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Abstract

a aIntroduction – Distal radius osteotomies for distal radius malunion can preoper-
atively be planned. Currently, the affected radius is compared with the contralateral
unaffected radius to find what corrections are needed. However, problems arise if no
healthy contralateral radius or asymmetry is present. Therefore, there is a need for
an accurate reference radius. This thesis aims to describe the magnitude of asym-
metry and offers an alternative reference radius in the form of a predicted radius.

Methods – Length asymmetry in the forearm was measured on 50 pairs of unaf-
fected ulnae. Further, full shapes of radii were predicted given the shaft and proximal
radius. This was done using a shape completion model based on Gaussian process
regression. The model was trained on 57 healthy radii, and its performance was vali-
dated using a leave one out method. Differences between the predicted and original
radius were expressed in mean and Hausdorff distances, rotational and translational
differences, heatmaps of local differences, and as principal components of the dif-
ferences. To assess how the model performs when a larger part of the radius is
predicted, validation steps were repeated for 5%, 10% and a 15% predicted radius.

Results – An absolute left/right length difference in the ulna of 2.4 ± 2.3 mm
was found. Further, the mean and Hausdorff distances between the 10% predicted
radius and the original radius were 0.83 ± -0.24 mm and 3.11 ± 0.69 mm. The al-
gorithm performed statistical significant better when 5% of the radius was predicted
and worse if 15% was predicted. The rotational differences between the predicted
and original distal radius around the x, y, and z-axis were: 0.19 ± 2.64 deg, 0.15 ±
2.49 deg, 0.07 ± 3.19 deg. Translational differences over the x, y, and z-axis were:
0.33 ± 4.74 mm, -0.23 ± 4.72 mm, and 0.31 ± 0.88 mm. Locally, differences were
mainly present in the radial styloid.

Discussion – Significant left/right length asymmetry is present in the forearm,
therefore, a length correction is needed when used for correction osteotomy. Fur-
ther, when no contralateral radius is present, the shape of the distal radius can
accurately be predicted. Because the shape of the radial styloid was predicted less
accurately, it is advised to use other parts of the radius as a template for osteotomy.
Lastly, an as large as possible part of the radius should be used to predict the radius.
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Chapter 1

Introduction

Distal radius fractures are among the most prevalent fractures in the body with an
incidence of 20-26 per 10. 000 person-years [1], [2]. Treatment most often consists
of conservative therapy by using a cast or splint to stabilize the fracture. Additionally,
in severe cases, surgical fixation can be used [3]. However, complications can occur
in distal radius fractures [4]. One of the most prevalent complications is a malunion,
contributing 17% to the total complications [5]–[9]. In malunion, bones are fused in
an unfavorable orientation which does not restore the original shape. The distal ra-
dius can be rotated or shifted in all directions in respect to the pre-fracture situation.
Clinically, radial tilt (rotation of the distal radius around the flexion/extension axis),
radial inclination (rotation of the distal radius around the radial ab/adduction axis),
and ulnar variance (a length difference in ulna and radius) can cause the majority of
complaints (Figure 1). Complaints include pain, osteoarthritis, limitation of range of
motion, and loss of grip strength [4], [10].

If a malunion is symptomatic, intervention might be required. Conservative ther-
apy such as physiotherapy is the first choice, however, complaints may remain [6],
[11]. In those cases, a corrective osteotomy can be considered. In a corrective os-
teotomy, the radius is sawn and then repositioned in a pose that should restore the
original anatomical pose and is then fixated with a plate and screws [6], [10]. Pre-
viously, the saw plane and rations needed to reconstruct the radius were estimated
preoperatively. To reconstruct the radius more precisely, 3D planned surgery can be
used nowadays. In 3D planned surgery, a bilateral CT scan of the forearms is made.
Then, a 3D representation of the CT scan of the contralateral radius is mirrored and
superimposed on that of the malunited radius using 3D software. Thereafter, the
proximal parts of both radii are aligned and the altered orientation of the distal malu-
nited radius becomes visible. To correct this orientation, the distal radius is virtually
sawn at the desired cut plane and rotated until it realigns with the unaffected radius.
To execute this in practice, 3D printed patient-specific drill and saw guides (PSG) are
used. The drill guide is used to predrill holes that match the holes in a volar plate if
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Radiological parameters for radius malunion. a) Radial tilt (rt), the angle
in the direction of flexion/extension. b) Radial inclination (ri), the angle
in the direction of radial/ulnar abduction. c) Ulnar variance (uv+), the
length difference between radius and ulna. Adaptation from graham et
al. (14)

the radius is rotated in the right orientation. The saw guide is used to locate the de-
sired saw plane. This is visualized in Figure 2 [12]–[15]. When surgery is complete,
the malunited radius should match the contralateral radius which is used as a ref-
erence radius. The challenge with planned surgery with PSG’s is that an accurate
reference radius is needed. If a reference radius does not mimic the pre-surgery
radius, the restored radius will differ from the pre-fracture radius. Subsequently, the
restored radius might still have an altered orientation and alignment. Clinically, this
means that complaints may remain, and reintervention may be indicated. Therefore,
there is a need for a reliable reference radius that can be used to restore the original
anatomy.

The contralateral radius can be an accurate reference radius if good bilateral
symmetry is present. Initially, some studies showed little bilateral difference by com-
paring X-ray images [16]–[19]. However, more recently, Vroemen et al. assessed
symmetry by using CT scans [20]. They found that radii are more asymmetrical
than initially thought. A relatively large right-left difference was found, especially in
the length direction [20]. These bilateral asymmetries were found in a study that
included 20 healthy subjects [20]. However, this study has limited power since only
healthy subjects are included and bones can change shape depending on the me-
chanical load. To estimate the magnitude of asymmetry in the forearm more accu-
rately asymmetry must be analyzed in a larger more relevant population. Therefore,
we analyze the amount of bilateral asymmetry in the forearm in a larger population
of patients with a distal radius malunion.
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Figure 1.2: A 3-D computer simulation of a corrective osteotomy is shown. (a)
Patient-specific saw and drill guides are made for osteotomies based
on a contralateral reference radius. (b) The location of the cut plane
and drill holes. (c) The plate is first fixated distally. (d) When the plate
is also fixated proximally, the distal radius is repositioned to the planned
position. From miyake et al.
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In cases with large asymmetry in the contralateral radius, e.g., when a fracture
or other pathology is present contralaterally, the contralateral radius cannot be used
as a reference at all. To solve this problem, several attempts have been made to find
an alternative reference radius using a statistical shape model and shape comple-
tion algorithms [21], [22]. These methods can predict the shape of the distal radius
based on the shape of the proximal radius. These methods seem to work pretty
well, however much is yet unclear about the performance of these algorithms. For
example, Since the main goal of a correction osteotomy is to reconstruct congruent
joints, the predicted reference radius must provide an accurate template for these
areas. The local performances of the algorithms in these areas are not well de-
scribed yet [21], [22]. Therefore, we created a shape completion algorithm that can
predict the shape of the distal radius based on the shaft and the proximal radius and
analyzed its performance.

The aim of this thesis is to further develop guided distal radius osteotomy by
improving the understanding of the accuracy of the reference radius, for both the
use of the contralateral radius and a predicted radius as reference bone. This will
be done by measuring bilateral length symmetry, and developing an algorithm to
predict a distal radius based on the shaft and proximal radius. Finally, the algorithm
will be evaluated.



