UNIVERSITY OF TWENTE.

Faculty of Electrical Engineering,
Mathematics & Computer Science

Side channel pattern matching
/ using neural networks on FPGAs

Rishab Balaji

M.Sc. Thesis
December 2022

Supervisors:
dr.ir. N. Alachiotis
ir. E. Molenkamp

dr. D.V. Le Viet Duc
ir. D. Vermoen (Riscure)

Computer Architecture for Embedded Systems Group

Faculty of Electrical Engineering,

Mathematics and Computer Science

° University of Twente
P.O. Box 217

7500 AE Enschede

The Netherlands

Abstract

Embedded hardware devices like smart cards are prone to threats either due to
leakage of information (on a side channel) which could be further analysed to ex-
tract important information or it can also be through manipulation of the device func-
tioning by injecting fault from external sources (fault injection attack). Therefore, it
is important to develop countermeasures against these threats which require test-
ing using similar attack scenarios. In the context of Side channel analysis and fault
injection attacks, a precise triggering device is required to enable the side channel
device on the host. While an oscilloscope can achieve this triggering on a selected
region of signal, there are certain limitations like existence of random delays/noise in
the signal and unnecessarily large measurement windows. For this reason, Riscure
has developed an FPGA based triggering device to detect a specific desired refer-
ence pattern in the side channel trace and send a trigger signal back to the device
under attack/analysis. While the existing design makes use of a Sum of Absolute
Differences (SAD) algorithm for the pattern detection, there is scope for improving
this pattern matching performance further by reducing number of false positives and
negatives and improve latency and resource performance on the FPGA. In recent
years, inference of Neural networks on an FPGA has gained popularity and specif-
ically there many instances of low latency inference of such Neural Networks. This
project aims to explore the possibility of replacing existing traditional methods and
using Neural Networks instead to achieve improved pattern matching results while
maintaining similar latency and resource usage targets. Specifically, this project ex-
plores low latency inference of Neural Networks on FPGASs. In this thesis, an Mulli
Layer Perceptron (MLP) is trained with a data-set comprising of a number of side
channel traces of which each trace having the occurrence of a selected reference
pattern to be detected. Once a network is designed which capable of detecting
desired pattern on these side channel traces accurately, further techniques of op-
timizing the network such that it is feasible for FPGA inference while maintaining
low latency and resource constraints are explored. Here, quantization aware train-
ing and fixed point design play an important role to achieve FPGA inference with
minimal accuracy drop. A design is finalized after experimentation such that it is
applicable on various patterns/sizes. This design is then tested on various levels

ABSTRACT i

from software testing to RTL simulations to assess the performance on a Xilinx Kin-
tex 7 series FPGA which is the core of the icWaves device. The resulting design
achieves a latency of around 430 ns, allows for a maximum size pattern of around
310 samples while running at a maximum clock frequency of 230 Mhz and reports
high accuracy.

Contents

[Abstract i
1__Introduction| 1
1.1 _Motivation| e 1
(1.2 Reportorganization|, 4
|2 Background| 5
[2.1 Side-channel and fault injection attacks| 5
[2.1.1 Side-channelanalysis| 6

[2.1.2 Faultinjection. oo oo 6

2.2 _IcWaves| e e 7

3 Relevs Wo 10
4 Methodology]| 16
4.1 Side-channel power traces and Data-set creation| 17
[4.2 Neural Network Architecture and optimizations| 18
4.2.1 uantization for FPGA inferencef 19

4.2.2 Fixed point tuning and Regularization| 21

5 Network Architecture and Implementation| 23
6 Results! 32
[6.1 AcCcUracyl e 32
6.2 Latencyl 35
[6.3 Resourceusage| 37
4 Maximum Pattern Size and limitations| 38

6.5 Flexibility] 39
[6.6 Comparison with traditional techniques|. 40
6.6.1 Hardware metrics| oL 40

[6.6.2 Design Flexibility| 41

[6.6.3 Accuracy| e e 41

Contents

43

45

Chapter 1

Introduction

This chapter gives the reader a brief introduction of the thesis and also an outline of
the report content. The first section of this chapter discusses the motivation behind
the thesis project and also the main research questions to be answered. The second
section gives a brief outline of the report and its organization.

1.1 Motivation

Side channel and fault injection attacks are serious threats to embedded hard-
ware. These attacks usually require some form of analysis of physical data from the
device under attack like power consumption [1], EM (electro-magnetic) waves [2],
run times [3] etc during cryptographic operations. Some of these attacks include
clock glitching, voltage spiking, optical attacks, etc. For such attacks, the attacker
would require a triggering mechanism to enable the side channel acquisition/fault
injection device onto the host. The timing of such triggers may need to be accurate
depending on the attack scenario. In the past, trigger signals were generated from
within the device under test. An example would be the built in triggering functional-
ity in an oscilloscope. However, the side channel signals might contain clock jitters
and random delays [4] [5] due to device’s counter measures and non deterministic
behaviour of some of the programs running on the device. Additionally, the mea-
surement window might be larger than the region of focus resulting in unnecessarily
long periods of data acquisition.

To circumvent some of these issues, a pattern based triggering mechanism can be
used where an arbitrary region (pattern) on the side channel trace is selected and
is then compared with the incoming real time side channel signal to trigger when
there is match on the selected pattern. Thus, selecting a suitable pattern matching
algorithm as per requirement is very important [6] [7]. The selection of the pattern

CHAPTER 1. INTRODUCTION 2

matching algorithm depends on the following:
 Latency (i.e. pattern-to-trigger delay)
« Maximum reference pattern length

* Number of incorrectly detected/missed patterns (Robustness)

Flexibility

» Maximum sampling speed (i.e. clock frequency)

FPGA utilization (i.e. Resource Usage)

Since fault injection may require the timing of the triggers to be precise, having
an algorithm which produces low latency and faster response time is beneficial. It
is also important to have a robust algorithm so that any inherent noise present in
the side channel signal can also be accounted for. Flexibility refers to how well the
algorithm can be adapted for the design and testing of the use case which is the
FPGA based side channel and fault injection scenario.

Riscure has designed a device namely icWaves (based on a Xilinx Kintex-7
FPGA) for efficient side channel analysis (SCA) and fault injection (FI) testing. This
device uses pattern based triggering as its core [8]. A Sum of Absolute Difference
(SAD) algorithm is used in icWaves where the trigger is generated when the sum of
absolute differences between the selected pattern and the incoming real time side
channel signal dips below a specified threshold. It provides a low latency response
rate of around 250ns. However the number of false positives and false negatives
depends on how high or low the threshold is set.

A similar SCA and FI setup with pattern based triggering as it's core has been
proposed by Beckers et al. in [7]. They use a different algorithm named Interval
Offset which triggers based on a specified offset value and a threshold value. Their
design provides a latency of around 100ns while also providing more flexibility be-
cause of their offset parameter which allows the user to set offset over a particular
interval where the pattern is to be detected. Again, the number of false positives
and false negatives depends on the specified threshold and offset values.

Both these algorithms are simple in nature and can be executed on the FPGA
with a fast response time and also within the available logic elements since it only
contains addition and difference operations. However, these algorithms are not al-
ways accurate and might still contain incorrect detection since real time side channel
signals might contain additional noise. Thus, we need to consider robust alternatives
that can minimize false positives and false negatives in the presence of the noise
while also maintaining response times similar to the above mentioned algorithms

CHAPTER 1. INTRODUCTION 3

which are usually in the range of a few hundred nanoseconds. The algorithm also
needs to be efficient in FPGA utilization, maximum possible pattern length, flexibility.

Therefore, this project explores the possibility of a better alternative for the pattern
matching algorithm in the icWaves with a good trade off between all the factors
discussed with robustness and latency as the main factors.

Neural networks are widely used for pattern detection in real time signals and
are known to provide reliable performance [9] [10] [11] [12]. They fit well for the pat-
tern detection problem since side channel signals are also real time signals prone
to noise. In recent years, many academic works have implemented Neural net-
works on the FPGA in various domains. Specifically, a lot of research done recently
shows that Quantization of a Neural Networks results in significant decrease in the
footprint on the Neural Network and thus low latency results (in range of ns) are
possible while still maintaining the accuracy of the network [13] [14]. Building such
a Neural network using RTL (Register Transfer Level) on the FPGA would be quite
time consuming and also hard to modify after designing since these changes have
to be made at a low level. With the advent of high level synthesis, it is possible to
design and test such Neural Network design on the FPGA from a high level. Many of
the renowned FPGA vendors like Xilinx and Altera have developed advanced HLS
tools making it easier to access and make system design decisions at a higher level
while creating efficient RTL designs in a minimal amount of time. There is also con-
siderable research being done in recent times towards applying these HLS tools
effectively in accordance with deep learning problems to achieve the best possible
results [15] [16].

Leveraging the advantages of modern high level synthesis tools and quantized
neural networks, this project aims to explore the possibility of using Neural Networks
in place of pattern matching algorithms and examine if minimal false positives and
false negatives can be achieved while maintaining the latency in ranges similar to
that of the previously discussed algorithms like SAD and interval Matching. Trade
offs between various factors like pattern size, flexibility, resource usage are also
examined.

Therefore, the formulated research questions for this thesis are as follows

1. How does inferring neural networks on an FPGA for detecting side channel
fraces compare to existing techniques in terms of accuracy and latency?

Since SCA and FI setups need precise and accurate triggering, the primary
goal of the project would be to have a design which is both accurate with least
number of false positives and false negatives while maintaining a precise low
latency design which is comparable to the results from traditional techniques

CHAPTER 1. INTRODUCTION 4

like SAD and Interval matching Algorithms.

2. What are the possible trade offs in terms of maximum pattern size, resource
utilization, clock frequency and flexibility of the design?

Further, it is also necessary to understand how the resulting design performs
when considering the maximum input pattern size that can be achieved while
assessing the clock frequency and resource utilization in comparison to the
traditional methods. Design and testing is also an important factor when con-
sidering a SCA and FIl setup on FPGA as patterns that are being tested needs
to be changed often depending on the requirement and therefore it is neces-
sary to consider the flexibility of the design in terms of the workflow involved
and their advantages or disadvantages .

1.2 Report organization

Chapter[2gives the reader some background information on side channel analysis
and fault injection along with an introduction of the icWaves design by Riscure.

Chapter 3]is the literature review chapter which initially discusses existing litera-
ture on side channel analysis and fault injection based triggering on FPGA followed
by further literature exploration on various techniques that could be relevant leading
to exploration of Neural Network inference on FPGAs as an alternative.

Chapter [4| discusses the methodology involved in designing and optimizing a
Neural Network for the SCA and FI scenario.

