

	
	
	
	
	
	
	

	
	
	
	

	
	
	
	
	
	
	

	
	

	
	 	

	
Development of the Low-level Software
Architecture for the Sherpa Robot Arm

W. (Willem) Boterenbrood

BSc Report

C e
Dr. R. Carloni

Dr.ir. M. Fumagalli

August 2015
	

024RAM2015
Robotics and Mechatronics

EE-Math-CS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands	

Development of the low-level software architecture for the
Sherpa robot arm

W. Boterenbrood

August 26, 2015

ii Development of the low-level software architecture for the Sherpa robot arm

W. Boterenbrood University of Twente

iii

Summary

The SHERPA project aims to improve rescuing activities in alpine environments by using smart
collaboration between humans and robots. Within the SHERPA work, a seven degrees of free-
dom robotic arm has been developed. The robotic arm is mounted on a ground rover and it
needs to dock and undock the drones that need to swap their battery packs.

In this BSc project, a low-level software interface has been developed that is able to drive the
arm from ROS. A ROS software node is presented that can drive the motors in the arm over a
CAN bus. The ROS software node supports driving motors on multiple CAN buses, can drive a
differential pair of motors as two separate joints and is built in way that makes it relatively easy
to add support for more types of CAN devices. A Graphical User Interface is provided to test the
ROS software node.

Robotics and Mechatronics W. Boterenbrood

iv Development of the low-level software architecture for the Sherpa robot arm

W. Boterenbrood University of Twente

v

Contents

1 Sherpa Project Overview 1

1.1 Interaction . 1

1.2 The SHERPA team . 1

2 Introduction 3

2.1 Existing design choices . 3

2.2 Task list . 3

2.3 Task details . 3

3 Electronic Design 5

3.1 Existing design choices . 5

3.2 Interfacing all components to the computer platform and providing power 5

3.3 DC-DC converter selection . 6

3.4 Elmo Whistle selection . 7

4 Software architecture 8

4.1 Pre knowledge . 8

4.2 Design Start . 8

4.3 Software design description . 8

5 ROS-CAN Interface design 11

5.1 C++ CAN bus projects research . 11

5.2 Design decisions . 11

5.3 Start-up and initialization . 13

6 Joint Controller design 14

6.1 Inner workings . 14

7 Test GUI design 16

8 Calibration of the shoulder joints 17

9 Tests and validation 18

9.1 Shoulder rotation, non differential drive . 18

10 Conclusion and future work 25

10.1 Conclusion . 25

10.2 Future work . 25

A Component list 27

Robotics and Mechatronics W. Boterenbrood

vi Development of the low-level software architecture for the Sherpa robot arm

B DC-DC converter list 28

C Elmo motor controller programming 29

C.1 Example1 . 29

C.2 Example2 . 31

C.3 Example3 . 31

D Software User Manual 33

D.1 Configuration file . 33

D.2 Compiling the source files . 36

D.3 Running the software . 36

D.4 Rostopics and messages usage . 37

E Test GUI User Manual 39

E.1 TestGUI controlling the ROS-CAN interface . 39

E.2 TestGUI2 controlling the Joint Controllers . 40

Bibliography 41

W. Boterenbrood University of Twente

1

1 Sherpa Project Overview

This bachelor assignment is part of the development of the robot arm for the SHERPA project
(Marconi et al., 2012). The SHERPA project is a European project that aims to improve rescuing
activities in alpine environments. This is achieved by smart collaboration between humans
and ground & aerial robots.

1.1 Interaction

The SHERPA project consists of
separate robotic components
that operate as a team in the
environment. All components
communicate with each other
through a software framework
using wired or wireless com-
munication. All components
are controlled by humans that
coordinate the tasks of all
robots.

Battery

CPU

UAVs

Actuators & Sensors

HRI tech.

Human

Devices & Sensors

SHERPA Box

Battery + power supplies

Actuators & Sensors

Ground Rover
Actuators & Sensors CPU

Power supplies

Robotic Arm

Wireless

Battery

CPU
E

th
er

ne
t

Ethernet

CPU

Figure 1.1: Communication

1.2 The SHERPA team

The trained human rescuers are skilled individuals that do the real rescue work. Because of hos-
tile terrain and required focus they can cover limited ground and have limited time. Unmanned
aerial vehicles (UAVs) are used to provide overview and scouting information to the rescuers.
Because the rescuers are busy with their main tasks the control of these UAVs must take little
effort from them. To achieve this little effort control UAVs that can operate autonomously with
predefined tasks are used, software is developed that connects all components together to ex-
change tasks and data and human gesture control is implemented to give simple commands to
the UAVs.

Small flying UAVs can fly at low-altitude and
can get close to a target. These UAVs have a
high-maneuverability to fly around obstacles
and in confined spaces. Due to limited battery
capacity these UAVs must operate close to the
ground rover that provides a way to supply the
UAVs with new batteries.

Figure 1.2: Small hovering UAV

Robotics and Mechatronics W. Boterenbrood

2 Development of the low-level software architecture for the Sherpa robot arm

Figure 1.3: Large glider UAV

Flying UAVs fly at high-altitude and are able to
patrol large areas with a limited amount of en-
ergy and fly in critical weather conditions. The
information captured by these UAVs help the
coordination and optimization of the activities
of the rescue team and complement the capa-
bilities of the small UAVs.

A ground rover transports the Sherpa box, the
robot arm and the main batteries to power
the Sherpa box, the robot arm and itself. The
Sherpa box houses the central intelligence and
functions as a docking station for the small
UAVs. When docked the battery of a UAV can
be swapped for a full one and the old one can
be recharged.

Figure 1.4: Ground rover with robot arm and
Sherpa box

Figure 1.5: Robot Arm

The robot arm docks and undocks the UAVs
to the Sherpa box and can catch a flying UAV
from the air. It contains a 3D camera to
avoid obstacles and locate the precise loca-
tion of a landed UAV. The robot arm contains
a programmable stiffness. When making large
movements a low stiffness makes it less pre-
cise but prevents the rover from tilting when
hitting an obstacle, while making small move-
ments a high stiffness makes it more precise
so it is able to place the UAV on the Sherpa
box. The arm consists of a shoulder with 3
degrees of freedom (DoF), the lower rotation
is driven by a single motor, both other rota-
tions of the shoulder are driven by a differen-
tial drive setup, where one rotation is done by
moving both motors in the same direction and
the other rotation is done by driving both mo-
tors in opposite directions. Above the shoulder
is the elbow with one DoF and the wrist with 3
DoF.

W. Boterenbrood University of Twente

3

2 Introduction

2.1 Existing design choices

Before the start of this bachelor assignment previous work has been done on the design of the
robot arm. The mechanical design of the robot arm and some of the components to be used
have already been selected. This bachelor assignment consist of two parts in the development
of the robot arm. A minor part is electronic design and the major part is low-level software
design. The following tasks are part of this assignment.

2.2 Task list

• Creating an overall electronic schematic which connects all the electronic components
to the computer platform and power supply

• Creating a high-level schematic of the software architecture which integrates the low-
level software that is developed in this assignment

• Creating a ROS (ROS.org, 2015a) node that provides an interface between the CAN bus
(CiA, 2015) and ROS that supports Elmo motor controllers and can be extended easily
with support for other sensors on the CAN bus.

• Creating a ROS node that can translate the native commands from and to the motor con-
trollers to standard units and which can drive a differential pair of motors as two separate
joints

• Creating a ROS node that provides a GUI with sensor readings as output and target posi-
tion, speed and torque controls as inputs which can be used to test the other ROS pack-
ages and the robot arm itself.

• Extend the GUI ROS node with joystick support to drive the robot arm.

2.3 Task details

The overall electronic schematic consists of connecting the position sensors, the force/torque
sensor (ATI Industrial Automation, 2015), the VI sensor (Skybotix, 2015), the motors, the net-
work connection to the Intel NUC computer platform (Intel Corporation, 2015) and supplying
the required power to all components. If the NUC does not provide sufficient I/O interfaces,
the interfaces must be extended or another computer platform must be found that provides
enough I/O. Many components have a CAN bus interface. The computer will have access to the
CAN bus components via three USB-CAN interfaces. The robot arm is supplied with a 48 Volt
DC power supply, all components of the arm that require a different voltage will get their power
from separate commercially available DC-DC converters or from the computer platform.

Figure 2.1: The F/T Sensor, VI Sensor, Robodrive Motor and NUC Computer

The high-level software design should provide an overview of the communications between the
separate ROS packages, and other software and hardware. The low-level software development

Robotics and Mechatronics W. Boterenbrood

4 Development of the low-level software architecture for the Sherpa robot arm

consists of creating a number of ROS nodes. The first ROS node will provide an interface/driver
that provides a way to control the devices on the CAN bus with standard ROS messages. An-
other ROS node translates the native commands from and to the motor controllers to standard
units and can drive a differential pair of motor controllers as two separate joints, so the actual
controller doesn’t need to handle native motor controller units and doesn’t need to be aware of
joints with a differential drive. The last ROS node will provide a GUI that displays the sensor
readings and allows a human to enter target positions, velocities torques and start calibration
of a joint. This last node will be used to test the other ROS nodes and the robot arm itself and
will be extended with a joystick interface to control the arm.

W. Boterenbrood University of Twente

5

3 Electronic Design

3.1 Existing design choices

Before this bachelor assignment started many components were already chosen for the robot
arm, and the shoulder was already under construction. The list all these components can be
found in appendix A. To allow easier servicing of the rover/arm/box platform many compo-
nents are the same brand and model, as this requires less stock of spare components. The Intel
NUC (Intel Corporation, 2015) computer is the same as the one used by the Sherpa box and is
software compatible with the x86 computer used in the rover, also all computers run Ubuntu
Linux. The usage of identical instruction set processors and operating systems allows for soft-
ware code sharing and future computer platform sharing. Reducing the amount of computers
decreases costs and decreases power consumption. The USB CAN Interfaces used are EMS
Dr. Thomas Wünsche CPC-USB/ARM7 (EMS Dr. Thomas Wünsche, 2015) units which are also
used in the rover. The Elmo Whistle Elmo motor controllers used in the arm are also used in the
rover and are a standard component in the RaM group at the University of Twente, so there is
already some knowledge about them and some testing setups are already available. The range
of available models, the amount of compatible motors, extensive range of compatible feedback
mechanisms and built in PI controller makes the Elmo Whistle a very versatile component that
is usable to drive all motors in the robot arm. The robot arm needs absolute encoders to de-
termine the angle of all joints as the variable stiffness decouples the motor position from the
the joint angle. The RLS AksIM (RLS, 2015) range of absolute encoders combine high accu-
racy, small size, and multiple interface options. The motors for the shoulder have been chosen
based on required torque, size and weight, to determine the torque requirements an analysis on
a model of the arm was done before the start of this assignment. The Kollmorgen RBE 02210-A
(Kollmorgen, 2015) and the TQ Goup Robodrive 70x18 (TQ Group, 2015) have been chosen for
the shoulder, the Robodrive 50x14 has been chosen for the elbow, while the rest of the motors
will need to be determined at a later time.

