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ABSTRACT
In this paper, we propose further improving the identity-
preserving features of the VICE-GAN network. The VICE-
GAN network is a network that generates a video of a face
expressing different emotions than the input video while
preserving the same face. We suggest that using a more
robust encoder could achieve these improvements. Another
encoder could improve upon identity preservation because
the encoder proposed in the original paper performs poorly
on faces that did not appear in the training set. Therefore
using an encoder that performs better on facial feature ex-
traction on unseen faces, such as FaceNet[21] could also
improve the accuracy of the VICE-GAN on unseen face
models.
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1. INTRODUCTION
Over the last five years, Generative adversarial networks
(GANs) have become a popular topic in deep learning.
Their versatile abilities, such as the unsupervised learning
of feature representations and generating novel pictures,
have been used for multiple use cases [6, 18, 29].

Within this development, there has also been some fo-
cus on video applications for GANs. For instance, Von-
drick et al. (2016)[26] proposed a network that would
be able to untangle a scene’s foreground from the back-
ground by learning how to map video clips within the la-
tent space. In response to this, Tulyakov et al. (2018)[25]
argued that this mapping to the latent space would un-
necessarily over-complicate the problem of video appli-
cations for GANs. Moreover, since the mapping within
the latent space would also limit the generated video clips
to have the same length, it would not accurately repre-
sent the real-world scenario. After that, they proposed
a Motion and Content decomposed Generative Adversar-
ial Network (MoCoGAN). The MoCoGAN structure, after
given sufficient video training data, would be able to learn
to untangle the motion from the content automatically.
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Through this structure, researchers developed new meth-
ods for video generation and prediction.[28, 26]

These improvements within the field of video generation
allowed us to see that there are possibilities to use these
techniques to generate entire datasets, which could even-
tually improve upon more traditional systems of machine
learning systems such as emotion recognition[1, 15]. For
this exact purpose, Jayagopal (2021) proposed the VICE-
GAN [13] to generate videos that would represent different
emotions based on a given input while still maintaining the
same identity as the person in the input. This model, how-
ever, lacked some robustness and would perform poorly
faces it has not seen in its training data.

Here we will try to address the inconsistency the VICE-
GAN model has with a new face by implementing a differ-
ent encoder part for the network. We think this will be an
effective solution since we speculate that the problem in
the original network originated from the original encoder’s
inability to extract the unique facial features out of the
inputs properly. During testing, results for unseen data
on the network would look like those from the network’s
already trained on data. This morphing could be the en-
coder’s inability to extract the unique features properly
and, therefore, only being able to output data that would
result in good training results.

Additionally, research into specific optimizations, such as
improving identity preservation, will help deepen under-
standing of the black box within these networks and how
they operate.

1.1 Contributions
In this paper, we explore ways to improve the performance
of the VICE-GAN network by enforcing better identity
consistency. The model proposed in the original paper[13]
had a generally good performance in facial emotion trans-
lation tasks. However, when testing on faces that were
not in the training dataset, the network performance was
significantly lower. As also explained earlier, the original
network had an encoder that was somewhat rudimentary
and only trained for the data for this network; this is the
reason for exploring whether a generally more robust en-
coder could perform better regarding consistency. For this
reason, we want to experiment specifically with the en-
coder and the loss function of the network according to
these properties:

• Whether using a more robust encoder to generate
feature vectors from input data will result in the net-
work being better able to represent the input data
better.

• If there are ways to optimize the triple-loss function
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to enforce better identity preservation

When working on these properties, we also need to explore
further other variables which go along with these proper-
ties. These variables are:

• Scaling of the encoder input: when adapting the net-
work to a new encoder, the size of the input data
for the encoder should be adapted. The original en-
coder could take in images of the size 64x64; other
encoders such as FaceNet cannot encode images with
a resolution lower than 100x100. The encoder should
perform optimally

• Modifying the loss composition: the triple-loss func-
tion is optimized through the ADAM optimizer. For
this optimizer, the composition of the triple-loss will
affect which losses are of priority. There should exist
a good balance between these parameters.

• Scaling of the consistency loss: the consistency loss
is one of the three losses of the triple-loss function.
The scaling of this loss affects how well the network
will optimize for facial preservation.

