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Abstract

Mobile mapping is a way of obtaining accurate 3D maps of environments in a short time. A

mobile mapping system is essentially a perception system consisting of LiDARs for obtain-

ing geometrically accurate data with optional cameras and other sensors for auxiliary func-

tions. When considering LiDARs, their composition and orientation influences the quality

of data received. The configuration and number of LiDARs employed in the current mobile

systems are driven by designer experience, understanding and requirements. So far, for a

small mobile platforms such as an unmanned aerial vehicle (UAV), the systems have been

limited to single-LiDAR configurations.

This study investigates the benefits of using multiple LiDAR in a (UAV-mounted) mobile

platform. The study draws inspiration from two sources, as follows. First, mapping of in-

door environments sets high requirements. There has been a step up from the single-sensor

push-broom like data capture, to the fan-style LiDAR which captures in 3D. But to increase

visibility and accuracy, the next step is for multi-LiDAR systems. Second, the advancement

in the LiDAR technology (such as single photon LiDAR, flash LiDAR) has led to a reduction

in weight, cost and power consumption of these devices, enabling new system design pos-

sibilities. It makes sense to use simulations to assess potentially useful systems. Here, ROS

simulations are used, because that is a de-facto standard for robotics research and develop-

ment.

Well-motivated LiDAR configurations inspired from state-of-the-art mobile platforms are

selected and simulated in different environments. The point cloud obtained are assessed

against the designed evaluation metric. The evaluation is based on coverage, homogeneity

and normalized density of the point cloud.

Depending on the quantity of LiDARs employed, the configurations have been classified

into three tiers. While examining the outcomes, certain tendencies become apparent. The

point cloud’s quality is directly influenced by the LiDAR system’s range and direction. For

different environment uses, optimal or possibly improved designs are recommended within

each Tier. The designed evaluation metric serves as a suitable starting point for developing

new combinations. And an important trade-off between scanning more thoroughly and fly-

ing farther is comprehended. This trade-off is crucial in defining the configuration’s design

and feasibility.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The advancement in LiDAR technology is re-shaping the LiDAR perception system used in

a Mobile mapping system (MMS). MMS systems are capable of providing accurate, efficient

and fast results which enable its applications in construction sites, forest and agriculture,

hospital or medical sector, mining and tunnels, road, railway and bridge inspection. De-

pending on the application of the mobile mapping system there are various ’mobile plat-

forms’ used such as car, drone, backpack to collect geospatial information. The commonly

used sensors for perception on a MMS platform is LiDAR (Light Detection and Ranging), or

camera. Positioning modules like IMU (Inertial Measurement Unit) can be used to position

the mobile platform for indoor environments, although IMU data is subject to drift. Data

from the perception module (LiDAR data) can be co-related with the IMU data to better lo-

calize the system and minimize drift. Since the accuracy of this depends on the perception

system, it becomes crucial to determine the orientation and number of LiDARs used.

A point cloud is a set of data points in a three-dimensional coordinate system. These points

are typically generated by a laser scanning device, and they can be used to create 3D models

of objects or environments. Point clouds are often used in fields such as surveying, archi-

tecture, and engineering. The point clouds can be colored according to the intensity, ring

or height values. Certain point clouds can contain the color and light intensity of the mea-

surement point in addition to the XYZ coordinates. Each point can also be given a direction

vector, which identifies the direction in which the point is oriented.

1.1 Problem Definition

Over the past years, 3D LiDARs have improved and grown with attention. The investment

in it by industry players, shows a promising future in LiDAR technology. The innovation of

single photon LiDAR (or flash LiDAR) have reduced the size and complexity in the designs.

This encourages us to explore the possibility of increasing the LiDARs on a given platform.
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CHAPTER 1. INTRODUCTION

Even with the immense development in LiDAR technology and integration with MMS, there

is not much information provided on the number and orientation of LiDAR to be used. En-

gineers and developers depend on their prior knowledge for deciding the configuration of

the perception system, along with the system requirements. It is necessary to study the ex-

isting LiDAR systems, and the benefits they provide.

To asses the existing systems, an evaluation metric has to be designed which can asses the

quality of the system designs. A quantitative assessment to system design would be the

evaluation of the point cloud quality generated from the different LiDAR set-ups. A qual-

itative assessment would include external factors such as cost, design complexity, LiDAR

power consumption. It becomes important to understand the factors influencing the trade-

off between scanning harder (quantitative assessment) or flying longer (qualitative assess-

ment). There are several ways to assess the quality of point clouds generated by LiDAR. One

common approach is to compare the point cloud with a known reference, such as a high-

resolution 3D model or a ground truth point cloud. This allows one to measure the accuracy

and completeness of the point cloud. Another way to assess the quality of a point cloud is

to look for potential errors or artifacts, such as missing points, noise, or outliers. In general,

a high-quality point cloud will accurately represent the geometry of the objects or environ-

ment being scanned, and it will be suitable for use in a variety of applications.

On understanding the significance of the existing LiDAR design configurations, new designs

can be proposed. The evaluation of the new design will be against the metric designed pre-

viously. This will give insights on the viability of increasing the number of LiDARs, the im-

provement in orientation and the specification on the trade-off between scanning harder or

flying longer. The new designs proposed have to be explored and an improvement on the

existing designs, if any.

The development of a simulation tool is essential to test out the new design configurations

and their feasibility. It is inexpensive to test it on a controlled simulated environment. A

simulated environment, also reduces the complexity of variables. It is not feasible to exper-

iment in reality with N LiDARs due to hardware, cost, set-up design restrictions without any

positive results. Moreover, such experiments are difficult to execute as all equipment have

to be brought to a single location, and one has to scout a good testing environment.

The new design configurations, have to be tested under different application scenarios. This

helps in understanding the overall performance of the designs with each other, and under

contrasting circumstances. The comparative analysis of the state-of-the-art and newly pro-

posed designs, will also aid in determining factors which effect the evaluation metric. With

a comparative analysis, it will be possible to determine an optimal configuration, if any, or a

replaceable configuration to one other. This provides motivates to explore the difference in

point clouds generated with different orientations of LiDAR, and if increase in the number

11



CHAPTER 1. INTRODUCTION

of LiDAR is efficient or redundant.

1.2 Research Contributions

This work contains the following research contributions:

• Review of the selected state-of-the-art LiDAR systems mounted on small mobile plat-

forms.

• Appraising and designing evaluation metrics for assessing the quality of selected sys-

tems.

• Proposing new system designs based on the state-of-the-art review.

• Building of a tool for simulating the selected systems in controlled test environments

• Comparative analysis of the state-of-the-art and newly proposed LiDAR system de-

signs in different simulated environments

1.3 Outline

The rest of the work is organized as follows. Chapter 2 provides the working principal of laser

scanners with a literature study, along with a review of the selected state-of-the-art LiDAR

mounted small mobile platforms and new design configurations proposed. Chapter 3 intro-

duces the evaluation metric utilized for the assessment of the point cloud quality. Chapter

4 explains the pipeline used to build the simulating tool in ROS and Gazebo, along with the

environments explored for simulation. Chapter 5 presents the results for the three environ-

ments explored along with a brief insight on the configurations. Chapter 6 discussed the

insights obtained from the results presented, with limitations, complexity and possible fu-

ture works. Chapter 7, concludes the discussions on the results presented and summarizes

the research contributions of the thesis.

12
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Chapter 2

LiDAR Configurations

2.1 Operational Principles of LiDAR

LiDAR is an acronym on Light Detecting and Ranging, as it uses light to measure the distance

to an object. LiDAR works in a similar manner as a RaDAR or SoNAR, except it uses light

waves to travel. LiDAR consists of a emitter and receiver. The emitter emits pulsed light

(laser pulses) towards a target and then measures the time it takes for that light to strike

back. The distance is then calculated according to Eq2.1 :

d = c ×∆T

2η
(2.1)

where c is the speed of light, ∆T is the time between the emitter emits the pulse and the

receiver receives it, and η is refractive index of propagation medium which is 1 for air.

As the mobile platform moves, the LiDAR will emit multiple pulses to map out its surround-

ing and return a 3D point cloud. LiDAR has several advantages in capturing data. It provides

accurate, fast and in-depth images. Light rays can penetrate an occluded (cloudy scene),

which a camera can not capture. But on the downside, it does not capture texture or colour

which could mean difficulty in interpreting data. But post-processing on point cloud data,

has made this easier, Martin Velas et al. Velas et al. 2019 uses a novel approach that as-

signs colour to the points with normalization of intensity. The intensity is affected by the

reflection from the surface, the incident angle, distance from the laser (emitter). They have

developed an approach which helps in easy distinguishing of important features, surface

texture and inventory. Besides this improving downside, LiDAR is expensive, provides with

too much data. This excess data requires good back processing and knowledge.

