

!
!
!
!
!
!
!

!

!
!
!
!
!
!
!

!
!
!
!
!
!
!
!

!
!

!
!

!
!
!
!
!
!

!
Mapping!and!Localization!of!a!Rail1guided!Robot!

S.H.!(Steven)!Gies!

BSc!Report!

C e !
Dr.ir.!M.!Fumagalli!
D.J.!Borgerink,!MSc!
Dr.ir.!J.F.!Broenink!

!

July!2015!
!

019RAM2015!
Robotics!and!Mechatronics!!

EE1Math1CS!!
University!of!Twente!!

P.O.!Box!217!
7500!AE!Enschede!
The!Netherlands!

CONTENTS

I INTRODUCTIONI INTRODUCTION 1
I-A GoalI-A Goal . 1
I-B OutlineI-B Outline . 1

II MODELLINGII MODELLING 1
II-A Robot specificationsII-A Robot specifications . 2
II-B Rail specificationsII-B Rail specifications . 2
II-C KinematicsII-C Kinematics . 3

III IMPLEMENTATIONIII IMPLEMENTATION 3
III-A State space modelIII-A State space model . 3
III-B Parameter estimationIII-B Parameter estimation . 4
III-C Estimation of noise factorsIII-C Estimation of noise factors . 4
III-D Landmark detectionIII-D Landmark detection . 5

IV EXPERIMENTAL VALIDATIONIV EXPERIMENTAL VALIDATION 6
IV-A Test setupIV-A Test setup . 6
IV-B Results and DiscussionIV-B Results and Discussion . 6

IV-B.1 Path estimationIV-B.1 Path estimation . 6
IV-B.2 Landmark detectionIV-B.2 Landmark detection . 6

V CONCLUSIONSV CONCLUSIONS 7

VI RECOMMENDATIONSVI RECOMMENDATIONS 8

ReferencesReferences 8

PREFACE
The following paper covers the report of a Bachelor’s thesis that was carried out at the end of a study in Electrical
Engineering at the University of Twente. The presented work took place at the chair of Robotics and Mechatronics (RaM),
which takes part in the interregional project RoboShip: a maritime subproject of the INTERREG IVA project SmartBot
in which multi-sensor robot platforms are developed for applications in various sectors. The RoboShip subproject aims at
automation of the inspection of ballast water tanks in ships, a dangerous and unhealthy task currently being done by humans.

At the start of this thesis in April 2015 a prototype of the robot was already available, including sensing equipment and an
inspection arm. One of the things that had to be worked on in order to improve autonomous behavior was the self-awareness
of the robot’s location in its working environment. Finding a solution to this problem formed the assignment of this thesis.
After following a course on optimal estimation in dynamic systems and researching on how mapping and localization of
similar robots is performed, an algorithm was created that uses a model of the robot’s kinematics as well as control input
data and sensor measurements to determine the robot’s actual position in both 1D and 3D space.

Mapping and Localization of a Rail-guided Robot

S.H. Gies*, D.J. Borgerinka,bMSc
July 22, 2015

Abstract— A rail-guided robot, part of the SmartBot-
RoboShip project, will be used to inspect ballast water tanks in
various ships, meaning that it should be capable of exploring
different tank layouts. In this research project an algorithm
based on the extended Kalman filter is developed for determin-
ing its position on a self-learned 1D map of the rail using a basic
model of the robot’s kinematics. This map is then extended by
considering the rail in 3D space.
Reference points used for both mapping and localization are
formed by the detection of standard turns of 90 degrees as
well as characteristic magnetic field peaks that are caused
by the complex architecture of the metal tank walls. As the
robot is led by a rail, it is incapable of steering. However, by
taking into account the standardized rail specifications while
processing odometry data and IMU measurements, the robot
is well able to estimate its system parameters. The resulting
algorithm reconstructs a 3D map of the rail in which the robot
can localize itself, and correct its coordinates using self-created
landmarks whenever these are reobserved.

I. INTRODUCTION

The bottom sections of large ships usually contain
compartments called ballast water tanks. By filling these
tanks with sea water the ship’s center of gravity is lowered,
improving stability. The inside features a complex system
of metal walls which strengthens the outer walls. As these
walls are subject to damage and corrosion caused by the
salty sea water, they have to be inspected frequently, and
if needed, repaired. Currently, this work is still done by
humans. Considering the unhealthy and dangerous working
environment it would be a good alternative to automate this
process in such a way that workers do not have to enter the
tanks anymore. The SmartBot-Roboship project [1] aims at
solving this problem.

During earlier research [2] a rail-guided robot, equipped
with a long arm with inspection tools, was found to be well-
suited for this application. However, in order to navigate
autonomously in an unknown environment, the robot should
still be able to determine its own location and environment
during operation. Using this knowledge the robot can move
to specific positions or coordinates based on user-defined
commands. Also when combining the on-rail position with
the relative position of the tip of the inspection arm, the
corresponding location of each inspection measurement can
be determined and registered. Furthermore, despite being
guided by a rail, the robot still has to take care of obstacle
avoidance due to its long arm and the complex tank walls.

The extension towards mapping and localization in 3D
space would create a basis for this problem.

Previously the localization of the robot has been tested by
the detection of RFID tags which were attached to the rail.
However, this additional complexity is undesired, especially
when implementing very long rails. This assignment
therefore investigates the possibility of mapping and
localization of the robot using its kinematics and assuming
the rail is in its bare form.

A. Goal

Aim of this assignment is the development, testing and
verification of an algorithm that uses sensor data and user
commands both to reconstruct a map of the rail in 3D space
as well as to determine the current position of the robot on
this map. This algorithm should furthermore be able to create
identifiable reference points. After recognizing these points
during later encounters the estimate of the robot’s current
position and the location of the reference point should be
updated.

B. Outline

This paper is structured as follows. Section II sketches
the situation that is being dealt with; relevant information
and assumptions of both the robot and the rail are given,
as well as the available sensors. Using this knowledge the
kinematics of the robot have been modelled. In Section III
the main outline of the algorithm that is used for localization
and mapping is discussed. It starts with the design of a filter
for fusing the modelled behavior with sensor data and user
control inputs. Thereafter the principle that is used to detect
and handle reference points will be explained. Section IV
shows the performed tests on this algorithm and discusses
its results. Final conclusions of the assignment are presented
in Section V, and based on these, recommendations are given
in Section VI.

II. MODELLING
Before starting the design of an algorithm the available

instruments, operating environment and underlying physics
of this problem are analyzed. This section discusses these
topics one by one before heading towards the design and
implementation.

