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1 List of Abbreviations

CSF
DSC
GM

HD

KL
NAWM
Vv

WM
WML

Cerebrospinal fluid

Dice score

Grey matter

Hausdorff distance
Kullback-Leibler

Normal appearing white matter
Volume

White matter

White matter lesion



2 Abstract

MRI intensities do not have a tissue specific value, meaning that the same tissue has a wide range
of intensities, even within the same protocol, subject, and MR scanner. This intensity variation
might affect image processing, since many segmentation methods and other tasks are based on
intensity. Several methods to normalize MRI intensities have been proposed over the years. In
this study, six intensity normalization methods for MRI are evaluated. The evaluation is based
on the ability to create similar tissue intensities within a group of subjects, between repeated
scans of the same subjects, and between scanners with different magnetic field strengths. Also
the effect on a simple k-Nearest Neighbour (kNN) segmentation is tested quantitatively. The
evaluations are performed on various data sets of T1 weighted images.

3 Samenvatting

De grijswaarden van een MRI scan hebben geen weefselspecifieke waarde. Dit betekent dat de
grijswaarden, ook wel intensiteiten, van eenzelfde weefsel verschillen binnen hetzelfde scanpro-
tocol, hetzelfde subject, en dezelfde MRI scanner. Deze intensiteitverschillen hebben invloed
op de beeldverwerking, omdat veel segmentatie methoden en andere beeldverwerkingsmetho-
den zijn gebaseerd op intensiteit. De afgelopen jaren zijn er verschillende methoden ontwikkeld
om MRI intensiteiten te normaliseren. In dit onderzoek worden zes verschillende intensiteit-
snormalisatiemethoden voor de MRI geévalueerd. De evaluatie is gebaseerd op het vermogen
van de methoden om vergelijkbare weefselintensiteiten te creéren binnen een group subjecten,
tussen herhaalde scans van dezelfde subjecten, en tussen scanners met een verschillende mag-
netische veldsterkte. Ook wordt de invloed van de normalisatie op een simpele k-Nearest Neigh-
bour (kNN) segmentatie getest. De evaluaties zijn uitgevoerd op verschillende datasets van T1
gewogen beelden.



4 Introduction

Magnetic Resonance Imaging (MRI) is an advanced, non-invasive imaging technique that gives
an excellent contrast between soft tissues [1]. However, one of the major disadvantages of MRI is
that the tissues do not have a specific intensity, such as in computer tomography. Similar proto-
cols show different intensities for the same tissue type, even within the same subject. See Figure
1 These variations are machine-dependent and cannot be corrected with bias field correction
[2]. These intensity variations make segmentation and image analysis difficult[3]. Therefore, in-
tensity normalization is an important pre-processing step for MR image analysis. Segmentation
methods can benefit from intensity normalization and produce accurate and consistent results

with less errors [4, 5, 6].
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Figure 1: Three images of three different subjects, scanned with the same protocol and
displayed with the same window settings, and their intensity histograms.

Several intensity normalization methods have been developed to reduce the intensity variety
with various degrees of success. Most methods are based on histogram matching, with different
approaches for landmark selection, e.g. mean intensity [7], even-order derivatives of white mat-
ter peak [8], or the median intensity in the foreground [4]. Some methods match the (mean)
intensities of one or more tissues to a reference model [2, 3, 5]. Most of these proposed methods
have been evaluated on healthy tissue, whereas these methods are mostly applied in the presence
of pathological tissue. Only a small number of studies have investigated the effect of presence
of e.g. white matter lesions (WMLs) on the normalization methods. The aim of this study is
to evaluate several intensity normalization methods for T1 weighted brain MR images with the
presence of WMLs due to cerebrovascular disease. A second aim is to provide recommendations
about the usage of intensity normalization in image processing. The methods are selected based
on reviews, references by articles, and originality, to cover the whole field of intensity normal-
ization methods.