Figure 3.1: AksIM Absolute encoder, EMS USB CAN Interface, Elmo Whistle Motor Controller, Kollmor-
gen RBE Motor

3.2 Interfacing all components to the computer platform and providing power

The robot arm will be connected to the rover platform by a wired LAN connection, the rover has
a built-in Ethernet switch that connects the arm, rover and Sherpa box computers together. The
VI sensor also needs a wired LAN connection. The NUC platform has only one LAN connec-
tion, an external router can be used but takes extra space and power. A mini PCI express LAN
card can be connected to the NUC which fits inside the NUC and is powered from the NUC.
The Rover supplies the robot arm with 48V DC which can be used to power the motor con-
trollers but none of the other components. The absolute encoders require 5V and the VI Sensor
requires 12V, the Force/Torque sensor requires between 12V and 24V and the NUC requires
between 12V and 19V. So at least two extra voltages are needed which can be provided by stan-
dard DC-DC converters. Three USB CAN bus interfaces have been chosen to make sure enough

Robotics and Mechatronics W. Boterenbrood

6 Development of the low-level software architecture for the Sherpa robot arm

bandwidth is available. All devices for one degree of freedom (DoF) are grouped together and
will be connected to the same CAN bus. This has the advantage of easier message grouping
in the ROS software and it means communication between them is possible without help of
the ROS software if necessary. The schematic can be found in Figure 3.2. In the schematic all
components are connected to the power sources and to the computer platform. With every
connection made there are still some USB ports available on the NUC platform for future use
so this setup is flexible enough and the selected NUC is a good fit for the robot arm.

Robot Arm

Power signal
Data signal
Combined signal

USB2

USB2

USB3

USB3

USB3

USB3

mHDMI

mDP

Display

USB IO

LAN

mPCI-e

mPCI-e

Speaker

Mic

PCIe IO

Audio

Network

DC in

SATA

Power

Storage

Core i5
4250U

4-16GB
RAM

Intel NUC D54250WYK

RBE
02110-A

Elmo
Solo Whistle

?
Elmo
Solo Whistle

shoulder #1

shoulder #2

shoulder #3

elbow #1

wrist #1

wrist #2

wrist #3

Gripper #1

RLS
AksIM

Robodrive
70x18

Elmo
Solo Whistle

?
Elmo
Solo Whistle

RLS
AksIM

Robodrive
70x18

Elmo
Solo Whistle

?
Elmo
Solo Whistle

RLS
AksIM

Robodrive
50x14

Elmo
Solo Whistle

?
Elmo
Solo Whistle

RLS
AksIM

?
Elmo
Solo Whistle

?
Elmo
Solo Whistle

RLS
AksIM

?
Elmo
Solo Whistle

?
Elmo
Solo Whistle

RLS
AksIM

?
Elmo
Solo Whistle

?
Elmo
Solo Whistle

RLS
AksIM

USB-CAN
controller

USB-CAN
controller

USB-CAN
controller

ATI
Net F/T

DC-DC
12V

DC-DC
5V

LAN

SSD

VI
sensor

LAN

Network

DC out

Power

Rover

?
Elmo
Solo Whistle

48V

5V

12V

48V

12V

12V

48V

Figure 3.2: Electronic Connections of the robot arm

3.3 DC-DC converter selection

For the DC-DC converters commercially available models will be used. The 12V line powers
the Force/Torque sensor (ATI Industrial Automation, 2015), VI Sensor (Skybotix, 2015) and the
computer (Intel Corporation, 2015) and should be able to provide at least 7.1A and the 5V line
1.1A (See power requirements in Appendix A). A list of DC-DC converters that can provide at
least 12V 7.5A and 5V 1.5A and which can handle an input voltage of at least 36-60V can be
found in Appendix B. An important aspect of the converter is the efficiency as the rover is
battery powered, so a higher efficiency will allow for increased operation time. A small size and
low price are also important. Only the smaller modules with a price below 50 euro for the 5V
converter and only modules below 75 euro for the 12V converter are listed. For the 5V converter
the GE KHHD006A0A41Z (Farnell, 2015b) module is chosen as it combines a high efficiency
with high power output capability and it has a low ripple and good regulation specifications.
For the 12V converter the GE EKV010A0B41Z (Farnell, 2015a) is chosen. Both DC-DC converters
will still need in and output capacitors and will need to be mounted on a PCB which has to be
designed.

W. Boterenbrood University of Twente

CHAPTER 3. ELECTRONIC DESIGN 7

Figure 3.3: General Electric KHHD006A0A41Z and EVK011A0B41Z DC-DC Converters

3.4 Elmo Whistle selection

The Elmo Whistle motor controllers have been selected to drive the motors in the arm, to de-
termine which version is needed the motor specifications are consulted. The shoulder uses two
motor types, the specifications of both motors are listed in Table 3.1 and the specifications of
the Elmo Whistle models are listed in Table 3.2. The 60V Elmo line is the perfect match, with
a nominal input of 50V which is very close to the 48V DC supply. The Elmo Whistle should be
able to provide the full continuous power needed by the motor. The peak current and power
of the motors can be extremely high according to the specifications. Choosing an Elmo Whis-
tle model that can handle 75% of the peak motor current will be enough as the motors should
never reach this peak current in the arm. Using a 75% peak requirement enables the use of a
lower capacity model for all the motors in shoulder and decreases the project cost. The Whistle
10/60 is selected for the Kollmorgen RBE 02110-A motor and the TQ Group Robodrive 50x14
motor. The Whistle 20/60 is chosen for the TQ Group Robodrive 70x18 motor.

Brand Model Voltage Current Power Peak Current Peak Power
Kollmorgen RBE 02110-A 38V 6.34A 241W 25.3A 960W
TQ Group Robodrive 70x18 48V 7.0A 370W 43.75A 2100W
TQ Group Robodrive 50x14 48V 3.5A 145W 25A 1200W

Table 3.1: Motor power requirements for the shoulder

Brand Model Nominal Voltage Max Voltage Current Peak Current
Elmo Whistle 15/48 42V 48V 15A 30A
Elmo Whistle 20/48 42V 48V 20A 40A
Elmo Whistle 1/60 50V 59V 1A 2A
Elmo Whistle 2.5/60 50V 59V 2.5A 5A
Elmo Whistle 5/60 50V 59V 5A 10A
Elmo Whistle 10/60 50V 59V 10A 20A
Elmo Whistle 15/60 50V 59V 15A 30A
Elmo Whistle 20/60 50V 59V 20A 40A
Elmo Whistle 1/100 85V 95V 1A 2A
Elmo Whistle 2.5/100 85V 95V 2.5A 5A
Elmo Whistle 5/100 85V 95V 5A 10A
Elmo Whistle 10/100 85V 95V 10A 20A
Elmo Whistle 15/100 85V 95V 15A 30A
Elmo Whistle 20/100 85V 95V 20A 40A

Table 3.2: Elmo Whistle Models

Robotics and Mechatronics W. Boterenbrood

8 Development of the low-level software architecture for the Sherpa robot arm

4 Software architecture

4.1 Pre knowledge

Before starting the design of the software architecture knowledge about ROS, C++ and the CAN
bus is necessary. To learn ROS the following sources were used:

• ROS concepts (ROS.org, 2015a)

• basic ROS tutorials (ROS.org, 2015b)

To learn C++ the following sources were used:

• C++ course at learncpp.com (Alex, 2015)

• C++11 Rocks book (Korban, 2014)

To learn about the CAN bus the following sources were used:

• What is CANopen presentation (ElmoMC, 2014b)

• CANopen DS 301 Implementation Guide (ElmoMC, 2014a)

• CAN tutorial (Computer Solutions Ltd, 2014)

4.2 Design Start

At the start of this assignment many software design decisions were already made, ideas were
discussed and a sketch of the high-level software architecture was made. The design is based on
a bottom-up approach where the low-level functionality was listed and then divided to groups
of tasks that were assigned to ROS nodes. The tasks were grouped based on the arm joints and
the communication flows. The high-level overview can be found in Figure 4.1. The design deci-
sions and message structure on which the overview is based is listed in Table 4.1 and Table 4.2.

CAN
interfaces

Central
Controller

VI
Interface

Communication
Controller

Skybotix
VI Sensor

Rover Comm.
Network

Motor
Controllers

Encoders

Sensors

ROS nodes

Joint
Controllers

ROS-CAN
Interfaces

ROS Master/
Parameter Server

Legend:
ROS Topic, fixed
ROS Topic, adaptive (configured by rosparams)
ROS Parameters
CAN bus connection
Ethernet connection

Test GUI 2 Test GUI

Figure 4.1: Software Architecture overview

4.3 Software design description

The robot arm communicates with the rest of the Sherpa project components through the ROS-
MicroBLX bridge (made by the Sherpa team from KUL, Leuven) with the TST framework and

W. Boterenbrood University of Twente

CHAPTER 4. SOFTWARE ARCHITECTURE 9

the world model (made by the Sherpa team from LKU, Linköping). All the communication is
handled by the Communication Controller node.

The robot arm software communicates with a VI sensor and a number of motor controllers,
encoders and sensors that are all connected through multiple CAN buses. The VI Interface
controls the communication between the VI sensor and the Central Controller. The ROS-CAN
interface nodes control one CAN bus each and translate the ROS topic messages to and from
CAN frames. The number of ROS-CAN Interface nodes equals the number of CAN buses and is
configured in the ROS Parameter Server. The Joint Controller nodes translate the native units
of the CAN devices to standard units, so the Central Controller does not care what units are
used in each CAN device. The Joint Controller nodes also separate each degree of freedom as a
separate topic and do the translation of differential driven joints (as used in the shoulder).