Chapter 2

Assessment of bilateral length
asymmetry

2.1 Introduction

A distal radius malunion is a complication after a fracture in which the radius heals
in a non-anatomical orientation [4]. Malunions can cause complaints including pain,
loss of function, wrist instability, and, in the long term, osteoarthritis [4], [10]. This
non-anatomical orientation of the distal radius is quantified with several radiological
parameters: radial inclination, radial tilt, and ulnar variance (Figure 1) [10]. Com-
plaints might especially exist when the ulna and radius are longitudinally misaligned
in the distal radial ulnar joint (DRU) [23]. Therefore, ulnar variance is considered to
be the most important parameter to explain complaints [20], [23]. Treatment often
consists of conservative therapy1. If complaints remain after conservative therapy, a
corrective osteotomy can be considered to restore the original anatomical relations
in the DRU and radiocarpal joint [6], [11].

To allow for a precise reconstruction, three-dimensional (3D) planned and guided
surgery is frequently used. The first step is to determine the location of the os-
teotomy, the required correction angles, and the translations needed to correct the
radius to its original shape. This is done by mirroring a computed tomography (CT)
derived 3D computer model of the affected radius. Then, this model is aligned with
the unaffected radius. The difference in the pose of the distal radius in both forearms
is then used to find the required saw-cut position, correction angles, and translations.
Thereafter, a 3D printed guide is made which contains the required saw-cut position
and drill holes to perform the preoperatively planned surgery. With this procedure, it
is possible to reconstruct a malunited radius to mimic the shape of the contralateral
unaffected radius [12], [14], [15], [24].
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6 CHAPTER 2. ASSESSMENT OF BILATERAL LENGTH ASYMMETRY

Problems with the use of the contralateral radius as a reference radius might
arise in the case of bilateral asymmetry. If the contralateral radius does not rep-
resent the pre-fracture radius, the osteotomy will not restore the original anatomy
of the radius [20], [21]. If the malunion is not corrected completely, complaints
could persist, and re-intervention might be necessary. Since CT scans of healthy
pre-fracture pairs of radii are not readily available, asymmetry must be quantified
indirectly. Vroemen et al. found that the bilateral length difference of the ulna is
correlated with the bilateral length difference of the radius by a factor of 0.984 [20].
Therefore, the length differences in the ulnae can be used to indicate the amount of
forearm length asymmetry. This indirect way of measuring asymmetry in the forearm
can only be used for length differences and not for differences in other translations
and rotations that may be present. However, since ulnar variance is assumed to
be the most important parameter to reconstruct in an osteotomy, a reference radius
with an appropriate length is important [23]. Therefore, an indirect measurement of
the forearm length differences is an important metric that can be used to assess the
accuracy of the use of the contralateral radius as a reference radius.

In this chapter, we aim to quantify the bilateral ulnar asymmetry in a population
of patients with a radius malunion. Studies suggest that mechanical-driven bone
growth can cause bilateral differences [25]–[28]. Sex, workload, age, and other
parameters can impact bilateral length differences [28]. Because a population of
patients with a distal radius malunion may have other characteristics than a healthy
population, a difference in bilateral length difference may also exist between pop-
ulations. Therefore, it is important to understand how much bilateral asymmetry is
present in a population of patients with a distal radius malunion.

2.2 Method

2.2.1 Patients and data

In this retrospective, descriptive, cross-sectional study, the bilateral length differ-
ences of 50 subjects were measured on forearm CT scans of patients who had an
indication for a corrective osteotomy of the distal radius. All patients were treated at
OCON Centre for Orthopedic Surgery in Hengelo, the Netherlands. Inclusion criteria
were a bilateral CT scan of the whole forearm and age above 18 years. Exclusion
criteria were a previous pathology in one of the forearms other than the distal radius
malunion. Inclusion occurred in the period from February 2015 until June 2021.

CT- scan settings were based on a standard forearm scanning protocol and were
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Figure 2.1: a) In green, the axis of measurement for bilateral ulnar length difference
measurements is displayed. This axis is defined between the center of
the ulna and the tip of the ulnar dome. The center of the ulna is defined
as the center of a circle, fitted on the cross-section of an ulna which is
cut lengthwise in half, b) a measurement for bilateral ulnar length differ-
ences. The left ulna (white) is mirrored and proximally aligned over the
right ulna (cyan). In the direction of the previously determined measure-
ment axis, the bilateral length difference is measured.

obtained before the corrective osteotomy. A slice thickness between 0.2 and 0.6 mm
was used, with a B20 kernel and a matrix of 512x512. The voltage used was 120
kV and the tube current was automatically regulated. The forearms were placed in
the scanning direction. Segmentation was done using the protocol in appendix A.

2.2.2 Measurements

The bilateral length differences were calculated by measuring the length difference
between the aligned ulnae. The left ulnae were first mirrored and then aligned with
the right ulnae by using a global rigid registration method and manual adjustment.
Then, in the longest of the ulnae, a measurement axis was defined from the center
of the ulnae to the top of the ulnar dome. The center of the ulna was found by cutting
the ulna halfway between the most proximal part of the olecranon and the tip of the
ulnar dome. Subsequently, a circle was fitted on the inner surface of the dissected
bone. The axis of measurement was defined as an axis between the center of the
fitted circle and the tip of the ulnar dome. This method is shown in Figure 2. The
ulna length difference was then measured using this axis.
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2.2.3 Statistical analyses

The required population size was estimated to be 65 using the following equation
[29]:

N =
Z2

α/2 ∗ std2

d2
(2.1)

Where N is the required population size,Zα/2 is the reliability coefficient, std is the
expected standard deviation, and d is the desired one-sided width of the confidence
interval. For a 5% two-tailed confidence interval, Zα/2 is 1.96. The standard devia-
tion for bilateral radius length difference found in a previous study was 2.06 mm and
was normally distributed [20]. We used the desired width of the confidence interval
to be 0.5 mm on both sides.

To assess the reliability of our measurements, 19 measurements were repeated
by a second-rater with experience in 3D measurements in forearm bones. Here,
the mean inter-rater differences with standard deviation, and Intraclass Correlation
Coefficient (ICC) were calculated. A Bland-Altman plot and correlation plot are also
included.

The main outcome of this study was the mean and standard deviation of the
absolute value of the bilateral length differences of the ulnae. Further, the relative
mean and standard deviation were also calculated. In these relative measurements,
patients were excluded if they were ambidextrous or if their dexterity was unknown
because no dominant minus non-dominant calculation could be made. The results
are visualized in violin plots. The analyses were done using Microsoft Excel (version
2022.)

2.3 Results

The general characteristics of the population are summarized in Table 1. The ulna
on the dominant side was on average longer than the ulna on the non-dominant
side, as can be seen in Figure 3a. The mean dominant minus non-dominant length
difference was 0.8 ±3.2 mm. The absolute length difference has a folded normal
distribution with a mean of 2.4 ±2.3 mm (figure 3b). The largest length difference
was 7.7 mm. The mean difference between the observers was 0.0 ± 0.4 mm. The
ICC was found to be 0.99, which is excellent. Figure 4 shows the measurements of
both observers and a Bland Altman plot.
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Figure 2.2: Violin plots of the bilateral ulnar length differences. A) The length differ-
ence between the dominant and non-dominant ulna. B) The absolute
length difference between the dominant and non-dominant ulna. The
width of the violin and the boxplot indicate the distribution of length dif-
ferences.

Table 2.1: Characteristics of the population.

Sample size N = 50

Age
Mean 14 ± 18 Years

Sex
Male 14 (27%)

Female 36 (73%)

Dexterity
Right 41 (82%)

Left 7 (14%)
Unknown 1 (2%)

Ambidexterous 1 (2%)

Affected side
Right 20 (40%)

Left 30 (60%
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Figure 2.3: A) A correlation plot of the bilateral ulnar length measurements of ob-
servers 1 and 2. B) A Bland-Altman plot for the length measurements
of observers 1 and 2.