The normalization methods will be assessed on four aspects. The first aspect is the ability
to create similar tissue intensities within a group of subjects with different amounts of WMLs.
In cross-sectional studies the scans of different subjects are compared and a consistent intensity
distribution might be beneficial for accurate and consistent image processing tasks. The second
aspect is the ability to create similar tissue intensities within repeated scans of the same subject,
for subjects with and without cerebrovascular disease. For longitudinal studies, a similar inten-
sity distribution for different scans of the same subject is beneficial when comparing the scans.
The effect of the presence of pathologies on the methods will be evaluated as well. The third as-



pect is the ability to create similar tissue intensities in repeated scans of the same subject made
in MRI scanners with different magnetic field strengths. The tissue intensities differ between
MRI scanners of different magnetic field strength or from different vendors [9]. For longitudinal
studies a similar intensity distribution for different scans of the same subject is beneficial when
comparing the scans, especially when the intensities are so different. The last aspect is the
effect on a simple k-Nearest Neighbour (kNN) segmentation. This evaluation reflects on the
benefits an intensity normalization method can have on intensity based image processing tasks.
Another study already proofed the benefit of intensity normalization for a more advanced, atlas
based segmentation method [10] when scans from different MR scanner platforms are used [6].
Intensity normalization is therefore beneficial in image processing tasks for multicentre studies.

5 DMaterials and Methods

Various intensity normalization methods have been proposed. Six methods were selected for
evaluation. The selection was based on reviews, references of other articles, and the originality
of the method. The methods vary in complexity, computational time, the usage of a reference
model, and dependence on other pre-processing steps. For each method the advantages and
limitations are described below and in subsection 8.3. The computational time was measured on
an Intel Core2 Quad CPU processor @ 2.83 GHz for a scan with the matrix size of 38 x256x256.

5.1 Intensity normalization methods
5.1.1 Gaussian

This method, referred to as Gaussian, is the most simple method. It rescales the intensities by
Inew = I/SD. Where [ is the intensity and SD is the standard deviation of the whole scan.
The method assumes that each scan has the same intensity distribution .The rescaling is done
based on this assumption [7]. The computational time is approximately 2 seconds.

5.1.2 Z-score

This method, referred to as Z-score, is also known as zero mean unit variance. It rescales and
shifts the intensities by Inew = (I — p)/SD. Where I is the intensity, u is the mean intensity
and SD is the standard deviation of the whole scan. The method assumes that each scan has
the same intensity distribution. The rescaling and shifting is done based on this assumption
[7]. All means are rescaled to zero, but the means do not automatically correspond to the same
tissue type. The computational time is approximately 2 seconds.

5.1.3 Histogram matching on median (HM_median)

This method, referred to as HM_median, was first described by Nyl and Udupa (2000) [4]. This
two-stage method consists of a training step and a transformation step. The principle is to find
the white matter (WM) peak by taking the mean intensity of all the slices of the scan. This
mean is used as threshold between background and foreground. The mode of the foreground is
taken as the median landmark. Two other landmarks are the 0** and 99.8!" percentile of the
entire intensity histogram. During the transformation step these three landmarks are derived
from the intensity histogram and piece-wise linear mapped to the standard scale landmarks.

The standard scale landmarks are determined during the training step with the use of mul-
tiple scans. Standard scale landmarks s; and s9 are chosen in such a way that the mapping is
one-to-one and that the histogram is not compressed. These landmarks correspond to the 0%
and 99.8™" percentile of the entire intensity histogram, respectively. The mode of the foreground
is mapped on this new standard scale and the average remapped mode of the training scans is



taken as the standard scale median landmark. The computational time for the transformation
step is approximately 6 seconds.

5.1.4 Histogram matching on generalized ball scale (HM _ballscale)

This method was first described by Madabhushi and Udupa (2006) [3] and is a variation of the
HM_median method. The difference is the way to retrieve the WM peak. With the use of a
manual selection of the WM and the generalized ball scale, described by Madabhushi, Udupa
and Souza (2006) [11], the largest connected homogeneous area is determined. See Appendix
8.3. This area is considered to be the normal appearing white matter (NAWM) area. The
median intensity of the intensity histogram of this area is selected as landmark. The other two
landmarks are again the 0" percentile and 99.8"" percentile of the entire intensity histogram.
The intensities are piece-wise linear mapped to the standard scale landmarks. The standard

scale landmarks are obtained during the training step. This training step is the same as for the
HM_median method.