1.2 Research Question
In the VICE-GAN, the encoder was not robust enough to
produce similar results between unseen and seen training
data. Here we want to analyze whether we would imple-
ment an encoder with higher accuracy in identifying faces
and whether the VICE-GAN model would perform better
on unseen training data. Further, we would also like to
explore if there maybe are other measurements that could
be used to more accurately measure the identity preserv-
ing loss in the model.

To better formulate these goals in concrete tasks, we will
state them as the following research questions (RQ):

• RQ1: Will implementing the FaceNet[21] encoder
improve the performance of the VICE-GAN? How
did the performance specifically change?

• RQ2: Are there any other loss measurements that
would improve the performance with the new en-
coder? How can we accurately measure how the
GAN affects the encoder’s input?

2. RELATED WORK
In sharp contrast to the lack of research in combining
video generation and emotion generation within AI, re-
search is abundant in the individual fields. The introduc-
tion mentions papers particularly concerning the VICE-
GAN network, now we will examine a broader scope of
research. Starting with research focused on GANs, fol-
lowed by the specifics of video-to-video translation, and
lastly, more profound literature on identity consistency.
For this research, we used multiple means to gather the
related literature; the current sources include domain Sco-
pus, Google Scholar, and IEEE.

2.1 Generative Adversarial Networks
GANs were first proposed in 2014 by Goodfellow et al. [9]
it is a unique network that consists of both a generator and
a discriminator. The generator aims to generate authentic
images, while the discriminator tries to discern real images
from generated ones. The training of both these networks
functions as a min-max optimization where one network

Figure 1: Video’s generated by dynamic transfer [4] in (a)
from using MoCoGAN [25] input frames (b) using Realistic
Dynamic Textures GAN [20] for input frames

tries to minimize while the other tries to maximize; this
is represented by alternating gradient upgrades between
these networks. In their paper, Goodfellow did show that
these networks can still converge to an optimum, given
enough capacity and iterations.

This field has already flourished into multiple fields, which
include representation learning[18, 29] and recognition net-
works [1, 8]. Further specifically related to video process-
ing GANs were used for different types of video decom-
position [25, 26]. These GANs relate to our use of GANs
since we will decompose the emotion and the face of the
person in the video for the problem of emotion synthe-
sis. This new MoCoGAN model opened doors to video-
to-video synthesis[28], image-to-image translation[11] and
video prediction[17, 3].

2.2 Video-to-video
For video-to-video translations there has been previous re-
search focusing a variety of different video manipulations
on video super-resolution [23], video style-transfer [7], and
video snipping [5]. For video generation, video-to-video
synthesis [27] has been proposed as a state-of-the-art tech-
nique for generating high-resolution, photo-realistic video.
Moreover, video synthesis uses a unique method where the
model focuses on matching the conditional video distribu-
tions instead.

Expanding on the MoCoGAN framework, a method has
been created for transferring the arbitrary dynamics from
a video input sequence onto a target image (See Figure
1)[4], thus creating a new video with the dynamics from
the video on the target image. The VICE-GAN model[13]
is comparable since it aims to translate the dynamics of
an emotion on a target video. Newer papers also pro-
posed similar emotion editing using latent space manipu-
lation[24]. Additionally, there is a review of current state-
of-the-art GAN models used for human emotion synthesis
and how they perform comparatively[10].

2.3 Identity consistency
GANs in recent years are becoming more notorious for
getting good results in generating high-quality images of
faces (such as generated by StyleGAN [14]). The safety
implications for GANs generating faces and the novelty
of these faces have been questioned. However, research
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on this has shown that GANs trained on face images are
still capable of generating new identities and can also be
used for data anonymization [19]. This generation of novel
items is essential to mention since the identity consistency
issue faced in the previous VICE-GAN model since the
model would perform poorer on unseen faces, considering
whether this model could generate these new faces.
Following this, other research on identity consistency with
GANs has also been done. In a specific self-supervised
video GAN [12] the discriminator was tasked with learn-
ing two things, the representation of the appearance (the
identity) and the temporal structure (the motion), and
this model showed improvements over the state-of-the-art
models.

3. METHODOLOGIES
This section will describe the methodologies proposed for
this research. These methods include the modifications we
will apply to the original VICE-GAN system described in
section 3.1. After this, these methodologies will be used
to run the experiments in section 4 and generate the final
research results.