*Corresponding author: s.h.gies@student.utwente.nl
aRobotics and Mechatronics, University of Twente.
bINCAS3, Assen, the Netherlands.

1

A. Robot specifications

In Appendix A a top view of the robot on a straight rail
segment is shown. It is driven by two pairs of opposing
Faulhaber 2657W024CR motors in combination with Platine
MCDC3003 PRS motion controllers. These accept either
a target velocity in rpm or a target position in encoder
increments as control input from the robot’s main computer.
Next to that, they are able to determine the actual velocities
and positions of each individual wheel and return these as
measurement data. For more accurate control, the motors
are connected to the driving wheels via n:1 gearheads with
n = 23. The wheel radii r were specified as 20 mm, but
due to wearage and deformation (caused by the tension at
which the wheels have been clamped onto the rail), the
radii were later calibrated and estimated at 17.5 mm (further
elaboration on this in the parameter estimations of Appendix
B). As a result the velocity of each wheel is determined
with a resolution of 1/n rpm or 2πr/(n·60) ≈ 80 µm/s. The
incremental position values are read out using additional
magnetic encoders with 1024 pulses per revolution and
quadrature signal output, and are thus determined with a
resolution of 2πr/(n·1024·4) ≈ 1.2 µm per increment.

A CAD drawing of a section of one of the driving
modules clamped around a hollow rail segment can be seen
in Figure 1Figure 1, showing its pair of actuated wheels (top and
bottom). Additionally the module contains a similar sized
wheel at one side (right), and smaller ones at the other side
(left) with a gap inbetween for passing the anchor points
that fix the rail to the tank walls. These have not been
actuated.

In this assignment only the movements of the front driving
module is considered. An Xsens MTI-300-2A5G4 inertial
measurement unit (IMU) is mounted inbetween these two
wheels at a height of 12 cm above the rail surface. This
IMU is able to measure a large variety of quantities,

TABLE I
OVERVIEW OF THE MOST IMPORTANT AVAILABLE PARAMETERS.

Source Parameter Description fs (Hz)
Joystick u Control input, ranging ∼30

from -2000 to 2000
Odometry Pos Actual position, available ∼2.5

per wheel
Vel Actual velocity, available ∼2.5

per wheel
Xsens Roll Euler angles (deg) 400

Pitch
Yaw

ax Acceleration components 400
ay (m/s2)
az

Gyrx Angular velocities (rad/s) 400
Gyry
Gyrz

Magx Magnetic field components 100
Magy (arbitrary units ≈40uT)
Magz

Fig. 1. Section of one of the driving modules clamped around a straight
rail segment.

in particular accelerations and gyrations. Table ITable I shows
an overview of the most important parameters with the
sampling frequencies fs at which the measurements have
been logged. Since the IMU is attached to the top of the
motor module its translational velocity will not always equal
that of the wheels during a corner due to the difference in
turning radius. However, the entire module and everything
that is solidly attached to it will experience the same
angular velocities. The correctly matching of translational
and angular velocity measurements will prove to be an
important aspect in the further derivation of other kinematic
parameters. Therefore, whenever positions and coordinates
are mentioned in this paper, the center of the rail underneath
the IMU is defined as the center point of the robot, since
then in any situation both the angular and translational
velocity measurements correspond with those of the center
point.

B. Rail specifications

The rail that is to be mounted inside the ballast water
tanks has a very basic structure and therefore it has several
characteristics that are useful for this problem. The following
assumptions have been made:
• The rail profile is square-formed everywhere with sides

of 60 mm.
• The rail does not rotate around its central axis. As a

consequence, both the rail and the robot do not ’roll’.
• Corners have a constant radius of 40 cm and are limited

to turns of 90 degrees.
As a result of the previous assumptions, on any straight rail
segment, orientation angles of both the rail and the robot are
always multiples of 90 degrees. For a clearer impression a

2

3D view of an experimental tank including a rail is shown
in Appendix D1.

C. Kinematics

Now, by using the velocity measurements and rail specifi-
cations, the kinematics can be modelled. Figure 2Figure 2 shows the
front wheels of the robot entering a turn of 90 degrees.

Fig. 2. The robot’s kinematics during circular motion.

At any time, the on-rail velocity V is given by the average
of the individual velocities Vf l and Vf r of the wheels. Once
the robot enters the corner, it will follow a circular motion
due the constant radius R of the rail. During such turn it
will rotate around its center by ∆α radians while travelling
a distance of ∆s meters, where ∆s = R∆α . The curvature κ

of the rail can then be calculated as:

κ =
1
R

=
∆α

∆s
=

ω

V
provided V 6= 0 m/s. This holds for both ωy and ωz,
the angular velocities around the robot’s y- and z-axis
respectively.

One of the biggest problems in modelling the behavior of
the robot is the fact that the robot cannot steer, in contrast
to many other robots that make use of odometry. While
regular odometry models assume that the robot’s angular
motion can be determined by driving its wheels at different
velocities [3][4][5], in this situation the steering behaviour is
fully determined by the rail and V . The robot itself can only
drive forwards or backwards and therefore only one velocity
control input will be used for all four wheels. Furthermore,
determining angular velocity by using the difference in

measured wheel velocities is difficult as well. This has two
main reasons. First off, the difference in wheel velocities is
very small. Assuming a constant V = ω ·R along the corner,
the individual wheel velocities are given by

Vf l = ω ·R f l

and

Vf r = ω ·R f r

where R f l = 0.40−0.030= 0.37 m and R f r = 0.40+0.030=
0.43 m, the radii of the points where the wheels make contact
with the rail. Since ω is equal for both wheels, the expected
velocity of the right wheel is only R f r/R f l ≈ 1.16 times that
of the left wheel. Especially when considering the low speed
of the robot this difference is easily dominated by measure-
ment noise. Secondly, the rail can curve in four possible
directions (vertically: up/down, and horizontally: left/right).
This method of measuring rotation is only applicable to two
out of four possible curvature directions; only those where
the driving wheels are in the same plane as the curved rail
as drawn in Figure 2Figure 2.
Because of the reasons mentioned above, in this assignment
the detection of rotations will purely rely on combining V
with IMU measurements.

III. IMPLEMENTATION

Since the measurement data consists of discrete time
samples that have to be fused immediately, a discrete state
space model will be created in MATLAB. The next step will
then be to actively filter incoming measurements in order
to suppress noise, as localization and mapping heavily rely
on these measurements. An extended Kalman filter will be
used for this. Once clean and reliable states are available
during operation the detection of and correction according
to reference points can be implemented.

