper model settings. Estima-
tions on the true arrival rate were not known for two out of four hospitals from the case study. To
fine-tune the threshold reservation settings it is important that the true on λ and µ are known for
every participating location. Although the sensitivity analysis has shown that the threshold policy in
most cases outperforms the current situation, we desire that the models’ parameters reflect the true
population parameters as adequate as possible.

7.1.2 Model limitations in capturing the actual systems’ behaviour

There is a number of neonatology characteristics related to behavior of the wards, that are not captured
properly by this model. This can cause the model findings to diverge from what actually occurs when
the proposed reservation settings are implemented.

The first limitation concerns the available capacity. In this research we assumed a fixed capacity for a
time period of two years. Figure 7.1 shows the available capacity from 2020 and 2021 for the MC ward
of the WKZ. The dark line indicates the average value per month and the dotted lines indicate the
standard deviation around this average. This capacity is the result of factors that include the number
of physically available beds, the number of staff, the personnel formation ratios, and the acuity of care
required by the patients admitted at that time. For an extensive work related to acuity measurements,
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that may serve as an addition to this research, we refer to the work of Hoek (2015). Besides those
factors mentioned there are are a variety of immeasurable factors that influence capacity as well; these
factors have to do with a personal experience and the willingness of health care workers, as well as
patients’ families, which may influence the available capacity as well. We assume that the realized
available capacity is a product of all the aforementioned factors. Figure 7.1 shows this amount is a
reasonable amount to assume.

Figure 7.1: Available capacity (average and standard deviation) from the WKZ’s MC ward - 2020 and 2021

A phenomenon that argues why the results may underestimate the true effect of the interventions,
is the following. The induction of labor is often delayed until a patient has been discharged from
the hospital. After the discharge, the new patient will immediately be admitted, resulting in zero
inter-arrival time. In our distribution fitting of the IAT of the WKZ, as shown in Appendix B, we
observed a peak in the smallest number of IAT in hours, which is the consequence of this phenomenon.
This peak causes the IAT distribution to shift to the left, and coherently, the estimation on the arrival
rate (expressed in arrivals per time unit) to the right, meaning that the model would overestimate the
number of arrivals. When the models are based on a higher value for λ than λ actually is, the results
may even be more promising in reality. We refer to the scenario when a patient is placed ”on hold” as
it occurs when they are ready to be transferred but the new destination is not yet accessible. There
is no data data concerning the patients placed ”on hold” so we are not able to examine the true effect
of this phenomenon on λ and correct λ for this. We recommend the neonatal ward to start keeping
track of patients that are ”on hold”. This would not only increase the accuracy of our results but
also reinforce the perception among doctors that often patients are ready for transportation but are
unable to leave the hospital because the next location is not yet ready to admit them.

Thirdly, it can be argued that the positive results regarding the decrease in the blocking probability
were due to the methods used for analysis. In real-life, it frequently happens that there is not enough
capacity to admit an additional patient, but that the patient is placed in an emergency bed nonetheless.
Using these beds is not preferred and not a long-term solution, as this results in lower nurse-to-patient
ratios and increases the workload for nurses.

7.1.3 Differences in the baseline meausure

In Section 5.1 from Chapter 5 we assumed the three solution methods to the models perform equal
under baseline circumstances. We did however notice that the threshold policy showed a lower result
for PB and higher results for PO than the other models do, and the actual situation of the WKZ
does. To clarify the model differences from the baseline measure, we analyze at the distribution over
the states in both policies and compare this with the actual distribution from the WKZ. From the
WKZ we know the realized capacity from each day of the years 2020 and 2021 since a daily record of
the occupied beds is kept. Per quantity, we count the number of days that this quantity is present.
Next, we normalize the sum of the days per quantity over the total number of days, such that we get

67



CHAPTER 7. LIMITATIONS AND FURTHER RESEARCH

a percentage of the time that each quantity was presented. Figure 7.2 presents the actual distribution
over the states, as well as the distribution in the VMC-CTMC and the threshold-CTMC models. The
VMC - DES model is excluded from this overview because this model does not keep track of which
time, which amounts of beds was presented.

