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Summary

Pose estimation for UAVs is usually done using internal sensors. Often a filter is used to com-
bine different sensors, e.g. a camera on the UAV and its IMU. However, sensors on the UAV
have limitations. For instance the camera on the UAV needs to detect keypoints, which might
not always be available in real-life applications.

Therefore it is investigated if the use of an external UAV can aid in the pose estimation of the
drone. The camera from the external UAV will detect the pose of a marker on the main UAV. This
vision measurement and the IMU from the main UAV are fused using a Kalman Filter to provide
a reliable pose estimation. Using this pose estimation, control experiments are performed to
validate if the UAV can be controlled using this estimate.

Results show that this is possible, first when the external UAV is at a fixed position and also
when the external UAV is flying next to the main UAV. The control performance decreases dur-
ing a simultaneous flight, but control is still possible. A limitation is that the UAV needs to stay
in view of the camera, otherwise there is a chance of the UAV moving out of vision, causing it
to drift off and crash.
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1 Introduction

UAVs have a great potential for everyday use and are a popular topic for research nowadays.
The potential of UAVs is big, especially when flying autonomously. They can take over certain
human tasks that are dangerous or have to be done at places that are difficult to reach. Com-
pared to ground robots, UAVs can easily and quickly manouvre and fly to great heights, making
them ideal for inspection of big industrial objects.

Aeroworks is a research project that looks into "collaborative Aerial Robotic Workers". Indus-
trial inspection and maintenance work is dangerous and costly. Its goal is to reduce these risks
and costs by using collaboration of multiple UAVs. The goal is to have an autonomous group of
UAVs executing infrastructure inspection and maintenance works. As an illustration, a typical
kind of inspection would be investigating the blades of a windmill or a wind turbine inside a
combustion chamber. For these investigations to be more useful, some kind of interaction is
needed as well. As a result, an UAV needs to fly close to the object it tries to investigate.

In these situations, the UAV needs to behave autonomously. Therefore it is vital to have a good
pose estimate of the UAV. Usually this is done using internal sensors, which include camera,
accelerometer, gyroscope, GPS, etc. In real life applications, it may be that the information
from one of these sensors cannot be used. In fact, when the UAV is close upto the windmill to
perform interaction as described above, it cannot use a front mounted camera due to lack of
texture on the windmill blade. External tracking options are not really an option as well in that
situation. The UAV needs to operate in an environment that is unknown and is different each
time. Adapting each possible area of operation to include sensors for aid of pose estimation of
the UAVs is expensive and brings more complications with regard to infrastructure. This makes
it useful to look at the collaboration of multiple UAVs to detect each others pose and use the
fusion of their knowledge to obtain a good pose estimation of every UAV and make control of
the group better.

1.1 Previous work

For pose estimation of a single UAV, research generally focusses on sensor fusion of the local
sensors. [Matias Tailanian (2014)] shows a succesful fusion of GPS and IMU information us-
ing a Kalman Filter, overcoming the problems of different sample rate. [Jeroen D. Hol (2007)]
shows pose estimation on a 6DOF robot, using an Extended Kalman Filter to fuse this informa-
tion. [Luis Rodolfo Garcia Carrillo (2011)] fuses stereo vision odometry together with inertial
measurements on a quad-rotor UAV using a Kalman Filter. They are able to control the UAV us-
ing this fused data stream. These researches show that IMU information is a good way to add
fast pose estimation information. An often used method for pose estimation of UAVs is using
a Simultaneous Localisation and Mapping algorithms (or SLAM, for short) algorithm. These
researches also make use of visual and inertial measurements to generate a map and a pose
estimation of the robot itself in that map.

[Christian Forster (2013)] uses the collaboration of multiple UAVs to combine multiple SLAM
algorithms and create a more reliable pose estimation using that.

Other research focusses on tracking external objects using vision. [Markus Achtelik and Buss
(2009)] makes use of an external stereo vision camera to detect an UAV with illuminated mark-
ers. This data is also fused together with inertial measurements to determine a reliable pose,
but not by using a Kalman filter. A method for detecting a simple marker is shown by [Olson
(2011)]. They show the performance of their detection algorithm which performs better than
already existing techniques. [Elias Mueggler and Scaramuzza (2014)] uses these tags to control
a robot using relative vision measurements from an overseeing UAV. The UAV detects AprilTags
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markers in a environment and aids the robot in navigation, showing a practical example for use
of these tags.

1.2 Project aim

While an UAV can estimate its pose using internal sensors, using the collaboration of a second
UAV and its camera can aid when an internal sensor or an combination of those can not be
used. For this collaboration to work, sensor fusion of external and internal sensors is needed.
This work combines different imlementations for pose estimation that has already been done
and implements this for use with two UAVs. It will be investigated which problems will occur
when using this collaboration for control of the UAV.

In this project, the camera from a second UAV will detect a marker on the main UAV and de-
termine a pose of that. After that, a Kalman Filter is used to fuse this information together with
IMU information of the main drone. This combines the fast measurements of the IMU together
with the slow measurements from the camera, in order to make the final estimate more reliable.
It is assumed that the external UAV knows its full pose, which is realised by using the OptiTrack
system as reference. In the final experiments, the main UAV will be position controlled using
this final estimate.