13
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2.2 Literature on LiDAR

LiDAR specification is essential to a designer and developer, depending on the application.

Raj et al. 2020 classifies the specification into 4 levels of a hierarchy format. The first level

of classification is ranging specification, this includes range, resolution, field of view (FoV),

angular resolution, update frequency, this is important during indoor/outdoor navigation

where long range or short range lasers are required. The second class consists of physical

properties such as weight, height and power consumption. This attribute is important to

consider while mounting the laser on a mobile platform such as an aerial vehicle. The third

class of classification is the laser safety compliance and the last is related to optics such as

focal length of the beam. Raj et al. 2020 explains the different scanning methods available.

This can in general be classified as mechanical scanning (LiDAR which has a motor rotating

part), MEMS scanning use electromagnetic force to rotate a micro chip (mirror) to produce

a dense point cloud. This reduces the overall weight of the scanner but also has a restricted

FoV and finally the solid-state scanner which work as a flash LiDAR thereby reducing the

size a lot further and reducing the cost as well.

The concept of flash LiDAR is emerging, and promising. The traditional 3D LiDAR such

as Velodyne’s VLP16 or HDL32 use 16 or 32 lasers that are stacked in a vertical array and

a motor rotates the mirror of the laser beam at a high speed (5Hz-20Hz) thus obtaining a

360deg FoV, providing a dense point cloud data. On the other hand flash LiDAR work on the

concept similar to a camera flash. Thereby illuminating the entire surface by a flash of light.

This captures the surface illuminated in one go (global shutter flash), as seen in Fig.2.11. The

range of flash LiDAR is small compared to scanning LiDAR.

Figure 2.1: Flash LiDAR capturing

1https://asc3d.com/our-technology/
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CHAPTER 2. LIDAR CONFIGURATIONS

A survey of 3D flash LiDAR is presented in Yang et al. 2022. Flash LiDAR uses a photo-diode

as its receiver. This questions the working conditions of the LiDAR on a sunny bright day.

The application in last-mile delivery, indoor environments, warehouse inventory and health

care monitoring looks promising.

The focus of this thesis will be on simulating a mobile platform consisting of an Unmanned

Aerial Vehicle. To the author’s knowledge there does not exist an aerial platform with more

than one LiDAR configuration. There have been development in backpack as a mobile plat-

form with different LiDAR orientation. Velas et al. 2019 proposed two LiDAR orientated in-

clined to each other similar to a wedge setup. S. Karam, V. Lehtola, and Vosselman 2020

integrates three scanners with a Xsense IMU. The lack of increasing the number of LiDAR

on an aerial platform can be because LiDARs drain power quickly, and Aerial platform pro-

vide 6DoF making it easy to maneuver. But with the improvement and a promising future in

Flash LiDAR, this track is worth exploring.

The commonly used LiDARs on an Aerial2 Platform are listed in Table2.1.

Model Type Max Range (m) FOV H°×V° Cost

Velodyne VLP16 Scanning 100 360 × 30 $$

Velodyne HDL32E Scanning 100 360×40 $$$

LeddarTech Vu8 SS3 215 48×3 $$

Riegl VUX-1UAV Scanning 250 330 $$

TeraRanger Evo 15m Flash 15 2 $

Velodyne Alpha Prime Scanning 265 360× 40 $$$

Ouster OS1 Scanning 120 360 × 45 $$$

Velodyne Velarray M1600 Flash 30 120 ×32 n/a

Table 2.1: Commonly used LiDAR on a mobile platform

2.3 Review of the LiDAR configurations

The inspiration for the different design configurations has been drawn from the various

available aerial systems as seen in Fig.2.2. The most commonly used LiDAR sensor on an

aerial platform is observed to be the "fan-style" LiDAR which provides a horizontal field of

view (HFoV) of 360° and a limited vertical field of view (VFoV). The difference in the plat-

form is the orientation of the 360° fan-style LiDAR. As seen in Fig.2.2a, The Flyability Elios 3

mounts the LiDAR in an inclined way, for indoor mapping and inspection. The Hovermap

ST (Fig.2.2b has a rotating mount which provides 360°×360° FoV. This drone is capable of

2And other commonly used LiDAR in Robotics
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CHAPTER 2. LIDAR CONFIGURATIONS

flying indoor or outdoor. The Revolution Drone System uses DJI Matrice 600 Pro Drone with

the Velodyne HDL32e LiDAR. It provides a robust solution for mapping through the woods.

The Acecore Zoe by YellowScan, utilizes their own LiDAR sytem and offer a complete pack-

age.

(a) Flyability Elios 3 (b) Emesent Hovermap ST

(c) Revolution Drone System (d) YellowScan Acecore Zoe

Figure 2.2: Mobile Mapping Aerial Platforms

The inspiration for different configurations has not been restricted to only the aerial plat-

forms, but also includes inspirations from other mobile mapping systems as seen from

Fig.2.3. The Terabee TeraRanger (Fig.2.3a provides an option to mount the LiDARs as in-

dividual or in a combination. It uses flash LiDAR having a FoV of 2°. The Velodyne Velarray

Cart utilizes Velarray M1600 LiDAR having a HFoV of 120° and VFoV of 32°. It can supply

the intelligent, real-time point clouds necessary for last-mile delivery and autonomous mo-

bility robots to operate safely and for an extended period of time without human interac-

tion. Fig2.3b shows another Velodyne mobile platform, which utilized the HDL-32E. Waymo

which is the Google Self Driving Car has a similar set up of a 360° LiDAR placed on top of

the moving platform. The Trimble MX9 (Fig.2.3d) is a complete set-up that utilizes two ’fan-

style’ LiDAR. This setup is meant for a moving platform as a vehicle. The last two set-ups

are essentially used with big mobile platform that can have more storage for batteries, but

the study here is considered on small mobile platforms. Keeping this in mind, these two set-

ups are used only as an inspiration to design configurations that can be set-up on a small
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platform.

(a) Terabee TeraRanger Tower Evo 60m (b) Velodyne DeepMap

(c) Velodyne Velarray Cart (d) Trimble MX9

Figure 2.3: Mobile Mapping Platforms

2.4 Proposed Configurations

The inspiration drawn for the platform has been discussed previously. The configuration

designs are divided into 3 tiers according to the number of LiDARs on the platform. Tier 1,

as seen in 2.4 consists one one LiDAR, in different orientation. This is easily accessible and

commonly seen around on small mobile platforms. The Tier 2, seen in 2.5, consists of two

LiDAR on a platform, this is a further modification from Tier 1. Tier 2 can be observed as a

combination of Scanning LiDAR and Flash LiDAR4. The next, Tier 3, as seen in 2.6 consists

of 3 or more LiDARs. The configurations here are entirely fictional and not seen before. All

configurations are decided keeping in mind few important features of a LiDAR.

• FoV - The angle that the LiDAR sensor covers, is known as the field-of-view. The Li-

DARs have a horizontal FoV and a vertical FoV. Spinning LiDAR offer a complete 360°

view, the vertical FoV is dependent on the spacing of the lasers stacked on another.

4Dark blue triangle are the HFoV of 120° and light blue colour is VFoV of 32°
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For a LiDAR with a given number of lasers, narrower FoV will give a denser point cloud

compared to a widespread vertical FoV.

• Range - The distance up-to which the laser lights can detect, is the range. This depends

on the wavelength of the laser pulse used. Usually, the scanning LiDAR have a longer

range, when compared to the flash LiDAR which have a short range.

• Point frequency - Point frequency is the number of horizontal rotating samples. In-

creasing the point frequency, increases the point density linearly. Modern LiDAR have

multiple lasers or channels, that can produce a very high dense point collection of up-

to 2.2 million points per second (Vectornav n.d.). A high density of points can break

the simulation environment. The point frequency or samples, have been restricted to

100 samples, keeping in mind increasing this value only gives a denser point cloud.

• Scanning frequency - Scanning frequency is the rotation of the LiDAR scanner head

per second. The VLP-16 and HDL32e have a scanning frequency of 5Hz - 20Hz. For

the simulation here, the scanning frequency for the scanning type LiDARs is fixed to

10H z. The flash LiDAR does not have a scanning frequency. The frame rate for Flash

LiDAR is the frequency with which the LiDAR acquires the forward point cloud image

in a second.