Figure 7.2: Distribution over states in the baseline measure for the WKZ

The CTMC of the threshold policy concerns all locations individually. This means that there are
four one-dimensional Markov chains are made. Since there are fewer states involved compared to the
CTMC of the VMC, the accuracy is higher, which explains why the threshold policy is closer to the line
of the actual data. The actual data has a lower peak of 1 % in the state with 10 beds, as the threshold
policy does. This means that in reality, the hospital does spend 1% lesser of the time in a state with 10
beds than the threshold policy predicts. This may be caused by that the input parameters of the data
follow an estimated distribution that does not capture all real datapoints. The state 10 accounted for
in obtaining PO but not in PB because PO is the sum of all states where j ≥ Ci and PB are the states
where j > Ci. There is also a decrease at the point of 12 states of the threshold compared to the
actual data and the VMC policy which causes a lower PB in the baseline measure for the threshold
policy compared to the others. State 12 weighs more heavily in PB than in PO because the latter
probability contains the large value of state 10. This analysis does not fully answer the question,
why the models show a difference behaviour in the baseline measure. We attribute this effect to the
nature of the models. Although the objectives are calculated in the same way, the structure of the
CTMC of the VMC is more complex than the CTMC of the threshold policy. The threshold policy
is resolved exactly and the VMC numerically and due to the exact resolution it is expected that the
threshold policy will give more accurate results. However, the inputs of both models are derived from
a distribution and that distribution deviates from the actual distribution as can be seen in Appendix
B because the effect on the collective objective is negligible, we have assumed in this study that the
models are the same perform in the baseline. We recommend doing better research into the input
values so that the models are better able to accurately represent the current data.

7.1.4 Limitations to the VMC policy

It is to expect that you run more overbed when the VMC is introduced, because you submit your own
capacity. You count a state as overbed when the number of patients in that state is greater than your
available capacity. Then, your availability capacity is the number of beds you can operate on, minus
the number of beds you hand over to the VMC. Thus, it seems like you operate a lot of overbeds,
but this is not actually the case. This implies that, even if our method of modeling makes it appear
like the probability of overbeds increases when the VMC is introduced, an overbed would not actually
exist if, for example, you give up 9 beds to the VMC and have 1 bed left while there are 10 patients
in service at your location. If your capacity is 10, it means that you have the resources to operate 10
beds and, although 9 out of 10 beds are in fact ”VMC beds”, you still don’t run overbeds because
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the state that you are in is not exceeding your capacity limit. This limitation may have caused the
KPI overbed-fraction to be over estimated. We recommend to adapt our policy to model the VMC
not as a seperate location when it comes to overbeds, but as a part of the location itself. A different
approach would be to estimate which fraction of all patients in the VMC is of location i and correct
the actual patients in location i with this fraction. Note that we did correct for the occupancy for the
VMC over the locations by distributing the occupancy of the VMC over the locations and correcting
for the magnitude of beds that each location donated to the VMC.

7.1.5 Limitations to the threshold policy

When setting proper thresholds, the threshold that yields most profit for one location depends on the
other locations thresholds as well. Table 7.1 presents sets of configurations for every ri,t that resulted
an objective that did not differ more than 5 % of the best objective.

r1,1 r1,3 r2,1 r2,3 r3,1 r3,3 r4,1 r4,3

8 9 9 11 11 9 11 8
9 10 10 11 10 9 9 8
7 9 10 7 11 8 9 9
7 8 9 9 10 11 10 7
8 5 11 9 11 9 11 10

Table 7.1: Configurations for every ri,t from the improvement heuristic within 5% difference with the best objective

From these sets we find that, even if the WKZ would for example introduce a limit of 7 beds to their
type 1 patient, it is still important that other locations apply limits which jointly result in a decline
of blocking- and overbed probability. Important to bring this research into practice when shifting
thresholds, is to take the occupation into account. We have seen that the most promising solution in
terms of collective blocking- and overbed probabilities is not a good solution in terms of occupancy,
since one of the locations then has to deal with occupancy higher than 90 %.

7.2 Comparison of the results in neonatal care from this re-
search and intensive care from literature

7.2.1 Results of the VMC policy

Litvak et al. (2008) Introduced the virtual ICU policy where the underlying concept is resource sharing
by providing mutual overfow. Their goal was to provide sufficient service level for non-overflow calls,
in other words, for type 2 and 3 patients that cannot be sent elsewhere. From a patient point of view,
we did notice an better service performance due to the introduction of the VMC. The KPI representing
the patient point of view is namely the fraction of refusal. For the employees’ point of view however,
the virtual MC policy did not provide sufficient service levels as Litvak et al. (2008) suggests.

If all available capacity amongst the four hospitals included in this research could be pooled, we
find, using Equation 19, that the collective arrival rate, and use estimation on the average LoS, no
refusals would not occur at all. Nonetheless, neonatal patients are bound to particular hospitals. For
example, the WKZ cannot release all of its capacity because they fulfill a third-line function which
other hospitals do not. Hence we are not able to accomplish a zero percent blocking probability. Litvak
et al. (2008) is able to achieve the managerial goal of at most 1 % rejections for type 1 patients. They
assume that all hospitals have a similar patient stream structure. They assume that the ratios pi,t hold
for every location in the network and do not distinguishes academic hospitals from peripheral hospitals
in this extend. Furthermore, the ICU has comparable more elective patients than neonatology has.
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The neonatal knows a much bigger ratio of type 2 patients, so, it is reasonable that the VMC yields
less promising solutions in neonatal care.