A. State space model

First, a state vector x̄ is created as the algorithm’s basis
containing the most important system parameters:

x̄(k) =



D(k)
V (k)
x(k)
y(k)
z(k)
θ(k)
ψ(k)
ωy(k)
ωz(k)
κh(k)
κv(k)


(1)

with D in m the one-dimensional distance travelled along
the rail and V = ∆D/∆t in m/s the on-rail velocity. x,y,z in
m are the Eucledian world frame coordinates, θ ,ψ in rad

3

the Euler angles Yaw and Pitch of the robot’s orientation,
ωy,ωz in rad/s the angular velocities around the robot’s Y-
axis and Z-axis, and κh,κv in m−1 the curvatures in the
world’s horizontal and vertical plane.
The Euler angle φ (Roll) and ωx are not included as states as
they were assumed constants. However, as the robot can be
mounted onto the rail at different Roll angles, it is necessary
to distinguish between the robot’s coordinate frame and the
world’s fixed coordinate frame: Angles and angular velocities
are measured with respect to the robot’s coordinate frame
whereas coordinates and curvatures are based on the world’s
fixed frame.

B. Parameter estimation

In order to determine accurate estimates of the robot’s
states, the measurements need to be filtered. This is done by
a process of prediction and correction. At any discrete point
in time k, the next system state x̄(k + 1) can be predicted
by means of a state transition function f (x̄(k),u). Using (1)
gives:

x̂(k+1) = f (x̂(k),u(k))+ w̄(k)

=



D(k)+V (k) ·∆t
2πr

23·60 ·u(k)
x(k)−V (k)cosψ(k)sinθ(k) ·∆t
y(k)+V (k)cosψ(k)cosθ(k) ·∆t

z(k)+V (k)sinψ(k) ·∆t
θ(k)+ωy(k) ·∆t

ψ(k)+ωz ·∆t
V (k)κh(k)
V (k)κv(k)

κh(k)
κv(k)


+ w̄(k)

where u(k) represents the velocity control input in rpm·23
as received by the motion controllers and w̄(k) is assumed to
be zero mean white Gaussian process noise with covariance
matrix Q(k). The hat on x̂(k + 1) indicates that this is an
estimate of the real state vector. ∆t is the time in seconds
between discrete timesteps and is set to 2.5 ms; the sampling
time of the Xsens’ angular velocity measurements.

Calculation of the new coordinates (x,y,z)(k + 1) requires
decomposition of V (k) using the robot’s orientation. In
the case of the experimental tank, the robot is assumed
to be mounted onto the rail at initial Euler angles
(Yaw0,Pitch0,Roll0) = (θ0,ψ0,φ0) = (0,0,−π/2) radians
and departing in the y-direction.

Since the rail consists of either straight or constant-
curvature segments, the next curvature values are nearly
always expected to equal their previous values, and so
they are predicted as κ̂(k + 1) = κ̂(k). Conversions from
κ = 0 m−1 to κ = 1/0.40 = 2.5 m−1 and vice versa will
thus have to be found through measurements. Therefore a
measurement function h(x̄(k)) is introduced which returns

the measurements z̄(k) of the motion controllers and the
IMU:

z̄(k) =

 Vel(k)
Gyry(k)
Gyrz(k)

= h(x̄(k))+ v̄(k)

=

 23·60
2πr ·V (k)
−ωy(k)
ωz(k)

+ v̄(k)

where Vel(k) is the average of the actual velocities of
the front wheel pair as returned by the motion controllers
and Gyry(k) and Gyrz(k) are the gyration data in rad/s
as measured by the IMU. v̄(k) is assumed to be zero
mean white Gaussian measurement noise with covariance
matrix R(k). Note that the position measurements of the
motion controllers are not included. The reason for this
is that once a known reference point is observed and an
error in estimated position is detected, the new position
measurements will remain biased with this error.

For the larger part of the system, the propagation from
x̄(k) to x̄(k + 1) is a linear relation and thus a discrete
Kalman filter [6] would form an option for online parameter
estimation. However, due to the non-linear relationship
between the Euler angles and the real world coordinates
x,y,z an extended Kalman filter (EKF) is required. This
filter estimates the system’s states during each timestep by
finding a weighted average of predictions and measurements
while considering the modelled uncertainties that were
caused by the presence of w̄(k) and v̄(k). As an addition
to the regular Kalman filter, the EKF linearizes around an
estimate of the current states’ means and covariances. In
Appendix C a flow chart is drawn showing the process of
the EKF during each timestep.

Besides the use of an EKF some additional data processing
steps are taken. Most important, in line with the rail
characteristics discussed earlier, when following straight rail
segments, the estimates of θ and ψ can be rounded towards
the nearest multiple of π/2. In order to decide whether the
robot finds itself in a corner or not the curvature estimates
are compared to a threshold curvature κth = 0.5m−1 during
each timestep. This rounding is also the reason why direct
Euler angle measurements from the IMU are not included in
z̄; while Euler angle measurements from the IMU are prone
to drifting over time, the pre-knowledge about possible
angles should eliminate these errors. This step and the other
additional processing steps are listed in Table IITable II.

C. Estimation of noise factors

The covariance matrices Q(k) and R(k) form an important
contribution to the correct working of the estimator. In this
assignment, they have been modelled as time constant diag-
onal matrices with the squared standard deviations σ2

x1
...σ2

xN
for each of the N states and σ2

z1
...σ2

zM
for each of the M

4

measurements on the diagonals:

Q =


σ2

D 0 · · · 0
0 σ2

V · · · 0
...

...
. . .

...
0 0 · · · σ2

κv



R =

σ2
Vel 0 0
0 σ2

Gyry
0

0 0 σ2
Gyrz



These standard deviations have been determined by
either testing or tuning and are listed in the overview of
estimated parameters in Appendix B.

D. Landmark detection

Besides mapping of the rail the robot has to be able to
localize itself during operation. To do this, reference points
in the form of landmarks along the rail can be created
and remembered. This is done by saving the positions at
which so-called ’corner edges’ occur; the transitions from
straight rail segments to corners or vice versa. During each
timestep the last set of curvature estimates is analyzed in
order to detect a transition. Analyzing multiple estimates
prevents that false curvature spikes will be considered as
real transitions.