The sensor (or fictional sensor) used in the set-up are listed below 5

LiDAR Laser HFoV VFoV Range Cost Power Consumption Weight

HDL32E 32 360° 41° 100m $$$ 1kg

VLP16 16 360° 30° 130m $$ 830g

Velarray M1600 Flash 120° 32° 30m $ n/a

Table 2.2: Sensor specification used for Simulation

5The weight of Velarray was not available, but in general Flash LiDARs weigh a few grams
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Config HDL32E (H) VLP16 (V) Velarray (M) Orientation [r p y]

1 x 1 x V:[0 90° 0]

2 x 1 x V:[0 45° 0]

3 1 x x H:[0 0 0]

4 1 1 x H:[0 0 0]; V:[0 90° 0]

5 x 1 1 V:[0 90° 0]; M:[0 0 0]

6 x 1 1 V:[0 45° 0]; M:[0 180° 0]

7 1 x 2 H:[0 0 0]; M1:[0 135° 0]; M2:[0 −135° 0]

8 1 1 1 H:[0 0 0]; V:[0 90° 0]; M:[0 135° 0]

9 x x 4 M1:[0 135° 0]; M2:[0 −135° 0];

M3:[0 45° 90°]; M4:[0 −45° 90°]

Table 2.3: The sensors and their orientation on the small mobile platform for the proposed

designs

Configuration 1 consists of VLP16 laser oriented with the scanning axis parallel to the ground.

This is a common practice, Lassiter et al. 2020 explores the importance of this orientation

and also mathematically provides an equation for the scan pattern of the fan-style LiDAR.

The scan lines are then parallel to the direction of travel. Configuration 2 has the VLP LiDAR

tilted by 45° down from the scanning axis. Configuration 3 is a HDL32e LiDAR mounted in

an upright position. Configuration 4 is a combination of c1 and c3. Configuration 5 has the

additional Flash LiDAR (Vellaray) in combination with c1. The flash LiDAR is placed on the

opposite side of VLP. The dark blue triangle represents the vertical FoV, the light blue triangle

represents the horizontal FoV. Configuration 6 is a modification of c2 with the flash LiDAR

facing down (such that the scan lines are perpendicular to direction of travel). Configura-

tion 7 is a modification on c3, the two flash LiDAR are placed at the opposite side of the

mobile platform, with a 45° downwards tilt. Configuration 8, consists of all three LiDARs,

it is a modification on c4, with the flash LiDAR tilted 45° downwards. Configuration 9, is

a different configuration consisting of all flash LiDARs. They are placed such that one pair

(opposite LiDARs) is tilted down by 45° and the other pair is inclined by 45° upward.
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(a) Configuration 1 (b) Configuration 2 (c) Configuration 3

Figure 2.4: Tier 1 Configuration - single LiDAR

(a) Configuration 4 (b) Configuration 5 (c) Configuration 6

Figure 2.5: Tier 2 Configuration - Dual LiDAR

(a) Configuration 7 (b) Configuration 8 (c) Configuration 9

Figure 2.6: Tier 3 Configuration - 3 or more LiDAR
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Chapter 3

Metric for Point Cloud Quality Assessment

3.1 Literature on Point Cloud Quality

Point clouds represent collection of co-ordinates in space. Each point point is defined by

its own position. A LiDAR produces an extensive collection of point cloud data of accu-

rate measurement. It is important to understand the quality of a point cloud. Khoshelham

et al. 2021 defines a metric for evaluating point cloud completeness, correctness and ac-

curacy. These metrics are defined considering a reference and a reconstructed point cloud

to a mesh. The portion of the reference surface that are present and have been correctly

recreated in the source is termed correctness and completeness respectively. Accuracy is

the measure of proximity of the source to the reference surface. It is calculated using the

distance and direction between the normal.

Ville Lehtola et al. 2017 provides a metric for point to point comparison (p2p) from rigid en-

vironments. L1 or L2-norms, with a cut-off distance, can be used as a metric for evaluating

raw point cloud data. They introduce a cut-off radius rc is introduced to define complete-

ness of the point cloud. The cut-off radius is a trade-off between a strict measurement or

including outliers. The error matrix E is defined as a function of cut-off radius. And the

point where E saturates, is the critical point for cut-off. The function E rises due three es-

sential reasons. Firstly, outliers in the compared point cloud, secondly, it covers a larger

area than the reference and third would be deformation or internal registration errors in

reference point cloud.

Point-to-point comparison frequently overlooks the fact that a point cloud represents a

structure’s surface (texture). To overcome this, Tian et al. 2017 a point-to-plane approach

is introduced. It first employs point-to-point calculation (Euclidean distance) to compute

the error vector, and then employs point-to-plane calculation to project the error vector

along the normal direction of the reference point. The visual qualities of the point cloud are

preserved with this metric.
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Another metric for assessing the correlation between the reference and source point cloud

is plane-to-plane comparison. This is described in Alexiou and Ebrahimi 2018. This plane-

to-plane comparison provides angular similarity between the two point cloud. The angular

similarity is calculated using the Euclidean distance, thereby finding the nearest neighbour

between the two point clouds. The angle is calculated between the tangent plane of the re-

spective point clouds. The normal vector is required to be present while calculating angular

similarity.

All comparison measures are based on point-to-point, point-to-plane, or plane-to-plane

measurements. Yoo et al. 2009 presents an evaluation index consisting of criteria such as

Resolution or Density, a score on Homogeneity and Completeness. These scores evaluate

different Laser Scanner configuration on a mobile mapping system for a specific application

of "Architecture for 3D tourism". The completeness is not evaluated against a quantitative

evaluation, but depends on a visual inspection of the point cloud.

Cahalane et al. 2015 demonstrates the benefit of a dual scanner system. A horizontal rota-

tion of the scanner is responsible for the range, where as vertical rotation gives an advantage

in scanning profiles. The orientation of the Laser scanner directly influences the point den-

sity and profile distribution.

3.2 Evaluation Metric

The evaluation metric is an assessment of Nominal Point Density, Homogeneity score and

Coverage. The evaluation here is to assess the quality of point cloud obtained from the dif-

ferent configuration in complex environments.

3.2.1 Nominal Point Cloud Density

The point cloud density ρD , is dependent on the platform speed, and laser specifications.

Simulations are carried out at a constant mobile platform speed of 5cm/s and the mobile

platform is at a constant height from ground. This allows the platform variables to be treated

as constants, and the point density function can focus on LiDAR specifications for calcula-

tions. Point cloud density is calculated as the number of neighbouring points per unit area

(sphere) for each coordinate point. From Fig.3.1 the red point is the reference point. And

points within the sphere of radius r are the neighbouring points. The yellow points, outside

the sphere are non-neighbouring points. The point density can be expressed as volume den-

sity in pt s/m3 or surface density in pt s/m2. Here, the point density is expressed as a volume

density in pt s/m3. The mean density ρ̄ is the sum of indices of all local point densities ρi ,

where number of points are nT .

ρ̄ = 1

nT

∑
ρi (3.1)
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The nominal density of the point cloud is calculated keeping the point frequency, and as

mentioned before the platform speed and height constant for simulations in every envi-

ronment. The nominal point density, ρD here, is defined as the ratio of logarithmic mean

density (ρ̄) of simulated point cloud to the reference point cloud. The logarithmic function

(to base 10) is used to scale down the high mean density value. The reference point cloud

has a mean density of ranging from 104 to 105 pt s/m3. Since NPD is defined as a ratio, it

does not have a unit.

ρD = l og10(ρ̄si m)

log10(ρ̄r e f )
(3.2)

The density of simulated point cloud is compared to the reference point cloud build accord-

ing to the collision of each and every individual model present in the worlds.

Figure 3.1: Local Point Cloud Density

3.2.2 Homogeneity Score

If all point densities are the same, then the data is homogeneous. Homogeneous data has a

standard deviationσ= 0. but for a mobile mapping system, data produced is not going to be

homogeneous. If the system is turning left, the left side will be over-dense, and the right will

be under-dense. Under-density will result in missing data, and over-density will give redun-

dant data. Post processing of data will provide a more uniform point cloud, but will depend

on the lower limit of the part of point-cloud which is under-dense. Fig.3.2 depicts the local

point density distribution for a configuration in a simulated environment. The thick red red

line, is the mean of the local point density, and the dotted red line is the standard devia-

tion of the data. The further away the dotted line, higher is the standard deviation σ. It will

be interesting to observe if an additional LiDAR sensor changes the homogeneity of a point

cloud. The score of homogeneity is defined below.

χ= 1− σ

ρ̄
(3.3)

When σ= 0, the point cloud is homogeneous, and the homogeneity score, χ is 1.
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Figure 3.2: Standard deviation of a point cloud with Gaussian distribution

3.2.3 Accuracy and precision

The closeness in measurement of the simulated data with the reference data. But since noise

is not modulated in simulation, it is assumed the simulation provides accurate and precise

data. The score for this is not included.

3.2.4 Coverage

Depending on context, completeness or correctness communicate comparable analysis. It

is the proportion of the simulated cloud that can be reconstructed with the reference. Since,

this thesis does not enter the territory of re-constructing meshes or surface from point-

cloud, a new term called coverage is coined. Coverage is defined as the portion of the original

point point cloud that the simulated point cloud covers.