The Central Controller node makes all control decisions based on sensor data and the re-
quested tasks from the TST framework. It contains the arms TF model and provides the data
that is needed to update the robot arm part of the world model to the Communication Con-
troller node.

Decision Motivation
A configuration file with a list of all devices
on the CAN buses and the corresponding
CAN bus, CAN id, gear ratio and other con-
figuration data is imported to the parameter
server at start-up.

All ROS nodes can access this configuration
data and use this to configure themselves.
The ROS nodes are started after the config-
uration import is done. The configuration
data is saved in a file that can be imported
in the ROS parameter server.

Each CAN bus will communicate with one
process only.

This way there is no possibility that multiple
processes will try and access the same CAN
bus resulting in a conflict and each CAN bus
can communicate simultaneously without
waiting for each other. For each CAN bus a
separate instance of the ROS-CAN interface
node is created to achieve this.

The rate at which CAN messages are send
must be configurable.

To prevent flooding the CAN bus a rate lim-
iter should be used, this limiter can be con-
structed with queue of messages to be send
and a timed loop that pauses for a specified
period before sending the next message.

The ROS nodes that communicate directly
with the CAN buses will map the in-
and output communications to topics with
names based on the joints they represent.

With this setup the rest of the system doesn’t
need to know which sensor/actuator is con-
nected to which CAN bus but can just com-
municate with a specific joint. The ROS pa-
rameter server will contain a list of devices
on the CAN bus with corresponding bus and
topic names that can be used by the ROS-
CAN interface node.

Table 4.1: Initial design decisions part 1

Robotics and Mechatronics W. Boterenbrood

10 Development of the low-level software architecture for the Sherpa robot arm

Decision Motivation
The joint controller nodes start the built-in
calibration process at start-up and only start
communication with the central controller
once the calibration is complete.

This prevents movement of a joint before it
is calibrated. The joint controller will set
a calibration complete flag in the ROS pa-
rameter server for each node that has com-
pleted calibration, so the central controller
(and test GUI) can check when they are able
to control the arm and start sending con-
trol messages. Calibration is only needed for
joints that do not have an absolute encoder
as position detector. Sending a calibration
request to a node that has an absolute en-
coder as position detection will set the cali-
bration complete flag immediately.

The central controller node (and test GUI)
will be able to request another calibration
process when the arm is operating without
having to restart the software.

When a problem is detected where the arm
did not move to the position it is supposed
to be a recalibration might fix this.

All messaging between ROS nodes will by
default be done by standard ROS topics.

Topics are easier to debug and more flexible
than services due to their ability to support
multiple senders and receivers.

All joints will be presented to the Central
Controller as independent joints. Commu-
nication to and from these joints will be
in standard units (position in radians and
speed in radians per second).

The central controller doesn’t have to deal
with differential drives and device/configu-
ration specific units, the translation is done
by the joint controllers, which read all re-
quired configuration data from the ROS pa-
rameter server and choose the correct trans-
formations automatically.

All code will be written under Ubuntu Linux
in C++.

C++ code is faster than Python which results
in less processor usage and therefore uses
less energy and allows for more software on
the same computer. (ROS fully supports C++
and Python and is made to run on Ubuntu
Linux.)

Table 4.2: Initial design decisions part 2

W. Boterenbrood University of Twente

11

5 ROS-CAN Interface design

5.1 C++ CAN bus projects research

Before starting to write code a search on the internet for projects that might be usable for this
assignment was done. The following C++ CAN Linux projects on the internet were found:

• BlueBotics Librover project (BlueBotics, 2013), the C++ code for their rover vehicle that
uses a CAN bus for the motors.

• IPA Canopen project (Fraunhofer, 2015), a C++ project that connects ROS with the CAN
bus.

• CAN Festival project (Festival, 2015), an ANSI-C platform independent CANopen stack.

• cob_generic_can ROS package (Connette and Gruhler, 2015), a C++ project that connects
ROS with the CAN bus.

For this project the EMS USB to CAN adapter was chosen as it was also used by BlueBotics for
the Sherpa Rover platform. When connecting the EMS USB to CAN adapter to a Linux host
the SocketCAN driver from the Linux kernel is loaded. Linux SocketCAN is the default way
to use CAN under Linux that supports many CAN adapters. The BlueBotics Librover project
uses the same EMS USB to CAN adapter, their code uses the EMS CAN development kit soft-
ware and drivers and not the SocketCAN driver. The cost of the EMS CAN development kit was
such that it was decided to not use that but use SocketCAN instead. The IPA CANopen and
cob_generic_can are not generic CAN packages but made for one specific robot only, both use
the Peak Systems CAN bus adapters which have their own PCAN drivers and commands (Be-
fore SocketCAN was introduced in the Linux kernel PCAN was the standard for using CAN with
Linux, which is why PCAN is still used in most Linux projects). CAN Festival is made in C not
C++ but does support using SocketCAN. Getting CAN Festival to work under Ubuntu 14 with
the EMS USB to CAN adapter and the Elmo Whistle motor controller failed. CAN Festival is
quite a big project and the code is not C++ but C, most documentation and examples use the
PCAN driver and before being able to use it a lot of code needed to be added for supporting
the ELMO binary commands or the CANopen CiA 402 generic motor control standard. First
an easier way to make the EMS USB to CAN adapter and the Elmo Whistle work under Linux
needed to be found.

Ubuntu Linux has a package called can-utils, a SocketCAN userspace utilities and tools pack-
age. With this package it was possible to send commands to the Elmo over the CAN bus and
receive messages back. The source files can be downloaded and a way was found to send and
receive CAN messages to and from the SocketCAN driver. Using this knowledge and writing my
own C++ ROS/CAN package seemed like much less work than understanding the inner work-
ings of CAN Festival and adapt that for this project. The BlueBotics Librover project and both
PCAN projects could be adapted to SocketCAN but did not provide all required functionality as
the parts that could be used were mostly simple functions to translate a basic command. They
did not provide a way to deal with multiple CAN buses, multi message SDO communication
and using a differential drive setup.

5.2 Design decisions

The block level design can be found in Figure 5.1. The ROS-CAN Interface has a part to send
and a part to receive CAN frames, the CANSender and CANReceiver blocks, both with their own
queue to prevent loosing messages. To support multiple CAN device types a separate control
block for each device type can be added, for now only Elmo motor controllers are supported in

Robotics and Mechatronics W. Boterenbrood

12 Development of the low-level software architecture for the Sherpa robot arm

the code (Elmo::Node). Because the number of devices/nodes on a CAN bus are not known in
advance and each CAN device/node should have its own state variables and configuration pa-
rameters, a device specific control block is dynamically created for each CAN device/node that
holds all device specific functions, state variables and configuration parameters. This way the
amount of devices is limited only by the amount of RAM and different node id’s on the CAN bus
while only using memory for devices that are connected. The incoming CAN frames are send
to the right device specific control block by the NodeContainer. The NodeContainer is respon-
sible for creating the instances of the device specific control block and keeping a list that maps
each CAN node id to the corresponding device specific control block. In C++ it is not possible
to create a list with different objects, in order to prevent creating a separate list for each device
type, each device specific control block is derived from a generic class (Node). The NodeCon-
tainer will have a list of pointers to these generic parts instead of the device specific parts so
one list can be used. To access functions that are part of the device specific control block from
the NodeContainer, virtual functions in the generic class are used. This generic class is also
used for device independent variables and functions, which allows for smaller device specific
classes and less duplicate code. Each of the device specific control blocks and there base class
subscribe and publish directly to ROS. Automatic handling of multi-message SDO upload CAN
communication and handling of emergency messages is done by the CANController. The de-
vice specific control blocks can start a SDO upload with one command and receive one answer
back, because the CANController will handle the multi-message communication and combine
the received data in one answer. SDO download is not implemented yet as this was not needed,
emergency messages will only display an error on the command line at this moment, so this will
need to be extended in the future.

Node

paramsRetrieve()
startControlLoop()

sdoProcess()
dataFromCAN(can_frame)

Elmo : Node

paramsRetrieve()
startControlLoop()

dataFromCAN(can_frame)

Node

paramsRetrieve()
startControlLoop()

sdoProcess()
dataFromCAN(can_frame)

Elmo : Node

paramsRetrieve()
startControlLoop()

dataFromCAN(can_frame)

Node

paramsRetrieve()
startControlLoop()

sdoProcess()
dataFromCAN(can_frame)

Elmo : Node

paramsRetrieve()
startControlLoop()

dataFromCAN(can_frame)

CANSender

addFirst(can_frame)
addLast(can_frame)
addFilterNode(node_id)
removeFilterNode(node_id)

SendQueue

CANBus

CANReceiver

li
n

u
x
 s

o
c
k
e
t

li
n

u
x
 s

o
c
k
e
t

addToQueue(can_frame)

ReceiveQueue

CANControllerNodeContainer

Node

set SDOIndex(can_id, index, subindex)
set SDOData(can_id, data)

set SDOReady(can_id)
dataFromCAN(can_frame)

sdoProcess()
dataFromCAN(can_frame)

Elmo : Node

dataFromCAN(can_frame)

notes:

/get_status

/control
/homing

ROS

/status

/position

Subscribers: Publishers:

SendFilterQueue

setFilter(can_frame)

Internal communication
External communication

sdoProcess() Communication Function

legend

Ÿ All blocks can directly access the
setup parameters from the ROS
param server

Figure 5.1: ROS-CAN interface diagram

The CANSender sends all frames from the SendQueue to the CAN bus, before sending a frame
to the CAN bus it will send it to the SendFilterQueue of the CANReceiver. When the CANRe-
ceiver receives a frame it will compare this with the SendFilterQueue and if a match is found it
will drop the frame and remove it from the SendFilterQueue, if no match is found the frame is
added to the ReceiveQueue. The CANController will process al frames from the ReceiveQueue,
can frames that are part of an SDO upload are handled automatically and once complete the
SDO index and data are sended to the NodeContainer and the SDO ready flag is set, other CAN
data will be send directly to the NodeContainer. The NodeContainer forwards the incoming
can frames and SDO data to the corresponding Node. The Nodes will handle incoming can

W. Boterenbrood University of Twente

CHAPTER 5. ROS-CAN INTERFACE DESIGN 13

frames and ROS messages and are able to send data to ROS and the CANbus. The CANSender
allows mesages to be added to the front or back of the SendQueue and has the option to set a
filter to ignore messages from a specific CAN device.