2.4 Discussion

This study showed a substantial length difference within the bilateral pairs of ulnea
in a population of patients with a distal radius malunion. On average, the difference
was 2.4 mm and can be as large as 7.7 mm. Therefore, the application of the con-
tralateral forearm as a template for corrective osteotomy can result in a large error
if no correction is applied. This limits the use of the contralateral forearm without
correction as a reference in guided distal radius corrective osteotomy.

Several previous studies found bilateral length differences in forearm bones, how-
ever, the extent of asymmetry in a relevant population is still unknown [20], [30].
Vroemen et al. found a strong right-side biased bilateral length difference of 2.08 mm
(std: ±2.33mm) [20]. This difference was found in a population of 20 right-handed
healthy subjects between an age between 22 and 56 years. Their results showed
less asymmetry than ours and the dominant-sided was on average longer [20]. A
recent paper from Hong et al. calculated asymmetry in a population of 132 subjects
without forearm deformities with an average age of 61 years [30]. They showed a
right-sided biased ulnar length difference of 1.85 mm and a difference of 1.46 mm in
the length of the radii. However, they did not use absolute length differences which
better indicates the amount of asymmetry [30]. The forearm length differences are
hypothesized to be explained by mechanically driven bone growth and remodel-
ing [25]–[28]. Because the left and right forearms receive a different mechanical
load, length differences can exist, and therefore factors that influence mechanical
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Figure 2.4: A) A strict application of the contralateral (cyan) forearm with proximal
alignment as a template for the reconstruction of a malunited radius
(white). The cyan forearm is longer as can be seen in the ulnar dome.
B) The contralateral forearm is shifted until the heads of the ulnar dome
align to compensate for the length difference. Now the distal ulna is
aligned and the radius can be used as a template for a malunited radius.

load may influence bilateral length differences [25], [26]. Because a population of
patients with a distal radius malunion is expected to have other characteristics than
a healthy population, length differences might differ per population. Therefore, the
differences between our study and previous research might partially be explained
by the differences in population.

Our results show a larger bilateral ulnar length difference than previously thought.
This difference translates to a similar length difference in the radius. When used as
a template for osteotomy, this means that the reference radius can be longer or
shorter than the affected radius. The ulnar variance of a healthy wrist is generally
in the range of -1 to +2 mm. A larger ulnar variance is a predictor of complaints.
Our results show that the contralateral radius can be longer or shorter than the af-
fected radius by more than the normal ulnar variance. However, in practice, this
problem can be solved with an approach similar to a technique suggested by Dobbe
et al. [24]. In the design process for a surgical guide, the pairs of radius and ulna
are aligned. If a length difference in the ulna is found, the healthy pair of radius and
ulna are shifted to either distal or proximal until the distal ulnae align (Figure 5) [24].
Our data emphasize that the contralateral radius will be longer or shorter than the
affected radius and a correction must be used.
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The added value of our study is that we used a population of patients that had
an indication for a distal radius osteotomy instead of a healthy population. The main
disadvantage of the use of a population of patients with a distal radius malunion is
that no healthy radii are available for symmetry assessment. However, Vroemen et
al. showed a correlation of 0.98 between the bilateral length difference of the ulna
and radius [20]. Therefore, the length difference of the ulna is considered to be a
good indication of asymmetry of both bones of the forearm. Further, we did only
investigate the length symmetry in the ulna and could not investigate other mor-
phological parameters. However, the restoration of the ulnar variance is suggested
to be one of the most important goals of a distal radius corrective osteotomy [23].
Therefore, the assessment of symmetry in the length direction is considered to be
important.

Several sources of errors could be present in our measurements. At first, the
slice thickness of the CT scan was up to 0.6 mm and segmentation errors could
be present. Furthermore, errors might have been introduced in the measurement
process. However, the methods used in our study had an excellent inter-observer
variability with an ICC of 0.99, and the correlation plot and the Bland-Altman plot
showed no inter-observer errors larger than 1 mm.

In conclusion, substantial forearm length differences are present in a population
of patients with a radius malunion. This means that the contralateral forearm can
only be used as a template for distal radius corrective osteotomy when a correction
for length differences is applied [24]. Furthermore, alternative methods to estimate
a reference radius might be explored, for example by using statistical shape models
which predict the shape of a reference radius without using the contralateral radius
[21], [22].



Chapter 3

The development of shape
completion algorithm

3.1 Introduction

Patient-specific surgical guides increases in popularity in orthopedics [31] To surgi-
cally correct a certain bony deformation, the bone is sawed, subsequently rotated
and translated, and eventually fixated with a plate and screws. Usually, the rota-
tions and translation needed for reconstruction are found before surgery by compar-
ing the 3D computer model of the bone of the affected side with the model of the
healthy contralateral side. However, if both sides are fractured, no comparison can
be made [31]. One example of this is in distal radius corrective osteotomy [12], [13].
Here a radius bone heals in an anatomical orientation after a fracture. Because this
is one of the most common fractures, a contralateral previous fracture is not uncom-
mon [1], [2]. This problem may be overcome with the use of a shape completion
algorithm6. In this algorithm, the shape of the distal radius is computed with a given
proximal radius as input. By doing so, no contralateral radius is needed and patient-
specific guides can also be made for patients without no healthy contralateral bone
available. For further validation of shape completion algorithms, an algorithm must
be made. Therefore, this chapter aims to describe a method to predict the shape of
the distal radius.

Two previous attempts have been made to predict the shape of the distal radius
using statistical shape models (SSM). Oura et al. used partial least squares re-
gression [22], whereas Mauler et all used Gaussian process regression [21]. Both
methods of regression were able to predict the distal radius. However, Mauler et al
achieved better results using Gaussian process regression [21]. Furthermore, unlike
the method of Oura, the method of Mauler et al. was well documented. This makes
Gaussian process regression a viable choice to create a shape

13
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An added benefit of working with these SSMs is that they provide us with a vi-
sual representation of the shape variation [32]. Often, variation in shapes is only
expressed as a clinical parameter in orthopedics. However, this often only covers
one aspect of the shape and ignores everything else. The principal components of
the shape variation can display the major ways the shapes vary in our dataset [32].
This may help orthopedic surgeons to better understand the shapes of the radius.

In this chapter, we describe a mathematical framework for a Gaussian process
regression shape completion model and how it can be applied to a dataset with
radius bones. Further, the shape variation of the radius is visualized.

3.2 Method

3.2.1 Patients and data

To create a statistical shape model, we included 57 CT scans of healthy radii. The
healthy radii were obtained from subjects that were suspected of a distal radius
malunion and therefore underwent a CT scan of the affected and unaffected con-
tralateral radius. Inclusion criteria were a bilateral CT scan of the whole forearm
and age of >18 years. Exclusion criteria were a previous pathology in one of the
radii other than the malunion. Inclusion occurred between February 2015 and June
2021.

CT- scan settings were based on a standard forearm scanning protocol and were
obtained before the corrective osteotomy. A slice thickness between 0.2 and 0.6 mm
was used, with a B20 kernel and a matrix of 512x512. The voltage used was 120
kV and the tube current was automatically regulated. The forearms were placed in
the scanning direction. Segmentation was done using the protocol in appendix A.

3.2.2 Preprocessing

Before the CT scans could be incorporated into the SSM, a few preprocessing steps
were done. Then 3D surface models were subsequently made for all radii using the
Mimics software (Materialize, Leuven, Belgium) After that, the shapes were aligned
in 3D space. The shapes were manually translated and rotated the shapes to align
with the reference shape. This alignment was done to align the radii proximally
as close as possible. Lastly, before the radii can be incorporated into the SSM,
correspondence between shapes must be established. This means that we must
know for all points on a shape, what points correspond with that point on another
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Figure 3.1: A schematic visualization of the creation of the statistical shape model
and the shape completion algorithm. The first part shows the prepro-
cessing steps, the establishment of correspondence and the creation of
the statistical shape model (SSM). The second part shows how the sta-
tistical shape mode can be used to predict a conditional shape based
on a partial shape.
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shape. This correspondence was established using a rigid and non-rigid registration.
This non-rigid registration was based on Gaussian processes. To explain the non-
rigid registration and the GPMM, first, we have to explain Gaussian processes.