Robin Hoogervorst University of Twente
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2 Background information

2.1 Pose estimation

There are several methods for determining the pose of an object. Most of them are based on
data from sensors, like using an IMU or a camera. Other sensors like GPS an ultrasone sensor
can provide only a position (and no orientation, which is included in a pose as well). GPS can
only be used outdoors and is a way to determine a position on the globe. The accuracy of this is
usually in the range of meters, and the update rate is very slow. Ultrasone sensors can be used
to measure a distance to the nearest object. This is usually pretty accurate and fast, but it is not
known what is being measured exactly and just in one direction. For example, this can be used
to determine the height of an object easily. For this project, pose estimation using an IMU and
camera are used and thus will be further introduced.

2.1.1 Pose estimation with IMU

One method of estimating a pose is with use of acceleration. When the acceleration of an object
is measured, its position can be determined by integrating these and adding it to an initial state
(2.1). It immediately shows that there are two unknowns, x0 and v0 which highly influence the
estimate. Usually these are set to 0, which means the measurement starts with the drone at
(0,0,0) with no movement.

~x(t ) =~x0 +
∫ t

0
~v0 +

∫ t

0

∫ t

0
~a (2.1)

These accelerations can be measured using an Inertial Measurement Unit, or IMU for short.
An IMU is a combination of accelerometer and gyroscope and measures accelerations and ro-
tations using these. Al is always the case with sensors, the measurement is not perfect. This
measurement includes a bias ~ba and random noise Ω (2.2). The bias is not a fixed value, but
can depend on the state of the IMU, e.g. a fast acceleration or temperature can change the
bias. As a result this bias needs to be estimated and subtracted from the measurement to know
the acceleration. The noise has a zero mean, which gives a 0 result when integrated. For this
reason, this noise can be neglected during the integration.

~ameas = ~ar eal + ~ba +Ω (2.2)

The advantage of using the IMU is that it is fast. Even cheap IMUs have the capability to pro-
vide datastreams of 200Hz, while other IMUs can provide streams at a rate of several kHz. This
allows for a quick pose estimate. On the contrary, the bias and initial conditions are unknown
and need to be estimated and there can be a lot of noise. This makes the pose estimate unreli-
able, especially when integrated over a longer period of time. The better the IMU, the smaller
these deviations will be, but they will always be present nevertheless.

2.1.2 Pose estimation with vision

Another method of estimating a pose is by using a camera. A camera can be modeled by using
a pinhole camera model. Keypoints of the object to be detected are determined, of which the
exact relative position is known. Then the object position in 3d world frame can be calculated
using the camera intrinsics (focal length, optical centre and distortion coefficients), the pixel
positions of keypoints in the 2d projection and the actual relative position of the keypoints.
The object creates an image in the camera plane. When the focal length and optical center
are known, the pose of these points can be calculated. The calculation is graphically shown in
figure 2.1.

Robotics and Mechatronics Robin Hoogervorst
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(a) 3d camera mapping overview (b) 2d overview mapping

Figure 2.1: Mapping of point in 3d space to an image in camera frame

OpenCV1 is an excellent C++ library for image processing and has features to do these calcu-
lations. First, camera calibration is performed, to determine the camera intrinsics. When this
is done, a set of object points and image points can be provided to the solvePnp function of
OpenCV which gives a 3d pose relative to the camera.

In contrast to the use of the IMU, this pose estimation is only dependent one one measurement.
This makes cumulation of errors not possible. Quality of the camera can be easily improved by
using different camera and we can use multiple sources. The two big downsides are the speed
and the need of keypoints. Processing of the image can take long time (50-300ms depending
on the type of detection, computer and resolution) and this time increases exponentially when
using a higher resolution. Regular cameras have a framerate of 60 fps or even 30. This combi-
nation creates a slow set of measurements. Secondly, the camera needs some way of detecting
key points. When an external camera is used, a marker can be used to determine these points.
When an on-board camera is used, keypoints are detected from the environment and the rel-
ative position and speed of the camera are usually calculated using those. But in order to use
this, the environment needs to provide this. This can be a textured wall or specific objects, but
it is not guaranteed that these are available.

2.2 Sensor fusion

These methods of pose estimation can be combined to utilize the advantages of each method.
Combining this information is done using sensor fusion. There are a wide variety of algorithms
available to combine measurements. Since these measurements include an error, fusion aims
at finding the optimal value of these estimates. Examples of this include the central limit the-
orem, filtering based on bayesian networks and Kalman filters. The central limit theorem and
bayesian networks use probability theory to calculate a most optimal mean. A Kalman filter is
an algorithm to combine different noisy measurements. This filter is popular for sensor fusion
and will be the one used.

The Kalman filter is a linear discrete time algorithm that provides an optimal estimation of
two gaussian measurements. It consists of an prediction and an update step, which can run
independently from each other. During the prediction step, a state estimation is made. The
update step compares the prediction to a measurement and filters these based on covariances
to create a more reliable state estimation. The basic equations are given and explained here,
while the implementation of it is discussed in section 3.5.1.

Prediction step
First the prediction step. It uses the state at time k-1 (xk−1|k−1) and an input vector (uk ) to
predict a new state (eq 2.3). Fk and Bk are the state and input matrices respectively and are the
core of the calculation. The covariance gets calculated with use of the state matrix. Qk is the

1http://opencv.org/

Robin Hoogervorst University of Twente



CHAPTER 2. BACKGROUND INFORMATION 5

process noise, which is in this case just the covariance of the input.

xk|k−1 = Fk xk−1|k−1 +Bk uk (2.3)

Pk|k−1 = Fk Pk−1|k−1F T
k +Qk (2.4)

Update step
When a prediction is available, an update step can run to change the state based on the differ-
ence between the prediction and the measurement. Hk is the measurement matrix that con-
verts state model to the measurement model. The update step first calculates a diff yk based
on the measurement and the state.

yk = zk −Hk xk|k−1 (2.5)

Based on the covariances, the Kalman gain factor is calculated.