3.1 VICE-GAN
Th VICE-GAN network is the framework of this entire
project, the structure of the network can be seen in Figure
2. The network exists of 5 different sub-networks, which
include: an encoder for the input, a Recurrent Neural Net-
work (RNN) for creating the motion vector, the generator
network for the fake video; and then two different discrim-
inators for the output, one for the image and one for the
video. The function of each of these sub-networks will now
be further elaborated.

Figure 2: The structure of the VICE-GAN network [13]

3.1.1 The encoder
Within the VICE-GAN structure, the encoder creates a
feature vector from a certain input video, represented by
the formula below.

Zc = Ie(X)

here Ie is the encoder, which takes in X the vector repre-
sentation of the input video; this generates the vector Zc,
which contains all the previous frames and their feature
vector.

3.1.2 RNN for motion creation
In this network, the motion must be changed between the
frames, but the new motion still needs to be related to the
previous frame. For this purpose, an RNN is used since
these networks specialize in generating sequences with cor-
relation.

ZM = Rm(ϵ)

here the Rm represents the RNN which takes as input a
vector ϵ which is sampled from a normal distribution; this
generates the eventual motion vector ZM .

3.1.3 The generator
As seen in Figure 2 the generator is the central part of
this GAN. This generator receives input from the previ-
ously discussed feature vector Zc, motion vector ZM , and
a new one-hot vector ZA which represent the target emo-
tion. From these input vectors it will attempt to create a
video sequence that should adequately represent the fea-
ture vector’s identity and the motion of the emotion. The
generator is then trained using a triple loss function com-
prised of the content-consistency loss, adversarial loss, and
category loss. This training process will be elaborated fur-
ther in section 3.1.5.

3.1.4 The discriminators
Two types of discriminators are utilized for this network;
these are an image discriminator and a video discrimina-
tor.

The image discriminator is based on a Convolutional Neu-
ral Network (CNN). Its goal is to discriminate whether
a frame from a video is real or generated. The feedback
from this image discriminator has then added the loss of
the generator to improve its performance.

The video discriminators utilize spatial-temporal model-
ing; this models how the video frames vary over space
and time, then it aims also to discriminate whether this
spatial-temporal frame is real or generated. This creates
feedback for the motion of the generated video and is used
to train the Rm RNN network. This discriminator also
trains to learn the different categories of emotions, which
it then aims to label correctly.

3.1.5 The training
For the training of the generator, the VICE-GAN uses a
triple-loss function for the generator. This triple loss con-
sists of three separate losses and is used to calculate the
combined loss for the generator. These separate losses in-
clude the Ldiscriminator, Lconsistency, and Lcategory. These
three losses are combined and then used for the back-
ward propagation with the ADAM optimizer to update
the weights properly.

Now to further elaborate on each one of these losses. The
Ldiscriminator is the loss that optimizes the discrimina-
tors. This loss motivates the generator to generate realis-
tic data, which will trick the discriminator into thinking it
is real data. While the discriminator is corrected on how
to differentiate real and fake data properly. This process
is the same min-max optimization discussed in section 2.1.

The Lconsistency loss compares the similarity between the
actual data and the network’s output. This loss ensures
consistency is encouraged within GAN. There are differ-
ent ways to calculate how different these vectors are. For
this the original paper uses Mean Squared Error, but in
section 3.3 we will also propose Cosine distance.

Lastly, the Lcategory loss is used to condition the genera-
tor into creating a video that will be correctly categorized.
Here the video discriminator will aim to learn how to dis-
cern the categories from the training data. At the same
time, the generator will generate the videos with the cat-
egories to be recognized by the discriminator.

3



This training process is iterated on for roughly 50.000 to
60.000 generations to keep optimizing the generator, dis-
criminators, and RRN continuously.

3.2 Encoder
For the newly proposed method, we propose using the
FaceNet[21] encoder for this network. The original en-
coder in the network was an auto-encoder that would take
in the video data and then generate a feature vector of
50 features. The accuracy of this encoder in the VICE-
GAN[13] paper was 96.1%, but this was achieved on a
limited amount of specialized data. We think that using
a more generalized encoder which has proven to have an
accuracy of 99.63% on the huge diverse Labeled Faces in
the Wild dataset[16].