In the method described the whole 3D scan is included for determination of the median WM
landmark, but due to the long computational time, only the middle slice of the scan is used
in this study for determination of the landmark. The computational time is approximately 80
seconds, including the manual selection of NAWM.

5.1.5 Standardization of Intensities (STI)

This method is called Standardization of Intensities (STI), and was proposed by Robitaille et
al. (2011) [2]. The subject scan is nonlinear registered to a reference scan. The intensities of
the reference scan are rescaled to intensities between 0 and 100. The masks of white matter
(WM), grey matter (GM), and cerebrospinal fluid (CSF) of the reference scan are applied to
both the reference and the subject scan. A joint histogram is made of the subject WM area and
the reference WM area. The mode of the joint histogram is selected as landmark for WM. This
is repeated for GM and CSF. The minimum intensity and the maximum intensity of the subject
scan are set to 0 and 100 respectively and are also used as landmarks. The transformation is a
linear piece-wise mapping between the five landmarks.

A proper reference scan has a similar intensity distribution as the subject scan. The com-
putational time is approximately 80 seconds.

5.1.6 MIMECS

This method was developed by Roy, Carass and Prince (2013) and the software is called MIMECS
[5, 12]. The intensities of the subject scan are normalized to the intensities of a reference scan
with the use of 3 x 3 x 3 voxel patches. Both scans are normalized by dividing by the WM
peak intensity, in order to have an almost similar intensity range. This WM peak intensity
is predetermined by the user. Then for each voxel a surrounding patch is defined. The best
matching reference patch for each subject patch is defined by the maximum likelihood and
found using the expectation maximization algorithm [5]. The central voxel intensity of the
subject is replaced with the matching central voxel intensity of the reference. The reference
scan should contain all the pathologies that are expected in the subject scan for a good intensity
normalization. The computational time is approximately 4 hours.

5.2 Data

The data of three different MRI scanners and sequences are used to evaluate the six normalization
methods. All the scans are bias field corrected and segmented by SPM12[13]. Each data set has



Table 1: Training set and reference scans for the normalization methods.

Method

Data set A

Data set B

Data set C

HM _median

HM _ballscale

Training set of 8 ran-
domly chosen scans of
first subject.

Training set 8 randomly
chosen scans of first
subject.

Training set of 4 random scans
from both SMART-MR and
SMS study.
Training set of 4 random scans
from both SMART-MR and
SMS study.

Training set of 10 ran-
domly selected scans.

Training set of 10 ran-
domly selected scans.

STI First scan of first sub- | Scan with no brain patholo- | Scan with least amount
ject; reference masks | gies, of average age, and av- | of pathology; reference
originate from MNI-152 | erage brain volume; reference | masks originate from
atlas. masks originate from MNI- | SPM12 segmentation.

152 atlas.
MIMECS First scan of first sub- | Scan with average amount of | Scan with medium load

ject.

WDMLs present.

of WMLs present.

its own training and reference scans used for normalization.

Data set A 1In data set A, three healthy subjects are scanned twice a day for 20 days within
a 30-day period on a GE MR750 3 T scanner (software version DV22.0_.V02_1122.a, XRMB
gradient set) and with the ADNI-recommended T1 weighted imaging protocol for this system
(accelerated sagittal 3D IR-SPGR, TR: 7.3 ms, TE: 3 ms, TI: 400 ms, flip angle: 11 deg., FOV:
270 mm x 270 mm, matrix size: 256x256x196, voxel size: 1.055 mm x 1.055 mm X 1.2 mm,
standard 8-channel phased array head coil, acquisition time: 5 min 37 s) [14].

Data set B The scans are from the SMART-MR study and were made on a 1.5 T whole-body
system (Gyroscan ACS-NT, Philips Medical Systems, Best, the Netherlands) with a transversal
T1 weigthed gradient-echo sequence (TR: 235 ms, TE: 2 ms, flip angle: 8 deg., FOV: 230 mm X
230 mm, matrix size: 256x256x38, voxel size: 0.898 mm x 0.898 mm x 4.0 mm) [15]. Within
the SMS follow-up study the subjects were scanned for the second time with the same protocol,

approximately five years after the baseline. A total of 1309 subjects were scanned within the
SMART-MR study.