Sk = Hk Pk|k−1H T
k +Rk (2.6)

Kk = Pk|k−1H T
k S−1

k (2.7)

This gain is used to apply the difference proportionally to the state. At the same time, the gain
is used to adapt the covariances.

xk|k = xk|k−1 +Kk yk (2.8)

Pk|k = (I −Kk Hk )Pk|k−1 (2.9)

This Kalman filter can be used on linear systems. Since the physics of an UAV is non-linear
system, the Kalman filter should be extended, giving an Extended Kalman Filter. This extension
essentially linearises the system for the filter by changing the F and H matrices to a function.
With this in mind, equations 2.3 and 2.5 will change to:

xk = f (xk−1,uk ) (2.10)

yk = zk −h(xk ) (2.11)

These functions cannot be aplied to the covariances directly, thus the Jacobian of these func-
tions is computed and substituted for the F and H matrices in the calculations with the covari-
ance.

Fk = ∂ f

∂x
Hk = ∂h

∂x
(2.12)

Robotics and Mechatronics Robin Hoogervorst
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3 Implementation

The final goal of this project is to control an UAV using collaboration. For this to work, an
software implementation has been written that will handle the information of both UAVs. First,
the hardware will be introduced. After that, the software architecture is shown generally and
each part will be dicussed in greater detail. Although this project makes use of each of these
elements to control the UAV, each element of this implementation could be used individually.

3.1 Hardware overview

The hardware is the base for the software to operate on. As already discussed, two UAVs will be
used to control one of them, shown in figure 3.1. Drone B will provide a measured pose of the
marker, which is attached to drone A. Drone A itself will publish its IMU measurements. These
two will be fused to create a pose estimate for drone A.

Figure 3.1: Overview of the experimental setup. Drone A has a marker on the side. Drone B is used for
the camera stream, using its internal camera.

As UAV the AR.drone 2.01 is used, made by the company parrot (shown in the set-up figure 3.1).
This drone is meant to be controlled by a tablet or smartphone and mostly used as a toy. It
comes at a cheap price (about 300$), which means it has cheap hardware. The AR.Drone is a
quite closed platform, not many details are available of the internals. One of the big advantages
is that the parrot AR.drone has a lot of features build in, including:

• HD camera (720p) 30 fps2

• Wide angle lens

• Auto pilot for hovering

• 3 axis gyroscope

• 3 axis accelerometer

There is an SDK available, which makes it easy to interact with the drone for experiments, but
this can only perform interactions with the basic input and output of the AR.Drone and not
influence the inner control loops of the AR.Drone. [Pierr-Jean Bristeau (2011)] shows some of
the internals of the first AR.Drone, which can be used to get some more insight of the internals.

1http://ardrone2.parrot.com/
2Due to limitations by the driver for ROS, only a 480p image stream can be obtained
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The accuracy of the position estimate and performance of control needs to be evaluated. Be-
sides that, it is assumend that drone B knows its pose and the pose of drone A is used to measure
the results. Therefore, it is neccessary to know the ground truth pose of both UAVs. In order to
do this, the OptiTrack system is used, made by the company NaturalPoint. The OptiTrack sys-
tem uses a set of high-speed infrared cameras to detect reflective balls which can be mounted
to an object. By using a combination of these balls and the software set from the OptiTrack, a
full pose of multiple objects can be detected at a rate of 100Hz. The accuracy and speed of this
system is high and therefore ideal to be used as ground truth for the measurements. When this
project refers to the ground truth pose, it references to the pose estimate from the OptiTrack.

The UAV only has one marker mounted on it. This marker is mounted pointing in the y-axis
of the inertial frame of the UAV. The built-in camera of drone B is used, which is pointing in
the x-axis of its inertial frame. This marker will be kept into view of the camera by using the
position controller for the UAVs. The yaw of each UAV is kept constant with an offset between
them of about 90 degrees.

Control of the drones is done using an implementation of a PD controller, created internally at
RaM. This allows us to control both UAVs on a setpoint that is provided. This implementation
is made by Cees Trouwborst and is called the ram_ba_package. Details of his implementation
can be found at (https://www.ce.utwente.nl/aigaion/publications/show/
2312). For position estimation experiments, the OptiTrack pose is used as input to keep the
drones at a position. For control experiments, this same controller is used, but instead of using
the OptiTrack pose as source for the controller, the filtered pose estimate is fed into it.

3.2 Software architecture

The software implementation is built on top of ROS. ROS is an open-source framework for robot
software. ROS consists of packages, which contain nodes. These nodes can create topics, which
allow for dataflow between them. Each topic can subscribe to a topic to retreive the data from
there and can publish information to an own topic. Due to these nodes and packages, ROS is
highly modular and allows for easy reuse of different packages.

The code is run on an external computer which communicates with all elements. No image
processing is done on the UAV itself. The computer is using WiFi to communicate with the UAVs
and OptiTrack information is received through a wired network. This communication is done
using already existing packages. Mocap_optitrack is used for the OptiTrack interface and the
autonomy_ardrone for the AR.Drone. Those packages provide the information that is needed
into ROS topics, to be used by other nodes. The WiFi communication with multiple AR.Drones
is also a feature of the position controller made by Cees Trouwborst. The combination of these
packages allows for easy communication between all elements.