For our networks, we want to replace the old encoder with
the new encoder; this causes two problems. The first is
that FaceNet can only accept images above a resolution
of 100x100, and the original training images are 64x64
in resolution. Furthermore, the second issue is that the
generator only takes in 50 feature vector items from the
previous encoder.

To solve the problem with the generator input, we will
first scale up the intake of the generator to 512 feature
vector items, after which we will have to train a new net-
work. For the problem with the encoder input, we have
a couple of choices: we could either scale up the data to
a resolution of 100x100 to keep it as close to 64x64 as
possible or up to 160x160 since the FaceNet encoder was
initially trained on data with this resolution. After test-
ing both resolutions on a data set of 50 images, we had
an accuracy of 88.6% on the 64x64 resolution, while we
had an accuracy of 98.9% on the same images scaled to
160x160. This was the motivation to scale up the images
for the encoder to 160x160; for this bi-linear scaling was
used.

3.3 Other loss metrics
For the consistency loss criterion, the original was Mean
Squared Distance, and this makes sense since it will aim to
make the vectors as similar as possible. For this we would
like to aim for similarity, and since we do not specifically
mind if the data is not close in the Euclidean space, we
want the data to be at a similar angle to each other. This
is because facial recognition systems such as FaceNet will
still recognize the data as the same. Therefore our choice
is Cosine similarity because this is already very similar to
Mean Squared Error, and limitations on time would cur-
rently restrict us from trying ArcFace.

Because we are using a different encoder and loss criterion,
the size of the loss might differ. This is an issue since the
loss is composed of multiple loss functions, and when the
consistency loss becomes smaller it loses priority. This is
why we scale the consistency losses to get the variable as
similar as it was in the original network; this also affects
the loss composition of the network.

4. EXPERIMENTS
In this section, the experimental setup will be discussed
along with the dataset and hyper parameters related to
this setup; this will be followed by an overview of the ex-
periments performed and how the experiments were eval-
uated. Further technical details are as follows:

• dataset: The MUG Facial Expression Database was

used for this experiment [2]. We used data from
this dataset consisting of 50 individuals expressing
five different emotions. In the pre-processing, all
videos with less than 64 frames were removed, and
the frame resolution was scaled to 64x64 pixels to
comply with the MoCoGAN framework standards.
After the pre-processing, the total video count was
603. Of these 603 videos 548 were used for regular
training and testing, while 55 were kept separate for
testing on unseen individuals. The data was given
an 80-20 train-test split during the training.

• parameters: The batch-size for the experiment was
32 for both videos and images, the ADAM optimizer
was used with a learning rate of α=0.00002, and for
the momentum the β1=0.5 and β2=0.999

The training was done using the CTIT cluster of Univer-
sity Twente utilizing either a single TITAN X 12GB GPU
or Quadro RTX6000 24GB GPU.

4.1 GAN modification
Four different GAN models have been trained to observe
the effects of different hyper-parameters while changing
the model. The models differ in: the encoder used, consis-
tency loss criterion, the scale of the consistency loss, and
the composition of the generator loss. These model types
are specified in Table 1

Table 1: Overview of GAN variants used

Model Encoder Cons. loss Scale
Loss composition
(cons., cat., discr.)

1 VICE-GAN MSE 1 (63%, 34%, 3%)
2 FaceNet MSE 10000 (78%, 20%, 2%)
3 FaceNet MSE 15000 (78%, 19%, 3%)
4 FaceNet COS 2000 (57%, 39%, 4%)

The different encoders and consistency losses used for these
models affected the loss composition. This effect was partly
mitigated by scaling the consistency loss.

Model 1 is a reference model to the original VICE-GAN
model. This model uses the original encoder proposed[13],
and the consistency loss for this model was at the start of
training 44. Model 2 uses the FaceNet encoder, with a loss
consisting of the Mean Squared Error scaled by 10000. If
this variable did not scale the consistency loss, it would
have become diminutive. Scaling it by 10000 prevents this
resulting in the eventual consistency loss for model 2 being
31. Model 3 is identical to Model 2 except for the scaling
variable being 15000, resulting in a consistency loss of 54.
The reason for including both these models is to observe
the effect of scaling the consistency loss differently. Model
4 used the cosine similarity as loss criteria. For model 4,
the consistency loss was scaled up by 2000, which resulted
in it 13 at the start of training (a model with a consistency
loss closer to Model 1 would perform differently).