Data set C In data set C, the subjects were scanned on a 3 T whole-body system (Philips
Medical Systems, Best, the Netherlands) at the UMC Utrecht with a T1 weighted sequence (TR:
7.9 ms, TE: 4.5 ms, FOV: 230 mm x 230 mm, matrix size: 240x240x48, voxel size: 0.958 mm
x 0.958 mm x 3.0 mm) [16]. A total of 207 subjects were scanned with this protocol.

All the scans were normalized according to the normalization method described above. In
Table 1 the training sets and reference scans properties are given for the methods using a training
or reference set. The first scan of subject one from Data set A is used as reference for the STI
and MIMECS method and is the only scan used as reference and as subject in the study.

5.3 Evaluation methods

The six normalization methods are evaluated on four aspects. These aspects are;

Cross-sectional evaluation: The ability to create similar tissue intensities within a group of
subjects with different white matter lesion loads.



Longitudinal evaluation: The ability to create similar tissue intensities within repeated
scans of the same subject, for subjects with and without cerebrovascular disease.

Interscanner reproducibility: The ability to create similar tissue intensities in repeated
scans of the same subject made in MRI scanners with different magnetic field strengths.

Segmentation: The effect on a simple kNN segmentation.

5.3.1 Cross-sectional

Data selection For the cross-sectional evaluation, 30 scans were selected from data set C.
Selection was based on the white matter lesion load and the absence of large (cortical) infarcts
and artefacts. The lesion load is defined as the volume of WMLs. Three groups of 10 subject
scans were made, in order to compare the effect of WMLs on the intensity normalization method.
The lesion load of the scans determined the groups. The lesion load of the low lesion load group
is 0.6 £ 0.3 ml. The lesion load of the medium lesion load group is 4.6 + 0.4 ml. The lesion load
of the high lesion load group is 30.7 & 11.6 ml.

Evaluation At first a visual examination of the intensity distributions of WM, GM, CSF,
and WML, before and after normalization is given. The distributions of the intensities of the
30 scans were plotted in one image. A good normalization method provides similar intensity
distributions across the subjects.

For each scan, the mean intensity of each tissue was determined. Using the 30 mean in-
tensities a mean intensity and coefficient of variance (CV) was calculated. The CV was also
calculated for each lesion load group. A smaller CV means that the mean intensities are more
similar. A visual representation of some slices with a fixed colour window is given as well. The
window is set on the first scan and applied to the other scans.

The Kullback-Leibler (KL) divergence between a Gaussian and the intensity distribution for
WM and GM was calculated as well. The means and the standard deviations of the intensities
of WM and GM of the first scan of the medium lesion load group were used to compute the
reference Gaussian intensity distribution for each tissue type. The KL divergence between this
Gaussian and the normalized intensity distribution is a measure for the similarity of the intensity
distribution and therefore for the performance of the normalization method [17]. A Gaussian
distribution was used as reference since the WM and GM intensity distributions should be
represented by Gaussians [18]. This calculation was also performed on each lesion load group
separately. The KL divergence was also calculated between the intensity distributions of different
tissues. In Figure 2A, a schematic overview of the evaluation method is given.

Analysis The nonparametric Wilcoxon signed rank test was applied to test for a significant
difference between the KL divergence outcomes of the original scans and the normalized scans.
This test was applied because this data was not normally distributed. A Bonferroni corrected
significance level of p < 0.05 was set for the level of significance. The mean intensities are
normally distributed.

5.3.2 Longitudinal

Data selection For the longitudinal evaluation, scans of data set A and B were used. Data
set A consists of healthy subjects and data set B consists of subjects with WMLs and infarcts.
Ten combinations of a baseline and a follow-up scan were selected from data set A.
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Figure 2: A) Schematic overview of the cross-sectional evaluation. The reference scan is
the first scan of the medium lesion load group. B) Schematic overview of the longitudinal
evaluation. Numbers 1 and 2 represent the baseline and follow-up scan, respectively. This
overview also represents the interscanner reproducibility evaluation.