3.2.3 Description of shapes

In statistical shape modeling, shapes are often described as a linear combination of
deformation vectors. The first step to doing this, is to represent the bone as a finite
collection of points in 3D space. The set of points ΓR that describes a reference R
shape can be denoted as:

ΓR =
{
x | x ∈ R3

}
(3.1)

Where x are the 3D coordinates of the points. Different shapes can then be
expressed as a deformation field between each point on a reference shape and a
corresponding point on a shape we are interested in. The 3D deformation vector
field u is expressed as:

u : ΓR → R3 (3.2)

Where each point in ΓR is mapped to a corresponding point on a shape we are
interested in. Any shape can now be expressed as a deformation vector field from a
reference shape. A condition to do this is that shapes must be in correspondence.

3.2.4 Gaussian process

The variation in shapes in a dataset can be expressed as a mean function and a
covariance function. The mean and a covariance express for each point i on the
reference shape ΓR what the mean deformation vector u(i) is for that point over a
dataset and describe the covariance of all vectors u(i) in our dataset.

To explain what the covariance function is, we first need to understand what
a univariate normal distribution is. This describes the distribution P of a random
variable x that is normally distributed around a mean µ with variance σ2:

p(x) = N
(
µ, σ2

)
(3.3)

The mean describes the location of the function, and the variance describes how
spread out the data is. A multivariate normal distribution expresses how two or more
variables are jointly distributed:

p (x1, x2) = N

((
µ1

µ2

)
,

(
σ2
1 σ12

σ12 σ2
2

))
(3.4)
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In this two-dimensional case, the distribution of variables x1 and x2 is defined.
The location of the distribution defined with the mean functions µ1 and µ2. The vari-
ance σ2

1 and σ2
2 determine how spread out the probability is along each dimension.

The covariance σ12 shows how x1 and x2 can change together and is therefore a
measure of the correlation between x1 and x2. Note that the covariance between x1

and x2 is the same as the covariance between x2and x1. In a simple example of hand
width and hand length, µ1 and µ2 stand for the mean hand length and hand width,
respectively, whereas σ2

1 and σ2
2 correspond to the variance in these measures. Co-

variance σ12 is a measure of the correlation between x1 and x2 and expresses how
the length and width vary together.

To model shapes, the multivariate normal distributions can be applied on the
deformation field of a given set of shapes. The deformation vector u(i) exists of an
x, y and z component:

u(i) =

 ux(i)

uy(i)

uz(i)

 (3.5)

For each point i on the template surface, we can model the distribution of its 3D
deformation vector as a multivariate normal distribution. The probability for the 3D
location point i is:

P (u(i)) = N


 ūx(i)

ūy(i)

ūz(i)

 ,

 Σxx(i) Σxy(i) Σxz(i)

Σyx(i) Σyy(i) Σyz(i)

Σzx(i) Σzy(i) Σzz(i)


 (3.6)

µ(i) is the mean for each x- y- and z-coordinate and is called the mean vector:

µ(i) =

 ūx(i)

ūy(i)

ūz(i)

 (3.7)

k(i) expresses the covariance between the x- y- and z-coordinates and is called
the covariance matrix.

k(i) =

 Σxx(i) Σxy(i) Σxz(i)

Σyx(i) Σyy(i) Σyz(i)

Σzx(i) Σzy(i) Σzz(i)

 (3.8)

We can already see the probabilistic properties of a model because we can al-
ready describe the distribution of a single point in 3D space. The model becomes
more interesting when it is extended to multiple points. For example, for a shape
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consisting of two points, deformation vectors u(i1) and u(i2)can be jointly described
as:

(
u (i1)

u (i2)

)
=



ux (i1)

uy (i1)

uz (i1)

ux (i2)

uy (i2)

uz (i2)


(3.9)

The probability distribution can then be described as:

P

(
u (i1)

u (i2)

)
=

N




ūx (i1)

ūy (i1)

ūz (i1)

ūx (i2)

ūy (i2)

ūz (i2)

 ,


Σxx (i1, i1) Σxy (i1, i1) Σxz (i1, i1) Σxx (i1, i2) Σxy (i1, i2) Σxz (i1, i2)

Σyx (i1, i1) Σyy (i1, i1) Σyz (i1, i1) Σyx (i1, i2) Σyy (i1, i2) Σyz (i1, i2)

Σzx (i1, i1) Σzy (i1, i1) Σzz (i1, i1) Σzx (i1, i2) Σzy (i1, i2) Σzz (i1, i2)

Σxx (i2, i1) Σxy (i2, i1) Σxz (i2, i1) Σxx (i2, i2) Σxy (i2, i2) Σxz (i2, i2)

Σyx (i2, i1) Σyy (i2, i1) Σyz (i2, i1) Σyx (i2, i2) Σyy (i2, i2) Σyz (i2, i2)

Σzx (i2, i1) Σzy (i2, i1) Σzz (i2, i1) Σzx (i2, i2) Σzy (i2, i2) Σzz (i2, i2)



 (3.10)

With these equations, we jointly described two points on the surface. As one can
see, the mean coordinates of both points are expressed as a mean vector in the
first part of the normal distribution. The second part of the joint normal distribution
consists of four blocks. Block (1,1) in blue describes the covariance matrix of the x,
y, and z coordinates of the point i1 as earlier described. Block (2,2) in orange does
the same for point i2. Blocks (1,2) and (2,1) describe the covariance matrix for all x
y and z coordinates between points i1 and i2. With this joint covariance matrix, we
can describe the prediction of the 3D location of the dependent points i1 and i2.

The example above for two points can be generalized for an infinite number of
points. To generalize these vectors and matrices to infinite dimensions, a mean func-
tion and a covariance function can be used. However, thanks to the marginalization
property of the Gaussian process, the math also works for finite-dimensional matri-
ces instead of functions. When represented as functions, define, for an infinite set
of points on shape γR, a mean function µ⃗ and a covariance function K are defined,
where:

µ⃗ = (µ(i))i∈ΓR
(3.11)

And:

K = (k (ia, ib))ia,ib∈ΓR
(3.12)
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Together, a multivariate normal distribution can be formed over these functions:

P (u) = N(µ⃗,K) (3.13)

When discretized, this results in a mean vector and a large covariance matrix.
This multivariate normal distribution encodes the mean deformations in a dataset,
the variation of each x, y, and z coordinate for each deformation, and correlations
between all x, y, and z coordinates of all points. This is also known as a discretized
version of a Gaussian process. Conversely, the Gaussian process is the continuous
representation of the discretized multivariate normal distribution.

Because the discrete multivariate normal distribution contains the joint probability
of all points of a shape, it provides information about the probability of shapes. For
example, this can tell what shapes are probable to happen, and therefore if it is
pathological or not. Furthermore, we can calculate confidence regions of shapes
that are probable to exist

3.2.5 Low rank of Gaussian processes

A problem with working with discrete Gaussian processes is their computational
challenges. 3D computer models of bones of the radius usually have around 25,000
points. The size of the covariance matrix is (3* the number of points) x (3* the num-
ber of points). This means that the covariance matrix can easily consist of more
than 5.6 billion points, which cannot be feasibly stored in a computer’s memory.

To compress the multivariate normal distribution to a lower dimensionality, prin-
cipal component analysis can be performed. This is done using a Karhunen - Loève
expansion. By doing so, the multivariate normal distribution N(µ⃗,K), is expressed
as a mean deformation µ⃗, and the principal components α

√
λϕ of the covariance

matrix such that:

N(µ⃗,K) = µ⃗+ α1

√
λ1ϕ1 + α2

√
λ2ϕ2 + α3

√
λ3ϕ3 + . . . (3.14)

ϕi are the eigenfunctions and λi are the associated eigenvalues. These can be
thought of as vector fields that explain variation.