Consider point cloud A to be the reference point cloud, created from the collisions of the

models present in the Gazebo world. And point cloud B to be the simulated point cloud. For

each point of ai ∈ A, the closest point in B is b j m and can be calculated using the Euclidean

distance. This error in distance is defined as e A,B .
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[e A,B (i ),b j m] = min
∀ j∈B

||ai −b j ||2 (3.4)

The error e A,B is compared against a cutoff distance dc . This is a tricky part, because the cut-

off distance is a trade off value. A relatively small cutoff distance would lessen the impact of

feature details, whereas a high cutoff distance would be tolerant of outliers. Cut-off distance

has to be chosen with care. With the cut-off distance chosen, there is another check required

which ensures the point is actually covered, and not a pseudo single point present. The

simulated point cloud, is divided into smaller grid (approx 10cm10cm), such that each grid

box, contains a range of point from 0 - 20. It is considered that a minimum of two points are

required for coverage. If the number of points inside the grid Ni nsi de is 2 or more, the point

is considered ’to be covered’. Detail algorithm is explained in 1, where nA is the total number

of points in reference point cloud A and nB is the total number of points in simulated point

cloud B.

Algorithm 1 Algorithm for calculating Coverage

Require: nA ≥ nB

1: Load reference point cloud A and simulated point cloud B
2: Divide point cloud B into smaller grid. Calculate the grid-id and Ni nsi de

3: Calculate the Euclidean distance or error between point cloud A & B according to

eq.3.2.4

4: while doai ≤ nA

5: if error(ai ) ≥ dc then
6: Point (ai ) is further away. Set pt.Color = yellow

7: else
8: if Ni nsi de (ai ) ≥ 2 then
9: Point is covered. Set pt.Color = blue, update Coverage counter

10: else
11: Point not covered. Set pt.Color = yellow

12: end if
13: end if
14: Update ai

15: end while
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Chapter 4

Simulator Tool

The Gazebo is a open-source, well-recognized platform in industries and education for de-

veloping realistic 3D scenarios of robots in indoor and outdoor environments. The Gazebo

environments are called as worlds. And it also has the ability to simulate different types of

sensors (such as LiDARs, IMU, camera) and collect the data required for navigation. The

sensor data collected can be visualized on Gazebo or Rviz. These features of Gazebo help

in building custom worlds or modifying the worlds available. This project will use Gazebo

to construct a warehouse environment, utilise the medical camp environment available

on aws-robotics1, and explore a brief forest environment constructed from different trees

placed close together.

Gazebo is integrated with ROS, which is supported by the Open Source Robotics Foundation.

ROS works with many different programming languages (Python, C++, Java) making it an

effective tool for creating autonomous robots. The integration of the sensors, with their

plugins and libraries in ROS makes it streamlined in the development of the autonomous

system.

4.1 Literature on simulator

Mobile Mapping Systems that have implemented different LiDAR configurations (Velas et

al. 2019, S. Karam, V. Lehtola, and Vosselman 2020) have been tested in a physical set-up

and not a simulated one. Chung et al. 2017 has developed a simulator for a backpack sys-

tem tested in indoor environments. Simulation is carried out using three different LiDAR

(VLP16) arrangements. The simulation workflow defined is basic and starts off with mod-

elling the sensor specification, organizing the simulation environment, followed by setting

up the pathway and collecting the result as a 3D point cloud. Qualitative and quantitative

analysis is performed on the data. They compare the coverage of the point clouds obtained

1https://github.com/aws-robotics
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per arrangement, by segmenting it into floor, ceiling and walls. The simulations are also

carried out by walking at different speeds. This shows the effect of speed on data quality

acquisition. Higher speed reduces the amount of point data obtained. Additionally, for ap-

plicability verification, a simple ICP algorithm is applied.

4.2 Building the Environment

Mobile mapping systems have immense applications varying from mining in tunnels to

forestry. Since the focus here is on indoor application, the Gazebo environments selected

are listed below.

4.2.1 Warehouse Environment

Warehouse drones, or specifically here mobile platform are used in Smart Warehouses for

Inventory Management. Big investors such as Amazon have invested in aerial mobile plat-

forms for use in last-mile delivery. This requires mapping of the warehouse while simul-

taneously locating the required package. A good perception system should be able to pro-

vide both location and precise measurement of the smallest object present in one trajectory

sweep of the mobile platform. The warehouse environment made in Gazebo, Fig.4.1 con-

tains cluster of boxes in its path, complex shelves, pallets and small objects such as cylindri-

cal coke can. The warehouse world built is 7m ×5m. The trajectory chosen is such that it

intentionally covers a few blind spots, but not all. This helps in understanding the depen-

dency of trajectory on collected point cloud data. The spatial distribution of data can be

seen in Fig.4.2. The environment is divided into bins of 10cm for each plane (xz, yz and xy).

A high density of points is seen in the xy plane. The xz and yz plane show a high density peak

at bins corresponding to walls or shelves located in the environment.

Figure 4.1: Ground truth point cloud of warehouse environment with its trajectory
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Figure 4.2: Spatial distribution of points in warehouse environment

4.2.2 Medical Camp

The Medical Camp is an inspired environment from the Gazebo worlds aws-robotics/hospital.

Medical assistance is given high priority in a crisis situation. However, crowding a disaster-

prone location with too many people is dangerous and chaotic. After a disaster, medical

camps that are built nearby can be controlled using a small.mobile platform. It will increase

productivity and lessen the possibility of putting human lives at jeopardy at such a crucial

location. In this situation, mobile platforms can aid the nurse with their work by delivering

medications and meals to the appropriate bed tray (patients). It is essential to keep updat-

ing every little information in the map since the medical camp is a crucial location and is

always changing as patients in wheelchairs being assisted, stretchers are being pushed out,

and people are moving around. The perception system requires to be able to register all de-

tails quick and efficiently. The platform is at a height of 3.4m from the ground. The camp is

a bigger environment and has a complex trajectory. The trajectory chosen here is such that

the mobile platform fully enter some room patrolling in it, partially enters other rooms such

as crossing through it, and does not at all enter the other rooms. This provides us with dif-

ferent data, even about rooms that have not been entered. The spatial distribution of data

can be seen in Fig.4.4. The environment is divided into bins of 10cm for each plane (xz, yz

and xy). A high density of points is seen in the xy plane. The xz and yz plane show a high

density at bins corresponding to walls, beds and other object located in the environment.

The spatial distribution is similar to that of the warehouse environment.
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Figure 4.3: Ground truth of Medical camp environment displayed with the trajectory

Figure 4.4: Spatial distribution of points in medical camp environment

4.2.3 Forest

The forest environment, considers a cluster of trees to form a dense forest, with very little

light penetration from above or side. The GNSS signal reception may be poor in a dense for-

est. The use of mobile platform in a forest requires navigation through complicated spaces

and its intended use can be for survey, inventory purposes and forestry machines require

updated tree maps to operate. A good perception system should be able to recognize the

29



CHAPTER 4. SIMULATOR TOOL

smallest features of obstacle around it in a quick manner. Considering the platform utilizes

SLAM as seen in Kukko et al. 2017, and not follow a fixed trajectory, it should have a wide

field of view, that allows it to see other possible path options to navigate around the obsta-

cle. Here, the platform follows a fixed trajectory. The trajectory considered here starts from

the centre of the forest, having a high density of tress, and moves around the forest, navigat-

ing between trees with low-branches. The height considered of the platform here is at 1.5m

from the ground. The spatial distribution of data can be seen in Fig.4.7. The environment is

divided into bins of 10cm for each plane (xz, yz and xy). A high density of points is seen in

the z direction, xz and yz plane.

Figure 4.5: Ground truth point cloud of forest environment, displayed with height colouring

4.3 Simulating the Platform

Once the environment is decided, it is required to integrate the chosen LiDAR designs on

the mobile platform and begin simulation. This requires certain assumptions and a set up.

Costs, mounting designs, and other physical add-ons are not taken into account in the as-

sumptions established for the mobile platform. The mobile platform considered here is

20cm ×20cm ×5cm in dimension. It is also assumed that the mobile platform has a tem-

porary perception system for navigating the trajectory. The perception system consisting of

the proposed LiDAR orientations and configurations is not linked to the Navigation module.

It is treated as a stand alone perception system that has been used only to capture data. The

proposed LiDAR configuration are only mounted on the mobile platform, and the platform

follows the trajectory. The data obtained is free of noise and accurate due to the simulation.