Once a transition is detected the current state estimate
will be compared with a matrix Λ of previously encountered
landmarks. Each landmark λi is not only characterized
by its 1D position, but also by its 3D coordinates, Euler
angles and corner type. Finding a matching landmark within
the range of 30 cm results in updating both the current
state and the registered landmark whereas no match results
in registering a new landmark by adding a new column to Λ.

Since the location of a newly detected landmark always has
an error, the updating of the current state and registered

TABLE II
ADDITIONAL PROCESSING STEPS DURING EACH ALGORITHM CYCLE.

Code Explanation
if abs(Gyrk)> 0.5 The measured angular velocity is
then Gyrk = Gyrk−1 exceptionally high or low and thus

not reliable.
if abs(Velk)> 1.1 ·MaxVel The measured velocity (of one of the
then Velk = 0 wheels) exceeds the maximum input

velocity by at least 10 percent;
slipping has occurred.

if abs(κ̂h,k)< κth The robot is not in a horizontal corner;
then θ̂k = round(θ̂k · 2

π
) · π

2 Pitch is a multiple of π/2 radians.
if abs(κ̂v,k)< κth The robot is not in a vertical corner;
then ψ̂k = round(ψ̂k · 2

π
) · π

2 Yaw is a multiple of π/2 radians.
if abs(uk)< 0.2 ·MaxVel The robot moves very slowly or stops;
then κ̂h,k = κ̂h,k−10 curvature estimates are unreliable.

κ̂v,k = κ̂v,k−10

landmark depends on the number of encounters. Each new
landmark is initialized with a number of times encountered
equal to 1. Everytime the landmark is reobserved, this weight
is incremented. The updated position and coordinates of
the robot and landmark are then calculated by the weighted
average of the registered landmark and the new estimate
(weight 1).

Another aspect of the environment that the robot could use
as reference is the magnetic field, of which the components
Bx,By and Bz are measured by the IMU. Due to the complex
architecture of the tank walls and the passing through
so-called manholes, a typical magnetic field pattern is
expected to be measured along the rail. This is caused by
the metal, which ’shapes’ the magnetic field, especially
close to the surface. Local minima and maxima in one or
more of the magnetic field components could then be used
as landmarks.

A flow chart of the algorithm cycle consisting of landmark
detection and EKF steps is shown in Figure 3Figure 3.

Fig. 3. Flow chart overview of the full algorithm’s process.

5

IV. EXPERIMENTAL VALIDATION

Now that the algorithm has been created its correct work-
ing has to be verified. Being guided through a ballast tank by
a rail that has the same standardized properties as discussed
earlier the algorithm should accurately reconstruct the path
of the robot. Also, landmarks should be detected and in
case of multiple encounters a correction of position D and
coordinates x,y,z should be made.

A. Test setup

The algorithm has been tested by using the measurements
logged by the robot while travelling through the two-layer
experimental tank. Logging of the odometry and joystick
data is done by the robot’s on-board computer while
the IMU measurements are transmitted over a wireless
network, and logged on an external computer using Xsens’
MTManager. After logging, all data have been imported
and synchronized in MATLAB.

The dimensions of the rail in this tank are known and
both a top view and a 3D view of it are shown in Appendix
D. The robot departs at a Roll angle φ = −π

2 . During the
test the velocity control input u is set as high and constant
as possible.

Four subexperiments have been carried out:
1) The robot is mounted onto the rail and moves forward

through the tank until it reaches the end. During
this experiment, the robot should be able to detect
landmarks and register them.

2) At the end of the rail, the robot changes direction and
travels back until it has reached the start of the rail
again. On the way back, the robot should be able to rec-
ognize the landmarks that have been registered earlier,
and update its own position accordingly. Also, since the
estimates of the landmark locations of subexperiment
1 are not certain, the locations of the landmarks should
be updated.

3) Subexperiment 1 is repeated, but now with pre-
knowledge of real landmarks; the locations of the real
corner edges are given as initial landmarks Λ0 with
weights of 1010. Because of these large weights the
algorithm should be able to update the robot’s location
to its true location whenever corner edges are detected.
An extra requirement in this case is that there is no
large drift in position estimates because then they will
not match with the positions of the initial landmarks
anymore, and the algorithm might confuse a corner
edge with a different initial landmark.

4) For comparison, Subexperiment 2 is also repeated with
pre-knowledge of real landmarks.

B. Results and Discussion

1) Path estimation: In Appendix E1, the raw measure-
ments of Subexperiment 1 are shown. The vibrations caused

by following the rail resulted in quite noisy angular velocity
measurements, but the changes during corners are still visi-
ble. After applying the algorithm a path was reconstructed. A
top view of the path that was estimated while travelling from
start to end is shown in Figure 4Figure 4. In Appendix E2 and E3,
the other estimated paths for both cases, with and without
pre-knowledge of real landmarks, are shown.

Fig. 4. Top view of the path estimated while travelling through the tank.

The estimated path of Figure 4Figure 4 represents the same rail
segments as in reality, but does have some spatial errors.
Despite locations of corner edges being estimated quite
accurately, the filter tends to underestimate the absolute
curvature causing the estimated coordinates to drift off. This
effect can be confirmed by zooming in on the curvature
estimates of one of the horizontal corners, as shown in
Figure 5Figure 5. The underestimation is caused by the EKF which
introduces a characteristic low-pass filter response to the
sudden step in curvature from 0 m−1 to -2.5 m−1. This
problem can not be solved directly by rounding the curvature
estimates to multiples of 2.5 though; switching back and
forth between these values would then require the filter to
heavily rely on the rather noisy gyroscope measurements,
which will in turn cause false corner detections.

2) Landmark detection: Appendix E4 shows the
landmarks that were detected by the algorithm during
Subexperiment 1. Out of the 20 corner edges that exist on
the path, the algorithm has detected 15 correctly. However, 4
of the missing edges can hardly be detected as they connect
two consecutive turns with minimal spacing inbetween.
Slight errors exist between these first estimates of the
landmark positions and the real landmark locations. An
overview of these spatial errors at corner edges is shown

6

Fig. 5. Curvature estimates around one of the horizontal corners.

in Figure 6Figure 6. The mean landmark position error εD,mean is
found to be 6.11 cm, with a maximum of εD,max = 21.27
cm. During another short test run (results not shown) 8 out
of 11 corner edges were detected correcly, with εD,mean =
5.47 cm and εD,max 11.75 cm. As expected, as a result of
drift the magnitude of the errors gradually increases over
time.

On the way back, the algorithm correctly links reobserved
corner edges to earlier observed ones. As can be observed in
both the 2D and the 3D plots, during the double horizontal
corner in the bottom layer the IMU got disconnected,
causing the estimated path to drift off. However, due to the
detection of the next vertical corners, the correct coordinates
were restored.