Chapter [5] discusses the resulting FPGA design architecture as a result of syn-
thesis of the optimized Neural network using High Level Synthesis.

Chapter [6] discusses the results of the design in terms of accuracy, latency, re-
source usage, sample size, clock frequency, resource usage and flexibility. This is
followed by a brief comparison of these results with the traditional techniques.

Chapter 7] contains the conclusion of the thesis based on the results obtained
and hence also answers the research questions.

Chapter 2

Background

This chapter discusses in detail, the background information that is relevant to the
thesis. Section explains the different types of side-channel analysis and how
each type can be used to extract different information followed by the various types
of fault injection attacks. Section explains the working of the icWaves device by
Riscure which is the target device for the resulting design in this thesis.

2.1 Side-channel and fault injection attacks

Embedded devices like smart cards are prone to side-channel leakages and fault
injection attacks because they make use of cryptographic operations. These attacks
are discussed in [17] which are very different compared to logical attacks and pro-
tecting embedded devices against such attacks requires countermeasures at hard-
ware level, kernel level and application level. A side channel attack typically requires
physical access to the device under attack to extract information through different
physical parameters like time, power and EM radiation. Here, instead of using the
intended communication channel/code sections to perform the attack on the device,
we exploit the data leaked on a side channel. Smart cards, smartphones and set-top
boxes are some examples of devices which are vulnerable to such attacks. These
side channels can be exploited in two forms namely,

« Side channel Analysis: A form of passive attack where the adversary listens
on a side channel to find important/sensitive information.

 Fault injection: An active attack where the adversary injects faults into the
system through a side channel.

CHAPTER 2. BACKGROUND 6

2.1.1 Side-channel analysis

As mentioned, side-channel analysis refers to passively listening to a device through
a side channel to extract sensitive information. Depending on the operation running
on the device, there are two types of analysis techniques to be discussed here,

» Simple analysis: Observing the side channel to see if any leakage of in-
formation can be captured. Examples of such scenarios include using time,
power and EM waves from a device to determine program instructions, signal-
to-noise ratio etc. This can be seen in Figure[2.1jwhere a simple Rivest Shamir
Adleman (RSA) encryption algorithm execution shows short and long power
peaks which correspond to square and multiply operations respectively. This
information can be useful in key retrieval. This is also known as Simple Power
Analysis (SPA) or Simple Electromagnetic Analysis (SEMA) based on the mea-
surement made

110 R Prowes peatle ol-weas B85 mplsmenizion
-

Figure 2.1: Single RSA execution trace for SPA(Source: [17])

+ Differential analysis: In this type of analysis, the adversary collects numerous
traces upon which statistical methods are used to extract information, which
might not be possible using SPA/SEMA. An example of such a technique can
been seen in the Figure where several traces are acquired and divided
into two groups based on one bit in the intermediate data. These traces are
further processed using mean differences to obtain a differential trace. This
differential trace will provide more information on the intermediate data.

2.1.2 Fault injection

In contrast to side channel analysis, fault injection aims to interrupt a defined pro-
gram flow or to change important values during execution. Such attacks may in-
clude allowing to skip authentication process, bypassing an unauthorized firmware
or security measures. Fault injection can be achieved through several different ways
namely:

CHAPTER 2. BACKGROUND 7

) E-1 Conelation of bit 40
-
é'_-\-’""l'.-."‘! e T o _,,r_‘h_.--l.‘__,__wlu.-__ B At P il e Pty e, Pl __‘_,-J\,_,-"‘,.--.l._v.ﬂ.._,_._-.,_,._H.,. .
- i
......... . S | R - S || N | T - || R
il E-1 Coamalation of bit 41

1
a Bk TR T e W L L S tY L S R I, b i i i T LR S Py LR Y mu“.f'm\—\.ﬂﬁ‘\-w‘w—\,’\ﬂ_
']I . il

N) 30))) TE) 0 ' J:.J N) T 4R . i ':I,'I

xlE-1 Comelation of bit 42

"
. % -#M"-wﬁ“N‘l"—‘-"r’ﬁ-hW,JIWAM\-'hjﬂﬁMJwWML%WWJvI\1 0

2 . 3 40 45 " s0
il E-1 Comeglation of bit 43

I i e L | skt LS LR *-\:-"-._.-—-,- i Pl AR B
il

C
L=

25 0 35 40 A% 50

Figure 2.2: DPA on multiple RSA traces to reveal secret key(Source: [17])

» Voltage/Power glitching: Disrupting the power supply to the storage/mem-
ory modules at specific points such that the read values to the memory are
incorrect.

» Clock glitching: In this technique, short clock pulses are injected to vary the
internal clock of the device. This in turn affects the operation being executed
on the device. By timing these pulses precisely, one can skip instructions and
bypass security measures in different cryptographic operations.

» Optical glitching: A circuit level attack where laser light is used for transis-
tor switching. Such low level attacks can not only affect memory containing
instructions to break cyptographic executions, but can also have catastrophic
outcomes where the microcontroller is reset, EEPROMs and flash memories
are affected.

2.2 icWaves

Embedded devices need to be properly protected from some of the passive/active
attacks discussed previously in section [2.1], by deploying countermeasures. For this
purpose, Riscure has developed a device namely icWaves (figure for embed-
ded security testing purpose. This is an FPGA-based triggering device that uses
real time pattern detection to provide accurate triggering since the timing of the at-
tacks is very important. Conventionally, reset/communication signals is used where
the device’s built-in timer can be used to send a trigger pulse. However, due to in-
accuracies like jitters/drifting in the clock and also random program (running on the

CHAPTER 2. BACKGROUND 8

Figure 2.3: icWaves device(Source: [8])

device) interrupts it may be hard to achieve accurate triggering. When performing
a Side channel analysis, we might also run into the issue of unnecessarily large
measurement windows which might result in longer periods of data acquisition. To
combat this, we need a device to detect a selected reference pattern just before
the measurement or injection. Because of these reasons, icWaves employs pattern
based triggering as its core.

Figure shows the internal blocks of the icWaves FPGA device. It consists
of blocks to acquire and store a desired reference pattern where measurement/fault
injection is to be performed. Figure shows the pattern detection process where
the selected reference pattern is then compared with the incoming real time EM
wave or power signal (after A/D conversion) in the Waveform matching module to
produce a trigger signal to the embedded device under test. The waveform match-
ing module inside the icWaves uses a Sum of Absolute Differences algorithm which
compares the incoming real time signal with the acquired reference trace using a
sliding window approach where window size is based on the chosen reference pat-
tern size. A sum of the absolute differences between the two signals is computed
over the window and if the result drops below a predefined threshold value, a trigger
pulse is produced. The remaining blocks correspond to sampling the input signal,
compensation for noise, control logic for the overall device etc. This device consists
of a Xilinx Kintex-7(xc7k160t) FPGA device. It stores and detects either a refer-
ence pattern of 1024 samples or 2 reference patterns of 512 samples size. It has a
pattern-to-trigger delay of 250 nanoseconds with a configurable hold off/delay time.
It has a sampling speed of 200 MSamples/sec with each input sample having 8 bit
precision. While designing icWaves, the most important aspects are latency and
accuracy of the results since the triggering needs to exact and precise. However,
resource utilization and sampling speed are also important factors to consider with
respect to the target FPGA device.

CHAPTER 2. BACKGROUND

Frerin B—m——m—m—m—m—mve

Filerout e——————

Trigoer in I—|
Acquisition
—_—
Signal in I—,—b Control Wavefiorm Matching x 2
ink. clk
e
Syne
Resampler
Eat ok
—
R
Digitint Puse Profiler x4
Digitin I—-
—_—
Digitind IR

Figure 2.4: Internal blocks of icWaves (Source: [8])

Capture and store

reference signal
Input Signal
after A/D
conversion

F 3

module

DLl ST S] Trigger Pulse

Waveform matching

Trigges
Module 1
User defined
logic funtion
)
Trigger
* Madule 2

Control
Unit

Figure 2.5: Pattern detection in icWaves

—=l Trigger 1

—= Trigger 2

Chapter 3

Relevant Work

This section discusses the relevant work in regards to traditional pattern/waveform
matching techniques used in SCA and FI testing while also discussing the need
for more exploration. Further, this section explores alternate solutions for pattern
matching and signal similarity by examining existing literature from various domain
applications to see if it can be applied here.

Side channel analysis and fault injection is executed by sending a trigger signal
from the host device to the embedded device at a certain region of interest. As
already discussed in section[1.1] triggering using the host device’s built-in triggering
mechanism can sometimes be ineffective and thus there is a need for an improved
pattern based triggering mechanism.

Voltage/EM waves

Fault injection

e : Triggering
Analog to Dlgltal » Referenr.elpaﬁem » Pattern Detledlon »| mechanism to inject
conversion selection mechanism
fault
A
Signal Acquisition on the .| Continuous Digital
FPGA host i Input stream

Figure 3.1: FPGA based setup for SCA/FI using pattern detection

A pattern based triggering requires using algorithms that can detect an arbitrary
region on an incoming side channel signal and send a trigger signal instantaneously.
A low latency triggering is very necessary since the attacker does not want to miss

10

CHAPTER 3. RELEVANT WORK 11

the window to intervene the system. Traditionally, these setups are built using FPGA
devices as they provide the best accuracy and precision while allowing modification
of the system design since through reconfiguration. The setup required for such
Side channel Analysis and Fault injection on a Smart card reader can be as seen in
the Figure [3.1]

In the past, academic works have considered algorithms which can provide sig-
nal/pattern similarity as the most suitable techniques. One of these is the Sum of
Absolute differences (SAD) algorithm which is currently employed on the icWaves
device by Riscure (discussed in section2.2). lts working has been explained in [6]
where the pattern detection is implemented by comparing the incoming real time
side channel signal with a desired reference region of interest. The difference be-
tween the samples are compared and then the absolute values are added to find the
sum. If the sum is over a specified threshold, then a match of the reference pattern
is found on the incoming signal and thus a trigger signal is sent. This setup runs
at 200 MHz with a latency of 250 ns and can detect pattern of up to 1024 sample
length. The amount of false negatives and false positives is decided on the specified
threshold value.

In addition to the Sum of absolute differences algorithm, there are other alterna-
tives to achieve similar results. The authors of [7] also discuss a similar triggering
system for side channel detection and fault injection. They make use of an algorithm
namely interval matching, where an interval is defined both above and below the ref-
erence pattern. The output trigger defined is based on whether the incoming signal
lies inside this interval. This interval can be configured using an offset such that it
allows for flexible pattern detection. They achieve latency of 128 ns with a maximum
sample length of 2625 samples with 125 MHz sampling rate.