The code exists of one ROS package with two seperate nodes, called ram_tracker_buddy. One
node handles the vision detection while the second node handles the position estimation using
the filter. The code is split up into three main sections, graphically shown in figure 3.2:

1. Camera pose estimator

2. Detector

3. Fusion Filter

The Camera pose estimator is the first ROS node. It subscribes to an image stream and the pose
of drone B given by the OptiTrack. It will publish a 3d pose of the detected marker in the global
frame. This node makes use of the Detector, which makes an easy interface to detect the pose of
a certain marker within an image view. The third and most important component is the Fusion

Robotics and Mechatronics Robin Hoogervorst
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IMU drone A (200 Hz) 

(OptiTrack pose A)

OptiTrack pose B

Camera stream

(30 Hz)

Filtered pose

(100 Hz)

Pose estimate

(5-15 Hz)

Detector

Raw image

Pose estimate

- Marker information

- Camera information

- !ndPosition()

Fusion Filter

- state

- synchronisation bu"er

- predictState(imu_data)

- updateState(vision_data)

- publishState(state)Pose estimator

- *detector

- !ndPosition(stream)

Figure 3.2: A (simplified) overview of the codebase. Solid lines are ROS topics, while dashed lines repre-
sent relations between the classes. The OptiTrack pose of drone A is gray since it is used for calculations
with the orientation, but this should not be neccessary to use.

Filter. This is the second ROS node, houses Kalman filter and produces the filtered position
estimate.

3.3 Vision pose estimation

The vision esimation is handled by the Camera pose estimator. This node is the bridge between
the camera stream, the marker detection and the 3d pose of the marker.

Inputs: Camera stream from the drone, ground truth pose of drone B
Outputs: Marker pose in global frame

It uses a ROS camera stream as input. For each image that is received, it will convert this image
to OpenCV format and call a detector to get the pose for that image. The pose that is received
from the detector is transformed into world frame and published. The image stream is 30 fps
and thus 30Hz. The processing time is too long to be able to provide measurements at 30Hz as
well. With that in mind, images that are received during processing are discarded and the first
image received after processing has completed is used for the next measurement. This is done
automaticcaly by ROS, since it discards messages received if the process is still busy. The rate
of pose estimation from vision is about 5-15 Hz, depending on the environment.

When receiving an pose of drone B, it stores the position of drone B in a buffer together with a
timestamp. When doing transformations to get the marker pose in global frame, it will use the
pose of the drone at the time the image was received. This pose needs to be looked up in the
buffer.

3.3.1 Transformations

The camera pose estimator transforms the measured position of the marker into the global
frame. The total transformation loop is graphically defined in figure 3.3.

To begin with there is the transformation of the marker in camera frame. This defines the ori-
entation and position of the marker, relative to the camera. Due to initialisation of the drones,
the marker also has a fixed rotation relative to the camera. Which is defined as Rm_ f i xed

HC B
M A =

[
RC B

M A ·Rm_ f i xed PC B
M A

0 1

]
(3.1)
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Figure 3.3: Overview of transformations

Rm_ f i xed =
1 0 0

0 0 1
0 −1 0

 (3.2)

Here RC B
M A and PC B

M A are the position and orientation relative to the camera, which will be mea-
sured by the detector.

Secondly, there is the transformation of the camera with relation to the drone. This is a fixed
rotation, including a translation of 21 cm on the x-axis. The same could be defined for A, but
since that camera is not used, it is not shown here. The transformation is defined as:

H B
C B =

[
RB

C B P B
C B

0 1

]
(3.3)

RB
C B =

 0 0 1
0 1 0
−1 0 0

 P B
C B =

0.21
0
0

 (3.4)

HA and HB are the position and orientations measured from ground truth3. The zero orien-
tations for the drones are defined with an 180deg rotation around z compared to the ground
truth, due to definition used by the position controller. Both drones are (obviously) able to
rotate. This gives us the following transformation matrix.

HB =
[

RB ·R180z PB

0 1

]
(3.5)

Where RB and PB are the rotation matrix and position optained from the OptiTrack for drone
B, respectively. The same can be written for drone A, but this is practically only used for verifi-
cation and not in this node.

3The OptiTrack driver for ROS implements its own rotation, which is a rotation of 90deg ccw around x. These
rotations are based on the output of the driver and thus are different from the global frame shown in OptiTrack
software
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10 Collaborative position control of an UAV using vision and IMU data

The final position of the marker in global frame is then easily determined by combining these
transformations (3.6).

HM A = HB ·H B
C B ·HC B

M A (3.6)

3.4 Marker detection

The marker detection is done using the detector. This detector exists of multiple classes:

• DetectorFactory

• AbstractDetector

• AprilDetector

• DotsDetector

The DetectorFactory generates a detector, based on an identifier string that is provided. Each
detector is an implementation for detection of a different type of marker. Accordingy, each
detector must incorporate the AbstractDetector, allowing for the same interface to be used
throughout when swapping these. The AbstractDetector has an interface for an actual class
to use and some helper functions for debugging. In the ros package for this project, two types
of markers are supported: AprilTags and a marker created internally at RaM, by Jort Baarsma.
For the latter, the DotsDetector is implemented.

3.4.1 AprilDetector

The final implementation used the AprilDetctor for detection of the marker. This detector is an
implementation that uses the ApilTag library to detect images. For detection of the drone, an
AprilTag4 marker has been used (figure 3.4).