The local maxima in the magnetic field data, shown
in Appendix E4, were found using MATLAB’s function
findpeaks. This is a detection of peaks with respect to
(discrete) time k. It turned out to be difficult to properly
determine these peaks with respect to the distance since D
is not monotonically increasing; the robot can move in both
positive and negative direction.
Furthermore, most of the detected local maxima seem to
appear during corners, where the angular movement of the
robot results in the individual magnetic field components
following a sinusoidal behaviour. Around these positions
the robot already makes use of corner edges as landmarks.
Finally, it has to be noted that the measured magnitudes of
the field varied per experiment. Therefore the local maxima
of the magnetic field were not registered as landmarks for
localization purposes during this assignment.

Fig. 6. Spatial errors at corner edges detected during Subexperiment 1.

V. CONCLUSIONS

The proposed algorithm is able to deal with the non-
linearities of converting angles and velocities to positions
in Cartesian coordinates. However, estimating the discrete-
valued curvature turned out to be more troublesome as the
combination of the highly non-linear process of switching
between discretized states and the fact that the robot cannot
predict its own angular motion well resulted in unrealistic
corner estimates. The incorrect coordinates of the end of
the corner in turn caused a drift in estimated coordinates
for the rest of the estimated path.

The algorithm correctly detects most corner edges and
is able to use these as reference points for later corrections
of position and coordinates. Even when the estimated
location of the robot drifts far off due to the estimation of
an erronous corner, by observing landmarks and identifying
them with previously learned ones the location can still be
improved. Corner edges between consecutive turns are hard
to detect however, especially when they are seperated with
minimal spacing inbetween.

While travelling through the tank the expected characteristic
magnetic field pattern was measured. Despite the uncertainty
in the mean of the measurements, from the analysis of
these patterns it can be concluded that linking local minima
and maxima to specific positions could be used as an
improvement of the localization process.

7

VI. RECOMMENDATIONS

One of the largest problem of the algorithm is the
incorrect estimation of curvatures. For the sake of better
estimation a different estimator that is able to deal with
stronger non-linearities, such as a particle filter [6][7], is
required. This could fix the underestimation of curvature
estimates and as a result it could reduce drift in the estimated
coordinates.

Besides the step towards a filter that is able to cope
better with non-linearities than the EKF, several other
improvements can be made to the algorithm. For example,
the landmarks could be added to the state vector as is done
with many vision-based localization and mapping algorithms
[8]. This would enable the filter to also keep track of the
landmarks’ parameters by means of a covariance matrix, as
well as the covariance between the landmark’s parameters
and the robot’s state.

The positions are currently being estimated by integrating
velocity data, which is prone to drift due to the low sampling
frequency of the odometry measurements. Including the
position measurements in the z̄ would certainly allow for an
increase of the accuracy of position estimates. This however
requires keeping track and updating of the position error as
found by reobserved landmarks, and then subtracting this
error from all incoming position measurements.

REFERENCES

[1] SmartBot-RoboShip website, http://www.smartbot.eu/en/roboship/
[2] L. Christensen, N. Fischer, S. Kroffke, J. Lemburg and R. Ahlers.

Cost Effective Autonomous Robots for Ballast Water Tank Inspection,
Journal of Ship Production and Design 08/2011; 27(3):127-136.

[3] J. Borenstein, H.R. Everett, and L. Feng. Where Am I? Mobile robot
positioning: Sensors and techniques. Journal of Robotic Systems 14,4
(1997), 231249.

[4] T. Larsen, K. Hansen, N. Andersen and O. Ravn. Design of Kalman
Filters for Mobile Robots; Evaluation of the Kinematic and Odometric
Approach, Proceedings of the 1999 IEEE, International Conference on
Control Applications, August 22-27, 1999.

[5] A. Surrcio, U. Nunes and R. Arajo. Fusion of Odometry with Magnetic
Sensors Using Kalman Filters and Augmented System Models for
Mobile Robot Navigation, IEEE ISIE 2005, June 20-23, 2005.

[6] F. van der Heijden, R.P.W. Duin, D. de Ridder and D.M.J. Tax. Classi-
fication, Parameter Estimation and State Estimation - An Engineering
Approach using MATLAB, 2004 John Wiley and Sons, Ltd.

[7] S. Thrun. Particle Filters in Robotics, in Proceedings of the 17th
Annual Conference on Uncertainty in AI (UAI), 2002.

[8] N. Muhammad, D. Fofi, S. Ainouz. Current state of the art of
vision based SLAM, SPIE 7251, Image Processing: Machine Vision
Applications II, 72510F (3 February 2009).

8

A-1

Appendix

Contents
A. Robot Top View ...2

B. Estimated Parameters ...3

C. Extended Kalman Filter..4

D. Experimental Tank ...5

D1. 3D View ..5

D2. Top View ...6

E. Test Results ...7

E1. Raw measurement data ...7

E2. Estimated paths without pre-knowledge of real landmark locations8

E3. Estimated paths with pre-knowledge of real landmark locations ...9

E4. Landmark Detection .. 10

F. MATLAB Code ... 11

F1. main.m .. 11

F2. DetectCorner3D.m... 13

A-2

A. Robot Top View
Figure A1 shows a top view of the SmartBot-RoboShip robot, mounted on a straight rail segment.

Indicated are the different modules, the robot’s coordinate frame and the robot’s center point

underneath the IMU.

x

y z

Figure A1: Simplified top view of the robot.

A-3

B. Estimated Parameters
Table B1 presents a list of the estimated parameters, such as the standard deviations used to model

process and measurement noise, together with their test method and causes.

Table B1: List of estimated parameters

Parameter Value Unit Test method

Cause of
uncertainty

Process noise 𝜎𝐷 𝝈𝑽 ⋅ 𝚫𝒕 m - 𝜎𝑉.

𝜎𝑉 0.000293 m/s Assumed equal to 𝜎𝑉𝑒𝑙 but
converted to m/s.

Wheel radius
irregularities,
non-smooth rail,
wheel slipping.

𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 𝝈𝑽 ⋅ 𝚫𝒕 m Assumed noise contribution by
inaccuracies in 𝜃 and 𝜓 negligible
compared to noise contribution
by innaccuracies in V.

𝜎𝐷, 𝜎𝜃 and 𝜎𝜓.

𝜎𝜃 𝝈𝝎𝒚 ⋅ 𝚫𝒕 rad - 𝜎𝜔𝑦.