7.2.2 Results of the threshold policy

Similar to Chan et al. (2018) we conclude that the threshold policy is more efficient for both the
patient and the employees, by allowing an type 1 patient to be assigned to any of the vacant beds
in the network as long as none of the vacancy thresholds are violated, than the virtual MC policy is.
Since less overbeds contribute towards higher service levels for all patients, we recommend to adapt
the threshold policy in neonatal care.

The LoS of elective patients is more predictable and their arrivals can be controlled. The precise
knowledge of how many patients of type 3 there are exactly presented in each location may help to
decrease the number of cancellations by better planning of elective arrivals and ultimately result in a
smaller number of cancellations.

The threshold policy from Chan et al. (2018) suggest that the results of their ICU network are not
very sensitive to the patient LoS distribution, as we observed as well.

Chan et al. (2018) recommended to investigate the effect of maximal resource sharing. By this they
mean to investigate the effect of thresholds such that patients can always admit to any location of
the network by setting a threshold value of 0. For neonatal care however, maximal resource sharing is
not possible since locations require to serve their own catchment area and closing one of the locations
is not a feasible solution. We do however recommend to investigate this effect for other application
areas.

A suitable tool is required to quantify the number of IC beds needed for each hospital in different
scenarios, taking into account factors like the expected patient volume, the distribution of patient types
across hospitals, as well as the percentage of rejected patients and overbeds permitted by management,
health insurers, or the government. In addition to providing data on the current capacity, this tool may
be extended through being optimized. A quick examination of all possible combinations of the number
of beds at each hospital and the number of regional beds is possible due to the CTMC of the threshold
policy. This makes it possible to optimize how many beds are distributed among hospitals.

7.3 Future work

This research opens opportunities for both scientific work and practical work. Scientific opportunities
are discussed in Section 7.3.1 and practical opportunities in Section 7.3.2.

7.3.1 Scientific work

For now we have chosen fixed sets of reservation threshold settings. An extension of this work could
be to introduce dynamic settings. In a dynamic setting, the thresholds should adapt to a response
in input parameters. The CTMC compiles fast; therefore, an adaptation in thresholds allows for fast
evaluation of the solution quality of that adaptation. In a short time, many threshold values could be
evaluated. Our greedy improvement heuristic has shown to be effective in exploiting promising set of
threshold reservation settings. The greedy improvement heuristic can then be used to find the most
optimal set of threshold given a change in input parameters and thus adapt to the situation quickly.
Second, we recommend to use a more powerful computer that allows for calculating the VMC in a
numerical way when more than 2 locations are included. We believe that including more locations
would yield proportional more benefits.
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7.3.2 Practical work

We saw that the suggested models are sensitive to changes in λ and µ. First, we therefore recommend
to fine-tune the input parameters to build a model that is more robust. One can think of including
seasonality such as holidays and the weather conditions that influence λ and µ, such that our models
will find more accurate settings suitable for that situation.

Future work may involve extending the threshold policy model to a network with more than 4 locations.
We limited ourselves to a network with four locations. Comparing the VMC’s exact model with the
DES, we already see an increase in performance when more locations are opened. The Meander is
located in Amersfoort. Another hospital that is comparable with the type of care that the WKZ
provides, and is relatively close located to the Meander hospital, is the Isala hospital in Zwolle. From
the Meander point of view, investigating collaboration possibilities with the Isala may be of interest.
But then, the Isala hospital has other hospitals surrounded as well. It would be of great interest
to investigate to what extent hospitals should collaborate, because in reality no fixed borders are
set.

Another future work suggestion is to check on medical conditions that the patient types differ. If we
can relate the medical conditions to the patient types, it becomes easier for the doctor to distinguish
patients objectively and to apply proper triage principles which strengthens the implementation of
this work into practice.

7.4 Implementation of the research into practice

The concept of pooling is a difficult concept to understand for managers, nurses and doctors. Pooling
demand is not always applicable in the context of birth care. Although one might state you assign
certain capacity to certain patient groups, in practice, the moment of birth is hard to predict; therefore,
the occupation at operational level is hart to predict, making it is difficult to assign patients to beds
in time. From the sensitivity analysis of a change in λ we have seen that an increase λ continues to
lower PB and PO more than the current situation would do, which is beneficial for other wards than
the MC. A 10% increase in λ means 162 patients per 2 years can be treated more in the WKZ. This
opens possibilities for other wards to let patients move to the MC and hold patients for less time if
they have already been treated. If you for example you assume that this concerns NICU patients, you
can relieve the NICU with 81 patients/year. However, we lack of data of patients that which should
have already been forwarded but did not do so, due to shortages elsewhere.