5.3 Start-up and initialization

When the ROS-CAN Interface is started it checks the ROS parameter server for the configured
CAN busses. For each bus a separate copy of above block structure is created and for each
configured CAN device/node a separate copy of the Node and device specific part is created.
(For now only the device specific part for Elmo motor controllers is available.)

After all blocks are created the CANSender blocks will each reset their CAN bus and listen for
attached devices/nodes. For each found node its name, hardware version and software version
is requested. Then an overview of all configured and found devices/nodes is displayed in ROS
messages and all devices are given the switch to operational mode command. Now the ROS-
CAN Interface is ready for use through the ROS topics

Robotics and Mechatronics W. Boterenbrood

14 Development of the low-level software architecture for the Sherpa robot arm

6 Joint Controller design

The Joint Controller translates the native Elmo units to and from standard units and separates
the differential motor pairs into two independent joints. This is done so the Central Controller
doesn’t need to deal with differential joints and native units. See Figure 6.1 for the design of the
joint controller.

Elmo_MC

paramsRetrieve()
startCalibrationThread()

Elmo_MC

paramsRetrieve()
startCalibrationThread()

Elmo_MC

paramsRetrieve()
startCalibrationThread()

Elmo_MC_Container

Elmo_MC

notes:

/get_status

/status

/control

/position

/homing

ROS

/status

/control

/position

/homing

/get_status

Subscribers: Publishers:

Internal communication
External communication

legend

Ÿ All blocks can directly access the
setup parameters from the ROS
param server

Figure 6.1: Joint Controller diagram

The Joint Controller consists of a container (Elmo_MC_Container) that holds all Elmo_MC in-
stances. For each Elmo device on the CAN bus an instance of an Elmo_MC object is created.
The Elmo_MC object will subscribe and publish to the ROS topics belonging to that device, the
information about the topics is retrieved from the ROS parameter server. When a control or
position message arrives the units are converted from standard units to device specific units,
the required conversion constants are retrieved from the ROS parameter server.

6.1 Inner workings

When an Elmo_MC instance retrieves all required information from the ROS parameter server
it checks if it is part of a differential drive pair. When the instance is part of a differential drive
pair and its node number in the ROS parameter server is higher than the other drive of the dif-
ferential pair it deletes itself. If the instance has the lower number of the pair it also subscribes
and publishes to the topics of the other drive of the pair. This instance will use the lower node
number as the sigma joint that adds the position of both motors, and it will use the higher node
number for the delta joint that subtracts the position of the first with that of the second motor.
When a calibration request is received for a joint of a differential pair the request will not be

W. Boterenbrood University of Twente

CHAPTER 6. JOINT CONTROLLER DESIGN 15

forwarded to the ROS CAN Interface, as done with a non-differential drive, but it will start a
special calibration control thread that takes over the calibration of both motors of the differen-
tial pair. The Joint Controller is also responsible for joint limit control. If a joint comes outside
its minimum and maximum position range the motor is immediately stopped, if there are still
motion commands in the queue they are deleted and any motion commands that arrive are
discarded. The joint controller will enable the motor in position mode and move the joint to
the closest edge of the normal operating range and enable normal operation again when done.

Robotics and Mechatronics W. Boterenbrood

16 Development of the low-level software architecture for the Sherpa robot arm

7 Test GUI design

To test the ROS CAN Interface a GUI was made that shows the position and status information
of the first three CAN devices/nodes and it allows to input control messages, send a calibration
or status request. It also provides an interface to use a joystick to control the CAN devices/n-
odes. It does not support differential drives as the differential drive control is done by the Joint
Controller. The joystick interface has very limited differential drive support as the GUI allows
a joystick to map the addition or difference of the joystick X and Y axis (XY+, XY-) to a CAN
device/node. The units in the GUI are in counts (Position Mode), counts per second (Velocity
Mode) and mA (Torque Mode), all units are integers so no decimals are used. The

Figure 7.1: Test GUI and Test GUI 2

The test interface is created with QT Creator and written in C++ and QT5. To learn QT5 the QT
Widget tutorials (The Qt Company, 2015) are used.

To test the Joint Controller the GUI was copied and changed to publish and subscribe to the
topics of the Joint Controller instead of the ROS CAN Interface. The units are changed by the
Joint Controller and are in radians, radians per second and Amperes, all units are floating point
(C++ double) so decimals can be used. Because the Joint Controller takes care of the differential
drives the second test GUI does fully support differential drives.

The User Manual for the Test GUI can be found in Appendix E.

W. Boterenbrood University of Twente

17

8 Calibration of the shoulder joints

The shoulder joints in the first version of the robot arm, without the variable stiffness modules,
do not have any absolute encoders to determine where they are. The position information
provided by the motors is a relative position and can only be used when a known reference is
available to calibrate the relative position to an absolute position. The determine the absolute
position of the lower rotation requires an external reference. The differential drive has me-
chanical limits that could be used by detecting current increase or a constant relative position
during velocity movement. This approach did not work well as the the motors in the differen-
tial drive are so powerful they pulled the cable from the cable clamps, and the differential drive
rotation is mechanically limited only after the cables are already moving outside of their routed
guides. To solve this all reference positions are created by micro switches that are wired to the
Elmo motor controllers.

The lower rotation joint calibration switch is placed in a mount that is secured to the base of
the shoulder, a carriage bolt is added to the rotating differential drive and presses the micro
switch when it is position directly above the switch. The configuration can be seen on the left
picture in Figure 8.1.

For the differential drive switches for both ends of the joint rotations are used and wired to the
motor controllers. The motor controllers are programmed so that they will stop motion when
one of the end stop switches is pressed to prevent the motors for pulling the steel cables from
the end caps. For the up/down rotation both movement extremes are detected with switches
with a hinge lever. The configuration with the hinge switches can be seen on the left picture
in Figure 8.1. The upper rotation joint also has both movement extremes detected by switches
that are mounted directly to the aluminium bar, that connects both sides of the differential
drive. These switches are pressed by a lever that is secured to the rotating shaft. This configu-
ration can be seen on the right picture in Figure 8.1.

Figure 8.1: Position references with micro switches for the shoulder

The mounts for the switches and the lever for the upper rotation joint are 3D printed, the design
was created with Solidworks. The Getting started with Solidworks tutorials (Dassault Systemes,
2015) were used to gain the required knowledge to design these.

Robotics and Mechatronics W. Boterenbrood

18 Development of the low-level software architecture for the Sherpa robot arm

9 Tests and validation

9.1 Shoulder rotation, non differential drive

To determine the response of the arm and software ROS Topic data was logged from the Joint
Controller. In the following graphs the control command is sent on time t=0. The time between
the send control command and the arm movement includes the control messages going from
Joint Controller to ROS-CAN interface to the CAN bus and the Elmo. The position data is what
is received from the Joint Controller, so its the position data that has been send from the Elmo
to the CAN bus to the ROS-CAN interface and the Joint Controller.

In Figure 9.1 at time t=0 a control command was send that requests a position movement to 1.0
rad from the center position. The Elmo is not currently in position mode, so first the motor is
turned off, the mode changed, and finally the motor is turned on. The software is programmed
to wait 500ms after a motor turn on or turn off command. The Elmo discard any messages
send shortly after turning the motor on or off, to prevent losing messages the software will
stop sending any messages to an Elmo that has just been send a motor on or off command
and queue the control messages for sending after this time. In position mode the Elmo will
try to move the joint to the requested angle as fast as possible. In the current test setup a 25V
1A powersupply is used, during the fast movements the voltage drops down as it is unable to
provide enough energy. This clearly influences the smoothness of the movement.

500 1000 1500 2000 2500
time(ms)

0.2

0.4

0.6

0.8

1.0

angle(rad)
Shoulder rotation

Figure 9.1: Position Control

In Figure 9.2 at time t=0 a control command was send that requests a position movement to
-1.0 rad from the center position. The Elmo is currently in position mode, so no mode switch
is necessary and no delay is introduced by the software.

W. Boterenbrood University of Twente

CHAPTER 9. TESTS AND VALIDATION 19

1000 2000 3000
time(ms)

-1.0

-0.5

0.5

1.0

angle(rad)
Shoulder rotation

Figure 9.2: Position Control

In Figure 9.3 at time t=0 a control command was send that requests a velocity movement with
a low speed of 0.1 rad/s. The Elmo is currently in position mode, so a mode switch is necessary
and the delay is introduced by the software. Due to the low speed the power supply does deliver
enough power which results in a much smoother movement.

5000 10000 15000 20000 25000
time(ms)

-1.0

-0.5

0.5

1.0

1.5

angle(rad)
Shoulder rotation

Figure 9.3: Velocity Control

Robotics and Mechatronics W. Boterenbrood

20 Development of the low-level software architecture for the Sherpa robot arm

The first test is repeated with a powersupply than can deliver over 20A, the measurement data
is plotted in Figure 9.4 The 20A powersupply improves the arm rotation as it stays at a higher
speed (orange) for a longer time. A linear interpolation function is created with Mathematica
(Wolfram, 2015) of both measurements, to match the data points a 9th order function was used.
The linear interpolation and its derivative (velocity) are plotted in Figure 9.5. The velocity with
the 1A powersupply (yellow) is dropping after around 100ms while the velocity with the 20A
powersupply (orange) is reasonably constant until the Elmo decelerates the movement after
around 400ms. The blue line is the postion with the 1A powersupply and the green line with
the 20A powersupply.

500 1000 1500 2000 2500
time(ms)

0.2

0.4

0.6

0.8

1.0

angle(rad)
Shoulder rotation

Figure 9.4: Position Control, Measurement Data

1200 1400 1600 1800 2000
time(ms)

0.0

0.2

0.4

0.6

0.8

1.0

angle(rad)
Shoulder rotation

Figure 9.5: Position Control, Linear Interpolation

W. Boterenbrood University of Twente

CHAPTER 9. TESTS AND VALIDATION 21

The velocity test is repeated with the 20A powersupply, a speed of -0.5 rad/s, the measurement
data is plotted in Figure 9.6. The linear interpolation (blue) and its derivative (velocity, yellow)
are plotted in Figure 9.7. The velocity is very close to the set velocity and it is quite constant.