4.2 Evaluation
In every experiment, all variables not discussed in section
4.1 are kept identical to the original baseline. All data
presented was gathered from testing results of the training
networks unless specified otherwise.

4.2.1 Data used
Since it is important to observe both the performance of
the models on faces it has seen and the performance on
faces unseen, we have devised two data groups: the seen
and unseen data group. The seen group consists of data
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containing the same individuals used in training the net-
work. While the unseen group consists of data from two
individuals on whom the network had not trained before.

From testing the GAN variations on these data groups,
two batches were gathered consisting of 32 videos. One
of these batches is the video data of the expected result,
while the other batch is the video data developed by the
generator.

4.2.2 Evaluation methods
To eventually answer the research questions we will first
answer the following sub-questions using results generated
from the different networks:

• How similar are the facial identities?

• Is the same face recognized?

• Are the same emotions recognized?

These sub-questions are used to bridge the gap between
the research questions and the results. To answer the sub-
questions the lightweight face recognition and facial at-
tribute recognition framework DeepFace[22] was used.

Using this framework the first question will be answered by
observing the distributions of the cosine distance results
of the varying networks. This will give us insight since
a lower cosine distance would mean that the network is
better at creating similar facial identities.

For answering the second questions we will see if these
cosine distances are below certain thresholds. If these co-
sine distances are below this threshold we can conclude
that the faces are actually recognized as the same faces.

And lastly, the third question will be answered by the emo-
tion analysis function of the DeepFace framework. This
function will observe for every video which emotion is most
likely expressed. After which we will compare if this emo-
tion is recognized as the same for both data groups.

4.2.3 DeepFace models
DeepFace has eight models from which we can choose
which one we would like to use for calculating the facial
similarity. From these models we would like to use the
one which is most precise with our specific data, for this
task we will use a ROC-curve. A ROC-curve is a graphical
plot that shows the precision of a binary classifier using
different thresholds. In figure 3 you can see the complete
ROC-curve for our data.

Figure 3: The constructed ROC-curve

In the legend of figure 3 you can see the Area Under the
Curve (AUC), a higher AUC is linked to a better preci-
sion. In the ROC curve the best case is to have line the
closest to the top left as possible which is represented by
a higher AUC value. In this graph you can see that Ar-
cFace is thereby the best performing model with a AUC
of 1.000 (rounded up from 0.99995). Therefore we will
utilize ArcFace for the DeepFace framework to calculate
facial similarities for the results.

From the ROC-curve a more fine-tuned threshold has also
been calculated for classifying our data.

Threshold = 0.36993933946974566

This new threshold will have a better accuracy correctly
identifying similar faces than the original threshold, which
is 0.68 for ArcFace. In our results we will use both thresh-
olds to observe the difference in the quality of the data
generated by the networks.

5. RESULTS AND DISCUSSION
In this section, the results from the experiments will be
displayed and discussed. Then other limitations and po-
tential areas for further research will be disclosed. Just
like the original VICE-GAN model some artifact were still
observed in the generated videos on seen data. In figure
4 you can see a visualisation of the expected result versus
the generated video of each model. You see that model 4
had the biggest deviation while model 1, 2, and 3 all still
made recognisable videos. The emotion expression also
seems more accurate in model 1 and 3.

Figure 4: Representation of the same seen video by differ-
ent models

Figure 5 is a similar representation but for unseen data.
Here you can see that all images do not look recognisable.
However model 3 seemed to do better with maintaining
facial features such as the nose, mouth, and beard. Model
4 seemed to have a lot of disfigurements here which could
be an exaggeration of the models in ability to also present
normal data properly as well. Further model 1 and 2 seem
to generate the correct emotion expression while still hav-
ing a very different facial features.