The data for now, is not utilized for navigation, but can be incorporated in the future. Velo-

dyne SimulatorInc. n.d. is used for building the perception system. The motion of the plat-
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Figure 4.6: Trajectory followed by the platform in the forest environment

Figure 4.7: Spatial distribution of points in Forest environment

form is limited to 2D so that all configurations are captured under the same circumstances

of trajectory. The set up of the mobile platform with the perception system is as follows.

• Produce a map of the environment

• Integrate the LiDAR(s) configuration or the perception system on the mobile mapping

platform
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• Set up way-points, that build to a trajectory the mobile platform will follow

• Ensure the platform is able to follow the trajectory smoothly and continuously

• Transform the point cloud data from the sensor frame to the fixed world frame

To ensure the platform follows the same trajectory with all the configurations, an expert

motion planner is suitable. The Move Base is a ROS package that, given a target point in

the world, makes an attempt to get there using a mobile base. The package utilizes a Global

and Local planner to ensure the navigation task is completed. The data is gathered in static

environments with the local planner being the Dynamic Window Approach (DWA) and the

global planner being the Dijkstra’s algorithm.

The data obtained from the LiDAR (sensor frame) are transformed to the static world frame

and then processed for evaluation. As assumption made is that the navigation system pro-

vides perfect data at all times (using a perfect IMU in simulation) and that there is no cal-

ibration error between the navigation and perception systems. All designs have the same

level of accuracy and precision to study the comparison of various configurations.
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Chapter 5

Results

Simulations provide a controlled environment for assessing the quality of the sensor sys-

tems. The indoor environments selected for the study are warehouse, medical camp and

dense forest. The following chapter is divided according to the environments studied. Un-

der each environment, there is visual analysis of the point cloud followed by the evaluation

metric analysis. The environments Warehouse and Medical Camp have a roof on top dur-

ing simulation or data capturing. This roof is sectioned out during result analysis, to have a

closer, detailed look at the features inside the environment. Hence, there is no roof visible

in the figures displayed.

5.1 Warehouse

5.1.1 Visual Analysis

Limited configurations (c1 - c4) are tested in the warehouse environment. The individual

configurations are highly dependent on the trajectory traversed. The VLP16 in c1, is oriented

such that data can be captured on top (roof) since its scanner axis is parallel to the direction

of motion. Unlike in c3, which is mounted on top of the platform, is unable to capture

data of the roof. The angular resolution of VLP16, being 2° does leave huge gaps between

scans if the point frequency is low as well. Increasing the point frequency decreases this gap,

but not entirely as seen in Fig.5.1a. The point cloud captured here is at a point frequency

of 900samples. This configuration is unable to capture the vertical dents of the Europallet

model as seen in Fig.5.2.

There are occluded or shadowed regions visible, which can be reduced by changing the tra-

jectory to cover them. Tilting the LiDAR (VLP16) by 45° reduces the shadows visible during

c1, but new regions are included in the blind spot as seen in Fig5.3. The point cloud is

recorded at angular frequency of 100 samples. More coverage is observed when the LiDAR

is tilted, and the vertical dents in Europallet model are slightly better defined.
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(a) (b)

Figure 5.1: Point cloud section of a warehouse as captured from configuration 1 (VLP front)

Figure 5.2: Reference point cloud section of Eur opal let

Figure 5.3: Point cloud section of Configuration 2, depiction shadowed regions
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Configuration 3, consists of HDL32E mounted on top of the platform. Data is captured in

considerable detail on the sidewalls. The point cloud captured with lower sample rate has

a better appearance. Data become fuzzier as sample rates are increased. This is shown in

Fig.5.4.

Figure 5.4: Point cloud section of Configuration 3, depiction fuzzy data

Configuration 4, combines HDL32E and VLP16. The point cloud overall looks improved with

decreased shadowed regions. Lamp boxes on roof are captured, smaller detail such as the

can on the dumpster is visible as well.

Figure 5.5: Point cloud section recorded by Configuration 4
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Configuration Nominal Point Density Homogeneity Score Coverage

1 0.78 0.11 78.2

2 0.77 0.32 82.6

3 0.90 0.2 84.65

4 0.93 0.32 88.3

Table 5.1: Nominal Point density and Homogeneity score for warehouse environment, red

highlighting the poor score and green for the best score

5.1.2 Nominal Point Density and Homogeneity Score

The nominal point density (NPD) value is highest for c4, followed by c3. This can be due

to the high number of lasers (HDL32) used in both the configurations, which contribute di-

rectly to an increasing score of NPD. The lowest value is for c2, but it also shows the highest

homogeneity score. C2 configurations visually shows more occlusions than the other con-

figurations, this reduced the NPD value. But because of the inclined scan-lines, which form

an overlapped pattern the homogeneity score increases.

5.1.3 Coverage

The coverage for warehouse environment is calculated by setting the cut-off distance at

0.5m. A detailed analysis of the cut-off distance, and coverage is seen for the next environ-

ment 5.2.3.

Insight:

The warehouse simulation is of small environment, which does not provide much intuitive

analysis scenarios. The point clouds obtained are comparable with a standstill LiDAR plat-

form placed at the center of the environment. Tier 1, c3 is a good set-up for an environment

such as a warehouse. It obtains a good coverage, with an average NPD value. Although c3 has

a more expensive, power consuming and heavy LiDAR compared to other configurations, it

should be understood that a similar LiDAR, with similar specifications can be utilized, such

as VLP32.

5.2 Medical Camp

5.2.1 Visual Inspection

Configuration 1 and 2 depict different scan patterns as seen in Fig5.6b. Tilting the LiDAR at

an angle, provides more closer scan lines, or reduced point spacing, refer Fig5.7b.

In config3, the bottom of the room is not scanned, though it is part of the trajectory. Scan
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(a) Configuration 1 (VLP front) (b) Configuration 2 (VLP tilted)

Figure 5.6: Point cloud section of scan pattern seen for VLP16 LiDAR

(a) Configuration 1 (VLP front) (b) Configuration 2 (VLP tilted)

Figure 5.7: Point cloud section of Reception model seen for VLP16 LiDAR

lines are restricted to the FoV and the room dimensions are smaller for the laser beam to

reach the floor.

Figure 5.8: Point cloud section of a room in hospital captured from configuration 3

Fig.5.9 displays a section of the medical room not spanned by the mobile platform. Adding

the Velarray fictional LiDAR increases the visibility range. The patient bed which were not

scanned earlier with config1 are now visible in config5.
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(a) Configuration 1 (VLP down) (b) Configuration 5 (VLP combined with Velarray)

Figure 5.9: Difference in point cloud recorded by configuration 1 and 5

Between configuration 2 and 6, the shadowed region is reduced as seen in Fig.5.10.

(a) Configuration 2 (VLP down) (b) Configuration 6 (Tilted VLP with Velarray)

Figure 5.10: Difference in shadowed region from point cloud recorded by configuration 2

and 6

Configuration 4,5 and 6 belonging to Tier 2, consists of two LiDAR for scanning. The three

configurations have their own advantages, and scan the environment to similar detail. But

it is interesting to observe the corridor, which does not get traversed by the mobile platform

is scanned to a certain extend by config4 (Fig.5.11. It is scanned well by config5 (Fig.5.12 and

but only partially by config6 (Fig.5.13.

Configuration 8, combines all three LiDAR. The point cloud (Fig.5.14 obtained, contains very

minimal occlusions but excessive data. This configuration can be applicable in scenarios

where high density of point cloud is required. It is able to capture the smallest detail of the

room in one sweep of the mobile platform.

Configuration 7 consists of three LiDARs as well, performs very similar to c8. Except it is

unable to scan the roof as well as c8. Only sparse data is visible for roof.

Configuration9 is tested out in hopes it can be a possible replacement for the common 360°
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Figure 5.11: Point Cloud section of Configuration 4 showing untraveled corridor

Figure 5.12: Point Cloud section of Configuration 5 showing untraveled corridor

Figure 5.13: Point Cloud section of Configuration 6 showing untraveled corridor

LiDAR. However, it is not able to scan the corridor at the back (walls and floors), as seen in

Fig.5.15. If the trajectory is taken around the corridor, there will be an improvement. But

there is a gap visible on the wall surface. This gap is due to the limited FoV of the chosen
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Figure 5.14: Point cloud simulated from configuration 8

LiDAR, this can be improved by either increasing the VFoV or reducing the tilt angle of the

LiDARs, such that there is an overlap in the scan lines. This will come at an additional cost

of not being able to scan the roof as it does now.