Figure 3.4: Samples of different sets of AprilTags

The detector makes use of the 36h11 set, since that is the recommended one. A detection library
has been developed by the University of Michigan in C, with examples of use within ROS. The
big advantage of these tags is that they can be easily printed and mounted.

Furthermore, the detector can detect a set of different tags, each with a different id. This makes
it possible to use different tags for detection, to identify different UAVs, different sides of an
UAV, or other objects for the UAV to interact with.

The default library uses the solvePnp function from OpenCV to calculate the 3d pose from the
detected points of the marker in the image and the known properties of the image (e.g. its
size). The library does not pass distortion coefficients to the solvePnp function. However, those
are necessary when using the camera from the AR.Drone, because there is quite some lens

4http://april.eecs.umich.edu/wiki/index.php/AprilTags
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CHAPTER 3. IMPLEMENTATION 11

distortion. Therefore, this function is reimplemented in the detector and calls the OpenCV
function itself with the distortion coefficients.

3.4.2 DotsDetector

The DotsDetector is the detector for the marker made internally at RaM. This marker uses a set
of dots and HSV filtering to detect the pixel position of the marker in the image. After that, it
also calls the solvePnp function from OpenCV to determine the 3d pose.

The advantage of this marker is that it is quicker than the AprilTag, since it can filter quickly on
color, but this also has its downside. Since this marker relied on filtering based on color, the
color balance needs to stay the same or needs to be calibrated. During tests in the SmartXP lab,
it seemed that the white balance is different from the lab at RaM. Under those circumstances,
it was not able to detect the marker reliably. Therefore the choice was made to use the AprilTag
marker for the experiments.

3.5 Sensor fusion

The most important part of the implementation is the sensor fusion. This is done using the fu-
sion filter node, which produces the final pose estimate. Figure 3.5 shows the general overview
of all interactions. This node subscribes to the calculated marker position from the camera
pose estimator, the OptiTrack pose of drone A and the IMU topic from drone A. From the Op-
tiTrack pose, only the orientation is used for the calculations and the position is neglected. It
would also be possible to omit this and use an estimation of the orientation. Therefore, the line
is dashed in the figure overview (3.2) and is italic in the input list.

Inputs: Marker pose in global frame, IMU data, ground truth pose of drone A
Outputs: Pose estimate

Update

(5-15Hz)

Predict

(200Hz)

Kalman !lter

Rot

T

Bias

Pose estimate

Vision

IMU

IMU bu"er

Orientation UAV

state

Figure 3.5: Overview of the implementation for the fusion filter. The vision and IMU measurements get
feeded into the Kalman Filter, including some preprocessing.

The IMU measurement gets preprocessed by removing its bias and performing a rotation using
the orientation of the UAV. A prediction step runs using this data and this data is put into the
buffer together with the state at that time as well. The vision measurement gets transformed
using the orientation of the UAV. The filter gets the marker position. Hence it needs to calculate
the actual position, based on the orientation from the drone (transformation H M A

A in figure 3.3,
defined in section 3.5.2).

Using this measurement and the IMU buffer, it performs an update step for the Kalman filter,
in a way described in section 3.5.3. The final result of this Kalman filter gets published as ROS
topic. For publishing, a fixed rate has been chosen to have it run independently of the Kalman
filter. ROS has an timer function, so it is easy to call a publish function at a fixed interval. It has
been chosen to implement this at an interval of 0.01 seconds and thus 100Hz.
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12 Collaborative position control of an UAV using vision and IMU data

3.5.1 Kalman filter setup

While earlier it is mentioned that this system should make use of an Extended Kalman filter, it
was chosen in the earlier stages to first opt with a standard Kalman filter. The standard filter is
easier to implement and this quicker implementation allowed for further experimentation on
other problems. Due to time contraints in the end, this has not been improved by creating an
implementation of an Extended Kalman filter.

The state of the Kalman filter consists of 6 variables, which is the position and velocity in three
dimensions in world frame.

~s = [
x, y, z, ẋ, ẏ , ż

]
(3.7)

Orientation has been left out of this state. Firstly, getting a reliable orientation is more difficult
than the position, since the IMU does not give a reliable yaw and the orientation from the
marker is slow. Secondly, pulling the orientation calculations out of the Kalman filter decreased
the size of the state a lot and simplified the calculations and therefore the implementation of
the Kalman filter.

By omitting this orientation, the state matrix only uses identity and a ∆t . Since the rotation of
the IMU measurment is done before providing it to the Kalman filter, input matrix only uses a
∆t to add the acceleration to the velocity. The state matrix ~F and input matrix ~B then become:

~F =



1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


~B =



0 0 0
0 0 0
0 0 0
∆t 0 0
0 ∆t 0
0 0 ∆t

 (3.8)

Since the transformations of marker pose to drone are made before putting theem into this
filter, the H matrix is a 6x6 identity matrix. The Qk and Rk matrices in the equations denote
the noise of the system. This is just the covariance of each measument on the diagonal of the
matrix and the rest 0. Since the covariances of the measurments are not known really well, the
choice was made to be able to dynamically adapt these values. In the final experiments, a value
of 0.05 for the position covariance, 9.6 for the twist variance and 0.06 for the imu covariance
has been used. The twist variance has been chosen higher, since sometimes it would provide
non-accurate values. This way, those values would not influnce the final estimate too much,
while it is sill able to filter the IMU drift as well.