𝜎𝜓 𝝈𝝎𝒛 ⋅ 𝚫𝒕 rad - 𝜎𝜔𝑧.

𝜎𝜔𝑦 0.05 rad/s Set by tuning for optimal filtering
results.

Non-smooth rail.

𝜎𝜔𝑧 0.05 rad/s Set by tuning for optimal filtering
results.

𝜎𝜅ℎ, 𝜎𝜅𝑣 0.0105 m-1 Determine curvature 𝜅 of corners
in test tank assuming constant
radius, see Figure B1. Calculate
sigma of determined curvatures.

Rail deformation.

Measurement
noise

𝜎𝑉𝑒𝑙 7.14 rpm⋅23 Driving with constant 𝑢, use
MATLAB to calculate standard
deviation of Vel measurements.

Pulse skipping,
wheel slipping.

𝜎𝐺𝑦𝑟𝑦
 0.5 rad/s Set by tuning for optimal filtering

results.
Sensor noise,
vibration.

𝜎𝐺𝑦𝑟𝑧
 0.5 rad/s Set by tuning for optimal filtering

results.
Sensor noise,
vibration.

Other 𝑟𝑒𝑓𝑓 0.0175 m Measure the real on-rail distance
L travelled by the robot after k
wheel rotations, then determine
the average of the effective

wheel radii using 𝑟𝑒𝑓𝑓 =
𝐿

2𝜋𝑘
.

Deformation of
wheels by spring
forces, wearing.

𝑐2 = 2𝑅2

→ 𝜅 =
1

𝑅
=

𝑐

√2

Figure B1: Determining curvature by
measuring the direct distance between a
corner’s endpoints

A-4

C. Extended Kalman Filter
Figure C1 sketches an overview of the calculations performed by the EKF process. During each cycle,

the states are first predicted by using the state equations and then corrected using measurements

𝑧𝑘. A regular discrete Kalman filter is based on the assumption that the states 𝑥⃑𝑘 of a system are

propagated in discrete time by multiplication with a linear state transition matrix 𝐹𝑘 and that (part

of) the states are measured through multiplication with a linear measurement matrix 𝐻𝑘 . Both are

assumed to be corrupted by zero mean white Gaussian noise, with the result that the expectation or

mean of every state 𝐸[𝑥𝑘] = 𝜇𝑥𝑘
 can be used as an estimate 𝑥𝑘 of the real state. According to linear

system theory, an expectation vector 𝜇⃑𝑥 and its covariance matrix 𝑃 propagate through a linear

system 𝐴 as:

𝜇⃑𝑥,𝑜𝑢𝑡 = 𝐴𝜇⃑𝑥,𝑖𝑛

𝑃𝑜𝑢𝑡 = 𝐴𝑃𝑖𝑛𝐴𝑇 + 𝑁

…where 𝑁 is a matrix containing the noise components. Additionally, the EKF takes care of non-linear

state and measurement equations 𝑓(𝑥⃑𝑘 , 𝑢) and ℎ(𝑥⃑𝑘) by linearizing them around the current mean

𝜇⃑𝑥,𝑘. This enables the use of above equations for a non-linear system.

Figure C1: Flow chart of the EKF process. Source: http://en.wikipedia.org/wiki/Extended_Kalman_filter

A-5

D. Experimental Tank

D1. 3D View

Figure D1 shows a CAD drawing of the experimental tank, consisting of the rail mounted inside a

complex metal construction. Well visible are the passages through the tank’s manholes.

Figure D1: CAD drawing of the experimental tank used for testing.

A-6

D2. Top View

Figure D2 represents a simplified top view of the rail that was mounted into the test tank. Indicated

are the locations of possible reference points such as corner edges manhole passages.

Figure D2: Top view of the experimental tank including important features

A-7

E. Test Results

E1. Raw measurement data

Figure E1 shows the measurement data logged during the first half of the test, where the robot

travelled through the experimental tank from start to end of the rail. The angular velocity

measurements show large amounts of noise but the existence of corners can be seen.

Figure E1: Raw measurement data logged during the first half of the experiment.

A-8

E2. Estimated paths without pre-knowledge of real landmark locations

The four plots of Figure E2 show a 2D top view and a 3D view of the estimated paths, where the
robot has explored the tank without any pre-knowledge about corners. The top plots were created
while travelling from start until end of the rail. The bottom plots were created on the way back.

Figure E2: Estimated paths without pre-knowledge of real landmark locations.

A-9

E3. Estimated paths with pre-knowledge of real landmark locations

The four plots of Figure E3 show a 2D top view and a 3D view of the estimated paths, where the
robot has explored the tank with pre-knowledge; the locations and coordinates of the corner edges
were given as initial landmarks Λ0. The top plots were created while travelling from start until end of
the rail. The bottom plots were created on the way back.

Figure E3: Estimated paths with pre-knowledge of real landmark locations.

A-10

Figure E4: Detected landmarks during the first half of the experiment.

E4. Landmark Detection

Figure E4 shows an overview of the landmarks detected by the algorithm along its path through the
tank from start until end.
The first subplot indicates the locations and types of gathered corner edges. A type 1 corner
corresponds to a horizontal turn whereas a type 2 corner corresponds to a vertical turn. The
landmark type also contains a sign; if the robot is driving with a positive velocity (forward), it will
mark the start of a corner as positive and the end of a corner as negative.
The remaining subplots show the discrete time patterns of the three magnetic field components
𝐵𝑥 , 𝐵𝑦 and 𝐵𝑧. Markers are placed wherever local maxima were detected.

A-11

F. MATLAB Code
Part of the used MATLAB code is listed here. F1 shows the main function in which initializing, the

actual filtering and the plotting takes place. Functions called during the loop are ekf.m (not listed) for

the EKF prediction and correction steps and DetectCorner3D.m (see F2) for the detection of

landmarks in the form of corner edges.