Follow this each evaluation sub-question from section 4.2.2
will be assessed.
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Figure 5: Representation of the same unseen video by dif-
ferent models

5.1 How similar are the facial identities?
The facial similarity was evaluated using DeepFace com-
bined with the ArcFace model. From this we generated
the distribution of the cosine distances for both unseen
and seen individuals in Figure 6. For every model you can
see the distribution of cosine distances, with seen data on
the left side and unseen data on the right side, which is
represented by how wide the graph is at that point. The
combined average cosine distance per model is presented
by the white dot in the middle.

Figure 6: Constructed ROC-curve zoomed in top-left

In this graph a lower combined average means represents
a better performing network. Therefore we can see that
model 3 was the best performing with models 1, 2, and 4
all perform respectfully more worse. Looking at the dis-
tributions of the data we can also see that model 3 on
seen had a slightly lower distribution than model 1 on
seen data. This means that model 3 generally generated
higher similarity videos than model 1. Between model 1
and model 3 we can observe an even bigger difference on
unseen data. Here you can see that the distribution for
model 3 goes much lower in cosine distance than model 1.
This means that model 3 is better at identity preservation
for unseen data, while model 1 is equally bad for the iden-
tity preservation of all unseen data.

The result of model 2 were significantly worse than model
3, which is surprising since the networks only differ in scal-
ing. This insinuates that scaling can be a big influence in
the identity preservation of the models. Model 2 for the
seen data has a very wide distribution spread which means
that the model had a very varying performance on this
data. For unseen data this model has a very narrow dis-
tribution of equally high cosine distances this means that
the model is equally bad at the identity preservation for
all unseen data. This model performs worse than the orig-
inal VICE-GAN model despite using the FaceNet encoder.

Model 4 is the worst performing model, it is difficult to
state whether this is caused by the cosine similarity for
the consistency loss or because the scale and loss compo-
sition. Early stages of the research showed that having a
consistency loss function which is not scaled would result
videos virtually no identity consistency. Looking at the
composition of the loss function for network 4 in Table 1
it also shows that the consistency loss is off a lower prior-
ity than in the other networks. Based on the distribution
in these results it seems like cosine similarity might be a
good criterion, but it should not be seen as conclusive for
the difference in loss composition and scale.

As a conclusion for this question, it seems that using FaceNet
as an encoder can result in more similar facial identity rep-
resentation for both seen and unseen data. However this
is very depended on the scale of the consistency loss. Us-
ing a cosine similarity loss generates very poor results, but
these results might also be cause by the scale or loss com-
position.

5.2 Is the same face recognized?
By checking whether the average cosine distance is lower
than the pre-determined thresholds we can observe if the
faces can be identified as the same person. The accuracy
is then calculated from the amount of videos recognized
divided by the amount of total videos. For the standard
threshold for ArcFace the accuracy is presented in figure
7.

Figure 7: The ratio of faces recognized in the video with
a threshold of 0.68

Here you can see that model 1 has a very high accuracy
on seen data, but a very low accuracy on unseen data.
Comparatively model 3 has a slightly lower accuracy on
the seen data, but a much higher accuracy on unseen data.
This means that for seen data model 3 was slightly worse
than model 1 in generating similar results. But for un-
seen data model 3 was significantly better than model 1
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at generating similar results. Model 2 and model 4 both
perform significantly worse, which was expected based on
the results of section 5.1.

It is important to also compare this accuracy to the accu-
racy of the fine-tuned threshold calculated earlier. Using
this threshold the accuracy of the models is shown in figure
8.

Figure 8: The ratio of faces recognized in the video with
a threshold of 0.37

In this graph, model 3 now has a higher accuracy than
model 1 on seen images. This is because model 3 gener-
ates more highly similar videos than model 1. With these
results every model has a 0% accuracy on the unseen data,
which means that the videos generates for unseen data are
still not similar enough for the fine-tuned threshold.

As conclusion, models 1 and 3 also have the highest amount
of faces recognized below the thresholds. Model 1 per-
forms better than model 3 generating seen data below the
default threshold of 0.68. While model 3 performs better
than model 1 on seen data with a more fine-tuned thresh-
old. Model 3 also greatly out performs model 1 on unseen
data on the default thresholds. And both models 2 and 4
perform significantly worse than the model 1 and 3. Even
though model 2 manages to generate some recognisable
faces.

5.2.1 Is the same emotion recognized?
Using DeepFace it is also possible to observe the emotion
in a video. These results can be observed in Image 9.