A velocity measurement is necessary to compensate for the drift in IMU. If this would not be
done, the velocity would never be compensated using a fixed measurement, which would in-
crease the error in the final estimate. The velocity for the update step is estimated using two
measurements from vision and dividing them by ∆t , simply:

~vt = xt −xt−∆t

∆t
(3.9)

These matrices and state are put into the functions stated in section 2.2 to get the final equa-
tions for the filtered position.

3.5.2 Transformations

In addition to the transformations in section 3.3.1, the filter transforms the marker position to
the drone position, before entering it into the Kalman filter. When using an Extended Kalman
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filter, it is advised to put these transformations into the h function, which transforms the mea-
surement to the Kalman state. This way, the errors in the rotation are incorporated as well,
which is not the case with this implementation.

The marker transformation is a fixed rotation, with a translation of 24 cm in the negative y
direction with relation to the UAV itself. Mathematically defined as:

H A
M A =

[
R A

M A P A
M A

0 1

]
(3.10)

R A
M A =

1 0 0
0 0 −1
0 1 0

 P A
M A =

 0
−0.24

0

 (3.11)

Since we measure the marker and want to know the drone coordinates, the inverse of this trans-
formation is used, which is defined as:

H M A
A =

[
(R A

M A)T −(R A
M A)T ·P A

M A
0 1

]
(3.12)

The IMU is assumed to be in the same frame as the UAV itself. The ROS driver for the ardrone
includes a rotation before publishing its IMU data, which ensures the IMU is in the same frame
as the drone. The exact position relative to the center of the drone cannot be determined due
to the closed internals of the parrot and is therefore assumed to be in the centre of the drone
frame. Therefore, the only transformation for it to convert to global frame is the inverse of
drone A.

3.5.3 Synchronisation

Another problem that the Fusion Filter takes care of is the synchronisation of the measure-
ments. Image processing can take relatively long. During quick movements, the IMU will give
a fast estimate, while the vision position estimate is delayed. Dependent on the computer used
and the method of detection, this can take up to 300ms5. During final test, the delay was about
100-200ms depending on the situation and background. This delayed vision measurement can
counteract the position prediction made by the IMU. It is better to use the vision measurement
at the moment the image was taken. [Pornsarayouth and Wongsaisuwan (2009)] shows two
different methods of synchronisation of vision in a Kalman filter. The classical method of com-
pensating for vision delay is used and has been implemented in the following way (visualised
in figure 3.6).

• When the filter recieves an IMU callback. A prediction is applied to the state of the
Kalman filter using this information (an I in the figure). At the same time, the measure-
ment is stored into a buffer, together with the state at that moment. At the current mo-
ment, the best guess of the estimate is using a long run of IMU information.

• When the filter receives a vision position estimate, it will look in the buffer for the last
state before the timestamp of this estimate. It will delete everything from the buffer be-
fore this timestamp and set the state (backtrack) to before this last data point. (b -> c in
figure 3.6)

• Then, the measurement from the vision is applied to this backtracked state. (d)

• The IMU data that is still in the buffer, which is thus the data between the time of the
vision and now, is applied (instantaneously) to the new state which includes the vision

5This is in some cases seen during the development of this implementation
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Figure 3.6: Synchronisation process. The timeline is the history of vision and IMU measurements com-
ing in, including a timestamp. Current time, t=7. a) Current state; b) A new vision measurement comes
in at t=7 with timestamp t=3.5; c) Backtrack to latest state before the new vision timestamp; d) Apply the
vision measurement; e) Apply the IMU measurements to the new state.

measurement. It will re-perform the Kalman Filter calculations for each measurements.
After this, we have a new estimate (e), using the vision from less long ago. (a) is the best
estimate before the measurement, while (e) is the best estimate including the vision mea-
surement. So those two estimates are the only ones being published.

Using this, the camera measurement is applied at the correct time, which does not counteract
the IMU information. Downside of this implementation is that the position estimate relies
more on the IMU, since there is always about 200ms of data from the IMU incorporated in
the position that is published. The longer the delay of the image is, the higher the variance
of the pose estimation will be, since more prediction steps are performed based on the IMU
information.

3.5.4 Bias compensation

As mentioned in section 2.1.1, the IMU measurement contains a bias. This is estimated by
comparing the state velocity to the velocity estimated using vision. Based on this difference, the
bias can be calulated. Since both measurements are not perfect and the bias does not change
really quickly this difference is applied to the estimated bias proportionally using a ∆t and a α
factor. This α factor can be configured dynamically and is usually set around 0.2. If the IMU
bias has much less influence, it is advised to lower this value.
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4 Results

First, the accuracy of the pose estimation will be discussed. After that, this pose estimation is
fed into a position controller. Both these experiments are performed while keeping the drone
with the camera fixed, and while flying with both UAVs. This is done to elimate the movement
of the camera and show the performance difference between these two.

4.1 Vision synchronisation

In section 3.5.3 the synchronisation mechanism was explained. Figure 4.1 shows the practical
result of that. Without synchronisation, the position as shown in (a) would be applied. This
is the best estimate that would be possible without the aid of the IMU. In the filter, the times-
tamped postition is used, as is plotted at (b). It can be seen that (b) resolves the delay that is
present at (a) almost completely
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Figure 4.1: Vision measurements compared to ground truth. (a) shows the time of publishing of the
measurement, while (b) shows the timestamps that are used for applying the measurement.
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Figure 4.2: Position estimate using a fixed camera, while having good vision.