Both the SAD and interval matching algorithm compare incoming signals using
a moving average concept with the a static window over the reference pattern with
shifting incoming samples from the real time signal. Further, the authors of [7] also
explore the feasibility of cross-correlation algorithm using the same moving window
principle where the samples are multiplied and their product determines the simi-
larity between the two signals. However, multipliers are required to implement this
algorithm on the FPGA. Since the number of DSP blocks on the FPGA is limited,
these multiplication operations can be harder to accommodate if the size of the ref-
erence pattern window keeps increasing. So, the authors discard the use of this
algorithm for the SCA and Fl based triggering.

The cross-correlation algorithm discussed previously is conventionally used in sig-
nal processing applications and is often a very reliable measure of signal similarity.
The authors of [7] already address issues with cross correlation and the need for in-

CHAPTER 3. RELEVANT WORK 12

creased multipliers with increase in pattern length. However, this length can be sig-
nificantly reduced if converted onto the frequency domain. Frequency domain cross
correlation for signal similarity on FPGAs have been discussed in [18], [19] and [20].
The authors of [20] address the issues with time domain cross correlation by com-
paring serial and parallel implementations. Using a serial implementation provides
a low latency and high processing speed, but hardware resource consumption also
increases linearly with increasing in the sample size. Using a parallel architecture,
reduces the resource consumption significantly but also affects latency negatively.
Based on these results, they move to an FFT based solution where the cross corre-
lation is computed in a frequency domain. Here FFT IP cores with best performance
are used to convert the time domain signal to frequency domain and the cross cor-
relation is then computed. Once converted to frequency domain, the sample size
reduces comparatively. The resulting signal after correlation is converted back to
time domain using an inverted FFT operation. The architecture utilizes BRAM and
DSP blocks. The number of DSP blocks (multipliers) used is independent of the
sample size since BRAM is used to store data and acts as a buffer. But the BRAM
usage increases linearly with the sample size.

A solution that can provide a latency in the range of a few hundred nanoseconds
is needed while the results of FFT cross correlation are in milliseconds range. This
delay is due to the use of Block RAMs. Since the project at hand only deals with
small amount of samples at the input array, using BRAM addressing (used for large
amounts of data) for storing input data can be comparatively slower as opposed to
using logic blocks to store the input array which can result in increased clock cycle
delay. Since this method hinders the latency demand, it is not considered to be
feasible.

Another possible alternative to signal similarity algorithms is to consider string
matching([21] and [22]) where each sample from the reference trace can be matched
with each of the samples from the incoming sample. Knut-Morris-Pratt algorithm is
one of the most efficient string matching algorithm which is discussed in [23], where
the authors present an Finite State Machine using the on chip RAM to provide an
optimized implementation of the string matching on an FPGA. However, this algo-
rithm works on the principle of one-to-one matching where if a match is not found,
the memory stores this information after which the FSM uses this to optimize the
process and reconfigure itself. This algorithm hinders the use case as real time side
channel signals are used where reference pattern and the incoming real time signal
might not have the same exact pattern but still be similar. Another similar implemen-
tation can be found in the form of Dynamic Time Warping technique found in [24].
These could be considered since they provide an approximate similarity measure

CHAPTER 3. RELEVANT WORK 13

but all these algorithms need to store large amounts of data which would again
require use of Block RAMs or similar memories whose addressing is expensive in
terms of clock cycle delays resulting in much higher latency(range of millisecond or
higher) and would be infeasible considering the trade offs.

Since side channel signals are real time signals containing noise, Neural Networks
models can prove to be extremely effective. Specifically for side channel and fault
injection attacks, recent research shows that Deep Neural Networks can now bypass
all the countermeasures (like clock jitters, misalignment and program interrupts) that
were previously employed to prevent leakage due to traditional attack methods [9].
The authors of [12] discuss how Neural Network models should be assessed for
side channel analysis. They discuss how the points of interest (leakage data) in
side channel signals can be captured effectively by properly choosing the hyper-
parameters. They also explore how regularization can help prevent over fitting and
learn from leakage samples effectively to achieve precise results. Regularization
is technique used to avoid over-fitting problems in Neural networks where certain
weights having large values are penalized and therefore makes the weights to be
sparsely distributed.

It has been established, that neural networks can be used to achieve accurate
results when applied to SCA and FI domain. However, inferring these Neural net-
works on an FPGA device poses certain challenges like accuracy drop after infer-
ence, FPGA resource limitations and latency constraints. In recent years, there has
been a significant amount of research done in achieving inference of Neural network
while maintaining the accuracy, resource usage and latency demands. Specifically,
research shows that quantization of Neural networks can help reduce the footprint
of Neural networks significantly allowing for feasible inference on FPGAs.

Inference of neural networks on FPGAs requires designing the architecture us-
ing digital logic and circuits using low level languages like VHDL or Verilog while
having data represented in fixed data type. Many previous academic works have
discussed the implementation of such a NN on FPGA exploring the procedure of
building each neuron, activation functions etc. Each of these have their own im-
plications on the hardware performance in terms of LUTs used, memory required,
delay caused etc. In recent times, the use of high level synthesis to realize hard-
ware designs on the FPGA has gained a lot of popularity since these tools allow
the user to design the architecture at a high level which is further translated into
low level RTL code and synthesized to obtain the desired optimum result on the
desired target FPGA. These tools are highly sophisticated with inbuilt features (like
loop unrolling, data-flow transformation techniques) to obtain the most efficient re-
sult [25]. This allows for customization of the neural network as needed at a higher

CHAPTER 3. RELEVANT WORK 14

level without modifying the final RTL design. The authors of [13] discuss a frame-
work where such high level synthesis tools are utilized in inferring a deep neural
network for a particle physics application which has extremely low latency demands
to achieve inference in the range of 100 ns latency on an FPGA device. The authors
outline the benefits of designing the network network at a high level and provide a
means of control at the high level after which the network footprint is significantly
reduced by means of compression, quantization and paralellization. This makes
the inference of the network feasible on the FPGA device while still keeping the
accuracy and performance intact. The results also portray how the compressed net-
work reduces the resource usage significantly while performance remains unaltered.
Further, the authors of [14] also discuss a similar framework designed specifically
for binary neural networks and quantized neural networks with up to 1-bit weights
and activation where these outputs can only have a value of +1 or -1 with set bit
representing +1 and unset bit representing -1. These networks are mostly tested
on Image Neural Networks and verified to produce same level of sub-microsecond
to nanosecond performance. The core concept behind these successful inferences
with low latencies and resource usage is called Quantization. It refers to the process
of converting the floating point values into fixed point equivalent lowering the preci-
sion, effectively reducing the size of the network such that it can satisfy the FPGA
hardware requirements. The authors of [26] discuss two different types of Quan-
tization namely Post-Training Quantization and Quantization-Aware Training. They
discuss the implication of both these techniques of precision reduction and summa-
rize that Quantization Aware Training is more superior since it has better retention
of the overall accuracy of the network in comparison to post training quantization.
This is due to the fact that the quantization process is also linked to the training pa-
rameters of the Neural Network. There are different frameworks and Quantization
libraries which assist this process making it easier to incorporate this concept into
the Neural networks at a higher level [15] [16].

Therefore, the state of the art techniques like SAD and Interval matching pro-
vide low latency designs while allowing a maximum of around 1000-3000 samples.
These are not precise algorithms since they measure similarity by measuring the
average of a sliding window. Their accuracy depends on algorithmic parameters like
threshold and offsets which decide the number of false positives and false negatives.

Cross correlation on time domain using a similar sliding window approach suf-
fers from hardware resource issues while FFT based frequency domain correlation
suffers from latency issues.

String matching algorithms also suffer from latency issues since they need large
amounts of data to be stored and accessed, increasing the overall clock cycle delay.

CHAPTER 3. RELEVANT WORK 15

However, research on Neural Networks inference on FPGAs report low latency
results (in ns range) as required while also satisfying resource constraint. Neural
Networks in general seems like an efficient solution over traditional algorithms to
achieve improved matching and detection accuracy with comparatively less false
positives and false negatives since real time signals are involved. These networks
can be made extremely accurate if trained with side channel signals and appropriate
information on the desired pattern occurrences. In combination with modern HLS
tools, Neural Network design testing and modification can be made simpler.

Chapter 4

Methodology

This chapter discusses in detail, the methodology involved in designing a neural
network architecture with a set of side channel traces as the input data to detect a
specified arbitrary pattern in each of these traces. This network is then optimized for
FPGA inference by using techniques like quantization and regularization. The entire
methodology can be summarized as follows:

1. Side channel power traces and data-set creation: This section deals with
the procedure of converting a set of side channel traces into equivalent data
set based on a desired arbitrary pattern to be detected in each of these traces.
Specifically, this process involves preprocessing of data by collecting the oc-
currences of the pattern in each of these traces using a correlation algorithm.
The trace set along with the pattern occurrence information forms the data set,
which is then labelled using the pattern occurrence information.

2. Neural Network Architecture: Next, a neural network architecture is de-
signed for detecting the pattern on the basis of the data-set generated. This
section explores the preprocessing of the data-set like scaling/normalization
and regularization. The Neural Network model is then tested for various met-
rics like accuracy, precision and recall etc to achieve the optimum network
design.

3. Quantization and Fixed-point representation: This section explores how
the footprint of the neural network can be reduced such that it can fit on the
target FPGA by limiting the resolution of model parameters like weights, bias
and activation. This process is known as Quantization. This section also ex-
plores the extent up to which the precision of the model can be reduced without
significant accuracy drops.

16

CHAPTER 4. METHODOLOGY 17

4.1 Side-channel power traces and Data-set creation

The first step before building a Neural network is to have a data set on which the
network can be trained and tested upon. This section explores in detail how a set
of side channel traces are converted into equivalent data set and further labelled
based on the occurrence of a desired arbitrary pattern to be detected.

Figure shows a side channel power trace. Such a trace usually represents
various operations running on the embedded device. For a side channel attack, the
user needs to select an arbitrary region along the trace where an attack is desired.
This region defines the pattern to be detected. In general, it is always better to
select patterns which are unique since the trace might contain repetitive peaks such
that false detection can be avoided. Having patterns of large lengths are also ad-
vantageous since it can incorporate more features improving detection quality. While
selecting such a trace, adding a small amount of noise can also help improve the
detection if the real time side channel signal contain inherent noise.

440

Data value

280

F T T T T T
0 5000 10000 15000 20000 25000

Figure 4.1: A side channel power trace

As already discussed previously, embedded devices might contain built-in coun-
termeasures to combat side channel attacks. One such countermeasure is to intro-
duce misalignment into the traces while operations are running on the embedded
device. Therefore, a trace set consisting of 10 such misaligned traces are consid-
ered for the creation of data set. Each of these traces are representative of repetitive
operations running on the embedded device. But the collected traces might not di-
rectly have this information since it contains misalignment from the original trace. A
desired pattern might occur in each of these traces but might be misaligned by a
number of samples.