√
λ1ϕ1 is chosen so that this vector

field explains most of the variation in the covariance matrix.
√
λ2ϕ2 is chosen so that

it explains most of the variation that is left and so on. More general:

N(µ⃗,K) = µ⃗+ UDα = µ⃗+Qα (3.15)

Where U includes all eigenfunctions, D all eigenvalues, and Q contains the prin-
cipal components of the shape variation of a dataset. (Q = UD). By varyingα for
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each component, we can create new shapes that follow the distribution of the shapes
used to define the model, given a covariance matrix. If infinitely many principal com-
ponents are available, this method can cover all information from the covariance
matrix [33]:

K = UD2UT (3.16)

However, in practice, a low-rank approximation is always used because for com-
putational ends, a finite number of principal components is needed. This is called
the prior model.

As described can any covariance matrix now be expressed with a finite number
of principal components. However, U and given D must still be estimated from the
covariance matrix. This can be done using a Pivoted Cholesky approximation. Now
we can express the covariance of all points of a dataset op shapes as a convenient
low-rank prior model.

3.2.6 Correspondence

To be incorporated in the SSM, the 3D computer models must be in correspondence.
This means that we have to know which point on a reference shape, matches with
which point on another shape belongs to that point. This correspondence was es-
tablished by mapping all the points of a reference shape (the moving shape) to the
surface of any other shape(the target shapes). First, an affine landmark registration
was done in which the moving shape was translated, rotated, and scaled to match
the landmarks on the target shape as well as possible using Procrustes analysis.
The landmarks used were the center of the radial head, the tip of the radial styloid,
and the center of the ulnar notch. Once the moving shape is rigidly aligned with the
target shape, non-rigid registration is done using a Gaussian process.

In this method, a Gaussian process was formed with functions instead of data. A
Gaussian process was formed with as mean the rigidly aligned reference radius. Be-
sides, a diagonal kernel was used with a variation of σ = 13 mm. This means that the
Gaussian process could model shape variations around the reference shape, with
the constraint that points in 3D space are correlated with neighboring points with a
Gaussian distribution with a standard deviation σ of 13 mm. A low-rank approxima-
tion of this Gaussian process was done with a Cholesky approximation. The princi-
pal components are then optimized to match the reference shape to the target shape
as well as possible using a limited memory Broyden–Fletcher–Goldfarb–Shanno
algorithm (LBFSG) iteratively, with decreasing regularization weight. This method
first optimizes the principal components for low-frequent deformations and keeps in-
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creasing the frequency of deformations to optimize for high-frequency deformations.
The cost function used root mean square errors. This process deforms the shape
of the reference until it aligns as well as possible with the target shape. Lastly, to
gain correspondence, for each point on the reference shape the closest point on
the target shape is mapped. When done for all shapes, the target shapes are in
correspondence with the reference and the shapes can be incorporated into the
SSM [34].

3.2.7 Gaussian process regression

Now the low-rank approximation of the multivariate normal is formed over a dataset
of shapes in correspondence, we can use it to predict a posterior model, using partial
shapes. This posterior model shows the mean and covariance of all shapes given a
certain number of observed points. This model has again the shape of a multivariate
normal distribution and is called the conditional distribution. The probability of a full
shape s given an observed partial shape is defined as:

p (s | sg) sg = N (µc,Σc) (3.17)

Were µc and σc are the conditional mean and covariance matrices. Written out
this results in [33]:

µc = µ+Q
(
QT

g Qg + σ2In
)−1

QT
g (sg − µg) (3.18)

and:
Σc = σ2Q

(
QT

g Qg + σ2In
)−1

QT (3.19)

Where µ is the mean shape, Q contains the principal components of the prior
model, Qg contains the principal components of the observed points, µg is themean
of observed points, σ2 is the variance of the noise of the observations and In is an
identity matrix.

To save computer memory, we describe the conditional shape as principal com-
ponents:

sc(α) = µc +Qcα (3.20)

Because Q = UD we can rewrite equation 3.19 as:

Σc = Uσ2D
(
QT

g Qg + σ2In
)−1

DUT (3.21)

Now we can do a singular value decomposition on the middle part of the equa-
tion:11

σ2D
(
QT

g Qg + σ2In
)−1

D =: UiD
2
iU

T
i (3.22)
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yielding:
Σc = UUiD

2
iU

T
i U

T (3.23)

Where Ui and Di are the eigenfunctions and eigenvalues of the middle part of the
equation3.21.

This can then be written as:

Σc = (UUi)D
2
i (UiU)T (3.24)

Note that this has the same form as equation3.16. Therefore, all variances can
be expressed according to [33]:

Qc = (UUi)Di (3.25)

Now, we can express the principal components of sc(α) as a function of the eigen-
values of the prior model, the principal components are contained in Equation 23.
The posterior model is now expressed as the total formula for the total conditional
shape sc, given a partial shape sg:

sc(α) = µ+Q
(
QT

g Qg + σ2In
)−1

QT
g (sg − µg)

+ (UUi)Di

(3.26)

By doing so, the conditional shape is described as a function of the low-rank
prior model and the low-rank model of the given partial shape. With this formula,
the shape of a full radius can be predicted based on the given SSM and a partial
shape. In our application, the full shape of a radius can be predicted given a low-
rank statistical shape model of a dataset of radii, and a partial shape of a proximal
radius. Because both are available, the only unknown term in the formula is the
noise term σ2. This is chosen to be 5 mm. This makes the model more general and
also makes the model more robust. Additionally, an extra diagonal Gaussian kernel
with a standard deviation of 200 mm was added to the model. This adds some
extra low-frequency variation to the model which compensates low frequencies that
are not present in our dataset. Now, all terms in equation 3.26 are known and a
conditional radius can be predicted based on a partial shape.

3.3 Results

To show what variation is prominently present in the radius over our dataset the first
five components of the variation of the radius are displayed at ±2 the standard devi-
ation.
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Figure 3.2: The first five principal components of the statistical shape model visu-
alize the five main ways the shape of the radius varies (numbered from
left to right). The blue and orange colors indicate the boundaries (± 3
sd) between which most variations occur. For example, component one
describes the variation in scaling in our dataset.

Figure 2 shows the five principal components. inspection suggests that the first
component encodes scaling. The second component suggests a pro/supination ro-
tation and a flexion-extension rotation. The third component suggests a pro/supination
rotation even as the fourth component. The fifth component seems to show a flexing
extension rotation, and also a difference in radius inclination.

To indicate how much variance each principal component covers, the eigenval-
ues are displayed in Figure 3 as a percentage of the total variation. Because only
a rigid registration was done instead of also an affine registration scale was not ex-
cluded from the shape information. Therefore, the first component covers the scale
information and covers 95 % of the variation. The other components describe just 5
percent of the total variation.
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Figure 3.3: The cumulative sum of the eigenvalues of a statistical shape model of
the radius, as a percentage of the total sum of eigenvalues, for all prin-
cipal components. Note that the y axis starts at 94%

3.4 Discussion

By using the mathematical framework incorporated in the Scalismo coding lan-
guage [35], [36], a morphable model and Gaussian process regression algorithm
were successfully trained for a dataset of radii. Moreover, a visualization of the
first five components suggests that most variation exists is in the scale dimension.
After that, also large variations are present in ab/adduction, flexion/extension, and
pro/supination rotations are present in our dataset.