In this first setup, the UAV with the camera stays in a fixed position, eliminating the influence
of movement from the camera. Figure 4.2 shows both the filtered position estimation and the
estimation using vision only in this setup. The vision estimate in this plot is compensated for
the processing time, so plotted at the timestamp of the image and not the time of receiving the
image, as explained in section 3.5.3 about synchronisation.

Robotics and Mechatronics Robin Hoogervorst



16 Collaborative position control of an UAV using vision and IMU data

The IMU should be able to keep a reliable pose estimation in between the vision measure-
ments. With this in mind, it is useful to look into moments when vision is not available for a
couple of seconds. Figure 4.3 shows the response when the vision estimate is lost for a couple
of seconds. Due to a large movement on the z-axis, the UAV moved out of view of the camera.
It shows that the IMU does allow to have a good pose estimation on the y and z-axis. On the
x-axis, it can be seen that the estimation floats off about 10cm in 3 seconds. This is probably
due to the bias estimation in this direction. During other tests, it showed that it was vital to
keep estimating the bias. Unfortunately, this bias estimation was not always correct and it was
often the case that the estimation would float off when vision was lost.
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Figure 4.3: Position estimate using a fixed camera, while losing vision sometime. Vision is lost from
t=45-47 (straight green line from vision)

Knowing that the pose estimation with a fixed camera does work well, second experiments are
performed during a simultaneous flight. In figure 4.4 the position estimate during a simultane-
ous flight is shown. It can be seen that the z-position is more unreliable compared to the results
with a fixed camera. Compared to figure 4.2 the results in x and y are comparable, which shows
that the position can still be accurately calculated when the camara moves.

In almost all plots, there are peaks present that seem to come from the update step with the
vision measurement, while the vision measurement is fine. Actually, this is a bug in the cal-
culation of the marker to the drone frame in the code. This will be discussed in greater detail
during the discussion.

4.3 Performance of control

Using this pose estimate, experiments are perfomed to validate the performance of control
using this filtered estimate. During the next experiments, the position estimate is fed into the
controller. This is done in three different situations

• Using a fixed camera, giving setpoints in the figure of a square, with 4 seconds at each
position.

• When both drones are flying, giving a fixed setpoint

• When both drones are flying, giving the same square as with the fixed camera.

When both UAVs were flying, it was difficult to perform the experiment with the square figure
pattern. Movement of both UAVs made it difficult to keep the marker UAV into the field of view
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Figure 4.4: Position estimate using two flying drones. Both drones position controlled at a fixed position.

and control is more difficult as well. In order to validate the performance of control better, the
response for a fixed setpoint has been given as well. All control performances are compared to
the performance of control when using the OptiTrack as source of pose for the controller. This
is done by taking off using the OptiTrack as input and fly a certain amount of time. After that,
the pose input is changed in-flight and the same flight patterns as before that are performed.
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Figure 4.5: The position response from the UAV using the position controller when the camera UAV is
in a fixed position. Compares the response between using the OptiTrack pose as input and the filtered
pose estimate as input.

Figure 4.5 and 4.6 show the position response of the UAV when given setpoints in a square
figure. Comparing the response when the OptiTrack input is used with the filtered position
used as input, it can be seen that the response when using the OptiTrack is better. The response
when using the filtered position is not much worse. The overshoot is a bit higher, but after that
it corrects well and the controller keeps the UAV at the right position. In the z-axis the difference
seems to be non-existent. The difference in control can be seen in these plots, but looking at it
visually, it was really hard to see the difference.
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Figure 4.6: Axis plot of position (given by the OptiTrack) against setpoint. The camera drone is in a fixed
position and a square control input is given. The plots on the left are the response of the controller when
using the OpiTrack pose as input, while the righthand side uses the filtered position as input.
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Figure 4.7: The position response from the UAV using the position controller during a synchronous
flight using a fixed setpoint.

The response of control when using a fixed setpoint and two flying UAVs is shown in figures
4.7 and 4.8 . What can be seen is that in this situation the control using the filtered position is
noticably worse, compared to the OptiTrack as input.
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Figure 4.8: Axis plot of position (given by the OptiTrack) against setpoint. Both drones are flying and
input is a single setpoint. The plots on the left are the response of the controller when using the OpiTrack
pose as input, while the righthand side uses the filtered position as input.
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Figure 4.9: The position response from the UAV using the position controller during a synchronous
flight and a square figure setpoint pattern. Compares the response between using the OptiTrack pose as
input and the filtered pose estimate as input.

Figure 4.9 and 4.10 show the performance of the controller when using a square input and two
flying UAVs. A known issue of the controller is that it behaves worse when there are two drones
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Figure 4.10: Axis plot of position (given by the OptiTrack) against setpoint. Both drones are flying and
input is a square figure. The plots on the left are the response of the controller when using the OpiTrack
pose as input, while the righthand side uses the filtered position as input.

flying, due to influence of each other. Therefore, it is expected that the controller performs
worse during this setup, in comparison with a single flying UAV. This experiment confirms that
by showing that the controller performance using the OptiTrack is worse with two drones flying,
instead of one. The second issue with the controller during a simultaneous flight is that an UAV
can sometime perform an unexpected movement in the z direction. This happens more often
when both UAVS are flying close to each other. In the z-axis plot of figure 4.10 drops of about
30cm can be seen during both control experiments.