2000 2500 3000 3500 4000 4500 5000
time(ms)

-1.0

-0.5

0.5

1.0
angle(rad)

Shoulder rotation

Figure 9.6: Velocity Control, Measurement Data

2000 2500 3000 3500 4000 4500 5000
time(ms)

-1.0

-0.5

0.5

angle(rad)
Shoulder rotation

Figure 9.7: Velocity Control, Linear Interpolation

Robotics and Mechatronics W. Boterenbrood

22 Development of the low-level software architecture for the Sherpa robot arm

Figure 9.8 shows the measurement data of a torque control input of 1A. The corresponding
linear interpolation (blue) and its derivative (velocity, yellow) are plotted in Figure 9.9. The
velocity at 1A is close to 0.5 rad/s but it is not very constant. A 1A powersupply is not enough to
ensure a speed of over 0.5 rad/s for the shoulder rotation, this is also seen in Figure 9.4 where
the 1A powersupply drops the rotational speed (yellow) while the same command with the 20A
powersupply does not show the same behaviour.

1500 2000 2500 3000 3500 4000
time(ms)

-1.0

-0.5

0.5

1.0
angle(rad)

Shoulder rotation

Figure 9.8: Torque Control, Measurement Data

1500 2000 2500 3000 3500 4000 4500
time(ms)

-0.5

0.5

1.0

angle(rad)
Shoulder rotation

Figure 9.9: Torque, Linear Interpolation

W. Boterenbrood University of Twente

CHAPTER 9. TESTS AND VALIDATION 23

In Figure 9.10 at time t=0 a control command was send to joint 1 (the joint that moves when
both motors of the differential drive move in the same direction, further called the Σ-joint)
to move to the center position. In the figure both joint positions of the differential drive are
displayed.

500 1000 1500 2000 2500
time(ms)

0.2

0.4

0.6

0.8

1.0

angle(rad)
DifferentialDrive

Figure 9.10: Differential drive position control

In Figure 9.10 the differential drive should only move the Σ-joint, but joint 2 ((the joint that
moves when both motors of the differential drive move in opposite direction, further called the
Δ-joint) is also moving a bit though it ends at the position it started from. The problem is that
both parts of the differential drive are not exactly the same and one of the drives is moving a bit
faster than the other one, which results in the movement of theΔ-joint.

In Figure 9.11 at time t=o a control command was send to joint 2 (theΔ-joint of the differential
drive) to move to position -1 rad. In the figure both joint positions of the differential drive are
displayed.

1000 2000 3000 4000 5000
time(ms)

-1.0

-0.5

0.5

1.0

angle(rad)
DifferentialDrive

Figure 9.11: Differential drive position control

Robotics and Mechatronics W. Boterenbrood

24 Development of the low-level software architecture for the Sherpa robot arm

In Figure 9.11 the differential drive should only move theΔ-joint, but the Σ-joint is also mov-
ing a bit though it ends at the position it started from. This is the same problem as seen in
Figure 9.10.

W. Boterenbrood University of Twente

25

10 Conclusion and future work

10.1 Conclusion

In this assignment all the tasks from the initial task list found in Chapter 2 have been completed
with two exceptions. The problem with the differential drive movements where the movement
of theΣ-joint temporarily influences the position of theΔ-joint and the other way around (See
Figure 9.10 and Figure 9.11 is something that needs additional work. The other problem is that
the current software only supports Elmo motor controllers on the CAN bus and support for the
force/torque sensor and absolute encoders is missing. Work has been done to make adding
these devices relatively easy, the existing code will only require minor changes and almost all
device specific code can be added in a separate device file. The current Elmo implementation
also resides in a separate file that can be used as a template to add new device support. The
Joint Controller node is only necessary for the Elmo motor controllers and does not need to be
changed.

10.2 Future work

The electronics decisions made in this assignment will need to be rechecked. Changes in the
existing components and addition of components can influence the choices made in this as-
signment. The software made in this assignment will need to be extended and improved on
before it can be used on the Sherpa arm. Some software components that are required for the
arm to work are not yet created. To continue work on this project the following task lists should
be considered for new assignments.

Task Description and motivation
DC-DC Converter evaluation The DC-DC converters selection should be

evaluated when all components have been
chosen, if more components are introduced
that require either 5V or 12V a more power-
ful converter might be required.

DC-DC Converter external capacitors The DC-DC converters require external ca-
pacitors for stable operation, this can be
done by designing a PSB that contains both
converters and the capacitors.

Elmo PCB design The Elmo Whistles are connected to an ex-
isting prototype PCB, this PCB is very large
and hinders integration of the Elmo’s in the
arm. To reduce spikes on the voltage bus
a few small but high-capacity capacitors
should be integrated onto the PCB.

Table 10.1: Future work task list, electronics

Robotics and Mechatronics W. Boterenbrood

26 Development of the low-level software architecture for the Sherpa robot arm

Task Description and motivation
Improving differential drive performance The behavior of the differential drives is not

very good due to the differences in both
joints. There are two ways to improve
this. First better Elmo PI Controller settings
maybe found that decrease the difference in
speed between both joints and second the
joint controller differential drive handling
can be improved to add feedback from the
position output into the control loop.

Extending device support Currently the software only fully supports
the Elmo motor controller, Force/Toque
sensor support and absolute encoder sup-
port can be added if required. The current
development version of the shoulder doesn’t
have these. Preliminary work has been done
to support these so the existing code needs
to be changed only on a few places, most
new code can be done in a separate device
file.

Table 10.2: Future work task list, existing software

Task Description and motivation
Central Controller development The Central Controller is the most impor-

tant missing piece of software as it connects
all in- and outputs together and makes the
decisions on how the arm will move.

VI Interface The VI interface software node needs to
give useful input about the environment to
the Central Controller, to let the arm move
around obstacles and find the exact loca-
tion of the UAVs before gripping and dock-
ing them.

Communication Controller The Communication Controller will need to
translate the incoming data from the rest
of the UAVs, rover and Sherpa box (task re-
quests and world model data) to a format
that can be handled by the central con-
troller. It also needs to send data back (task
request, task acknowledgments and arm po-
sition data).

Table 10.3: Future work task list, new software

W. Boterenbrood University of Twente

27

A Component list

Component Brand Model Voltage Current Power
Computer Intel NUC D54250WYK 12 5.5 65
Memory Crucial CT51264BF160BJ - - -
Storage Kingston SSD 120GB mSATA - - -
LAN mPCI-e Jetway ADMPEIDLA i350 - - -
VI Sensor Skybotix VI Sensor 12 0.83 10
USB-CAN 1 EMS CPC-USB/ARM7 - - -
USB-CAN 2 EMS CPC-USB/ARM7 - - -
USB-CAN 3 EMS CPC-USB/ARM7 - - -
F/T Sens 6 DoF ATI Net F/T 12 0.83 10
MC shoulder 1a Elmo Whistle 48 ? ?
MC shoulder 1b Elmo Whistle 48 ? ?
MC shoulder 2a Elmo Whistle 48 ? ?
MC shoulder 2b Elmo Whistle 48 ? ?
MC shoulder 3a Elmo Whistle 48 ? ?
MC shoulder 3b Elmo Whistle 48 ? ?
MC elbow 1a Elmo Whistle 48 ? ?
MC elbow 1b Elmo Whistle 48 ? ?
MC wrist 1a Elmo Whistle 48 ? ?
MC wrist 1b Elmo Whistle 48 ? ?
MC wrist 2a Elmo Whistle 48 ? ?
MC wrist 2b Elmo Whistle 48 ? ?
MC wrist 3a Elmo Whistle 48 ? ?
MC wrist 3b Elmo Whistle 48 ? ?
Motor shoulder 1a Kollmorgen RBE 02110-A 48 5 241
Motor shoulder 1b ? ? 48 ? ?
Motor shoulder 2a TQ Group Robodrive 70x18 48 7 370
Motor shoulder 2b ? ? 48 ? ?
Motor shoulder 3a TQ Group Robodrive 70x18 48 7 370
Motor shoulder 3b ? ? 48 ? ?
Motor elbow 1 TQ Group Robodrive 50x14 48 3.5 145
Motor elbow 1b ? ? 48 ? ?
Motor wrist 1a-3b ? ? ? ? ?
Abs Enc. shoulder 1 RLS AksIM 5 0.15 0.75
Abs Enc. shoulder 2 RLS AksIM 5 0.15 0.75
Abs Enc. shoulder 3 RLS AksIM 5 0.15 0.75
Abs Enc. elbow 1 RLS AksIM 5 0.15 0.75
Abs Enc. wrist 1 RLS AksIM 5 0.15 0.75
Abs Enc. wrist 2 RLS AksIM 5 0.15 0.75
Abs Enc. wrist 3 RLS AksIM 5 0.15 0.75
Gripper actuator ? ? ? ? ?

Table A.1: Component list

Robotics and Mechatronics W. Boterenbrood

28 Development of the low-level software architecture for the Sherpa robot arm

B DC-DC converter list

Brand Model Efficiency @ 48V Load Ripple Size
2.5A 5A 10A Min Max Typ. pp mm

GE EHHD010A0B41Z 87% 92% 92% 0A 10A 200mV 58x23x9
GE EHHD010A0B41HZ 87% 92% 92% 0A 10A 200mV 58x23x13
GE EVK011A0B41Z 90% 93% 95% 0A 11A 100mV 58x23x9
GE EHHD020A0B41Z 85% 93% 95% 0A 20A 200mV 58x23x9
GE EHHD020A0B41HZ 85% 93% 95% 0A 20A 200mV 58x23x13

Table B.1: 12V DC-DC Converters

Brand Model Efficiency @ 48V Load Ripple Size
2.5A 5A 10A Min Max Typ. pp mm

Murata NCS12S4805C 65% 78% 86% 0.24A 2.4A 70mV 32x20x10
GE KHHD006A0A41Z <70% 77% 86% 0A 6A 60mV 33x23x9
GE KSTW006A0A41Z <70% 77% 86% 0A 6A 60mV 33x23x9
TracoPower TEN 8-4811 ? ? N/A ? 1.5A 50mV 32x20x10
TracoPower TEN 8-4811WI ? ? N/A ? 1.5A 50mV 32x20x10
GE KSTW010A0A41Z <70% 72% 84% 0A 10A 60mV 33x23x9
Murata UEI15-050-Q48P-C 65% 76% 84% 0A 3A 60mV 28x25x8
XP Power JCJ0848S05 ? ? N/A 0A 1.5A 75mV 32x20x10
XP Power JCA0848S05 ? ? N/A 0A 1.6A 50mV 26x20x10
TracoPower THN 15-4811 60% 74% 85% 0A 3A 100mV 25x25x10
XP Power JCJ1048S05 ? ? N/A 0A 2A 75mV 32x20x10
XP Power JTF1048S05 ? ? N/A 0A 2A 85mV 32x20x10
TracoPower THN 15-4811WI 60% 74% 85% 0A 3A 100mV 25x25x10

Table B.2: 5V DC-DC Converters

W. Boterenbrood University of Twente

29

C Elmo motor controller programming

Before the software can drive a motor the Elmo motor controller should be programmed. The
basic programming to setup the Elmo with the motor should be done with the Elmo Composer
(Elmo Motion Control Ltd., 2013) software that is provided by ElmoMC for its motor controllers.
The wizard should be run to determine basic settings and the direction of movement. The
velocity and position PI controllers should be tuned with Elmo Composer so that it operates
well and will allow a speed command to operate the motor close to the set speed and allow
the position command to work correctly with both large and very small movement. (A position
movement that sets the new position to 1 count more or less should work correctly and so
should a position movement that moves the motor from one extreme to the other.