The major assumption in the creation of the statistical shape model was that
perfect correspondence exists between shapes. Although the method we used to
establish correspondence was previously described as an accurate method, visually
some errors were observed [37]. To establish correspondence, a non-rigid regis-
tration was performed. When a moving shape is morphed to a target shape, the
moving shape is often stretched out or shrunk when the target shape has a larger
surface in a specific area. Especially on the edges of the distal radius, some over-
and under-sampling occurred. However, testing the quality of correspondence can-
not be measured quantitatively. Because major landmarks are used for registration.
Therefore, these areas are likely to have good correspondence. Although other land-
marks can be used, they are often close to the landmarks used for registration or in
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a less relevant position. The consequence of the under and oversampling induced
by the establishment of correspondence is that fine details can be lost. This means
that the algorithm possibly lacks the power to predict fine shape variation.

To correct for imperfect correspondence, all observed points are considered to
be noisy. We added a noise term σ2 to correct for this observation. This term was
chosen to be 5 mm, which means that we assume that observations are Gaussian
distributed around the real point with a variance of 5 mm. This value was not calcu-
lated analytically but based on an educated guess.

A second assumption is that all shape variation present in the dataset is covered
with a finite number of principal components. However, for computational purposes,
this is not possible. Especially in large shapes with large frequency deformations
present, fine details can get lost because of the use of finite components. However,
although the first components cover large variations, the last components cover al-
most no variation. This means that enough components are used and the low-rank
approximation is viable.

A third design choice was that we aligned all shapes proximally. A more common
approach would be to use surface registration. When doing so, the center of varia-
tion would be more in the center of the bone. For example, the first component now
scales the radius with a center in the proximal radius whereas if surface registration
would have been used, the scaling center would have been in the center of the bone.
Because we are especially interested in the shape variation of the distal radius with
a fixed coordinate system in the proximal radius, our registration approach is more
insightful to display. Further, no principal components have to be used to describe
translational or rotational differences in registration. However, since enough princi-
pal components are available, this would not have been a major issue in the shape
prediction algorithm. Further, it is also common to use an affine registration instead
of a rigid registration, since the scale is often not considered to be part of the shape.
However, for our clinical application, it is insightful to consider scale as part of the
shape because corrections in distal radius osteotomy happen in rotations of the dis-
tal fragment and in a length correction.

In conclusion, we were able to use the mathematical framework with the Scal-
ismo language to create an SSM and a shape completion algorithm to predict the
shape of the distal radius for distal radius correction osteotomy. The accuracy of this
model has yet to be proven.
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Chapter 4

Validation of a distal radius shape
completion model

4.1 Introduction

A frequent complication after distal radius fractures is a malunion in which the radius
heals in a non-anatomical orientation [5]–[9]. Symptoms of a distal radius malunion
include pain, loss of function, wrist instability, and osteoarthritis [10]. At first, a malu-
nion is treated conservatively. However, if complaints remain, a correction osteotomy
can be considered to reconstruct the original shape of the radius [12]–[15].

To reconstruct the radius accurately, three-dimensional (3D) planning is used to
see what corrections are necessary. Here, 3D computer models of the affected
and contralateral forearm are generated based on computed tomography (CT). The
model of the contralateral side is subsequently mirrored and superimposed on that of
the affected forearm. The differences between the models of the (un-)affected fore-
arm are assumed to be equal to the corrections that need to be obtained through
the correction osteotomy. By doing so, the contralateral radius is used as a template
for the correction of osteotomy [12]–[15].

The use of the contralateral forearm as a template for the correction osteotomies
has several disadvantages. First, the contralateral forearm must be a correct repre-
sentation of the pre-fracture forearm. Several studies, however, have shown that
bilateral forearm asymmetry can be present [20], [30]. Furthermore, any bony
pathology (i.e., previous trauma, congenital disease, or metabolic disease) in the
contralateral radius discards the use of this radius as a template [21]. Lastly, addi-
tional radiation exposure is necessary to obtain models of the contralateral forearm.
All in all, an alternative for the contralateral forearm as a template for correction os-
teotomies is desired.

27
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Several authors have already reported a solution to replace the contralateral side
with a different template [21], [22]. Mauler et al. and Oura et al. used statistical
shape modeling to predict the shape of the distal radius based on the healthy part
of the malunited radius [21], [22]. These authors demonstrated global rotational and
translational differences between the predicted and original radii. Their results ap-
peared to be comparable with the differences between the contralateral forearm and
the original radius.

Not all limitations and details about the use of a predicted radius as a template
for osteotomies are yet known. Except for the global rotational and translational dif-
ferences between the predicted and original radius, not much is known about the
local predictive performance of statistical shape models for this application. Since
the main objective of distal radius osteotomies is to restore a congruent distal ra-
dioulnar (DRU) and radiocarpal joint, it is necessary to create an accurate template
to reconstruct these areas [24]. If we want to use a predicted radius as a template,
we need to know what regions can be predicted reliably and can therefore be used
as a template and what regions are predicted less reliably and should therefore
not be used as a template for osteotomy. Further, it is thought that the position of
the malunion affects the performance of the algorithm [21], [22]. If the malunion
is located relatively proximal, a large part of the radius must be predicted and less
information about the distal shape is available and vice versa. Therefore, to use a
predicted forearm as a template for osteotomy, more information is needed about
local predictive performance and the impact of malunion position.

We developed a shape completion algorithm that can predict the distal radius
based on the proximal part and shaft of the radius. The aim of this study was to
evaluate the performance of this algorithm and to further evaluate the benefits and
limits of the use of statistical shape models to predict the distal radius for correction
osteotomies. This study focuses on local differences between a predicted radius
and an original radius and evaluates the effect of malunion position.

4.2 Methods

4.2.1 Patients and data

In this study, 57 subjects were retrospectively included to train and evaluate a shape
completion algorithm as was described in chapter 3. All subjects were patients from
the ‘Orthopedisch Centrum Oost Nederland’ (OCON) and were suspected of a distal
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radius malunion. Inclusion criteria were a bilateral CT scan of the whole forearm and
age of >18 years. Exclusion criteria were a previous pathology in one of the radii
other than the malunion. Inclusion occurred between February 2015 and June 2021.

CT- scan settings were based on a standard forearm scanning protocol and were
obtained before the corrective osteotomy. A slice thickness between 0.2 and 0.6 mm
was used, with a B20 kernel and a matrix of 512x512. The voltage used was 120
kV and the tube current was automatically regulated. The forearms were placed in
the scanning direction. Segmentation was done using the protocol in appendix A.

4.2.2 Statistical shape and shape completion model

The prediction of the distal part of the radius is based on the proximal part of the
radius and was done using an in-house made Gaussian process regression shape
completion algorithm. This method uses the statistical shape models described in
chapter 3. In short, the 3D computer models with point correspondence of all healthy
radii were incorporated into a statistical shape model. This model contains the mean
shape and anatomical variations present in our dataset. The variation in shape is
expressed as principal components. Because the model also contains correlations
between points, a shape can be predicted given a set of observed points. By do-
ing so, the shape of the distal radius can be predicted using the shape completion
algorithm and the proximal part of the radius as input.

4.2.3 Analysis

To evaluate the performance of the shape completion algorithm, a leave-one-out
analysis was performed. Each healthy radius was clipped at 10% of its length. This
is the point closest to where the distal radius converges to the shaft. This cutoff
length is chosen because distal radius fractures happen most frequently distal to
this area. When clipped, the model is trained on all data except for the clipped ra-
dius. Further, the clipped radius is used as input for the shape completion algorithm.
This process is repeated for each healthy radius.