Taking that into consideration, the performance difference between the OptiTrack as input and
the filtered estimate as input needs to be investigated. What can be seen from these plots is that
the controller again performs worse when it uses the filtered position. The deviations become
much larger now, but still the UAV is controlled within a reasonable error. The controller needs
to correct more, which leads to bigger deviations of the pose compared to the setpoint.
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5 Discussion

While these results are good enough for control, it is far from perfect. First of all, the Kalman
filter could be improved to include more variables. Some calculations in this implemenation
are not optimal, which could improve the state estimation as well. Since wrong estimations
can propagate for a couple of seconds, improving this will vastly improve the overal result. At
the same time the controller is not optimal, which makes it diffcult to see exact performances
using the filtered state for control.

In the first place, when looking at the results for the position estimation. Some peaks can be
seen after an update step of the Kalman filter. This does get corrected after the next measure-
ment. However, the vision measurement itself is fine since the marker position calculation is
working nicely. After these results were made, an error in the code was found. The transfor-
mation of the marker to the drone frame in the fusion filter uses the orientation from the Op-
tiTrack. Unfortunately, no pose buffer was implemented, which causes this calculation to use
a pose of 300ms later than should be actually the case. This can cause deviations of a couple
of centimeters. Since these rotations are not big, overall it does not have a very big impact. It
would be useful to implement a pose buffer in this implementation to overcome this problem.

Although this may be true, the best would be to take the orientation into the state. The orienta-
tion from the OptiTrack is now passed through in the filtered estimate, but ideally the OptiTrack
should not be used for this at all. Due to time considerations, implementing this was not possi-
ble anymore. Taking the orientation into the state immediately solves the problem of buffering
the pose for the calculation. This orientation for the Kalman filter can be implemented by using
the pitch and roll rotations from the IMU and filtering this with the yaw, pitch and roll from the
marker. The yaw from the IMU in this implementation with the AR.Drone cannot be used as it
tries to fuse that with the magnetometer information internally. However, the magnetometer
is unreliable indoors, providing wrong yaw information. This problem can be solved by using
another platform for doing these experiments.

The orientation is not the only state variable that can be added to the Kalman Filter. The current
implementation uses a custom function to adapt the IMU bias. This is simply done by looking
at the difference between the vision measurement and the state. This bias can also be included
into the Kalman state. This makes the calculation dependend on the various covariances in
the system. Using that, no custom α value needed anymore and the bias will be estimated in a
more optimal way.

Finally, the controller that has been used is not perfect. Especially during a simultaneous flight
of two drones, sometimes strange manouvres are performed. This can include flying up and
then down again, or a quick movement in the x-y plane. This effects gets worse when the UAVs
are flying close together. For this reason, a larger distance between the UAVs (about 2-3m) is
necessary but this also decreases the performance of the marker detection.
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6 Conclusion

This report shows the results of collaborative pose estimation using two UAVs. All things con-
sidered, UAV control using the collaboration is possible. However, performance of control dif-
fers in different situations and it is vital to not lose the vision estimate for too long.

The position estimate using the combination of vision and IMU is quite reliable. There was not
a big difference in error of the position estimation using a fixed camera or when both drones
are flying. The movement from the second UAV does not significantly influence the error in the
pose estimation. Using the vision information with a timestamp, it is possible to eliminate the
delay of image processing in the final estimate, while still keeping a reliable pose estimation.

This pose estimation has been proven to be good enough for position control of the UAV. Com-
pared to using the ground truth as source for the contoller, it performed a worse, but the quality
of control was good. Square pattern experiments have been performed. During the flight of a
single UAV, the square pattern control is good. In the plots, it can be seen that control per-
formance is worse when the filtered position is used as input. Then again, to the eye the UAV
control seems to be the same.

During a simultaneous flight, issues concerning the controller can be seen. The UAVs have
influence on each other, degrading the performance of control. Deviations between control
get bigger using this as input. When both UAVs are moving during such a flight, it is difficult
to keep the marker in view of the camera. When the marker can not be detected, the position
estimate might drift off due to IMU bias. When using movement commands, it is vital to keep
the UAV in view or it will usually not come back and drift off.

6.1 Recommendations

As discussed earlier, the pose estimate can probably be improved more by improving the im-
plementation. Improving this will improve the performance of control as well. Besides that,
the implementation will probably work better when better hardware is used. Using a higher
resolution for the camera will increase the accuracy of the vision estimate, especially at larger
distances. Using a better IMU might decrease the effects of the bias and give a better orienta-
tion estimate.

For further research, the robustness of this method can be investigated. The assumption here
is made that the marker is always in straight view of the camera. In real-life applications this is
usually not the case, since the UAVs can manouvre a lot. Therefore, performances can be inves-
tigated while using multiple markers on the UAV and using multiple UAVs to detect these. This
will give more vision measurements and should increase the accuracy of the pose estimation.
Another option would be to totally remove the marker and use another method of detection of
the UAV.

Another point of research would be to investigate the performance when the exact position
of the camera UAV is not known. When its pose is an estimate, errors of that estimate should
propegate through the vision measurement. These extra errors will decrease the accuracy of the
pose estimation. Inherent to this will be to perform experiments in outdoor situations where
the OptiTrack information is not available.

The goal of this project is to provide a reliable pose estimation using collaboration that can be
used when an UAV can not use its vision. Further research can focus on the performance of
this implementation in such kind of situations. For instance, interaction with a wall could be
performed using this implementation and using regular SLAM on the UAV to evaluate perfor-
mance differences.
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