Figure 9: The ratio of videos with the same emotion ex-
pressed.

Here model 2 was the best at expressing the same emotions
on seen data. Model 1 performs both accurate on seen and

unseen data, which indicates a general consistency with
emotions representation. Model 3 has identical results on
the emotion expression which indicates also consistency in
emotion representation but at a lower accuracy than model
1. Surprisingly model 4 performs better at unseen data
than seen data, the reason for this could be that model 4
does the incorrect learning for the emotion representation.
But it could also be a display of limitations of this metric
on a 16 frame video.

5.3 Discussions and Outlook
5.3.1 Research Question 1
To address research question 1, we can state that using
the FaceNet encoder can improve the performance of the
VICE-GAN. However, other variables, such as the scaling
and loss composition, can play a big part in what extent.
In our results, model 3 performed better than model 1
on unseen data. While models 2 and 4, using FaceNet,
performed worse than model 1.

The increase in performance from model 3 to model 1 was
for unseen data 32% with a low threshold. For seen data,
model 3 performed 10% than model 1 with a fine-tuned
threshold, but for the low threshold, model 1 still per-
formed a little better.

5.3.2 Research Question 2
In these experiments, whether other loss measurements
could improve the performance with FaceNet is not proven.
Using cosine distance model 4 with FaceNet performed the
worst out of all previous models, but we cannot conclude
if this was for the loss measurement or the other variables
involved. Using other loss measurements such as ArcFace,
the model could perform better, but this is not proven in
this experiment.

To better measure the GANs effect on the encoder input,
we can look at the results from the ROC-curve analysis.
Here we can see that ArcFace is the best method for dif-
ferentiating fake faces from real ones; using this metric
to measure the GANs affect, the model could potentially
train better.

5.3.3 Shortcomings
The biggest issue for these experiments is the data limita-
tion, for data with unseen individuals, we only had two dif-
ferent individuals. This therefore limits the credibility of
those experiments since we do not know if models perform
better or worse because the individuals in the data look
similar to the individuals the network trained on. Using
more individuals for the training data could also increase
the networks robustness on different faces.

Another major weak points within these experiments is
the image resolution, using 64x64 images decreases the ac-
curacy of the facial identifying algorithms. When testing
different resolutions scaling up the images for the FaceNet
encoder it performed with a 10% higher accuracy on im-
ages that were 160x160 compared to 100x100 images. This
could also insinuate that the network could perform better
on 160x160 resolution images, but this is inconclusive and
requires further research.

Lastly, the MoCoGAN model only trains on 16 frames,
and in our experiments these frames are selected based on
every first frame. So most of the time only 16 very early
frames are selected, also with the MUG data not every
video starts expressing the emotion in these 16 frames.
Not being able to correctly identify these emotions could
limit the emotion generating capabilities of the GAN.
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5.3.4 Future work
This paper has showed that using a different encoder could
provide better results on the original VICE-GAN struc-
ture. However due to fluctuations in the scaling and loss
composition it is not easy to discern to what extend. Fu-
ture research in this area could focus more elaborately on
different scaling and loss compositions, which could help
identify the optimal values for these variables. Combining
this with ArcFace to calculate the consistency loss could
provide even better results.

6. CONCLUSION
This paper has presented and experimented with three
new adaptations of the VICE-GAN network, using FaceNet
as the encoder. The results showed that using this encoder
can improve the network’s performance using the correct
variables.

This was achieved by creating different models using the
VICE-GAN model and FaceNet encoder but changing the
variables for each model. The models using a consistency
loss calculated from the Mean Squared Error difference
performed better than the model which used the Cosine
similarity. Using a different scale for the Cosine model
could potentially improve the performance. Within these
Mean Squared Error models, the higher scaled model for
the consistency loss had the best accuracy and outper-
formed the original VICE-GAN model. There was also the
unexpected benefit that the higher scaled Mean Squared
FaceNet model seemed to produce more high-quality videos
compared to all the other models.

A discussion of potential future work and improvements is
also discussed, where the results for improving on the data
and observing the full effects of scaling the consistency loss
could be investigated. While the performance in this re-
search is better, more considerable improvements for these
models seem plausible using methods such as ArcFace for
either the encoding or the loss consistency.
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