F1. main.m
%% Initializing

%N=125000; %total dynamic steps (start~end)

N=250000; %total dynamic steps (start~end~start)

n=11; %number of states

m=3; %number of measurements

if ~exist('CornerEdges') %Check for Lambda, the matrix of landmarks

 CornerEdges(1:7,1) = zeros;

end

load 'RealCornerEdges.mat'

%CornerEdges = RealCornerEdges;

kappaStandard = 2.5; %Curvature of standardized corner segments

kappaTH = 0.5; %curvature threshold

VelErrorFactor = 0.5; %Velocity error caused by wrong encoder configurations

d = 2*0.0175; %effective wheel diameter

MaxVel = 0.1*23*60/2/pi/(d/2)/VelErrorFactor; %Maximum on-rail velocity

kOdo = 1; %Odometry data index

kJoy = 1; %Joystick/user input data index

kMag = 1; %Magnetic field data index

dt = 1/400; %Timestep in seconds

q = [0.000293*dt 0.000293 0.000293*dt 0.000293*dt 0.000293*dt 0.05*dt 0.05*dt 0.05 0.05 0.0105

0.0105]; %stdevs of process

r = [7.14 0.5 0.5]; %stdevs of measurements

Q=diag(q).^2; % covariance of process

R=diag(r).^2; % covariance of measurements

x0 = [0.35;0;0;0.35;0;0;0;0;0;0;0]; % initial state

p = [0.1 0.001 0.01 0.1 0.01 1 1 0.001 0.001 0.001 0.001]; %stdevs of initial

state

P = diag(p).^2; % initial state covariance

x=x0;

xV = zeros(n,N); %allocate memory for state estimates

sV = zeros(n,N); %process predictions

zV = zeros(m,N); %measurements

MagV = zeros(4,N); %magnetic field measurements

%% Equations

f=@(x)[x(1)+x(2)*dt; %1,Position/depth non-linear state equations

 0; %2,V

 x(3)+sin(-x(6))*x(2)*dt; %3,x -\

 x(4)+cos(x(7))*cos(x(6))*x(2)*dt; %4,y > Note: assumed robot is mounted on rail

 x(5)+sin(x(7))*x(2)*dt; %5,z -/ at -90 deg Roll

 x(6)+x(8)*dt; %6,theta/Pitch

 x(7)+x(9)*dt; %7,psi/Yaw

 x(2)*x(10); %8,Gyr_Y

 x(2)*x(11); %9,Gyr_Z

 x(10); %10,kappa_horizontal

 x(11)]; %11,kappa_vertical

g=@(x,u)[x(1); % non-linear state equations with user input

 2*pi*d/2*u/60/23*VelErrorFactor;

 x(3);

 x(4);

 x(5);

 x(6);

 x(7);

 x(8);

 x(9);

 x(10);

 x(11)];

h=@(x)[x(2)*23*60/2/pi/(d/2)/VelErrorFactor; %Vel

A-12

 -x(8); %Gyr_Y

 x(9)]; %Gyr_Z

%% Extended Kalman

for k = 1:N

 while t_vel_fl(kOdo+1)<SampleTimeFineI(k)/1e4

 kOdo = kOdo+1;

 end

 while t_u(kJoy+1)<SampleTimeFineI(k)/1e4

 kJoy = kJoy+1;

 end

 while SampleTimeFineM(kMag)<SampleTimeFineI(k)

 kMag = kMag+1;

 end

 if abs(Gyr_Y(k))>0.5 %Gyration measurement invalid, too high/low

 Gyr_Y(k)=Gyr_Y(k-1);

 end

 if abs(Gyr_Z(k))>0.5 %Gyration measurement invalid, too high/low

 Gyr_Z(k)=Gyr_Z(k-1);

 end

 if vel_fl(kOdo)>1.1*MaxSpeed*23*60/2/pi/(d/2)/VelErrorFactor %Slipping detected

 vel_fl(kOdo) = 0;

 end

 if vel_fr(kOdo)>1.1*MaxSpeed*23*60/2/pi/(d/2)/VelErrorFactor %Slipping detected

 vel_fr(kOdo) = 0;

 end

 z = [(vel_fl(kOdo)+vel_fr(kOdo))/2; Gyr_Y(k); Gyr_Z(k)]; % measurements

 zV(:,k) = z; % save measurement

 xV(:,k) = x; % save estimate

 [xV,P,CornerEdges] = DetectCorner3D(xV,P,CornerEdges,k,1,2,3,10,11,6);

 [x,P,K] = ekf(f,xV(:,k),g,u(kJoy),P,h,z,Q,R); % ekf

 if k>10

 if abs(z(1))<0.1*MaxVel || abs(u(kJoy))<0.1*MaxVel %V expected to be very low;

 x(10)=xV(10,k-10); %unreliable curvature estimates

 x(11)=xV(11,k-10);

 end

 end

 if abs(x(10))<kappaTH %if not in horizontal corner

 x(6) = round(x(6)/pi*2)*pi/2; %Pitch multiple of 90 deg

 P(6,6) = 0.01;

 end

 if abs(x(11))<kappaTH %if not in vertical corner

 x(7) = round(x(7)/pi*2)*pi/2; %Yaw multiple of 90 deg

 P(7,7) = 0.01;

 end

 xV(:,k)=x; % save corrected estimate

 s = f(xV(:,k)); % prediction using process

 s = g(s,u(kJoy)) % prediction using process

 sV(:,k) = s; % save prediction

 %Xsens measures magnetic field in arbitrary units ~40uT/a.u.

 %Mag = 40*([abs(Mag_X(kMag)); abs(Mag_Y(kMag)); abs(Mag_Z(kMag)); mean([abs(Mag_X(kMag))

abs(Mag_Y(kMag)) abs(Mag_Z(kMag))])]);

 if kMag>10 %avoid checking index<1

 %Xsens measures magnetic field in arbitrary units ~40uT/a.u.

 Mag = 40*([mean(abs(Mag_X(kMag-10:kMag))); mean(abs(Mag_Y(kMag-10:kMag)));

mean(abs(Mag_Z(kMag-10:kMag))); mean([mean(abs(Mag_X(kMag-10:kMag))) mean(abs((Mag_Y(kMag-

10:kMag)))) mean(abs(Mag_Z(kMag-10:kMag)))])]);

 else

 Mag = 40*([mean(abs(Mag_X(kMag))); mean(abs(Mag_Y(kMag))); mean(abs(Mag_Z(kMag)));

mean([mean(abs(Mag_X(kMag))) mean(abs((Mag_Y(kMag)))) mean(abs(Mag_Z(kMag)))])]);

 end

%% Plotting

(not included)

A-13

F2. DetectCorner3D.m
function [xV,P,CornerEdges] =

DetectCorner3D(xV,P,CornerEdges,k,indexPos,indexVel,indexX,indexkH,indexkV,indexTheta)

%% Detection of and state correction according to landmarks

% Every landmark is saved as a column in matrix CornerEdges as:

% [Edge type; D; x; y; z; psi; times encountered]

if ~CornerEdges(1:7,1); %no landmarks yet (initially

CornerEdges = zeroes)