C.1 Example1

The limits should be programmed in both the Elmo and in the software parameter list. To
do this the following example is used: A joint with an end detection switch on each end, a
full rotation of 600 steps or counts, minimum position of -220 counts, maximum position of
220 counts, low end switch connected to input 3 and high end switch connected to input 4.
See Figure C.1. When the joint hits an end detection switch the software will stop the motion
and set the joint within the normal operating range. When the joint can physically overshoot
the position of the end detection switch, the Elmo absolute minimum and maximum position
should be set to this range instead of the position end detection switch range.

0-2
-4

-6

-8

-1
0

-1
2

-1
4

-1
6

-1
8

-2
0

-2
2 -22

20
1
8

1
6

1
4

1
2

10

8

6
4

2
Normal operating range

Full operating range

Position detection switch

Overshoot range

Figure C.1: Position limitations of a joint with end detection switches on each end of the operating
range. (Scale 1:10)

C.1.1 Position limits

The Elmo has a low and high position limit (LL[3] and HL[3]) these should be set to the ex-
tremes of the overshoot range, because the Elmo will not accept any movement commands
when beyond these positions. In the example from figure C1 LL[3]= -240 and HL[3]= 240.

Next to the absolute minimum and maximum position the are also minimum and maximum
command input positions (VL[3] and HL[3]). These should be set to the extremes of the full
operating range. Any input command with a position outside of these limits will are truncated
to these limits. In the example from figure C1 VL[3]= -220 and VH[3]= 220.

The position limits do not work in toque mode! The end detection switches programmed as
stop switches do limit the movement as does the software.

Robotics and Mechatronics W. Boterenbrood

30 Development of the low-level software architecture for the Sherpa robot arm

C.1.2 Velocity limits

The velocity minimum and maximum command inputs (VL[2] and VH[2]) truncate any input
command with a velocity outside of these limits. These should be set at the maximum speed
allowed for all mechanical components (take into account any transmission and conversion of
RPM to counts per second) or the maximum wanted application speed, whichever is lower.

The Elmo has a low and high velocity limit (LL[2] and HL[2]) If the Elmo detects a velocity out-
side of these limits the motor is stopped and a software reset is necessary to continue operation.
So these limits should be used as a safeguard only and set higher than the velocity minimum
and maximum command input limits.

The velocity limits do not work in toque mode! In toque mode there is no velocity limit at all.

C.1.3 Acceleration/Deceleration limits

The maximum acceleration and deceleration can be set in counts per squared second with the
AC and DC commands.

Acceleration/Deceleration command only work in position and velocity modes.

C.1.4 Current limits

Current limits should be set according to motor, Elmo motor controller or power supply current
limits, whichever is lower. The continuous current can be set in A with CL[1], the peak current
with PL[1] and the peak duration in seconds in PL[2]

Current limits work in all operation modes.

C.1.5 Inputs

To set the end detection switches as stop motion switches on the Elmo the corresponding in-
puts should be set. This is done with command IL[n]= 21 where n is the input number. The
input should be low when the switch is not pressed. In the example from figure C1 IL[3]= 21
and IL[4]= 21.

C.1.6 Saving the parameters

When all limits are set and send to the Elmo they stay only until the next reset or power cycle
of the Elmo. To permanently save this to the flash memory use the SV command to save the
memory to flash. Do not do this when trying out different values as saving to many times will
destroy the flash and make the Elmo useless.

C.1.7 Software limits

For the software configuration the limits should be set in the ROS parameter server. See the
Software Usage Manual for instructions how to do this. The limits that are needed are for the
software in the above example are listed in Table C.1.

Parameter Name Description Value
cpr: Counts per round 600
pos_min: Minimum position -220
pos_max: Maximum position 220
pos_margin: Difference between normal and full operating range 30 (=220-190)
cal_sw_L: Input number of the low position end switch 3
cal_sw_H: Input number of the high position end switch 4

Table C.1: ROS Params for example 1

W. Boterenbrood University of Twente

APPENDIX C. ELMO MOTOR CONTROLLER PROGRAMMING 31

C.2 Example2

In this example the same setup is used as in example 1 with one change, the end detection
switches are removed and one position detection switch is used on position 20 and connected
to input 1, see Figure C.2.

Normal operating range

Full operating range

Position detection switch

Overshoot range

0-2
-4

-6

-8

-1
0

-1
2

-1
4

-1
6

-1
8

-2
0

-2
2 -22

20
1
8

1
6

1
4

1
2

10

8

6
4

2

Figure C.2: Position limitations of a joint with a position detection switch within the operating range.
(Scale 1:10)

The configuration of the limits of the Elmo do not change, the only change is the input config-
uration, IL[1]= 5. For the software cal_sw_L should be set to 1, cal_sw_H should not be set and
cal_pos should be set to 20

C.3 Example3

In this example a differential drive pair is used. Two motors drive two joints together, the first
joint reacts to the sum of both motor positions so it can be called the sigma joint orΣ-joint, the
second joint reacts to the difference of both motor positions so it can be called the delta joint or
Δ-joint. When using a differential drive end detection switches must be used on theΣ-joint or
Δ-joint because the first motor will have a minimum and maximum that depends on the other
motor and the other way around. In this example the Σ-joint has a full rotation of 600 steps
or counts, minimum position of -220 counts, maximum position of 220 counts, low end switch
connected to input 1 and high end switch connected to input 2. TheΔ-joint has a full rotation
of 600 steps or counts, minimum position of -160 counts, maximum position of 160 counts, low
end switch connected to input 3 and high end switch connected to input 4. See Figure C.3.

Normal operating range

Full operating range

Position detection switch

Overshoot range

0-2
-4

-6

-8

-1
0

-1
2

-1
4

-1
6

-1
8

-2
0

-2
2 -22

20
1
8

1
6

1
4

1
2

10

8

6
4

2

Figure C.3: Position limitations of theΣ-joint (left) and the theΔ-joint (right) of example 3

To determine the motor command limits a graph is made with the first motor position on the
horizontal axis and the second motor position on the vertical axes together with the four joint

Robotics and Mechatronics W. Boterenbrood

32 Development of the low-level software architecture for the Sherpa robot arm

limits. See figure C5. When the limits of both joints are equal the motor position limits are
equal to the joint limits, in this example the limits of both joints are different. To determine the
motor command limits take the difference of both maximums and divide it by two (30 = (220-
160)/2). Subtract this number from the higher maximum to get the maximum position for both
motors and invert the maximum to get the minimum. This only works when both joints have
symmetrical limits. The same approach can be used to determine the absolute motor limits
from the overshoot range.

Figure C.4: Position limitations of the motors of example 3 (Scale 1:10)

In the example from figure C3 and C4 LL[3]= -205 and HL[3]= 205 for both motors (205=240-
(240-170)/2), VL[3]= -190 and VH[3]= 190. The inputs should be set to stop motion, so IL[1]=
21, IL[2]= 21, IL[3]= 21, and IL[4]= 21. The other limits should be set with the information given
in example 1. The software configuration for both motors of example 3 are listed in Table C.2

Parameter Name Description Value
cpr: Counts per round 600
pos_min: Minimum position (of full operating range) of theΣ-joint -220
pos_max: Maximum position (of full operating range) of theΣ-joint 220
pos_margin: Difference between normal and full operating range of theΣ-joint 30 (=220-190)
pos_min_dd: Minimum position (of full operating range) of theΔ-joint -160
pos_max_dd: Maximum position (of full operating range) of theΔ-joint 160
pos_margin_dd: Difference between normal and full operating range of theΔ-joint 10 (=170-160)
cal_pos: Position to be set after reaching calibration switch -220
cal_sw_L: Input number of the low position end switch of theΣ-joint 1
cal_sw_H: Input number of the high position end switch of theΣ-joint 2
cal_sw_dd_L: Input number of the low position end switch of theΔ-joint 3
cal_sw_dd_H: Input number of the high position end switch of theΔ-joint 4

Table C.2: ROS Params for example 3

W. Boterenbrood University of Twente

33

D Software User Manual

D.1 Configuration file

Before being able to start the software the configuration parameters must be loaded into the
ROS parameters server. To do this a configuration file is made that can be loaded by the ROS
parameter server.