(a) Corridor at the back not scanned with configu-

ration 9

(b) The walls have a gap in the middle where scan-

ning points are not visible

Figure 5.15: Point cloud simulated from Configuration 9

Summarizing the visual inspection observed, in a Tabular format in Table 5.2
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Table 5.2: Visual Analysis for medical camp environment

Configuration Remarks (Visual)

C1
Roof visibility ✓

Sparse scan lines, requires high sample points for coverage

C2

Roof visibility ✓✓

Scan pattern provides better coverage (compared to c1)

Shadowed regions increased

C3

Roof visibility ×
Unable to scan floor in narrow regions

More lasers → dense point cloud produced

C4

Roof visibility ✓

Occlusions observed in c3 are reduced here

Spaces without a trajectory such as corridor scanned

C5

Roof visibility ✓

Additional features from a room not scanned visible

Most features scanned in detail

C6

Roof visibility ✓✓

Shadows visible during c2, reduced

Most features scanned in detail

C7

Roof visibility ×
Dense point cloud

Features scanned in detail

C8
Roof visibility ✓

Point cloud very similar to c7

C9

Roof visibility ✓

Contains regions in the middle without any scan points

Unable to scan features in detail
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5.2.2 Nominal Point Density and Homogeneity Score

The reference point cloud considered has a mean point density, ρD of 1million pt s/m3. The

mean point density calculated, is used as a measure of how dense a point cloud is obtained

with combinations of LiDARs. It was expected configuration 7 or 8 to have the highest point

density, given it is a 3 LiDAR configuration. Comparing the configurations according to the

Tiers they are divided in provides a better analysis.

Tier 1 consists of single LiDAR of 16 and 32 lasers. Increase in number of lasers increases the

nominal point density of the point cloud as seen for Configuration 3. But this does not trans-

late to a more homogeneous point cloud. Configuration 1 and 2, have approximately similar

point cloud density but a slight tilt in the orientation of the scanner results in an expected

increase in homogeneity score. This can be understood, as the profile spacing reduces. But

excessive tilt will also degrade the quality of point cloud.This is further explored in section

5.2.4.

Tier 2 consists of two LiDAR scanner. It is interesting to observe the configurations (4,5, 6 )

have a similar nominal point density, but c6 has the highest homogeneity score. In case of

this, it is useful to look at the profile spacing or scan lines. Although the higher score can

also be due to the orientation of the additional flash LiDAR in downward direction, which

improves c2.

Tier 3 consists of three LiDAR scanners. The homogeneity score of c9 is the lowest, which is

also confirmed from visual analysis. The horizontal gap seen from the point cloud obtained

with c9. The nominal point density is highest for c8, followed by c7. c7 also has the second

highest homogeneity score.

5.2.3 Coverage

The coverage is calculated with reference to the original point cloud build using collision

models from the environment. Due to the complexity and limitations of the processing ca-

pability of the laptop, the simulated point cloud is down-sampled. The down-sampling is

done using the ’random subsample’ feature of CloudCompare. This ensures the point cloud

coverage is not effected non-linearly. The homogeneity and density are not considered dur-

ing the calculations. Coverage provides an estimate of how much part of the original point

cloud is covered by the simulated point cloud. The cut-off distance considered between the

two point cloud is 0.3m. This has been calculated by carefully assessing the trend with which

the coverage varies with cut-off distance. A section of the the medical camp point cloud is

considered as seen in Fig.5.16. The coverage saturates after a certain cut-off distance as seen

in Fig.5.17. The cut-off distance is calculated by drawing the tangent at point of inflection,
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Configuration Nominal Point Density Homogeneity Score

1 0.68 0.188

2 0.72 0.209

3 0.787 0.183

4 0.805 0.190

5 0.801 0.198

6 0.805 0.36

7 0.812 0.256

8 0.815 0.217

9 0.782 0.168

Table 5.3: Nominal Point density and Homogeneity score for medical camp environment,

red highlighting the poor score and green for the best score

thereby determining the cut-off distance as 0.3m. For visualization of coverage the reference

point cloud is coloured is blue for points scanned, and in yellow for not scanned points as

seen in Fig.5.18.

(a) Section of original point cloud used to calculate

coverage cut-off

(b) Section of simulated point cloud to calculate

coverage cut-off

Figure 5.16: Point cloud section used to calculate cut-off distance
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Figure 5.17: Graph of Coverage vs cutoff distance

Figure 5.18: Coverage point cloud for Configuration 7, Yellow points are unscanned regions,

and Blue points are scanned regions

With the configurations considered for medical camp environment, it is expected Tier 3, c8

will have the highest configuration, with the LiDAR placement. This is observed in Fig.5.19.

Configuration 8 has the highest coverage of 82.91%, followed by configuration 4 with 82.42%.

The increase in number of LiDAR from c8 to c4 does not make a huge difference in coverage.

The next best configuration is c7, with 77.22% coverage. The least effective configuration is

c9, providing 69.52%.

Insight:

Overall, for an environment such as a medical camp, even though c8 provides the highest

coverage, c7 could be a smarter alternative. C7 provides visually similar point cloud as c8,

except for roof not covered, and a good nominal point cloud density and homogeneity score.
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Figure 5.19: Point cloud coverage for each configuration in the medical camp environment

Both configurations 7 and 8 consists of three LiDARs. But in comparison to c8, c7 has two

simulated flash LiDAR and one scanning LiDAR. Flash LiDAR weigh lesser, and are more

affordable when compared to scanning LiDAR and have lesser power consumption. An op-

timal configuration for each Tier can be observed. Tier 1, a combination of c2 and c3 would

be ideal. Adapting the orientation of c2 and increase in number of lasers from c3. In Tier 2,

consisting of two LiDARs, for high coverage c4 is good, but for higher homogeneity score c6

is a better choice. Tier 3, as discussed before between c7 and c8, c7 is a preferred choice.

5.2.4 Range and Orientation of LiDAR

The previous scenarios show the significance of tilting the orientation of LiDAR to increase

the quality of point cloud obtained. Inclining the sensor has a high advantage, as explored in

Samer Karam et al. 2019. To understand the influence of the inclination angle on the quality

of point cloud, the medical camp environment was considered, with the same trajectory.

Using only V LP −16 as the LiDAR, with increment of 15° in the inclination, the point cloud

obtained were assessed. Table.5.5 summarizes the results of change in inclination angle.

The NPD (Nominal Point Density) gradually increases with the decrease in inclination angle,

from 90° to 0°. The coverage does not significantly decrease from 90° to 30°, the change is

0.83%. The decrease from 30° to 15° is 3.17% compared to decrease from 15° to 0° of 5.33%.

The optimal orientation is at 45° with a good NPD and coverage. The penalty of inclining

the LiDAR comes with occlusions or shadows present in the point cloud.

Table5.4 shows the influence of the range of the LiDAR on coverage. The Flash LiDAR have

shorter range of 30-40m when compared to the scanning LiDAR of 80-100m. The change in

coverage from 20m to 40m is 4.05%, but coverage from 60m to 100m is only 0.42%. With a
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mobile platform, a mid-range sensor performs good.

(a) 0° (b) 45° (c) 90°

Figure 5.20: Single LiDAR mounted on a small mobile platform with changing orientation

Range 20 40 60 80 100

Coverage 68.3 73.05 74.06 74.42 74.48

Table 5.4: Coverage calculated for different range of LiDAR

Inclination Angle ° Nominal Point Density ρD Coverage

90 0.68 70.42

75 0.67 69.47

60 0.69 69.63

45 0.72 69.77

30 0.73 69.59

15 0.74 66.42

0 0.75 61.09

Table 5.5: Nominal point density and Coverage for change in inclination of a single LiDAR

(VLP16) in medical camp environment

46



CHAPTER 5. RESULTS

5.3 Forest

5.3.1 Visual Analysis

Figure 5.21: Section of forest point cloud, considered for reference

Figure 5.22: Comparison of top view of point cloud as seen from c1 (blue) and c2 (green)

The forest environment, is spatially distributed in the z-direction. The top half portion of

the tress are not visible to the LiDAR, because of the dense canopy of tress present which

simulates it as an indoor environment. Only a section of the forest point cloud as seen in

Fig.5.21, is considered for reference. This is the portion assumed to be visible to the LiDAR,

and the laser pulses can not penetrate higher than this section.

Configuration 1, shows fuzzy coverage of the point cloud as seen in Fig.5.23. The tree trunks

have sparse coverage, which can be increased by increasing the point frequency of LiDAR.

There is light visibility of leaves above the dense canopy section.
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Figure 5.23: Point cloud obtained from configuration 1

Figure 5.24: Point cloud obtained from configuration 2

Configuration 2, clearly has a denser point cloud generated compared with configuration 1,

at the same point frequency. The tree barks as seen in Fig.5.24 are clearly visible now. There

is a similar light visibility of leaves from before. Due to the tilt in configuration, there are

shadowed regions visible around the tree barks. The range of visibility between configura-

tion 1 and 2 (c1 c2) is seen if Fig.5.25. c2 has a longer range of visibility.