Type 1 patients who are refused because a bed is not available anywhere in the network, will in
practice be sent to a different hospital than the locations included here. So they have to deal with
the extra load of type-1 patients from one of these four hospitals. By lowering the refusal rate with
the threshold policy, this means that other hospitals outside our case study will also benefit from this
policy. An interesting research opportunity would be to investigate the effect of the loads that other
hospitals will experience. We refer to the research of (Kanai & Takagi, 2021) that forms a good stating
point in modelling the loads of neonatal patients in other wards.

In addition to the above-mentioned problems, there are two trends that are relevant to this research.
These trends give more context to the problem and emphasize the added value of this research. First
of all, due to a significant amount of time spent on transfer coordination, the management strives
to develop an application to map regional bed availability of the post-HC and MC beds. In case
of a shortage of beds, the hospitals in the Utrecht region can see each other’s capacity, saving the
time-consuming process of calling back and forth. On a regional level, the app connects supply and
demand for post-IC and MC beds. The development of this application is a contributing factor toward
improving the outflow of MC patients and supports the implementation of the thresold reservation
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settings.

Second, in line with the concept of pooling, more and more attention is being paid to the practice
of integrated care, notably in maternity care. Economies of scale advantages could be gained by
collaborating between departments within a healthcare institution, or between healthcare institutions.
The Regional Ambulance Care Facility Utrecht, for example, has recently started distributing first- and
second-line pregnancies in the region of Utrecht. This coordination used to be executed by hospitals
and obstetric clinics itself, but by taking away this task, the clinicians have more time to practice
their profession. The high workloads drove the motivation to support regional collaboration. Seeking
for more support is of importance to translate this research into practice.
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Appendix A

Problem cluster

This Appendix presents the problem cluster on capacity of the neonatal wards in Utrecht. The core
problem comes down to the following: an arriving patient does not find an empty bed. This is noticed
on operational level.
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Appendix B

Distribution fittings to the data

This Appendix presents a justification on the assumptions for the Poisson arrivals and exponential
inter arrival times. The actual data is grouped in histograms, where number of bins is calculated as√
numberofdatapoints. First, we present the inter arrival times and service times of the MC ward

of the WKZ. To assume Poisson arrivals, we test the actual data on exponential inter arrival times.
Figure ?? presents the frequency, presented at each bin, and the exponential fitting that corresponds
to the bins. The exponential fitting is plotted with a mean of to λ = (730/1612) ∗ 24 = 2.20 hours. To
this extend, we included the refusals to the total arrival rate. We were able to do so, because we have
estimations on the (direct and indirect) refusals from in 2020 and 2021 from the WKZ. These numbers
are presented in Appendix ??. The quality of the fitting of the exponential distribution to the actual
data is measured in Mean Squared Error (MSE). The MSE for the IAT of the WKZ is 191.

Figure ?? presents the exponential fitting to the LOS of patients in the MC ward of the WKZ. The
LoS follows an exponential distribution with mean µ = 4.50 days. The number of datapoints is lesser
than the number of datapoints used for the IAT distribution, because we do not know the LoS of the
refusals. The exponential fitting is plotted with mean µ = 4.50 hours and has a MSE 675.

Next, we present an elaboration on the estimations on λ and µ for the peripheral hospitals. Since this
research only feautures data from the Diakonessenhuis, we limit ourselves to the fittings on data from
this hospital only. This data is from 2019, whereas the WKZ data is from 2020 and 2021. According
to the management of the Diakonessenhuis, the data of the neonatal ward from 2019 forms a more
reliable picture, that is better representing the actual situation, than the data of the next two years
did.