Here is an example of a ROS parameter server file to configure the software:

ros_can_interface:
topics: [/joint]
interfaces: [can0, can1]
queue_size: [100, 100]
send_interval: [1000, 1000]
scheduler_interval: [10, 100]
nodes:

’0’: {topics: joint/shoulder/joint_mc/0, dev_bus: can0, dev_id: 10,
dev_type: 1, cpr: 3600, pos_min: -1750, pos_max: 1750,
pos_margin: 36, cal_speed: 300, cal_pos: 0}

’1’: {topics: joint/shoulder/joint_mc/1, dev_bus: can0, dev_id: 20,
dev_type: 1, cpr: 6000, pos_min: -1500, pos_max: 1500, pos_margin: 60,
diffdrive: 2, pos_min_dd: -1500, pos_max_dd: 1500, pos_margin_dd: 60,
cal_pos: -1450, cal_sw_L: 1, cal_sw_H: 2, cal_sw_dd_L: 3, cal_sw_dd_H: 4}

’2’: {topics: joint/shoulder/joint_mc/2, dev_bus: can0, dev_id: 30,
dev_type: 1, cpr: 6000, pos_min: -1500, pos_max: 1500, pos_margin: 60,
diffdrive: 1, pos_min_dd: -1500, pos_max_dd: 1500, pos_margin_dd: 60,
cal_pos: -1450, cal_sw_L: 1, cal_sw_H: 2, cal_sw_dd_L: 3, cal_sw_dd_H: 4}

’3’: {topics: joint/shoulder/joint_mc/0, dev_bus: can1, dev_id: 40,
dev_type: 1, cpr: 3600, pos_min: -1750, pos_max: 1750, pos_margin: 36,
ext_pos_input: joint/shoulder/joint4/position}

The first line contains the param path, do not change this from the example, all other lines are
indented two spaces to define that those are inside the param path.

Parameter Name Description
topics: base topic path
interfaces: list of can interfaces
queue_size: the message size for the send and receive queue per can bus
send_interval: interval between each send message for each CAN bus in mi-

croseconds (us)
scheduler_interval: interval between all polled data for each device per CAN bus in

milliseconds (ms) (For Elmo motor controllers this is the interval
between the current position polling

nodes: list of all devices/nodes, all nodes are numbered from 0 to 127
and should be provided in ascending order. To define that the
nodes are inside the nodes: list the nodes are indented another
two spaces, so four in total.

Table D.1: Software configuration parameters, generic

The nodes itself have a few parameters, some of these parameters are required, other are op-
tional.

Robotics and Mechatronics W. Boterenbrood

34 Development of the low-level software architecture for the Sherpa robot arm

D.1.1 All devices

Parameter Name Required? Description
topics: Y base path of in- and output messages for this node
dev_bus: Y the CAN bus to which this device/node is connected
dev_id: Y CAN ID of the device/node
dev_type: Y the device/node type and name of its in- and output

messages, library file and other device specific func-
tionality.

Table D.2: Software configuration parameters, nodes

Currently only dev_type 1 which is ElmoMC SimplIQ Servo Drives are supported.

D.1.2 Non-differential drives

Parameter Name Required? Description
cpr: Y Counts per round, the amount of counts/steps for a

whole round
pos_min: Y Counts, Minimum position (of full operating range)
pos_max: Y Counts, Maximum position (of full operating range)
pos_margin: Y Counts, Difference between normal and full operating

range
cal_speed: N Counts per second, velocity with which the joint is

moved towards the switch during calibration, if not
specified ext_pos_input should be set

cal_pos: N Counts, Position to be set after reaching calibra-
tion switch, if not specified pos_min will be used or
ext_pos_input should be set

ext_pos_input: N Rostopic location, if an absolute encoder is used this
settings specifies the ros topic location to which the
current position is advertised, it should be done as a
standard ROS message type of type int. If not specified
both cal_pos and cal_speed should be set

cal_sw_L: N Input number of the low position end switch, or single
position detection switch

cal_sw_H: N Input number of the high position end switch

Table D.3: Software configuration parameters, non-differential nodes

W. Boterenbrood University of Twente

APPENDIX D. SOFTWARE USER MANUAL 35

D.1.3 Differential drives

Parameter Name Required? Description
cpr: Y Counts per round, the amount of counts/steps for a

whole round
pos_min: Y Counts, Minimum position (of full operating range) of

theΣ-joint
pos_max: Y Counts, Maximum position (of full operating range) of

theΣ-joint
pos_margin: Y Counts, Difference between normal and full operating

range of theΣ-joint
diffdrive: Y Device/node number of the corresponding drive of

this differential pair
pos_min_dd: N Same as pos_min though for theΔ-joint, if not speci-

fied the pos_min value is used
pos_max_dd: N Same as pos_max though for theΔ-joint, if not speci-

fied the pos_max value is used
pos_margin_dd: N Same as pos_margin though for the Δ-joint, if not

specified the pos_margin value is used
cal_pos: N Counts, Position to be set after reaching calibration

switch, if not specified pos_min will be used
cal_sw_L: N Input number of the low position end switch of theΣ-

joint
cal_sw_H: N Input number of the high position end switch of the

Σ-joint
cal_sw_dd_L: N Input number of the low position end switch of theΔ-

joint
cal_sw_dd_H: N Input number of the high position end switch of the

Δ-joint

Table D.4: Software configuration parameters, differential nodes

For each differential drive pair a set of independent joints is created, the first joint will have the
number equal to the lower node number and is called the Σ-joint because it responds to the
sum of both inputs. The second joint will have the number equal to the higher node number
and is called theΔ-joint because it responds to the difference of both inputs.

Robotics and Mechatronics W. Boterenbrood

36 Development of the low-level software architecture for the Sherpa robot arm

D.2 Compiling the source files

1. Copy the source files to the src directory of your catkin workspace

cp -r /path-to-sourcefiles/ /path-to-catkin_workspace/src

2. Build the ROS nodes

cd /path/catkin_workspace
catkin_make

D.3 Running the software

1. Start the canbus (replace the bitrate number with the speed the canbus should run at)

ip link set can0 type can bitrate 1000000 listen-only off
ifconfig can0 up

2. Start ros

roscore

3. Load ros parameters in a new terminal (substitute the filename for the one that you cre-
ated before)

rosparam load /path/rosparam-file

4. Start the nodes

cd /path/catkin_workspace
source devel/setup.bash
rosnode ros_can_interface ros_can_interface_node
rosnode joint_controller joint_controller_node

5. Wait for the node to startup, the node is ready after a summary of all nodes is given and
the schedulers are started

6. Use rosparam list so see all available topics registered by the node

rosparam list

7. Start the test gui

cd /path/catkin_workspace
rosnode test_gui2 test_gui2_node

8. Using the joystick as input

cd /path/catkin_workspace
rosparam set joy_node/dev "/dev/input/js0"
rosnode joy joy_node

W. Boterenbrood University of Twente

APPENDIX D. SOFTWARE USER MANUAL 37

D.4 Rostopics and messages usage

D.4.1 Messages between the Joint Controller and the Central Controller Nodes

Topic Name Message Type Direction Message contents
get_status std_msgs/bool Central Controller ->

Joint Controller
bool data

status ros_can_interface/status Joint Controller ->
Central Controller

bool ok, string sta-
tus_description

control joint_controller/mc_control Central Controller ->
Joint Controller

bool stop, uint8
mode, float64 data

calibration std_msgs/bool Central Controller ->
Joint Controller

bool data

position std_msgs/float64 Joint Controller ->
Central Controller

float64 data

Table D.5: Messages between the Joint Controller and the Central Controller Nodes

Control is used to send a control command to the Elmo. If bool stop is true the motor will be
stopped and the other data in the message will be ignored. The mode sets the Elmo to one of
the following modes with the data meaning:

Mode Mode description Contents description
1 Single feedback position mode destination position in radians
2 Velocity mode destination speed in radians per second
3 Torque/Current mode current in A

Table D.6: Control modes

Calibration is used to request the joint to be calibrated, the bool data must be set to true.

Position will post a message with the device position in radians with an interval that was set in
the rosparams with the reporting_interval variable. Sending of the position messages is initi-
ated after the node gets its first control message, and stopped when the ROS CAN Interface or
Joint Controller node is stopped

To check for the status of a node send a get_status message with bool data=true to the get_status
topic of the node. The node will then respond by posting a message on the status topic that
contains a bool ok, which is true if the device is ok or false otherwise, the string will contain a
list of device specific information about the status

Example to use the status messages (use 2 separate terminal windows):

cd /path/catkin_workspace
source devel/setup.bash
rostopic echo joint/0/status

cd /path/catkin_workspace
source devel/setup.bash
rostopic pub -1 joint/0/get_status std_msgs/bool true

Example to use the control and position messages (use 2 separate terminal windows):

cd /path/catkin_workspace
source devel/setup.bash
rostopic echo joint/0/position

Robotics and Mechatronics W. Boterenbrood

38 Development of the low-level software architecture for the Sherpa robot arm

cd /path/catkin_workspace
source devel/setup.bash
rostopic pub -1 joint/0/control joint_controller/mc_control \
-- false 1 0.5
rostopic pub -1 joint/0/control joint_controller/mc_control \
-- true 0 0

D.4.2 Messages between the ROS CAN Interface and the Joint Controller Nodes

Topic Name Message Type Direction Message contents
get_status std_msgs/bool Joint Controller ->

ROS CAN Interface
bool data

status ros_can_interface/status ROS CAN Interface -
> Joint Controller

bool ok, string sta-
tus_description

control joint_controller/mc_control Joint Controller ->
ROS CAN Interface

bool stop, uint8
mode, int32 data

calibration std_msgs/bool Joint Controller ->
ROS CAN Interface

bool data

position std_msgs/float64 ROS CAN Interface -
> Joint Controller

int32 data

Table D.7: Messages between the ROS CAN Interface and the Joint Controller Nodess

Calibration is used to request the motor to be calibrated, the bool data must be set to true. This
works only for motors not part of a differential drive pair. The calibration of motors that are part
of differential pair is handeld by the Joint Controller, to calibrate the motors of a differential
drive pair the calibration request should be send to the joint calibration topic handled by the
Joint Controller.

Position will post a message with the device position in counts with an interval that was set
in the rosparams with the reporting_interval variable. Sending of the position messages is ini-
tiated after the node gets its first control message, and stopped when the ROS CAN Interface
node is stopped

To check for the status of a node send a get_status message with bool data=true to the get_status
subtopic of the node. The node will then respond by posting a message on the status subtopic
that contains a bool ok, which is true if the device is ok or false otherwise, the string will contain
a list of device specific information about the status

Example to use the control and position messages (use 2 separate terminal windows):

cd /path/catkin_workspace
source devel/setup.bash
rostopic echo joint/shoulder/joint_mc/0/position

cd /path/catkin_workspace
source devel/setup.bash
rostopic pub -1 joint/shoulder/joint_mc/0/control \
ros_can_interface/mc_control -- false 3 200
rostopic pub -1 joint/shoulder/joint_mc/0/control \
ros_can_interface/mc_control -- true 3 200

W. Boterenbrood University of Twente

39

E Test GUI User Manual

E.1 TestGUI controlling the ROS-CAN interface

The Test GUI is split in two parts. The upper part shows the information and commands for
the individual CAN devices/nodes. The lower part that shows the Joystick control settings. See
Figure E.1.