Twenty-five combinations of a baseline and a follow-up scan were randomly selected from
data set B, where subjects with WMLs and infarcts were included. The mean volume of the
WDMLs in the baseline scan is 6.76 £8.55 ml and in the follow up scans 6.94+7.85 ml. The mean
volume of the infarcts in the first scan is 9.93 & 17.60 ml and in the follow up scans 18.71£29.03
ml.

All the scans for the longitudinal evaluation were linear registered to the MNI-152 atlas
using elastix [19]. Therefore the repeated scans of the same subject and can be compared.
White matter lesion segmentations were provided by the SMART-MR study [15].

Evaluation In order to assess the intensity distribution similarity, the absolute intensity dif-
ference between baseline and follow-up scan was calculated after normalization. For WM, GM,
and CSF the mean absolute intensity difference was calculated, to assess the normalization per-
formance for each tissue type. The resulting intensity range differs between the normalization
methods, so in order to compare the results, the values were normalized. This was done by
dividing the outcome by the intensity range of interest (IOI). The IOI is defined as the 99.8"
percentile intensity minus the minimum intensity.

The KL divergence between the intensity probability distributions of the brain volume (WM
and GM) of both scans was also calculated, using 121 bins. A smaller KL divergence corresponds
to more similar intensity distributions [17]. In Figure 2B, a schematic overview of the evaluation
is shown.

The subjects with cerebrovascular disease were scanned with an interval of five years and

the same evaluation was applied as described above. Due to changes in the brain during these
five years, there could be a large difference in intensities after normalization when subtracting
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the two brain volumes. Therefore only the voxels with the same tissue types were taken into
account. Also the mean WML intensity was calculated for each scan and then the absolute
difference between the lesion intensities is calculated. This is done, because the WMLs were not
necessarily located on the same spots in both scans. The KL divergence between the intensity
histograms of the lesions, using 121 bins, was also obtained.

Analysis The nonparametric Wilcoxon signed rank test was applied to test for a significant
difference between the evaluation outcomes of the original scans and the normalized scans.
This test was applied because the data was not normally distributed. A Bonferroni corrected
significance level of p < 0.05 was set for the level of significance.

5.3.3 Interscanner reproducibility

Data selection Ten subject scans were acquired with the MR protocol of data set B, on a 1.5
T scanner, and data set C, on a 3 T scanner, on the same day. The scans were linear registered to
the MNI-152 atlas using elastix [19]. In order for the two corresponding scans to have a similar
intensity distribution, all the scans were normalized using the training and reference scans of
data set C.

Evaluation The evaluation was the same as for section 5.3.2 Longitudinal evaluation. WMLs
might be present in the subjects brain, but no information and segmentation about these lesions
is known. The possible lesions were therefore treated as WM tissue.

Analysis The nonparametric Wilcoxon signed rank test was applied to test for a significant
difference between the evaluation outcomes of the original scans and the normalized scans. This
test was applied because not all the data was normally distributed. A Bonferroni corrected
significance level of p < 0.05 was set for the level of significance.

5.3.4 Segmentation

Data selection Twenty subject scans of data set C were manually segmented [20]. These
scans have an average white matter lesion load of 7.7 & 10.0 ml. Five scans are used to train a
kNN-classifier and fifteen scans are used as test scans. A simple kNN classifier, with k =23 is
trained with 40,000 randomly selected voxels for each tissue (GM, WM, and CSF). Segmentation
and evaluation were performed according to the guidelines of the MRBrainS Challenge [20].

Evaluation The outcome of the segmentation by the kNN-classifier was evaluated within the
MRBrainS platform [20]. The outcome was compared with the manual segmentations using the
Dice score, the 95" percentile of the Hausdorff distance, and the absolute volume difference.

The segmentation by the kNN-classifier is visualized for one slice for each normalization
method.