To make it easier for the Neural Network to learn these traces(supervised learn-

CHAPTER 4. METHODOLOGY 18

ing), a preprocessing step is introduced where a cross correlation algorithm is used
in software to detect an arbitrary region (pattern) from the original trace along the
remaining 9 misaligned traces. This can be visualized in Table [4.1] where in each of
these traces, the occurrence of the desired reference pattern is calculated and the
location is decided based on the location of highest correlation factor.

Trace | Location | Correlation

563 0.980456
462 0.970324
552 0.993632
204 0.985791
428 0.985384
-4727 0.991842
867 0.991239
337 0.987978
229 0.990847

© 0O NO O~ WN =

Table 4.1: Reference pattern occurrences

The 10 misaligned traces form the data set. Each of these traces consists of
30,000 samples. Each of these samples are annotated using labels namely ”1” or
”0” to assist the neural network to detect the pattern of interest. This annotation is
done on the basis of the pattern occurrence data which has already been calculated
as seen in[4.1] All the samples along a reference pattern of length n are labelled
”1” starting from its occurrence location (from in the respective sample. The
remaining samples of the (non pattern occurrence regions) will be labelled with a ”0”
label.

Finally, the data set will be split where 70 percent (7 traces) are used for training
of the network and remaining 30 percent (3 traces) are used to test the network
performance. The entire data set creation and labelling process can be visualized
as seen inf4.2l

4.2 Neural Network Architecture and optimizations

Once the data set has been created using the side channel traces, a suitable
neural network model is to be designed for a binary classification since the data set
contains two labels namely ”"1” and ”0”.

An MLP (multi layer perceptron) model is considered here. To ensure least pos-
sible footprint, the smallest possible model with least amount of Neurons and layers

CHAPTER 4. METHODOLOGY 19

Select a distinct pattern | For testing purpose
—‘ Side Channel power N
s | 10 Traces 3 Trace: >
s
of

&, .
A 7 Traces
/”f
@, \
N
%q. A
Y v .,
p ,
Highest correlation / S

-
< », ineach frace (| “ =
Selected Reference NG Reference pattern Chieck each sample of the
pattern occurence locations {face for pattem occurmencg———
\) ‘&___)’ in all fraces Y location S
- e - 9 P

b J

Cross-correlation h = y 4
~ YES
NO
[v
Annotate each Annctate each
sample with 0 sample with 1

v

Labelled Dataset L_

S

Figure 4.2: Converting side channel traces into equivalent data-set

are considered since it will further be mapped on to the FPGA. All the layers of
the MLP will be dense layers where each neuron of the layer is connected each of
the neurons in the preceding layer. Sigmoid activation ([27]) is used in the output
layer since the resulting output will be a 0 or 1 which is representative of whether
a pattern has occurred or not. A Rectified linear activation function ([27]) is used
in the intermediate layers since it widely popular for easier training and better per-
formance. Other data preprocessing techniques like scaling and normalization are
also considered for improved results.

4.2.1 AQuantization for FPGA inference

Once the network architecture is designed, it needs to be mapped on to the FPGA.
However, the network by default will consist of weights, bias, input and output val-
ues in floating point representation. These floating point values will need a very
large amount of bits when mapped on to the FPGA. However,this can be hard to
accommodate since the FPGA has limited hardware resources.

Tp = gn(Wn,nfl ¥ Tp_1+ bn) (41)

Equation portrays the operation that occurs inside each neuron of the net-
work. Here z,, is the output from each neuron, g, is the activation function, W,, ,,_; is
the incoming weight from the previous neuron and b, is the bias value. When such
a neuron is to be mapped onto the FPGA hardware, it is important to know what

CHAPTER 4. METHODOLOGY 20

parts of the FPGA will be utilized based on the operation. For the addition opera-
tion, logic cells of the FPGA will be used. Since there is a multiplication involved,
DSPs may also be utilized. The activation functions are pre-calculated and stored in
memory. DSPs are very limited even on modern FPGAs. The logic cells and even
large memory storages like BRAMs also cannot handle large floating units as they
require large number of bits to represent on hardware. To overcome this issue, the
footprint of the designed Neural network and its values needs to minimized ensure
successful mapping on the FPGA.

ap_fixed< , >
0101.1011101010

Figure 4.3: Fixed point representation(Source: [28])

As already discussed in Chapter [3, many literary works suggest the process of
Quantization to successfully overcome the floating point issues and achieve neu-
ral network inference on the FPGA. Quantization is the process of converting large
values into discrete fixed size values. Research also suggests using Quantization
Aware training over post training quantization as it retains the overall accuracy much
better even after the quantization process. The idea behind Quantization Aware
training is to make the network aware of the desired/specified quantization during
the training process as opposed to after the training (in case of post training quanti-
zation). This is done by introducing functions known as Quantizers into all the layers
of the network. The Quantizers are similar to activation functions of the Neural Net-
work, where the quantizer maintain the precision of the incoming values based on
the requirement by using fixed point values in place of the existing floating point
ones. The Quantizer function only tags the values during the forward pass of the
training iteration. This mechanism allows for a network whose footprint is minimized
according to the specified quantization making it feasible for FPGA inference while
also having minimal accuracy loss during the conversion. Figure shows the
representation of the values in fixed point as should be used for the resulting RTL
design as opposed to floating point values. Here it can be seen that the amount of
bits used to represent the integer part and the fractional part of a value needs to be
specified separately.

CHAPTER 4. METHODOLOGY 21

4.2.2 Fixed point tuning and Regularization

As the network undergoes quantization aware training, the values are still repre-
sented in floating point representation. However, these values are lowered in pre-
cision (due to use of Quantizer functions in the network) which means that it can
now fit inside equivalent fixed point values if converted. Therefore, the next step
is to select the fixed point precision for the weights, bias, input and output values
based on the range in which they occur. Previously, there was a discussion on how
using quantized lowered precision values can reduce the hardware footprint while
still maintaining the accuracy. However, there is also a chance of ending up with
completely inaccurate results if the fixed point precision to represent this quantized
data is not chosen properly. Hence, it is to be ensured that the network’s input and
output values have appropriate and sufficient level of precision to be represented
and further might also need to tune the precision of values in the intermediate layers
like the weights, bias and activation function outputs according to the quantization
specified during the training such that the least possible precision can be used to
represent these values while also having the best accuracy.

This process of assigning fixed point precision can be started off by using a de-
fault fixed point precision for the entire model (all values including weights,bias and
|O). This is followed by plotting a graph to check the range over which different values
are distributed against the fixed point precision range. This graph is useful to under-
stand whether the selected precision range is sufficient to represent the equivalent
value. If not, the value might be falsely represented leading to inaccurate result.
During the process of assigning the precision, an extra bit is always added so that
the sign of the value (+ve or -ve) can also be accounted for. This sign bit ensures
that there are no rounding off and saturation errors. If the assigned precision is
larger than required, it can further be reduced and tuned accordingly. Analyzing the
information from the graph, all the weights, bias,input and output values are further
tuned such that least possible precision is assigned to each of them while maintain-
ing the highest overall accuracy. This might also result in going back and changing
the quantization specified for the network (during quantization aware training) and
retraining the model again if necessary.

Once the quantization for the network values are finalized and the equivalent pre-
cision is selected, there is also a need to make sure that the resulting architecture
is universal (i.e same model should work similarly if input pattern or size changes).
This is really important to consider because a change in input will also change the
overall weights and bias values which might also affect the selected quantization
and fixed point precision. If the model cannot account for these changes, it may pro-
vide inaccurate results upon change in input parameters. Therefore, it is necessary
to ensure the stability of the model created. To overcome this issue, regularization

CHAPTER 4. METHODOLOGY 22

can be introduced during the training of the Neural Network. Specifically, L1 regu-
larization ([27]) is used here which adds a penalty in each layer for large weights
during the training process. Due to this penalty, it is ensured that the weights are not
scattered over different ranges. This weight sparsity makes selecting the precision
easier since they occur over a shorter range over the precision plane.

This concludes the methodology involved in building a neural network architec-
ture with side channel traces as input data set such that it can be made feasible for
inference on the FPGA hardware. The next step is to convert this model into equiv-
alent RTL architecture design using High Level Synthesis tools and also analyze its
results.

Chapter 5

Network Architecture and
Implementation

This chapter discusses in detail the network architecture design that is obtained
after experimenting and also tuning of the fixed point precision values to achieve an
optimum solution for the FPGA inference.

Before moving to the actual design, it is also important to know the different
software and hardware platforms that were utilized in achieving this result.

The Neural Network designed here is intended for the pattern matching module
inside the iCWaves (section SCA and FI device designed by Riscure. It
consists of a Xilinx Kintex 7 series FPGA ([29]). The icWaves pattern matching
module allows data of 8 bit precision and therefore the network designed will
be using 8 bit as the input data precision.

The dataset for the neural network is created using a set of 10 misaligned side
channel traces provided by Riscure.

For developing the neural network architecture, TensorFlow is used along with
Keras ([27]).

For quantization aware training, Qkeras library ([30]) is used which acts as an
extension to assist in Quantization of the network during training.

For tuning the necessary fixed point precision values and further converting
the network into optimized C code for HLS, a framework namely his4ml ([28])
is used.

Finally to convert the network from C to required RTL specification (Verilog or
VHDL) for synthesis on the target FPGA, Xilinx’s Vitis HLS Tool ([25]) is used.

The design follows a top-down process where ideas are first designed and tested
on a higher layer and then the details and issues for a low level design are explored.

23

CHAPTER 5. NETWORK ARCHITECTURE AND IMPLEMENTATION 24

Initially, a reference pattern is selected for detection from the set of misaligned side
channel traces collected. The labelled data set is created using the pattern occur-
rence locations on these traces as seen in table[4.1] These values might differ based
on the pattern selected. To imitate a real time signal, a small amount of Gaussian
noise might also be added which further can help the network for better detection.
Since the matching module of icWaves has 8 bit input interface, the designed net-
work must also work on the same kind of input. By default, the values from the side
channel traces are in 16 bit representation. Therefore before training, the labelled
data set and all its values are converted into equivalent 8 bit signed integer. This is
done using the formula,

Xs = ((X —min(x))/(maz(X) — min(X))) = 255 — 128 (5.1)

where Xy is the 8 bit result, X is the input value and min and max are minimum and
maximum values of the data set(in 16 bit) respectively.