Figure ?? shows the fitting of the distribution of inter arrival times to the actual data. We find that
the inter arrival times to the Diakonessenhuis follow an exponential distribution with mean λ = 19
hours. Contrary to the WKZ, the IAT from the Diakonessenhuis does not contain the refusals since
this data is unknown. For the λ the arrival rate without the refusals is used. The MSE is 50. Next, by
adding the anticipated number of rejects, we scale up the lambda. We can scale this to the size of the
Diakonessenhuis as we know that the WKZ rejects 157 patients at 2 years owing to a full obstetrics
department. We do not consider those refusals since the Diakonessenhuis lacks a NICU.
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Appendix C

Simulation flowchart of the VMC DES

In this Appendix we explain the logic we built into our simulation model. We show two flowcharts,
one concerning the arrival of a patient and one the discharge. Figure C.1 shows the arrival process.
The blue boxes indicate the counters that are used to determine the objective. When a patient is
created, first, it is checked whether the location of the origin of the patient still has capacity left. If
so, this patient will be admitted. If not, we check which patient type the patient is. If it is a type 1
patient, and the VMC has still capacity left, the patient will admit to the VMC. If the patient is not
a type 1 patient but a type 2, then, it is admitted to the original location. If neither of the above two
conditions is true, it automatically means the patient is a type 3 patient, hence is refused. We increase
the ”nRefusals” counter with 1. At the end of our simulation run, we divide the ”nRefusals” counter
to our ”nPatientsCreated” counter to obtain P b

i . Furthermore, we divide ”nOverbeds” by ”nRefusals”
to obtain the overbed probability.

Figure C.1: Flowchart to determine the destination of an arriving patient
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APPENDIX C. SIMULATION FLOWCHART OF THE VMC DES

The next series of events that trigger a process is the discharge of a patient. If this concerns a type-2
patient, it is checked if the location contains patients in overbeds and if so, the patient is moved from
the overbed to a normal bed of location i. This ensures that the overbeds only exists in moments
where full capacity exists.

Figure C.2: Flowchart to illustrate the discharge process
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Appendix D

The routing policies explained

The routing policy, Γz,n, describes in which order external emergency patient from each zone z attempt
for admission at other hospitals. Table D.1 describes an example of such a policy. The vertical axis is
the current zone, the originating zone the patient is from. On the horizontal axis, the next zone for
attempt is displayed.

Next zone
1 2 3 4

Current zone

1 1st 2nd 3rd 4th
2 4th 1st 2nd 3rd
3 3rd 4th 1st 2nd
4 2nd 3rd 4th 1st

Table D.1: Example of an routing policy. In this example, patients from a zone z attempt for admission in zone z+1

In order to illustrate the working of the policy, suppose the following example, in which we calculate
the total load that location 4 receives, x4. According to the policy, patients from zone 1, will first
attempt at their own location, second at i = 2, third at i = 3 and last at i = 4. So, from patients
from location 1, their attempt at location 4 is their fourth attempt.

Previously, we defined ai,n as the load of patients from a zone z that have overflowed n times in the
network. So, patients from zone 1 attempting at zone 4 are denoted by a1,4. Likewise, the hospital
from location 4 receives:

• a4,1
• a3,2
• a2,3

We also stated that, in order to obtain the total load to a location,

ai,0 = λi,1

ai,n = ai,n−1bΓi,n−1 , n > 0

Thus, a4,n = λ4,1, and
a3,2 = a3,1b3;
a2,3 = a2,2b2 = (a2,1b1)b2;
a1,4 = a1,3b3 = (a1,2b2)b3 = ((a1,1b1)b2)b3

In total, the hospital in zone 4 receives a load from external emergency patients of: a4,1+a3,2+a2,3+
a1,4 = a3,1b3 + (a2,1b1)b2 + ((a1,1b1)b2)b3.
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Appendix E

Finding steady state vector based on eigen-
vectors

This Appendix provides an in-depth explanation on eigenvectors and their relationship with Markov
chains. Let qSS′ denote the transition rates of state S to state S′. Let m be the total number of
possible states. Then, the transition rate Q looks like:

A =


q1,1 q1,2 · · · q1,n
q2,1 q2,2 · · · q2,n
...

...
. . .

...
qn,1 qn,2 · · · qn,n

 (20)

Now, we introduce a steady state vector v. Initially, v looks like: v = (v1, v2, ..., vn). The eigenvector
definition states that Qv = λv; if λ = 1, then vA = v. This looks like,

v1A11 + v2A21 + v3A31 = v1

v1A12 + v2A22 + v3A32 = v2

v1A13 + v2A23 + v3A31 = v3

...

(21)

We can write vA = v as vA− v = 0, which is similar to v(A− I) = 0. The operation ”-1” for a square
matrix is similar to the operation ”square matrix - I” where I is the identity matrix. Furthermore, we
need to add the constraint that every element in v sums to 1, so v1 + v2...+ vn = 1. Then,

(v1A11 − v1) + v2A21 + v3A31 = 0

v1A12 + (v2A22 − v2) + v3A32 = 0

...

v1 + v2 + v3 = 1

(22)

Now we formed a set of equations that we can solve using a linear solver that will return v = v1, v2, ..., vn
which is the steady state vector from matrix A.
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