The coordinate system used for measurements is similar to that of Vroemen et
al [20]. The z-axis is a line between the midpoint of the radius and the center of the
articular surface, the x-axis is a line between the center of the ulnar notch and the
y-axis is perpendicular to the x- and z-axes. The center of the coordinate system is
in the center of the radius, which is visualized in Figure 1. A summary of the different
analysis steps is visualized in Figure 2 [20].
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Figure 4.1: T
he anatomical coordinate system, where the z-axis is the longitudinal axis, the

x-axis is toward the radial styloid, and the y-axis is perpendicular. Image adapted
from Vroemen et al.

4.2.4 Quantitative evaluation

Several parameters are used to describe the difference between the predicted and
original radius. First, the average point-to-surface distance and the Hausdorff dis-
tance between the predicted distal radius and the original ground-truth distal radius
are calculated for each predicted radius. These results are visualized in a violin plot
and the mean and standard deviation of these metrics are provided.

To show the rotational and translational differences that exist between the pre-
dicted and original radius, the predicted distal radius is aligned with the original distal
radius. In this manual alignment, the articular surfaces of DRU and the radiocarpal
joint are aligned as well as possible. The rotational and rotational differences are
calculated as a 4x4 transformation matrix. The mean and standard deviation of the
translational differences are calculated from this matrix directly. Rotations are pro-
vided as a 3D rotation and as a rotation around the x-, y-, and z-axes. The 3D
rotation is defined as the angle from the axis-angle representation of the rotation
matrix. The rotations around the x-, y-, and z-axes are calculated as the relative
contribution of the axis-angle rotations. In this method, the angle around the x-axis
is defined as the x-component of the normalized rotation axis, multiplied by the 3D
angle. The same method was done for the y- and z-axes. This results in an unam-
biguous representation of the rotation matrix in angles around the x-, y-, and z-axes.

Another way to demonstrate how the predicted distal radius differs from its orig-



4.2. METHODS 31

Figure 4.2: A flowchart summarizing the method. For each radius, a leave one out
procedure was done in which a statistical shape model is trained, and a
radius is clipped at 5%, 10%, and 15% length. Then the proximal radius
is used to predict the distal radius using a shape completion algorithm.
Lastly, the predicted radius is compared with the original radius.
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inal counterpart is to show the principal components of the variation in differences
between the predicted and original distal radii. The first 5 components are visualized
at two times the standard deviation. This shows the five main ways the predicted
radius differs from the original radius. The procedure to make these principal com-
ponents is similar to the method described in Chapter 3. In this chapter the principal
components were made from deformation vectors, these principal components are
made with point-to-surface vectors.

The local differences between the original and predicted radius are visually demon-
strated. Images with the mean and maximal point-to-surface differences are created
to illustrate the local differences.

4.2.5 Effect of malunion position

The effect of malunion position on the performance of the shape completion algo-
rithm is analyzed by repeating the same experiments for a setup where the distal
5% and 15% of the radius hat to be predicted. The average point-to-surface and the
maximal differences between shapes (Hausdorff distances) are shown in violin plots
and the mean and standard deviations are provided. The effect of malunion posi-
tion on local differences is displayed by also showing the local mean and maximal
differences for the distal 5% and 15% prediction setups. To show whether there is
a statistical difference between the 5% and 10% predicted radius, and the 15% and
10% predicted radius, a two-tailed paired t-test was performed.

4.2.6 Size of the training set

To show whether the model is fully trained, the algorithm was also tested with low
data models. we trained the model with 3 up to 56 samples. For all 53 low data
statistical shape models, a leave one out analysis was performed to analyze its
performances. The performance was quantified with the mean point-to-surface dif-
ferences between the predicted and original shapes. This will show how the addition
of more data will improve the performance of the algorithm.

4.3 Results

The average and standard deviation of the mean and Hausdorff distances for 5%,
10%, and 15% malunion segments are displayed in table 1. Its shows that there are
statistically significant differences between the performance of the algorithm when
predicting 5% and 15% compared to the performance when predicting 10%. No
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Table 4.1: The performance of the shape completion algorithm, expressed as the
average and standard deviation of the mean and Hausdorff distances be-
tween the predicted and original radius, for 5%, 10%, and 15% predicted
radii

Mean ± std (mm) p-value Hausdorff distance ± std (mm) p-value

5% 0.79 ± 0.22 0.005 3.00 ± 0.69 0.086
10% 0.83 ± 0.24 3.11 ± 0.84
15% 0.93 ± 0.33 <0.000 3.49 ± 1.11 <0.000

Table 4.2: The mean and standard deviation of the rotational and translational dif-
ferences between the predicted and original radius

Mean rotational and translational differences ± std
x (deg/mm) y (deg/mm) z (deg/mm) 3D (deg)

Difference in rotation around the axis 0.19 ± 2.64 0.15 ± 2.49 0.07 ± 3.91 4.75 ± 2.36

Difference in a translation over the axis 0.33 ± 4.74 -0.23 ± 4.72 0.31 ± 0.88

statistical differences were found between the Hausdorff distances for 5% and 15%
predicted radius. The mean and Hausdorff point-to-surface distances between every
predicted and original radius are displayed for all shapes and are shown in Figures 3
and 4. This shows that the larger the predicted part of the radius is, the less accurate
it can be predicted. Rotational and translational differences between the predicted
and original distal radii and the mean and standard deviation are expressed in table
2.

Figure 5 shows the first 5 principal components (within two times the standard
deviation) that describe the main differences between the 10% predicted radius
and the original radius. Visual inspection suggests that the first component pre-
dominantly stands for ulnar/radial deviations. The second component encodes a
flexion/extension rotation. The third component seems to display a combination of
ulnar/radial deviation and flexion/extension. The fourth component stands for pro-
/supination. The fifth and final component suggests a difference in length between
the predicted and original radius.

The mean local differences between the predicted and original radius for 5%,
10%, and 15% malunion segments are shown in Figure 6. This figure shows that
more local differences exist when a larger percentage of the distal radius has to be
predicted. One can see that in most areas, the differences, on average, are around
one millimeter. Most differences exist around the dorsal side of the radius, especially
on the radial styloid and the dorsal tubercle. On the ventral side, most differences
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Figure 4.3: Violin plots for the mean point to surface distances between each pair
of predicted and original radius for scenarios where 5%, 10%, and 15%
of the radius were predicted.

Figure 4.4: Violin plots for the Hausdorff distances between each pair of predicted
and original radius for scenarios where 5%, 10%, and 15% of the radius
were predicted.



4.4. DISCUSSION 35

Figure 4.5: The first five principal components visualize the main differences be-
tween the predicted and original radius (numbered from left to right). An
average radius is visualized in white. The blue and orange colors in-
dicate the boundaries (±2 sd) between which most variations between
the predicted and original radii occur. For example, component one sug-
gests that most variation is present in n in rotation in radial inclination,
visualized as the orientation between the orange and blue radii.

exist in the ventrodistal corner of DRU.
Figure 7 shows the maximal local differences between the predicted and original

radius for 5%, 10%, and 15% malunion length. Here we see that the differences
can be as large as 6.7 mm. However, these differences only occur at the radial side
of the radial styloid and when 15% of the radius had to be predicted. In general,
the maximal differences are below 4 mm. The keystone area and radial styloid are
areas with the largest maximal difference.

Figure 8 shows the improvement of the prediction model with the addition of
more training data. At first, more data improves the algorithm, but when with fifty-
six samples in the training dataset, the algorithm does not improve much with the
addition of extra data.