Figure shows the architecture of the Neural Network that was finalized after
experimentation. The first layer is an input layer namely “fc1 input” and it accepts
input of sample size equal to the selected reference pattern (154 in the case of
Figure to be detected in 8 bit representation. This is followed by two dense
layers namely "fc1” and "fc2” consisting of 12 and 6 neurons respectively along with
their respective Rectified linear (ReLu) activation functions followed by the output
layer which consists of a single neuron followed by sigmoid activation which gives
the final output of the network. Since quantization aware training is used during the
training of the network, the weights, bias, input and output values of all the layers
are maintained to remain below a specified precision. Here, the selected precision
during quantization aware training is 15 bits for representing the entire value with 7
bits for the integer representation and remaining 8 bits for the decimal representation
making it possible to represent these values using fixed point equivalent. The same
can be seen in all these layers where ap fixed is the fixed point precision assigned
for representing these values in the HLS C code with 16 bits to represent the whole
value with 8 bits for integer and 8 bits for decimal. It can be seen that an extra
bit has been added while assigning fixed point representation in HLS C. This is to
compensate the sign bit as discussed in section[4.2.2]

To achieve this design architecture, several optimizations and changes were in-
volved before reaching the final version. Before introducing any kind of optimization
techniques (like quantization and regularization) that would ease the network map-
ping on the FPGA, a basic network architecture consisting of three layers (one input,
one hidden intermediate and one output layer) with minimal architecture of 8,4 and
1 neurons in the first, second and the output layer respectively were considered.

CHAPTER 5. NETWORK ARCHITECTURE AND IMPLEMENTATION

Input
fcl _input

input: ?

output: (154,)

output (154,): ap_int<8=>

Y

Dense

input: (154,)

fcl

output: (12,)

weight (154, 12):
bias (12,):
output (12,):

ap_fixed<16,8>
ap_fixed<16,8>
ap_fixed<16,8>

Y

Activation

input: (12,)

relul

output: (12,)

output (12,):

ap_fixed<16,8>

25

weight (12, 6): ap_fixed<16,8>
ap_fixed<16,8>
ap_fixed<16,8>

input: (12,)
Dense bias (6,):

output: (6,) | output (6,):

input: (6,)
output: (6,)

Activation
relu2

output (6,): ap_fixed<16,8>

A
weight (6, 1): ap_fixed<16,8>
bias (1,): ap_fixed<16,8>
output (1,): ap_fixed<16,8>

Dense input: (6,)

output

output: (1,)

Activation | input: (1)

sigmoid

output (1,): ap_fixed<16,8>

output: (1,)

Figure 5.1: Finalized Neural Network design

Since the end goal is to achieve a network architecture that could be successfully
mapped onto the FPGA, smallest possible network is considered to reduce network
size as much as possible. Going any lower than the specified combination would
result in inaccuracies. Initially when testing the network performance for accuracy,
it was found that this architecture would work for certain input patterns and fail for
others pattern variations. This issue was solved by experimenting with preprocess-
ing techniques like scaling and normalization of the input data. However, introducing
such preprocessing of data also meant that deploying similar mechanism for the in-
put stream of real time data on the FPGA based side channel device which would
require additional processing elements and also memory storage and accessing.
This would lead to increased resource utilization and latency demands which was
not favourable. By further increasing the number of neurons and further reducing
the learning rate, it was found that these scaling and normalization techniques were
no longer required and the network worked on the raw incoming data.

CHAPTER 5. NETWORK ARCHITECTURE AND IMPLEMENTATION 26

Once the network was deemed accurate (in terms of false positive and false
negatives) on a software level, the next step in the process was to map this onto
the FPGA. For this, equivalent HLS C code suitable for High Level Synthesis by the
Xilinx tool would be required. Here, a tool namely hls4ml for is utilized to convert the
Neural Network design (written in python) to equivalent HLS code code along with
specifying the desired target FPGA (Xilinx Kintex 7 in this case) and the target clock
frequency (200MHz in this case). In the first attempt of trying to map the network
onto the FPGA, it was found that the resulting design would have an extremely high
resource utilization due to the presence of floating point values in the network. This
can be visualized as seen in the Figure[5.2] To reduce this high resource utilization,
optimization is required which improves the resource utilization drastically (which will
be discussed in figure [6.8] of chapter [6).

18

| Instance =1 f 77483

| Memary
|Multiplexer
|Register

|Available 658 282806 lal40
e e e e e o e i o

|utilization (%)

Figure 5.2: FPGA Resource utilization report for a network without quantization

Therefore, Quantization aware training is introduced to overcome this FPGA
mapping issue. For this, a library named Qkeras ([30]) is used which is extension
to Keras framework on which the Neural Network is built on. Qkeras replaces the
dense and activation layers of the network with equivalent layers namely QDense
and QActivation which are layers with quantization function. As discussed in section
4.2.1], Quantization aware training involves specifying a desired precision of quanti-
zation for weights, bias, input and output values on which the network will be trained
upon. This process is initiated by trying to limit the values to a fixed point precision
of 8 bits where 4 bits are allocated for the integer part and the remaining 4 bits for
the fractional part. However, this results in an inaccurate solution. On analyzing the
values of the different weights of the network, it was seen that these values need

CHAPTER 5. NETWORK ARCHITECTURE AND IMPLEMENTATION 27

more bits to accommodate the entire information. Further, it was also seen that the
fractional part required more bits for representation than the integer part. Several of
these quantization variation were experimented upon to achieve accurate result for
a specified pattern. However, it was observed that changing the input parameters
on which the network is trained upon like the input pattern would also require chang-
ing the specified fixed point precision accordingly. This is because of the variation
in the resulting weight values. To overcome this issue, L1 regularization ([27]) is
introduced into the network which in turn reduced the range over which the resulting
weights values would occur and therefore keeping all the weights in a sparse range
rather than scattered. This ensured that the specified network architecture with the
desired fixed point precision would not be affected regardless of the input parameter
variations.

Distribution of (non-zero) weights

lw{ |
felb] |
cam|
outputiw)—ED—|
output/b |
23 22 2I-1 » 2
X
Figure 5.3: Before optimization
Distribution of (non-zero) weights
an]
1| ——
o] | I —
2/ I—ED—|
outputive I [I:H
output/b |

Figure 5.4: After optimization

CHAPTER 5. NETWORK ARCHITECTURE AND IMPLEMENTATION 28

Since the optimization techniques limit the precision to a certain specified thresh-
old, vary the behaviour of weights and its values, it is essential to observe how these
values, their occurrence range and also if they fit under the specified/desired quan-
tization precision. Figure[5.3and Figure [5.4]portray how the weight values and their
precision are distributed before and after tuning and tweaking the network by using
the above mentioned optimization techniques. The gray region in the plot represents
the selected precision(by user) for representing the values of weights and bias val-
ues from each layer respectively. The blue boxes represent the actual values of
these weights that occur after training the network. The X axis represents the range
of these values and the Y axis consists of the various weights and bias values in the
network.

It can be seen that before optimization, the weight and bias value from the first
are missing the blue box which represent the occurrence range of the values after
training. This means that the actual values of the weights do not lie in the preci-
sion specified. This further means that these values are being represented wrongly
since not enough bits are provided to accommodate the actual values which might
ultimately lead to the end result being inaccurate. It can also be seen that the bias
values of the second layer (fc2/b) does not have its entire blue box covered inside
the grey region. This means that although the most significant bits (integer or frac-
tional part) of the values are properly represented, the lower most bits (fractional
part) are missing. It is always important to ensure that the right part of the box is
always inside the grey region meaning that the most significant bits are properly pre-
sented. As discussed, previously, it is recommended to consider an extra bit while
assigning the precision for the integer part to avoid overflow. The remaining left part
of the blue box which is not present in the grey region represents information that is
being chopped off due to limiting of the precision. This needs to be properly tuned
such that, the precision limiting is just enough to represent the actual values. For
example, the values might still be represented correctly even if some lower most bits
are skipped since not much information is lost and accuracy drop is negligible. But
to attain the best accuracy, it is best to ensure that the assigned bits (grey region)
are more than sufficient to represent both MSB and LSB properly taking signed val-
ues into account. To maintain uniformity, all the values are given the same precision
which is why the grey region is same for different weight or bias value. This can
further be fine tuned, having a custom precision for each weight and bias value
separately if needed.

After applying optimization techniques, it can be seen that the weights and bias
values of all the layers are sufficiently represented where all the grey regions which
represent the assigned precision is more than sufficient to accommodate the weight
and bias values (blue boxes) both on MSB and LSB respectively. It can also be

CHAPTER 5. NETWORK ARCHITECTURE AND IMPLEMENTATION 29

seen that the values are less scattered (due to regularization) as compared to before
optimization where weights and bias values were not present in a selected range.
This eases the process of assigning a desired precision and also ensures that the
model is more stable when input parameters change. Taking all of the above into
account, the network was tuned several times to select the least possible precision
without losing accuracy and also maintaining the network stability which resulted in
the final design as seen in Figure 5.1]

The finalized network which has been optimized is to be synthesized on the tar-
get FPGA. Since High Level Synthesis is being utilized, the network architecture
which is written in python is to be converted into equivalent C++ code which can be
compiled and synthesized using the HLS tool. For this conversion, the framework
his4ml is utilized which produces a synthesizable C++ code taking into account vari-
ous specification like target FPGA, desired clock speed and design strategy (latency
vs resource minimization). Such a design requires all the values (of weights, bias,
input and output) to be represented using fixed point in the resulting HLS C++ code.
For this purpose, his4ml converts the values into data of type "ap_fixed(X,Y)” where
Y is integer part and X is the total number of bit. This conversion in the C++ code
is based on the user specified quantization and the fixed point precision tuning (dis-
cussed in previous paragraphs). This can be visualized in the Figure which is
a snippet of the HLS C++ code which is the same as visualized in the finalized de-
sign (Figure [5.1). Here, only the input of the network is represented using the type
"ap_int(X)” since the input has 8 bit signed integer value as opposed to the weights,
bias and output values which are part of the network and might contain floating point
values which are restricted and represented using "ap_fixed(X,Y)".

ap_fixed<16,8> model_default_t;
ap_int<8> input_t;
ap_fixed<16,8> layer2_t;
ap_fixed<1 weight2_t;
ap_fixed<1 bias2_t;
ap_fixed<1 layerd4_t;
ap_fixed<1 layer5_t;
ap_fixed<1 weight5_t;
ap_fixed<1 biasb_t;
ap_fixed<1 layer7_t;
ap_fixed<1 layer8_t;
ap_fixed<1 weight8_t;
ap_fixed<1 bias8_t;

ap_fixed<16, sigmoid_default_t;
ap_fixed<16,8> result_t;

Figure 5.5: Fixed point representation in the HLS C++ code

The activation functions used in the network are Sigmoid and Rectified Linear
functions. Below, the forumlae used to calculate the sigmoid and rectifier values can

CHAPTER 5. NETWORK ARCHITECTURE AND IMPLEMENTATION 30

be seen.

o(x) = (5.2)

Relu(x) = max(0, z) (5.3)

Equation shows the calculation inside a sigmoid activation function (denoted
as o) and Equation shows the calculation inside a Rectified Linear activation
function (denoted as Relu) and x is the incoming input to the functions. Since latency
is the target here, it would be efficient to use pre computed values and store them
in the memory as opposed to calculating these equation on run time on the FPGA
hardware. For storing the rectified linear activation function values, Look Up tables
(LUTs) will suffice as they are simple maximization function. However, BRAMs are
used to store the sigmoid function values as these might need larger memory to be
stored.