Configuration 3 & 7, have a poor visualization of point cloud. As seen in from Fig5.25, c3

does not capture the dense coverage of canopy, it is only able to visualise the tree barks.

Fig.5.28, shows a slight improvement in capturing the tree barks batter. But no overall im-
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Figure 5.25: Point cloud obtained from configuration 3

Figure 5.26: Point cloud obtained from configuration 5

Figure 5.27: Point cloud obtained from configuration 6
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Figure 5.28: Point cloud obtained from configuration 7

(a) Front view (b) Top view

Figure 5.29: Point cloud obtained from configuration 9

provement seen in the recorded point cloud.

The sparse tree barks seen with c1, are reduced in c5 (Fig.5.28, especially towards the inside

of the canopy. In a similar manner, c8 is an improvement on c2. As seen in Fig.5.27, The

shadows around the trees have reduced. A few occlusions are still visible on the outer rim,

which can be reduced with the change in trajectory.
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Configuration 9 gives an overall better coverage of the canopy leaves on top, seen in Fig.5.29b.

But due to the orientation of the LiDARs, there is a gap visible (Fig.5.29a) in the point cloud,

with no points. Changing the LiDAR orientation to overlap their FoV, or increasing their FoV

will reduce this gap.

Summarizing the visual inspection observed, in a Tabular format in Table 5.6

Table 5.6: Visual Analysis for forest environment

Configuration Remarks (Visual)

C1

Range of visibility from LiDAR lesser compared to c2

Fuzzy coverage of the sectioned forest

Sparse visibility of leaves above the dense canopy

C2

Denser point cloud generated

Clear visibility of tree barks

Similar coverage of leaves as seen in c1

Shadow of tree trunks visible (occluded regions)

C3
Poor visibility of point cloud

The dense canopy not seen at all

C4
No additional features seen compared to C1

Point cloud same as of c1

C5
Fuzzy branches as seen in c1

Fuzziness reduced towards the inside of canopy

C6
Occlusions of the tree barks seen in c2 reduced towards the inner part of canopy

A few occlusions still visible on the outer rim

C7
Visibility of the bottom half of tree bark a little better to c3

Not much of an improvement to c3

C8
Improvement in the visibility of tree barks

No gaps as seen in c9

C9
Gap in point cloud in the middle

Overall a better coverage of the canopy (leaves) on top
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5.3.2 Nominal Point Density and Homogeneity Score

The reference point cloud considered has a mean point density, ρD of 104 pt s/m3. The

mobile platform is at a height of 1.5m in this environment. With the height of the platform

(on which the sensors are mounted) is reduced, the nominal point density and homogeneity

score is increased overall.

In Tier 1, both the best and worst homogeneity scores are observed by c2 and c3 respectively.

Even though c2 has the highest homogeneity score, it also has the overall lowest NPD. But

when compared to the NPD value of other configurations in Tier 1, the value is for c2, is

reasonable. The low homogeneity score of c3 goes along with the poor visualization of the

point cloud, from previous section.

Tier 2, displays same homogeneity scores for all configurations and an average NPD value.

Tier 3, is more interesting to analyze. c7, which has a poor visualization, also has the highest

NPD value, and second highest homogeneity score. The NPD is dependent on the number

of points within a particular area (sphere), and with more laser pulses striking the surface,

the NPD will tend to increase. But this does not translate to better coverage directly, since

the increased laser pulses are restricted according to the FoV and orientation of the scanner,

they can only strike against a portion of the environment. The high homogeneity score of c7

is due to the points covering the floor portion. Calculating the homogeneity score without

the floor included, reduces the score to 0.22, making it the overall lowest score then.

Configuration Nominal Point Density Homogeneity Score

1 0.83 0.42

2 0.81 0.43

3 0.89 0.28

4 0.91 0.35

5 0.84 0.35

6 0.91 0.36

7 0.98 0.42

8 0.95 0.39

9 0.94 0.41

Table 5.7: Nominal Point density and Homogeneity score for forest environment, red high-

lighting the poor score and green for the best score

5.3.3 Coverage

The coverage for the forest is calculated by setting the cut-off distance to 0.3m. Fig.5.30

shows the coverage chart for this environment. Configuration that was previously ideal for
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the medical camp is now exhibiting inadequate coverage. The highest coverage of 59.64% is

seen from c9.

Insight:

Config9 can be a good replacement for the 360° scanner. The gaps observed by c9 during

visual analysis, can be eliminated by changing the inclination of the LiDAR, such that the

FoV are overlapping. The next best configuration is c4 and c5, both containing the flash

LiDAR. Configuration c3 and c7 have the lowest coverage of 41.57% and 45.73%.

Figure 5.30: Point cloud coverage for each configuration in the forest environment
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Chapter 6

Discussion

6.1 Discussion

Three Environments with nine design configurations inspired from state-of-the-art mobile

platforms were simulated. The complexity of the problem increased with the variables con-

sidered necessary for analysis. In the environment, it was necessary to have a fixed trajectory

to follow. To reduce the complexity, the mobile platform was restricted to 2D navigation (in

the xy plane). LiDAR specifications such as point frequency (sample points), field of view

(FoV), range, number of LiDARs, orientations of LiDARs and number of laser beams were

varied as control parameters. It was determined that these variables effect the point density

of the point cloud. The point density is linearly dependent on point frequency, and hence it

was kept as a fixed variable in all scenarios.

To gain an insight into the overall performance of the point cloud quality, for various con-

figuration under different environments, we compare the results of individual point clouds

across an evaluation metric. The evaluation metric consists of the Nominal Point Density,

Homogeneity Score and Coverage. The scores are calculated against a reference point cloud

build from the collision of the models in the environment. The environments considered

are restricted to be indoor, static environments with an application of a small mobile map-

ping system. The warehouse and medical camp are organized environments, with a defined

pathway, rooms and structured, rigid models. The forest is an unorganized environment

consisting of trees of different shape and height. Between the two organized environments,

the warehouse environment is smaller with the dimensions of 7m ×5m, compared to that

of a medical camp with 25m ×57m in dimension. The point cloud recorded with the small

environment are not sufficient for the analysis, it is more inclined to be compared with a

standstill LiDAR placed at a convenient center of the environment.
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Figure 6.1: Summary from evaluation metric
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Fig.6.1 shows a cumulative result of the evaluation metric. The length of each bar represents

the value of NPD, homogeneity and coverage for every configuration. As it can be seen, the

lowest score of NPD belongs to Tier 1, specifically c2 (warehouse and forest) and c1 (medical

camp). And the highest NPD score belongs to Tier 3, c7 (forest) and c8 (medical camp). A

NPD score can only be understood as the point density in the cloud for a given constant

point frequency. The NPD is influenced by different factors, such as, the height at which the

platform is capturing the data, the number of laser beams used in the LiDAR, the velocity

of the mobile platform and the number and orientation of the LiDARs. In medical camp

environment, the mobile platform is at a height 3.4m, compared to the forest environment,

the mobile platform is at a height of 1.5m. The range of NPD is seen higher for the forest

environment, but this is also because of the dense, closed canopy created by the trees. The

medical camp in comparison, is a little more spacious, and the mobile platform has more

space around it, it does not fly close to the objects to capture the data. Another important

factor is the number of lasers in the LiDAR. Increasing the number of lasers and number of

LiDARs increases the NPD value. A high NPD value is required for better visualization of

smaller details.

The homogeneity score, provides us insight of the uniformity of the points in the point

cloud. It is accepted that the recorded data will not be uniformly captured, but to what

extend this non-uniformity is present? Highly non-uniform data also results in misinforma-

tion. For the different environments present, different configurations record the best and

worst scores for homogeneity. This score is dependent on the orientation of the LiDAR.

Warehouse environment, depicts tilting of the LiDAR (c2) provides a better score than c1.

In the medical camp, it is interesting to observe c6 provides the highest score. C6, is an im-

provement on c2. The lowest score for medical camp is recorded for c9, this can be improved

by changing the orientation of the LiDARs. The lowest score in forest environment is by c3,

even though the LiDAR has 32 laser beam, due to its orientation and FoV, it is unable to cap-

ture the details of the environment.

Coverage provides information on the geometric visibility of the point cloud as recorded

by each configurations. The coverage is sensitive to the cut-off distance. A large cut-off

distance puts additional weight on the outliers, and a smaller cut-off distance is unable to

capture significant details. Overall some configurations perform than the others in terms of

coverage, but that can not be the only choosing factor. The highest coverage, might not be

the optimal choice always, but definitely provides a benchmark or a similar alternative. The

optimal configuration chosen for medical camp does not have the highest coverage, but is

a balance between all the evaluation criteria and the cost/design factor. In the forest en-

vironment, c9, provides the highest coverage and is suggested as a good alternative to the

traditional configurations.