A

B

C

D

E F

Figure E.1: Test GUI

Robotics and Mechatronics W. Boterenbrood

40 Development of the low-level software architecture for the Sherpa robot arm

E.1.1 Nodes

The area marked with A shows the can bus, node ID of the device connected. The Position is
given as both a number and a relative position on a slider, the slider limits are taken from the
ROS param server (pos_min and pos_max).

The area marked with B has a few settings fields, a radio button that determines the unit mode
and for each unit mode an input field. The Test GUI sends and receives messages from the
ROS-CAN interface, so units are in counts, counts per second and mA and should be entered
as whole numbers

The area marked with C has four control buttons and a status information area. If Start is
pressed the GUI wil send a control message to the node with the mode selected with the ra-
dio buttons from area B and as data the data from the input field corresponding to the selected
mode. The Stop send a control message with a stop command in it. The calibration buttons
starts the calibration function and the status button requests the status, only an OK or Fail
message is displayed, the detailed status text string is not displayed.

The area marked with D contains the joystick axis that is used to control this node, if joystick
control is enabled.

E.1.2 Joystick Control

The area marked with E shows the joystick control settings. The joystick model can be selected
from the drop down menu (the Z axis is sometimes bound to a different axis for different joy-
stick the X and Y are always the same) The sensitivity set with the slider and the control mode
can be selected with the radio buttons. The tickbox on top enables or disables joystick control
mode.

The area marked with F shows the current joystick position as seen by the software.

E.2 TestGUI2 controlling the Joint Controllers

The TestGUI2 works and looks almost the same as the TestGUI. Instead of a canbus and node
ID it shows the joint number and the units that can be filled in by Position, Velocity and Torque
are now in radians, radians per second and A. with the TestGUi2 decimals can be used.

W. Boterenbrood University of Twente

41

Bibliography
Alex (2015), LearnCpp.Com.
http://www.learncpp.com/

ATI Industrial Automation (2015), Net F/T.
http://www.ati-ia.com/products/ft/ft_NetFT.aspx

BlueBotics (2013), NIFTi-BlueBotics Librover.
https://github.com/NIFTi-BlueBotics/Librover

CiA (2015), CAN knowledge.
http://www.can-cia.de/can-knowledge/

Computer Solutions Ltd (2014), CAN and CAN-FD a brief tutorial.
http://www.computer-solutions.co.uk/info/Embedded_tutorials/
can_tutorial.htm

Connette, C. and M. Gruhler (2015), cob_generic_can.
http://wiki.ros.org/cob_generic_can

Dassault Systemes (2015), Solidworks Tutorials.
http://www.solidworks.com/sw/resources/solidworks-tutorials.htm

Elmo Motion Control Ltd. (2013), Software - Composer.
http://www.elmomc.com/support/downloads-software-tools-main.htm

ElmoMC (2014a), CANopen DS 301 Implementation Guide.
http://www.elmomc.com/support/manuals/MAN-CAN301IG.pdf

ElmoMC (2014b), What is CANOpen?
http://www.elmomc.com/capabilities/4%20.GMAS%20CANOpen%20Field%
20Bus%20Communication/0.Getting%20Started%20with%20CANOpen%
20Communication/Description/index.html

EMS Dr. Thomas Wünsche (2015), USB/CAN Interface CPC-USB/ARM7.
http://www.ems-wuensche.de/product/datasheet/html/
can-usb-adapter-converter-interface-cpcusb.html

Farnell (2015a), GE CRITICAL POWER EVK011A0B41Z Isolated Board Mount DC/DC
Converter.
http://nl.farnell.com/ge-critical-power/evk011a0b41z/
dc-dc-converter-12v-2-5a/dp/2450698

Farnell (2015b), GE CRITICAL POWER KHHD006A0A41Z Isolated Board Mount DC/DC
Converter.
http://nl.farnell.com/ge-critical-power/khhd006a0a41z/
dc-dc-converter-5v-6a/dp/2450700

Festival, C. (2015), CAN Festival.
http://www.canfestival.org/

Fraunhofer (2015), ipa320 ipa_canopen.
https://github.com/ipa320/ipa_canopen

Intel Corporation (2015), Mini PC - Intel NUC Board D54250WYB.
http:
//www.intel.com/content/www/us/en/nuc/nuc-board-d54250wyb.html

Kollmorgen (2015), RBE.
http:
//www.kollmorgen.com/en-us/products/motors/direct-drive/rbe/

Robotics and Mechatronics W. Boterenbrood

http://www.learncpp.com/
http://www.ati-ia.com/products/ft/ft_NetFT.aspx
https://github.com/NIFTi-BlueBotics/Librover
http://www.can-cia.de/can-knowledge/
http://www.computer-solutions.co.uk/info/Embedded_tutorials/can_tutorial.htm
http://www.computer-solutions.co.uk/info/Embedded_tutorials/can_tutorial.htm
http://wiki.ros.org/cob_generic_can
http://www.solidworks.com/sw/resources/solidworks-tutorials.htm
http://www.elmomc.com/support/downloads-software-tools-main.htm
http://www.elmomc.com/support/manuals/MAN-CAN301IG.pdf
http://www.elmomc.com/capabilities/4%20.GMAS%20CANOpen%20Field%20Bus%20Communication/0.Getting%20Started%20with%20CANOpen%20Communication/Description/index.html
http://www.elmomc.com/capabilities/4%20.GMAS%20CANOpen%20Field%20Bus%20Communication/0.Getting%20Started%20with%20CANOpen%20Communication/Description/index.html
http://www.elmomc.com/capabilities/4%20.GMAS%20CANOpen%20Field%20Bus%20Communication/0.Getting%20Started%20with%20CANOpen%20Communication/Description/index.html
http://www.ems-wuensche.de/product/datasheet/html/can-usb-adapter-converter-interface-cpcusb.html
http://www.ems-wuensche.de/product/datasheet/html/can-usb-adapter-converter-interface-cpcusb.html
http://nl.farnell.com/ge-critical-power/evk011a0b41z/dc-dc-converter-12v-2-5a/dp/2450698
http://nl.farnell.com/ge-critical-power/evk011a0b41z/dc-dc-converter-12v-2-5a/dp/2450698
http://nl.farnell.com/ge-critical-power/khhd006a0a41z/dc-dc-converter-5v-6a/dp/2450700
http://nl.farnell.com/ge-critical-power/khhd006a0a41z/dc-dc-converter-5v-6a/dp/2450700
http://www.canfestival.org/
https://github.com/ipa320/ipa_canopen
http://www.intel.com/content/www/us/en/nuc/nuc-board-d54250wyb.html
http://www.intel.com/content/www/us/en/nuc/nuc-board-d54250wyb.html
http://www.kollmorgen.com/en-us/products/motors/direct-drive/rbe/
http://www.kollmorgen.com/en-us/products/motors/direct-drive/rbe/

42 Development of the low-level software architecture for the Sherpa robot arm

Korban, A. (2014), C++11 Rocks.
http://cpprocks.com

Marconi, L., C.Melchiorri, M. Beetz, D. Pangercic, R. Siegwart, S. Leutenegger, R. Carloni,
S. Stramigioli, H. Bruyninckx, P. Doherty, A. Kleiner, V. Lippiello, A. Finzi, B. Siciliano, A. Sala
and N. Tomatis (2012), The SHERPA project: Smart collaboration between humans and
ground-aerial robots for improving rescuing activities in alpine environments, in
Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics.

RLS (2015), AKSIM Off-Axis Rotary Absolute Encoder.
http:
//www.rls.si/products/aksim-off-axis-rotary-absolute-encoder

ROS.org (2015a), ROS Introduction.
http://wiki.ros.org/ROS/Introduction

ROS.org (2015b), ROS Tutorials.
http://wiki.ros.org/ROS/Tutorials

Skybotix (2015), VI-Sensor.
http://www.skybotix.com

The Qt Company (2015), Qt Documentation - Qt Creator Manual 3.4.0.
http://doc.qt.io/qtcreator/creator-writing-program.html

TQ Group (2015), Robodrive.
http:
//www.elmomc.com/products/whistle-digital-servo-drive-main.htm

Wolfram (2015), Wolfram Mathematica.
http://www.wolfram.com/mathematica/

W. Boterenbrood University of Twente

http://cpprocks.com
http://www.rls.si/products/aksim-off-axis-rotary-absolute-encoder
http://www.rls.si/products/aksim-off-axis-rotary-absolute-encoder
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Tutorials
http://www.skybotix.com
http://doc.qt.io/qtcreator/creator-writing-program.html
http://www.elmomc.com/products/whistle-digital-servo-drive-main.htm
http://www.elmomc.com/products/whistle-digital-servo-drive-main.htm
http://www.wolfram.com/mathematica/

	Summary
	Contents
	1 Sherpa Project Overview
	1.1 Interaction
	1.2 The SHERPA team

	2 Introduction
	2.1 Existing design choices
	2.2 Task list
	2.3 Task details

	3 Electronic Design
	3.1 Existing design choices
	3.2 Interfacing all components to the computer platform and providing power
	3.3 DC-DC converter selection
	3.4 Elmo Whistle selection

	4 Software architecture
	4.1 Pre knowledge
	4.2 Design Start
	4.3 Software design description

	5 ROS-CAN Interface design
	5.1 C++ CAN bus projects research
	5.2 Design decisions
	5.3 Start-up and initialization

	6 Joint Controller design
	6.1 Inner workings

	7 Test GUI design
	8 Calibration of the shoulder joints
	9 Tests and validation
	9.1 Shoulder rotation, non differential drive

	10 Conclusion and future work
	10.1 Conclusion
	10.2 Future work

	A Component list
	B DC-DC converter list
	C Elmo motor controller programming
	C.1 Example1
	C.2 Example2
	C.3 Example3

	D Software User Manual
	D.1 Configuration file
	D.2 Compiling the source files
	D.3 Running the software
	D.4 Rostopics and messages usage

	E Test GUI User Manual
	E.1 TestGUI controlling the ROS-CAN interface
	E.2 TestGUI2 controlling the Joint Controllers

	Bibliography