Further, the design of the HLS C++ code generated is mainly focused on achiev-
ing the lowest latency since that is a key requirement for this project. Therefore, the
design strategy involved in achieving in this requires a parallel approach to handle
the data inside the network. The HLS C++ code can be embedded with specific di-
rectives to the HLS tool which dictate how the resulting RTL design post High Level
Synthesis. To improve the latency, HLS ARRAY RESHAPE is used on the input
of the the design. This directive essentially allows more data to be accessed in a
single clock cycle therefore reducing the overall latency of the design. This is done
by converting the input data array temporarily into individual elements which is then
recombined to form a single wide register. For example, if the input array has X
elements each with bit size of Y, then the resulting register will have X*Y bits. This
allows us to avoid storing these large input arrays in block ram and instead use reg-
ister for storing which therefore increases the overall throughput. This is basically a
form of loop unrolling executed by the HLS tool to improve latency on the basis of
the directive specified.

Similarly another directive namely HLS ARRAY PARTITION is used for the result-
ing output which partitions an array into individual elements. This would essentially
reduce the overall throughput at the cost of increased number of registers.

Using the HLS INTERFACE directive, the input of the network and the output ar-
rays of the network are specified as input and output ports of the design respectively.
This forms the the top level 1/O ports of the network.

As already discussed, having pipelined and unrolled loops or functions are bene-
ficial in reducing the number of clock cycle required. The Initiation Interval (ll) is the
interval between consecutive iterations in such pipelined functions. Using a directive
namely HLS PIPELINE in the design, the HLS tool is directed to reduce the initiation

CHAPTER 5. NETWORK ARCHITECTURE AND IMPLEMENTATION 31

interval of the design as much as possible reducing the overall latency. By default
the HLS PIPELINE tries to achieve the lowest Il while achieving the target clock fre-
quency specified (200MHz in this case). Using the above mentioned directives, the
HLS tool can achieve a low latency RTL design.

Chapter 6

Results

The previous chapter discussed the resulting network architecture, the optimiza-
tions and tuning involved and the High Level Synthesis based RTL design. This
chapter discusses in detail, the results that are obtained based on the designed
network architecture. Specifically, the resulting RTL simulation results and also the
reports resulting from the High Level synthesis on the FPGA. The analysis focuses
on the overall accuracy of the design while assessing latency and the maximum
input pattern size achievable. Further, these results are compared with traditional
techniques like SAD and Interval Matching.

6.1 Accuracy

Before discussing the results, it is important to understand how design attributes
like latency and accuracy are measured and it is also necessary to understand the
sample set it is being tested with. As already discussed in section a set of 10
misaligned side channel traces were obtained from Riscure. Out of these 10 traces,
7 were used to train the network to detect a particular pattern selected (of variable
size) by the user which occurs in each trace at certain point on the trace. So essen-
tially, the network is trained upon two input parameters namely the 7 side channel
traces and also the selected reference pattern to be detected. To measure how the
network design performs in terms of the accuracy, the remaining 3 misaligned traces
from Riscure can be used. These 3 traces each contain the pattern to be detected
but since these are misaligned, the location of the pattern might be different for
each trace. The designed Neural Network is a binary classifier which has an output
between 1 and 0 where any value closest to 1 is deemed as a positive result and
values closer to 0 are considered as negatives after rounding these values. Since
the location of occurrence of the selected pattern on each trace is already known
to the user as can be seen in Table of section [4.1], the outcome of the Neural

32

CHAPTER 6. RESULTS 33

Network which consists of a set of positive and negative results are compared with
the actual occurrence location on the trace to find if there exists any false positives
or false negatives. These false results provide a measure of accuracy of the network
and hence it qualitative performance.

Figure 6.1: Without any Gaussian noise (single detection peak at the expected lo-
cation i.e true positive)

Figure 6.2: With a Gaussian noise factor of 50 (multiple false positive peaks)

The initial testing is done by choosing an input pattern of 84 samples size to be
detected and thus the network is trained for the same. It was seen that when tested
with the 3 test traces, a 100 percent accurate result is obtained for with only one
positive output for each of the trace (i.e the location of the pattern on the trace) with
zero false positives and zero false negatives. But since real time signals contain
inherent noise, only the testing traces themselves do not provide the complete pic-
ture. Therefore, to further assess the network performance under real time signals,

CHAPTER 6. RESULTS 34

Gaussian noise is added to the test traces before testing. Upon subsequent testing
with the noisy traces, it is found that if the noise is high enough, it can affect the
network performance negatively. It was found that when the trace to be tested had
some noise present, the result of the Neural Network sometimes had false positives
and false negatives. This can be visualized with Figure[6.1]and Figure 6.2 which are
plots portraying the result of the Neural network for a test trace with zero noise and
a test trace with a Gaussian noise factor of 50 respectively.

The X axis on the plots correspond to the locations/samples of the trace and
the Y axis corresponds to the output value of the Neural Network. In the figure
(without noise), it can be seen that there is a single large peak occurring in the entire
result. This corresponds to the correct pattern detection by the Neural network. On
further comparison with the already known location of the trace from Table it
is observed that the location of the pattern as predicted by the Neural Network is
completely accurate without any shift in the location (i.e the Neural Network predicts
exact location of the trace). However, the inaccuracies only start to occur under the
presence of noise as can be seen in Figure[6.2] Here, itis seen that there are several
large peaks occurring in the result in addition to the prominent peak occurring at the
expected location. This means that the Neural network when fed with a noisy trace,
may consider regions in the trace other than the actual pattern location as a positive
result (i.e pattern detected) which means there might be positive results which might
be false in reality.

After testing the network with several iterations of noise factors, it was found that
the Neural Network would still predict with 100 percent accuracy if the noise factor
was negligible in comparison to the upper and lower bounds of amplitudes of the
incoming real time signal. However, the network would only begin to predict false
positives and false negatives if the noise in the incoming signal was so significant
that it would alter the original information making the signal completely different.

To better understand this, one can examine how the pattern to be detected would
look like before and after addition of noise. Figure shows how the selected
reference pattern of 82 samples would look like in the absence of any noise (i.e
original). Figure[6.4]shows how the pattern would look like with addition of Gaussian
noise factors of 10 and 60 respectively. The X axis in these plots correspond to the
samples of the pattern and the Y axis represents the amplitude of the pattern. The
added noise factor is relative to the amplitude of the signal. It can be seen (on the
left figure) that with a small noise factor, the pattern characteristics and features do
not change drastically and therefore such pattern would still be detected accurately
by the network. However, information of the trace and pattern completely change
when the noise factor is high (right figure) and therefore the network predicts false
positives and false negatives. It is hard to quantify and pinpoint how the signal

CHAPTER 6. RESULTS 35

might be affected from various types of noise and therefore the accuracy of the
network. Therefore, it is always recommended that pattern with significant features
are selected which make make it easier for the network to detect these patterns.

420

400

380
360
330
120 \J
1m0

Figure 6.3: Selected pattern (82 sample size) without noise

400 450
380 400
0 350
240 300
250
20
3 4 S0 & 70 80

D 40 0 @ 70 8

200

Figure 6.4: Pattern with noise factor of 10 (left) and 60 (right)

6.2 Latency

Further, it was found that there was no loss in accuracy when the Neural network
design was optimized and converted into equivalent RTL design for FPGA mapping.
This is because in the finalized design architecture, the selected precision after tun-
ing(discussed in chapter [5) is sufficient and no information is lost due to limiting of
fixed point precision. Therefore, the simulation result based on the RTL design ob-
tained after High Level Synthesis is same as the result of the network before any
optimizations, but the resulting pattern detection occurs after a certain delay which
corresponds to the latency of the design on the hardware. Figure[6.5/shows the sim-
ulation result of the RTL design after converting Neural Network design using HLS.

CHAPTER 6. RESULTS 36

As can be seen in the figure, even the RTL result (highlighted layer10 out in the
figure follows an accurate result with a single significant peak at the expected
pattern location. Further, figure shows that the peak occurs at adc stream offset
(2nd from top in the figure) of 14883. The adc stream offset basically represent the
incoming test trace in this case and this means that the peak occurs at 14883rd
sample on the test trace. However, the actual location of the pattern in the trace is at
14847th sample. There is difference of 35 samples between the actual occurrence
location of the pattern and the resulting location detected by the network design.

Time
adc_sample[7:0] =
adc_stream offset=.
ap_clk=
ap_done =
ap lidle=l
ap_ready =
ap_rst=
ap_start=
const_size_in_1[15:8] =
const size in 1 ap vid=
const_size out_1[15:0]=
const_size out_1 ap_vld=
f=| B
f bin=| [EUEEES
fcl_input_V[655:8] =

fcl input V ap vld=
T s T

Figure 6.5: RTL simulation result(Peak Detection)

signats
Time

adc_sample[7:0] =
adc_stream offset=
ap_clk=

ap_done =

ap_idle=l

ap_ready =

ap rst=

ap start=

const size in 1[15:8]=
const size in 1 ap vld=
const size out 1[15:8]=
const size out 1 ap vld=
f=

f bin=

fcl input V[655:0] =

fcl input V ap vid=
layerl® out @ V[15:8]=(

layerle out 8 V ap vld=

Figure 6.6: Occurence location and clock cycle delay

Upon examining the timing report resulting from the High Level Synthesis as
seen in Figure it can be observed that the latency of the design corresponds
to 35 clock cycles which explains the shift in the result by samples. The initiation
interval between two pipelined operations is also minimized and is 1 clock cycle.
Further, it can also be seen that the achieved estimated timing of the clock in the
design is 4.368 which corresponds to a clock frequency of 228.9 MHZ which is well
over the specified target frequency of 200 Mhz assigned during the HLS process.
Therefore, the overall latency of the design is 35 x 4.368 ns = 152.88 ns.