The range and the orientation of the LiDAR influence the coverage obtained directly. It is
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observed that mi-range sensors perform well on a mobile mapping platform. The orienta-

tion is crucial. Inclining the LiDAR increases the coverage, but also increases the shadowed

regions. An inclination of 45° was seen optimal according to the evaluation metric.

The visualization table presented for medical camp and forest environment, on most cases

supported the analysis obtained in accordance with the evaluation metric. But there are

occasional exception cases, such as forest environment, c7 configuration. This configura-

tion displayed poor visualization of the point cloud, with no features clearly visible, but still

has the highest NPD and homogeneity score. This was because of the orientation of LiDAR,

which collected high amount of points from the floor portion. The coverage of c7 was poor

supporting the visualization. The evaluation metric developed here, can not be used as a

standalone factor. Visualization needs to act as a qualitative assessment of the point cloud

quality as well.

Overall, the type of LiDAR used by a small mobile platform is determined by a combina-

tion of factors, including the platform’s design, its intended application, and the availability

and performance of LiDAR technology. The research done here shows the viability of incor-

porating additional LiDARs for different intended use and application. But this raises the

questions of how many LiDARs can there be used? Or what does this effect if only one Li-

DAR is used? Is needed to scan harder, or fly longer to obtain a good point cloud? With the

three different environments simulated under nine configurations, it is possible to under-

stand these trade-off factors.

Scanning harder or flying longer?

Based on the evaluation metric and visualization analysis, a trade-off between scanning

harder or flying longer has to be chosen. There is a definite scope of adding additional

LiDARs. And if addition of LiDARs is not feasible, the orientation of LiDAR and the num-

ber of laser beams used, does play a significant role. Addition of LiDARs, does come at an

additional cost of power consumption, design restrictions, and user requirements. With ad-

vancement in technology, these problems can be reduced, but should be prioritized accord-

ing to the user requirement and environment complexity. Flight time, and payload becomes

an essential evaluation when considering the power consumption. A trade-off is established

then between flying longer, as in a complex trajectory resulting in more flight time, or scan-

ning harder, by increasing the lasers or LiDARs. By scanning harder thereby increasing the

visibility and point cloud quality from the LiDAR(s), it will allow for the platform to follow

a simpler trajectory, with a shorter flight path for mapping the environment. On the other

hand, reducing the visibility seen from the LiDARs will require for a longer, complex tra-

jectory. A complex trajectory requires ease in maneuverability. And a simpler trajectory

requires analysis of occluded regions.

57



CHAPTER 6. DISCUSSION

The performance of the point cloud quality varies across different environments depending

on the configuration and complexity of the environment. The presented evaluation met-

ric does not fully reflect all the quality of a point cloud. Other factors such as computational

complexity, geometric quality of reconstruction, level of detailing with different lighting, tra-

jectory trials, are equally important in evaluating the performance for indoor mapping. But

the presented evaluation metric can be used as a guideline for initial testing. It has shown

to provide optimistic results across a different spectrum of environments with various con-

figurations.

6.2 Complexity and Limitations

The complexity of the algorithm is limited to identifying the nearest neighbours. Assuming

a linear search, the computational complexity is f (n), and additional cost of f (1) is added

for the calculation of threshold. This increases the load on the system. Also with the calcula-

tion of Euclidean distance between the two point clouds, it becomes vulnerable to distorted

point clouds which are translated or scaled.

A limitation of the evaluation is also the manually constructed point clouds, using the col-

lision of the models present in the environment. It is used as an indirect indicator for the

evaluation of performance of coverage.It demands that the reference point cloud contain

more points than the simulated point cloud. The environments considered are static. And

the mobile platform is restricted to 2DoF. Additional degree of freedom will directly effect

the point cloud quality obtained. The simulation are treated noise free, but in reality sen-

sors are not noiseless. Noisy point cloud will require pre-processing directly effecting the

quality of the point cloud obtained. The subsection of roof, not considered for analysis, (but

simulated during data capturing) can be analysed individually, if the application demands

for clear visual from top of the mobile platform. An essential limitation understood during

the analysis was integration of the visual analysis of the point cloud in the evaluation metric.

6.3 Future work

Future works can consider exploring the limitations listed previously. A dynamic environ-

ment, such as a disaster site can be explored. The point cloud can evaluate the integrity of

the foundation of the buildings. The coverage algorithm will need to include dynamic de-

tection and distinguish external and internal similarities of object. Another goal to pursue

worth while would be detecting the regions of trajectory that record the lowest local point

density. This can help improve in trajectory planning. Inclusion of SLAM, and feature de-

tection for different configurations is another potential direction. If SLAM algorithm are

used in conjunction with the system, it could be useful to compare the trajectory error with

the different configurations. This would not be a possibility in real world, and will have to

integrate the simulator. A limitation to overcome to make the evaluation metric more ro-
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bust, would be to include visual analysis as a qualitative score in the evaluation. This can

be termed as the visibility of the point cloud, and can be according to the subsections of the

environments or a few chosen features in the environment.
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Chapter 7

Conclusion

The insights about the viability of incorporating several LiDAR designs on a mobile platform

for mapping indoor environments are presented and discussed. The state-of-the-art com-

pact mobile platform during study revealed a pattern of only using one "fan-styled" LiDAR.

The backpack systems employing multi-LiDAR systems, showed positive results for the in-

clusion. Inspiration was drawn from the different available mobile mapping platforms, to

design nine different configurations. These configurations varied in terms on number and

type of LiDARs used along with their orientation, and scanner properties. A simulation tool

(ROS) was used to build the pipeline for experimental collection of point cloud data by the

various configurations in various environments. The evaluation of the obtained point cloud

quality was based on the curated evaluation metric. The evaluation metric measured the

nominal point density, homogeneity score and coverage of the simulated point through com-

parison with a manually constructed point cloud of the collision environment. The results

show that the performance of the configurations varies across different environments. Gen-

erally Tier 3, consisted of an optimal choice of configuration. It was observed, a high cov-

erage, NPD and homogeneity score did not necessarily provide a good configuration, the

visual analysis is an important factor that has to be taken under consideration while de-

ciding, as well as the division of the environments into further subsections, can provide a

more detailed analysis. This came across as a limitation of the metric. Other factors, such as

cost, power consumption and design restrictions have to be considered as well for the user/

application requirements. A high coverage does not directly translate to a high NPD or ho-

mogeneity score or vice versa. A change in one, might effect the other, but the factors have

to be considered as individuals during design and selection. The findings of a quantitative

evaluation have been presented along with visual examples and qualitative analysis. For

identifying innovative combinations, the designed evaluation metric offers a good starting

point. Additionally, a significant trade-off between flying farther and scanning more com-

pletely is understood. The design and viability of the configuration are strongly influenced

by this trade-off.
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7.1 Summary of Research Contribution

The motivation for this project originated with the improvement in LiDAR technology such

as single photon LiDAR, can there be more number of LiDARs mounted on the platform, and

what would be an optimal configuration, if there is any. This led to question an important

understanding of a trade-off between scanning harder or flying longer. The research con-

tribution aim towards building an answer to these questions. To begin the analysis, it was

essential to review existing LiDAR systems, as done in section 2.3. Review of these LiDAR sys-

tems, show the common configurations used by an aerial platform is of a single LiDAR, and

commonly backpacks use multiple LiDAR configurations. Section 2.2 identifies the com-

monly used LiDAR on an aerial platform. New designs of the LiDAR systems are proposed

in section 2.4. The designs are divided into 3 Tiers according the number of LiDARs. These

designs are evaluated against an evaluation metric proposed and developed in section 3.2.

The next contribution, section 4.2, is building a tool to simulate the proposed designs/con-

figurations, along with selection of the environments. Each environment is explored, with

the new proposed designs, and point clouds obtained are compared to one other. Ware-

house is a small environment, the point cloud obtained do not provide sufficient aspects for

analysis, as discussed in section 5.1.3. The medical camp is a bigger organized environment.

and provides a better insight in the differences between the configurations, discussed in sec-

tion 5.2.3. An interesting path to explore was the dependency of the range and orientation

of the LiDAR of the quality of the point cloud, this is explored in section 5.2.4. Generally,

a mid-range sensor with an inclined orientation provides a better point cloud quality. The

forest environment, is a very different exploration. It is an unorganized indoor environ-

ment, which can be compared to a tunnel or cave, spaces which are cramped, and require

the platform at a lower height level. This environment, provided interesting analysis on the

configurations, as seen in section 5.3.3. The designs which were good for the previous envi-

ronments, performed poorly in this one. An overall, comparative analysis is discussed under

section 6.1, with a critical view on the initial question.
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