 LandmarkIndex = 1; %overwrite first column

else

 LandmarkIndex = size(CornerEdges,2)+1; %create new column

end

if k>41 %Comparing means over last .1 seconds. Avoid checking index<1

 if abs(mean(xV(indexkH,k-20:k)))>1.25 && abs(mean(xV(indexkH,k-41:k-21)))<1.25

 EdgeType = sign(xV(indexVel,k))*1; %Entering horizontal corner

 if ~any(abs(CornerEdges(2,:)-xV(indexPos,k-2))<0.4) %New landmark detected

 CornerEdges(1:7,LandmarkIndex)=[EdgeType; xV(indexPos,k-2); xV(indexX,k-2);

xV(indexX+1,k-2); xV(indexX+2,k-2); round(xV(indexTheta,k-2)/pi*2)*pi/2; 1]; %Register

characteristics

 else %Registered landmark nearby

 [xV,P,CornerEdges] =

AdjustStateToLandmark(xV,P,k,CornerEdges,indexPos,indexX,indexTheta,EdgeType); %Update

state and landmark

 end

 elseif abs(mean(xV(indexkH,k-20:k)))<1.5 && abs(mean(xV(indexkH,k-41:k-21)))>1.5

 EdgeType = -sign(xV(indexVel,k))*1; %Leaving horizontal corner

 xV(6,k) = round(xV(6,k)/pi*2)*pi/2; %Leaving corner, so Pitch multiple of 90

deg

 P(6,6) = 0.01; %update Yaw variance

 if ~any(abs(CornerEdges(2,:)-xV(indexPos,k-2))<0.4) %New landmark detected

 CornerEdges(1:7,LandmarkIndex)=[EdgeType; xV(indexPos,k-2); xV(indexX,k-2);

xV(indexX+1,k-2); xV(indexX+2,k-2); round(xV(indexTheta,k-2)/pi*2)*pi/2; 1]; %Register

characteristics

 else %Registered landmark nearby

 [xV,P,CornerEdges] =

AdjustStateToLandmark(xV,P,k,CornerEdges,indexPos,indexX,indexTheta,EdgeType); %Update

state and landmark

 end

 elseif abs(mean(xV(indexkV,k-20:k)))>1.0 && abs(mean(xV(indexkV,k-41:k-21)))<1.0

 EdgeType = sign(xV(indexVel,k))*2; %Entering vertical corner

 if ~any(abs(CornerEdges(2,:)-xV(indexPos,k-2))<0.4) %New landmark detected

 CornerEdges(1:7,LandmarkIndex)=[EdgeType; xV(indexPos,k-2); xV(indexX,k-2);

xV(indexX+1,k-2); xV(indexX+2,k-2); round(xV(indexTheta,k-2)/pi*2)*pi/2; 1]; %Register

characteristics

 else %Registered landmark nearby

 [xV,P,CornerEdges] =

AdjustStateToLandmark(xV,P,k,CornerEdges,indexPos,indexX,indexTheta,EdgeType); %Update

state and landmark

 end

 elseif abs(mean(xV(indexkV,k-20:k)))<1.25 && abs(mean(xV(indexkV,k-41:k-21)))>1.25

 EdgeType = -sign(xV(indexVel,k))*2; %Leaving vertical corner

 xV(7,k) = round(xV(7,k)/pi*2)*pi/2; %Leaving corner, so Yaw multiple of 90

deg

 P(7,7) = 0.01; %update Yaw variance

 if ~any(abs(CornerEdges(2,:)-xV(indexPos,k-2))<0.4) %New landmark detected

 CornerEdges(1:7,LandmarkIndex)=[EdgeType; xV(indexPos,k-2); xV(indexX,k-2);

xV(indexX+1,k-2); xV(indexX+2,k-2); round(xV(indexTheta,k-2)/pi*2)*pi/2; 1]; %Register

characteristics

 else %Registered landmark nearby

 [xV,P,CornerEdges] =

AdjustStateToLandmark(xV,P,k,CornerEdges,indexPos,indexX,indexTheta,EdgeType); %Update

state and landmark

 end

 else

 return;

 end

A-14

else

 return;

end

end

function [xV,P,CornerEdges] =

AdjustStateToLandmark(xV,P,k,CornerEdges,indexPos,indexX,indexTheta,EdgeType)

for LandmarkIndex = 1:1:size(CornerEdges,2) %Loop through registered

landmarks

 if EdgeType == -2 || EdgeType == 2 %Define confidential range of

vertical turns

 Range = 0.3;

 else %...and of horizontal turns

 Range = 0.3;

 end

 if(abs(CornerEdges(2,LandmarkIndex)-xV(indexPos,k-2))<Range &&

CornerEdges(1,LandmarkIndex)==EdgeType) %If identical landmark within range found

 CornerEdges(7,LandmarkIndex) = CornerEdges(7,LandmarkIndex) +1; %Increment times

encountered

 Encounters = CornerEdges(7,LandmarkIndex);

 NewLandmarkEstimate = [xV(indexPos,k-2); xV(indexX,k-2); xV(indexX+1,k-2);

xV(indexX+2,k-2)]; %Hold new location estimate

 xV(indexPos,k) =

NewLandmarkEstimate(1)/Encounters+CornerEdges(2,LandmarkIndex)*(Encounters-1)/Encounters;

%Correct pos according to weighted average of prev. encountered locations and present

 xV(indexX:indexX+2,k) =

NewLandmarkEstimate(2:4)./Encounters+CornerEdges(3:5,LandmarkIndex).*(Encounters-

1)./Encounters; %Correct coordinates according to weighted average of prev.

encountered locations and present

 xV(indexTheta,k) = CornerEdges(6,LandmarkIndex); %Correct theta

 P(indexPos,indexPos) = Range^2; %Update variance

 P(indexX,indexX) = Range^2; %Update variance

 P(indexX+1,indexX+1) = Range^2; %Update variance

 P(indexX+2,indexX+2) = Range^2; %Update variance

 return; %Avoid identifying with multiple registered

landmarks, choose only the first one registered.

 end

end

end

	INTRODUCTION
	Goal
	Outline

	MODELLING
	Robot specifications
	Rail specifications
	Kinematics

	IMPLEMENTATION
	State space model
	Parameter estimation
	Estimation of noise factors
	Landmark detection

	EXPERIMENTAL VALIDATION
	Test setup
	Results and Discussion
	Path estimation
	Landmark detection

	CONCLUSIONS
	RECOMMENDATIONS
	References