CHAPTER 6. RESULTS 37

== Performance Estimates

+ Timing (ns):

* Summary:

PR PR $ecsssssssadensnnsnnnnns +
| Clock | Target| Estimated| Uncertainty|
$ecccccns bosasnne frssssssssshassnnnnnnnns *
lap_clk | 5.80| 4.368] B.62|
$ressssns #omsesas e L 4

+ Latency (clock cycles):

* Summary:

s $emnan demmaa $emman fecmsasaaaa +
| Latency | Interval | Pipeline |
| min | max | min | max | Type |
LA L e e +
| 35) a5 1| 1| function |

L LR R R R rrrmw LAEERER L LR R R rrrrrrrmmm +

Figure 6.7: Post Synthesis timing report

6.3 Resource usage

Figure portrays the total resource utilization report on the target FPGA after
the finalized design is synthesized using Xilinx HLS tool. It can be seen that post
fixed point optimizations and tuning that were implemented, the resource usage on
the FPGA reduces drastically as compared to that before optimization as discussed
previously in Figure of chapter It can be seen that the DSP48E usage is
improved. This is because these DSP blocks which are responsible for the multipli-
cation operations in each neuron now have fixed point data instead of floating point.
This also holds true for the addition operations on the neurons which are done us-
ing the logic cells. The Flip flops (FFs), Look Up Tables (LUTs) and register usage
corresponds to the way the data is handled inside the network. On the input layer of
the network, the incoming data stream which is an array of feature size (in this case
82 which is the pattern size) is transformed (using HLS ARRAY RESHARPE directive)
and unrolled into a single register of bit width of size 82 x 8 = 656 which is equivalent
to 82 samples of 8 bit each. The next layer which is a dense layer accesses these
values from the register and therefore improving read and write speed. Similarly, the
consecutive intermediate layers and the output layer use HLS ARRAY PARTITION
directive to decompose output array into smaller registers to increase the read and
write speed at the cost of increased number of registers. Consequently the input
layer array reshaping process also require multiplexing (656 to 1) and demultiplex-
ing accordingly. But these directives which essentially process data by unrolling
also increases the number of registers used significantly. Although the report por-
trays low usage of the various resources with sufficient room to implement a larger
design in theory, it is important to keep in mind that due to design strategy (unrolling

CHAPTER 6. RESULTS 38

and pipelining) to achieve low latency, the amount of registers used and multiplexer
size might have to be limited based on the requirement of latency (i.e limiting read
and write, therefore the overall clock cycles required).

* Summary:

O U
| Hame | BRAM_18K| DSP48E| FF | LUT | URAM|
hermssnnnsnns P P S
|osP | | | | “| |
|Expression | | | e 18] |
|FIFO | -| | - - o
| Instance | 1) 14| 14183 14613 | .

| Memory | “| | | -| “|
|Multiplexer | | | | 36|
|Register |] | | 1126| -

Fommm e Fommmmmmn $emmmmm- B e #----- +
| Total | 1] 14| 15369 14667 | 8|
frssssssssssssssss #ssssss=ass $rssssas fprsssssss #rssssssas fessaa +
|Available | 658 | 60868| 282888| 181408| 8|
LA R R L R R e s EEEEEEE X e AEEEEEEES SRR L AR +
jutilization (%) | -8 | 2| 7l 14| 8|
hrrmmammree e P P S P +

Figure 6.8: Post Synthesis resource usage report of the final design

6.4 Maximum Pattern Size and limitations

Further, the experiment is repeated with a larger pattern of 154 samples size and
it is observed that the resulting design has an increased latency with the increase in
sample size. As opposed to 35 clock cycles for the 82 sample based design, it now
requires 50 clock cycles for the 154 sample based design. The achieved clock timing
is 4.296 ns which corresponds to a clock frequency of 232.77 Mhz which is similar
to the previous case. The overall latency is hence 214 nanoseconds. This again
is due to the increased read and write operation based on the increased pattern
size. The FPGA resource usage reported is still low in terms of the DSP, BRAM, FF
and LUT usage, but the input unrolling procedure now requires a 8 x 154 = 1232 bit
width register and also the same trend follows for the multiplexer size and number
of registers and used subsequently as seen in the previous case. Therefore, it is
observed that with the increase in pattern size two main factors are affected namely
the latency and register usage for the read or write operations.

When further experimenting with larger pattern sizes, it is seen that the network
synthesis starts failing after 310 samples size. Upon detailed inspection and anal-
ysis, it was discovered that the reason behind this is due to the limitations from the
design strategy and also the specified target clock frequency and timing. Specifi-
cally, the number of registers required at this pattern size to handle the data would
increase and reach the threshold after which it would not be possible to meet the

CHAPTER 6. RESULTS 39

target frequency specified and also achieve the desired low latency. If larger pat-
terns (>310 samples) are to be incorporated, then the design strategy would also
have to be varied such that additional memory elements like BRAM would have to
be employed which in turn would affect the latency of the design. However, these
are not considered here since the scope of this thesis is to focus on latency primarily.

6.5 Flexibility

Previously, various metrics like accuracy, pattern size and other hardware based
metrics like latency, clock speed and resource usage were analyzed. However, an-
other important factor to be considered is the flexibility of the overall design and
its testing workflow for the particular SCA and FI scenario. The Neural network
based design for a SCA and FI pattern detection specifically on an FPGA based
device like icWaves is a new approach to improving the already existing designs
with traditional techniques like Sum of Absolute differences and Interval matching.
The implemented design was possible with the help of modern High Level Synthesis
tools and supporting frameworks which are built around optimizing Neural network
designs for FPGA inference. The design and testing workflow involved is different in
comparison to the traditional techniques which are built directly using RTL. The core
principle revolves around training neural network design on a higher level (using
software on a computer) and then mapping the resulting network with all its weights
and bias values onto the FPGA by leveraging modern HLS tools and surrounding
machine learning frameworks. It is seen that the procedure begins by creating a
relevant data set using side channel information (set of traces or signals) from the
device under test and also selecting a particular arbitrary region on the collected
trace which is the pattern to be detected. It is important to note that although the
network architecture is fixed (neurons and quantization), the training and synthesis
steps need to be executed every time input parameters of the neural network change
(i.e dataset created on the basis of collected signals and the selected pattern in the
signal) and therefore a new RTL design is created each time the synthesis is done
based on the updated weight, bias, input and output values. It is necessary to note
the implications this might have on the overall side channel and fault injection testing
scenario. On one hand, having an optimized network architecture (fixed quantiza-
tion,neurons,learning rate) which already has been tested for feasibility on the target
FPGA can be beneficial. This is because altering and testing various different input
scenarios like pattern characteristics, pattern sizes, noise factors etc becomes eas-
ier as these first tested on a higher level for feasibility and possible failures which
is followed by the final design mapping if everything works as intended and further
FPGA design metrics can be evaluated. On the other hand, it is also important to

CHAPTER 6. RESULTS 40

consider the time required to achieve this workflow (i.e training and synthesis time)
on each input parameter variation. It is observed that the network is a small MLP
architecture with labelled dataset which can be trained in relatively less time (max of
5-10 minutes) and the synthesis of the network on the FPGA is what consumes the
most time (around 30 minutes to an hour). Therefore, the overall workflow achieved
here hinders flexibility when considering the need to synthesize the design repeat-
edly and also the processing times involved. However, there is an added benefit of
accessing and modifying the network design at a higher level which can be useful.

6.6 Comparison with traditional techniques

6.6.1 Hardware metrics

Table[6.1]shows how the hardware design of Neural network architecture performs
in comparison to the interval matching and the SAD algorithm. Both the Neural
Network and SAD algorithms are designed for the icWaves and therefore use a
Xilinx Kintex-7 XC7K160T FPGA (162k logic elements). The authors of [7] use an
Altera Cyclone IV GX FPGA (150k logic elements) for the interval matching design.

Algorithm Neural Network | Interval Matching | SAD
FPGA Kintex 7 Cyclone IV GX Kintex 7
Latency 430 ns 32 ns 250 ns
Sample rate(Clock freq) | 230 Mhz 125 Mhz 200 Mhz
Sample size(in 8 bit) 310 2625 1024

Table 6.1: Comparison of different algorithms

The latency of the Neural Network design depends on the size of the input pattern
and as already discussed in the previous chapter, the latency increases linearly with
increase in the pattern size. The 430 ns latency of the Neural network design as
seen in the table corresponds to the design obtained for the maximum possible
pattern length of 310 samples. It can be seen that interval matching has the lowest
possible latency and the maximum reference pattern size although it has a lower
clock speed. The authors of [7] mention that the originally achieved frequency of the
design was 171 Mhz but had to use a lower overall frequency due to the need for
down sampling the input signal.

Considering the FPGA Resource usage, the interval matching consumes around
88 percent of logic units on the cyclone FPGA while the SAD consumes around
80 percent on the Kintex 7 FPGA while achieving the results as seen in the table.
In comparison, the FPGA design of the Neural Network can only accommodate a

CHAPTER 6. RESULTS 41

maximum of 310 samples but reports a very low resource usage of 15 percent on
the Kintex-7 FPGA for the same. However, it is very important to note that the design
does not allow inputs of larger samples sizes as is the case in the Interval Matching
and SAD algorithms due to design strategy limitations as discussed in section 6.4
which is a pitfall of the design in terms of resource utilization.

6.6.2 Design Flexibility

In terms of design flexibility, both the SAD algorithm and the interval matching al-
gorithm use a separate module on the FPGA called capture module to capture a
region or pattern of interest from the incoming real time signals and then store it in
the memory which is done before the actual algorithm is executed. Then during the
execution of the algorithm, this pattern to be detected are accessed from the mem-
ory. In comparison to these algorithms and their flow, the Neural Network design
flow already captures this information pre synthesis and the designed Neural net-
work will accept input which is of the size equivalent to the input feature size(in this
case the pattern is the feature of the input stream). However, the overall flexibility
is hindered as previously discussed in section 6.5 due to the repetition of the entire
flow and also the synthesis process based on input changes which is a disadvantage
compared to the SAD and Interval Algorithm.

6.6.3 Accuracy

Since both the SAD and interval matching algorithms are signal similarity algo-
rithms their FPGA based RTL design is based on a sliding window concept where
the incoming real time signal is compared to a window of size equivalent to the ref-
erence pattern size where a barrel shifter is used to send incoming data sample by
sample (each of size 8 bit) into the window. The result of the comparison is therefore
the mean of results over the entire window which means that it wont be one single
peak as seen in the case of the Neural Network design. Rather, the result will be a
gradual change over the region of interest (pattern location).