4.4 Discussion

This study shows that a statistical shape model can accurately predict the shape of
the distal radius when provided with the proximal radius as input. When the shape
completion algorithm has to predict a larger part of the distal radius, the accuracy of
the algorithm declines. Both on a global as well as a local level, differences between
the predicted and original distal radius are typically around the millimeter. Our re-
sults show that relatively few differences are present between the predicted and the
original DRU and radiocarpal surfaces. This means that these areas can be used
as templates for osteotomy. However, the dorsal side of the radial styloid, the dorsal
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Figure 4.6: The mean local differences between the predicted and original radius,
for scenarios where 5%, 10%, and 15% of the radius is predicted. Red
areas contain large differences between the predicted and original ra-
dius and blue areas contain little differences.
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Figure 4.7: The maximal local differences between the predicted and original ra-
dius, for scenarios where 5%, 10%, and 15% of the radius is predicted.
Red areas contain large differences between the predicted and original
radius and blue areas contain little differences

Figure 4.8: The performance of the shape completion algorithm with fewer training
samples available. The performance of the algorithm is expressed in
mean differences between the predicted radii and the original radii.
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tubercle, and the most ventrodistal corner of DRU is predicted less accurate and
should therefore preferably not be used as a template for distal radius osteotomy.
Further, the rotations and translations, and the first five principal components of the
variation in the difference between the predicted and the original radius show only
small differences. This confirms the suggestion that small differences between the
predicted and original radius exist, but the predicted radius is more or less similar to
the original radius.

Our results show that if the malunion is positioned relatively proximal and the part
of the distal radius that has to be predicted is therefore large, the shape completion
algorithm is less accurate. This happens because less data is available and the data
that is available contains less information about the distal radius. When only a small
part of the distal radius has to be predicted, the performance of the model increases.
This means that an as large as possible area of the radius must be used as input for
the shape completion algorithm.

Further, our study shows that local differences between the predicted and orig-
inal radius are primarily present on the dorsal side of the radius, especially in the
radial styloid and the dorsal tubercle. An explanation could be that the shaft and
proximal radius do not contain enough information about these areas to correctly
predict their shape. Besides, areas with large anatomical variance are relatively
hard to predict. The dorsal tubercle is known to have a considerable amount of
anatomical variance [38], [39]. This may explain the relatively large errors in this
region.

Previous studies investigated the use of statistical shape models to predict the
shape of the radius [21], [22]. Mauler et al. used a similar statistical shape model
design as the model presented here [21]. The authors used a setup where they pre-
dicted the distal 50% of the radius based on the proximal 50%. The authors found
a mean point-to-surface distance of 0.71 +-0.10 mm and an average Hausdorff dis-
tance of 3.34 +-1.18 mm which is slightly better than our algorithm [21]. Oura et
al. used a partial least squares regression to predict 30% of the distal radius based
on 60 of the proximal radius. With a mean surface distance of 0.93 +-0.39 mm,
their model performs comparably to our model [22]. However, the results are not
directly comparable because the authors also predicted a larger part of the radius.
Further, it is unclear how the studies by Mauler et al. and Oura et al. calculated the
rotational differences between the predicted and original radius which complicates
comparisons [21], [22]. One could hypothesize that the differences in the number
of training samples could explain the differences since Oura et al. and Mauler et al.
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used larger datasets [21], [22]. However, our results suggest that the results are not
expected to improve much with the addition of more data. Our algorithm seems to
perform similar to previous attempts to predict the distal radius, however, no accu-
rate comparison can be made because of differences in design.

This study has several weaknesses. At first, the performance of the algorithm
is tested with a leave-one-out method because of the limited size of our dataset.
Therefore, the algorithm was made with knowledge about the dataset. This means
that bias can be present and external validation is necessary. Further, the rota-
tional and translational differences are based on a 4x4 transformation matrix which
includes a translation vector and a rotation vector. Rotations around the x, y, and
z-axis are derived from the rotation matrix with a method not described in the liter-
ature. A more common approach would be to use Euler angles. However, these
results would be highly order-dependent. Our approach is independent of order and
we think it gives a good indication of the differences in rotation. Furthermore, the
translation vector from the transformation vector is also given. Because the transla-
tion is done after rotation, this vector is expected to be larger than when the trans-
lational difference would be calculated without correction for rotation. Moreover,
the performance of the shape completion algorithm is tested with a leave-one-out
method because of the limited size of our dataset. This means that we had to take
the limitations of the dataset into account when creating the shape completion algo-
rithm. This means that bias can be present and external validation is necessary. To
assess the external validity of the model, an external dataset should be used.

In conclusion, this study shows that a Gaussian process regression shape com-
pletion algorithm can be used to create an accurate representation of a pre-fracture
distal radius, based on the proximal part and shaft of the radius. The predicted radius
can be used as a template for distal radius osteotomies, especially if the malunion is
located above the shaft of the distal radius. Further, we have shown that especially
the articular surfaces of DRU and the radiocarpal joint can be accurately predicted
and can be used to plan an osteotomy. The dorsal side and the radial styloid are
predicted less accurately and might therefore be less suitable to plan osteotomies.
Further research should focus on a direct comparison between the use of a pre-
dicted and a contralateral radius as a template for osteotomy to further investigate
the performance of the algorithm.
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Chapter 5

General discussion

This study aimed to improve the understanding of both the use of the contralateral
radius and a predicted radius as a template for distal radius correction osteotomy.
In Chapter 2, we aimed to estimate the length differences in the forearm. We did
this by comparing the differences between the left and right ulna in a dataset of 50
subjects. We found substantial length differences between the left and right forearm.
Therefore, we conclude that the contralateral radius can not be used as a template
for distal radius osteotomy without a length correction. In Chapter 3, we developed
a statistical shape model and an algorithm that can predict the shape of a distal
radius based on the proximal radius and the shaft, and in chapter 4 we validated
the shape completion algorithm. The algorithm can predict the shape of the distal
radius well and this prediction can be used as a template for correction osteotomy if
no contralateral radius is present.

In preoperative planning for a distal radius osteotomy, an accurate reference ra-
dius is needed. Since the correction of the length of the radius is most important, the
reference radius must provide a template to correct the length accurately. Both the
contralateral radius with a correction for length, and the predicted radius can provide
an accurate template for osteotomy. However, it remains unclear what would be a
better template because no data is available about how well length correction based
on the ulna length works. A dataset of healthy pairs of radii is needed to compare
the performance of the predicted radii to that of the contralateral radius with length
correction.

The success of the correction osteotomy is not only dependent on the quality
of the reference radius, but also on the accuracy of this reference radius can be
mimicked. If we can provide a very accurate reference radius, but the accuracy of
surgery with patient-specific guides is low, correction osteotomy will still fail. There-
fore, the accuracy of the reference radius does not have to be much better than the

41
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accuracy of guided surgery. Further, In the main lines of this thesis, we focused on
the length differences between the affected radius and the reference radius. It is
clear that the length must be corrected accurately since an ulnar variance of 2 mm
can already cause complaints. This is less clear for other differences in the pose of
the distal radius. Therefore, it is unclear how the accuracy of the reference radius
must not be the limiting factor in correction osteotomy. This means that we can not
state that the quality of the reference radius is good enough for correction osteotomy.

In conclusion, this study shows for patients with a distal radius malunion that a
length correction must be applied based on the ulna when the contralateral forearm
is used to plan a distal radius correction osteotomy. When doing so, the radius can
be restored to a state more similar to its original state. For patients with a malunion
but without a contralateral radius available, this study demonstrates that a predicted
radius can be used to develop patient-specific guides to reconstruct the radius more
accurately. If the radius is reconstructed more accurately this may lead to fewer
post-osteotomy complications and possibly fewer re-interventions.
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Appendix A

Appendix A

A.1 Segmentation

Both forearms were segmented to create a 3D surface model using mimics (ma-
terialize, Leuven, Belgium). The bones were first segmented with a thresholding
function at 300 Hounsfield units, then the ulnae were selected with a build-in region
growing algorithm. If multiple bones were selected, the split mask function was used
to separate the bones. The gabs in the ulnae were filled using a hole-filling algorithm
with an appropriate closing distance. With manual assistance, the remaining holes
were filled. The segmentation method was previously validated and was considered
to be accurate [40].
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