In the SAD algorithm, if the resulting mean sum value is greater than a specified
threshold then the pattern is deemed as a match. Here, the accuracy of the design
is highly dependent on the threshold value set. A higher threshold might cause the
design to miss the pattern causing a false negative whereas having a threshold too
low can result in other parts of the signal being falsely recognized as the pattern
which results in false positives (this is specifically important in the case of inherent
noise). Therefore, one needs to choose an optimum threshold value to successfully
detect patterns.

CHAPTER 6. RESULTS 42

Similarly, even the Interval matching has a similar working where an additional
interval offset is specified over the amplitude of the reference pattern (offsetting on
positive and negative part of the signal) to be detected. This algorithm therefore
has an extra layer of customization available in addition to threshold parameter to
properly assess signals to reduce false positives and false negatives. The authors
of [7] who have designed the interval matching architecture explain that they aim to
obtain a single correct trigger while particularly avoiding or at least minimizing the
false positives. They explain how by tuning the threshold and offset values carefully
and after balancing them they obtain a 90 percent correct match and 10 percent
false negatives and no false positives when tested upon a real time side channel
signal of single RSA branch (cyrptographic process running inside the device under
attack) with very low noise.

For testing the Neural Network design accuracy, traces with misalignment are
used for testing instead of a real time scenario as seen in Interval matching testing
([7]). In the absence of noise, the Neural Network is able to detect each of these
pattern occurrence with a 100 percent accuracy with exactly one true positive per
trace and zero false positives and false negatives. This accuracy is maintained
sometimes even with a low noise present since the network is still able to recognize
and detect the features even if slightly distorted. In some iterations of the experiment
with small noise factors, a maximum of 3 to 5 false positives and zero false negatives
are seen. The network inaccuracies only start to occur as the noise values become
significant. Although the Neural Network design reports high accuracy at low noise
values, it is only based on a synthetic testing environment as opposed to testing with
a real embedded device as seen in the case of Interval Matching. Moreover, the size
of the pattern considered in interval matching design are in the range of 1500-2500
samples whereas in the neural network design it is restricted to 310 samples. Having
more sample size also means more features and also more repetitiveness to detect.

Chapter 7

Conclusion

This chapter concludes the thesis by answering the research questions and as-
sessing the feasibility of neural networks as a replacement to existing state of the
art techniques.

Looking back the primary research question (section which concerns the
most important aspects like accuracy and latency, the following assessments are
made.

* In terms of accuracy, the neural network design provides good performance
with zero false positives and false negatives in the absence of noise and and
also has the ability to further adapt to small amounts of noise when tested
using misaligned traces. But this result is obtained in a synthetic testing envi-
ronment as opposed to testing with crytpographic operations on an embedded
device at real time. Therefore, further testing and experimentation is required
to compare the accuracy with the traditional techniques and make an assess-
ment in this regards.

+ Interms of latency, both the interval matching and the SAD algorithm are better
since the interval matching algorithm is more than 10 times faster while the
SAD algorithm has twice the speed.

Further when considering the second research question which concerns the
trade offs between various aspects like maximum pattern size, resource utilization,
clock frequency and flexibility of the design, the following assessments can be made.

» The neural network design can support upto a maximum pattern size of 310
which is very low in comparison to the interval matching and SAD designs as
seen in table .11

» The neural network design has a better clock performance but at the cost of
the maximum sample size.

43

CHAPTER 7. CONCLUSION 44

« The neural network design’s workflow which requires re-initializing the en-
tire workflow (from network training to synthesis) based on input parameter
changes, hinders the flexibility of the design in comparison to the traditional
techniques which do not use a High Level approach.

To summarize, the neural network approach for FPGA based SCA and FI testing
using HLS tools is novel and provides a new direction in the domain but still falls be-
hind the traditional techniques in certain aspects. However, having Neural Network
for detecting real time traces can be beneficial if the network is tuned and tested
further. Since the network design and testing is done at a higher level, this allows
for further possibilities with various network architectures that can be implemented
in the future along with improved testing and a larger dataset.

Bibliography

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual interna-
tional cryptology conference. Springer, 1999, pp. 388-397.

[2] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (ema): Measures
and counter-measures for smart cards,” in International Conference on Re-
search in Smart Cards. Springer, 2001, pp. 200—210.

[3] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems,” in Annual International Cryptology Conference. Springer,
1996, pp. 104—-113.

[4] J.-S. Coron and I. Kizhvatov, “An efficient method for random delay generation
in embedded software,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2009, pp. 156—170.

[5] C. Clavier, J.-S. Coron, and N. Dabbous, “Differential power analysis in the
presence of hardware countermeasures,” in International Workshop on Crypto-
graphic Hardware and Embedded Systems. Springer, 2000, pp. 252—263.

[6] J. G. Van Woudenberg, M. F. Witteman, and F. Menarini, “Practical optical fault
injection on secure microcontrollers,” in 2011 Workshop on Fault Diagnosis and
Tolerance in Cryptography. |EEE, 2011, pp. 91-99.

[7] A. Beckers, J. Balasch, B. Gierlichs, and I. Verbauwhede, “Design and im-
plementation of a waveform-matching based triggering system,” in Interna-
tional Workshop on Constructive Side-Channel Analysis and Secure Design.
Springer, 2016, pp. 184—198.

[8] icWaves Datasheet, Riscure, 9 2011, version 3c.

[9] M. Carbone, V. Conin, M.-A. Cornelie, F. Dassance, G. Dufresne, C. Dumas,
E. Prouff, and A. Venelli, “Deep learning to evaluate secure rsa implementa-
tions,” IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 132-161, 2019.

45

BIBLIOGRAPHY 46

[10] Z. Martinasek, J. Hajny, and L. Malina, “Optimization of power analysis using
neural network,” in International Conference on Smart Card Research and Ad-
vanced Applications. Springer, 2013, pp. 94—107.

[11] Z. Martinasek, O. Zapletal, K. Vrba, and K. Trasy, “Power analysis attack
based on the mlp in dpa contest v4,” in 2015 38th International Conference on
Telecommunications and Signal Processing (TSP). |EEE, 2015, pp. 154—158.

[12] G. Perin, B. Ege, and L. Chmielewski, “Neural network model assessment for
side-channel analysis,” Cryptology ePrint Archive, 2019.

[13] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Ngadiuba,
M. Pierini, R. Rivera, N. Tran et al., “Fast inference of deep neural networks
in fpgas for particle physics,” Journal of Instrumentation, vol. 13, no. 07, p.
P07027, 2018.

[14] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and
K. Vissers, “Finn: A framework for fast, scalable binarized neural network in-
ference,” in Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2017, pp. 65—74.

[15] C. Coelho, A. Kuusela, H. Zhuang, T. Aarrestad, V. Loncar, J. Ngadiuba,
M. Pierini, and S. Summers, “Ultra low-latency, low-area inference accelerators
using heterogeneous deep quantization with gkeras and hisdml,” arXiv preprint
arXiv:2006.10159, p. 108, 2020.

[16] Q. Ducasse, P. Cotret, L. Lagadec, and R. Stewart, “Benchmarking quantized
neural networks on fpgas with finn,” arXiv preprint arXiv:2102.01341, 2021.

[17] M. Witteman and M. Oostdijk, “Secure application programming in the presence
of side channel attacks,” in RSA conference, vol. 2008, 2008.

[18] M. M. Altaf, E. H. Ahmad, W. Li, H. Zhang, G. Li, and C. Yuan, “An ultra-high-
speed fpga based digital correlation processor,” IEICE Electronics Express, pp.
12-20150214, 2015.

[19] H. Kanders, T. Mellgvist, M. Garrido, K. Palmkvist, and O. Gustafsson, “A 1
million-point fft on a single fpga,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 66, no. 10, pp. 3863—-3873, 2019.

[20] R. Schmidt, S. Blokzyl, and W. Hardt, “A highly scalable fpga implementation
for cross-correlation with up-sampling support,” in Impedance Spectroscopy.
De Gruyter, 2018, pp. 81-92.

BIBLIOGRAPHY 47

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

D. Castells-Rufas, S. Marco-Sola, Q. Aguado-Puig, A. Espinosa-Morales, J. C.
Moure, L. Alvarez, and M. Moretd, “Opencl-based fpga accelerator for semi-
global approximate string matching using diagonal bit-vectors,” in 2021 31st
International Conference on Field-Programmable Logic and Applications (FPL).
IEEE, 2021, pp. 174-178.

T. Van Court and M. C. Herbordt, “Families of fpga-based algorithms for ap-
proximate string matching,” in Proceedings. 15th IEEE International Conference
on Application-Specific Systems, Architectures and Processors, 2004. |EEE,
2004, pp. 354-364.

N. I. Rafla and I. Gauba, “A reconfigurable pattern matching hardware imple-
mentation using on-chip ram-based fsm,” in 2010 53rd IEEE International Mid-
west Symposium on Circuits and Systems. |EEE, 2010, pp. 49-52.

D. Sart, A. Mueen, W. Najjar, E. Keogh, and V. Niennattrakul, “Accelerating
dynamic time warping subsequence search with gpus and fpgas,” in 2010 IEEE
International Conference on Data Mining. |EEE, 2010, pp. 1001-1006.

V. Xilinx, “Vivado design suite user guide-high-level synthesis,” 2021.

H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer quantization
for deep learning inference: Principles and empirical evaluation,” arXiv preprint
arXiv:2004.09602, 2020.

F. Chollet, “Introduction to keras for researchers,” https://keras.io/getting_
started/intro_to_keras_for_researchers/, 2020.

FastML Team, “fastmachinelearning/hls4ml,” 2021. [Online]. Available: https:
/lgithub.com/fastmachinelearning/hls4ml

X. Inc., “7 series fpgas data sheet: Overview,” 2020.

Google, “Qkeras,” https://github.com/google/gkeras, 2019.

https://keras.io/getting_started/intro_to_keras_for_researchers/
https://keras.io/getting_started/intro_to_keras_for_researchers/
https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml
https://github.com/google/qkeras

	Abstract
	Introduction
	Motivation
	Report organization

	Background
	Side-channel and fault injection attacks
	Side-channel analysis
	Fault injection

	icWaves

	Relevant Work
	Methodology
	Side-channel power traces and Data-set creation
	Neural Network Architecture and optimizations
	Quantization for FPGA inference
	Fixed point tuning and Regularization

	Network Architecture and Implementation
	Results
	Accuracy
	Latency
	Resource usage
	Maximum Pattern Size and limitations
	Flexibility
	Comparison with traditional techniques
	Hardware metrics
	Design Flexibility
	Accuracy

	Conclusion
	References