Analysis Paired t-tests between original and the normalized results were done. The outcomes
were also ranked; a score of 7 was assigned to the method with the worst result and a score of
1 was assigned to the method with the best result. This was done for all the outcomes.
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6 Results

6.1 Cross-sectional

In Figure 3 the intensity distribution of WM for the 30 subjects for each normalized method
is visualized. The lines represent the low (orange), medium (purple), and high (green) lesion
load groups. The intensity distributions for GM, CSF, and WML are shown in Appendix 8.1.
In Figure 4 the intensity distribution of the intracranial structures (WM, GM, and CSF) is
visualized. It clearly shows that the HM_ballscale, STT and MIMECS methods provide a more
similar intensity distribution than the other methods.
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Figure 3: Intensity distributions of the white matter area of 30 subjects. The three lesion
load groups can be recognized by the colour of the histogram.

In Table 2 the mean intensity and the coefficient of variation (CV) of the different tissue
types are given. In Table 3 the CV is given for each tissue and each lesion load group. In
general the performance of the normalization methods gets worse when the lesion load is high.
The Z-score method has the worst performance when it comes to the similarity of the means of
intensities. The MIMECS method performs best together with the STI, HM _median, and the
HM _ballscale method. The latter two methods are negatively affected by a high lesion load.

In Figure 5 a slice of six different scans are shown with a fixed window. For each lesion load
group two scans are shown. The window was determined on the first scan, row 1 in Figure 5, for
each normalization method separately. The colours represent intensity values. The effect of the
lesion load is clearly visible. A proper normalization method yields the same colour for the same
tissue for all the scans. This is seen in MIMECS, STI and HM_ballscale. The other methods
improve the consistency of the colours in comparison with the original data, but variation in the
colours is visible.

In Figure 6 the KL divergence outcomes between a Gaussian and the real intensity distribu-

tion are shown for WM and GM. A lower KL divergence indicates a smaller difference between
the Gaussian and the intensity distribution of the given tissue type.
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Figure 4: Intensity distributions of the intracranial structures of 30 subjects. The three
lesion load groups can be recognized by the colour of the histogram.

Table 2: Mean intensity of the different tissues types for each normalization method and the
coefficient of variation (CV). A lower CV represents a more similar intensity distribution.

WM intensity
Mean CV (%)

WML intensity
Mean CV (%)

Original
Gaussian
Z-score

HM _median
HM _ballscale
STI
MIMECS

1180 9.8
2.26 7.6
1.09 12.9
1549 6.1
1146 4.4
43.4 3.4
1157 0.3

GM intensity
Mean CV (%)
845 8.9
1.62 6.9
0.45 20.5
1155 3.3
840 4.6
29.2 4.8
830 2.1

CSF intensity
Mean CV (%)
328 14.3
0.63 14.1
-0.54 15.9
563 10.4
411 12.7
9.68 18.9
329 13.0

950 13.9
1.82 11.2
0.65 27.1
1278 8.0
926 4.9
33.5 9.3
941 6.3

Table 3: Coefficient of variance (CV) of the mean intensity for each tissue, and each lesion
load group. A lower CV represents a more similar intensity distribution.

WM CV (%) GM CV (%) CSF CV (%) WML CV (%)
Lesion load Low Med. High | Low Med. High | Low Med. High | Low Med. High
Original 6.3 6.4 9.2 5.9 7.2 8.5 13.3 164 114 | 10.0 124 10.5
Gaussian 6.7 5.6 9.1 6.4 5.6 8.6 13.2 14.0 14.2 | 104 11.2 9.3
Z-score 10.3 6.3 16.7 | 17.0 17.2 25.1 | 13.2 19.3 16.3 | 181  26.0 25.7
HM _median 6.0 3.2 7.3 3.2 2.4 4.1 10.3 7.6 11.1 7.5 8.0 5.3
HM _ballscale | 1.6 3.7 6.4 2.6 3.3 5.2 11.2 7.7 12.6 4.1 6.6 3.3
STI 2.7 3.8 2.6 4.1 5.3 4.5 12.6  18.9 20.5 7.3 10.7 3.7
MIMECS 0.1 0.2 0.4 1.5 1.3 1.9 9.0 10.7 15.3 5.4 7.8 3.4

The KL divergences were also calculated between the intensity distributions of different tis-
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suggests a better intensity normalization.
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Figure 6: KL divergence between a normal Gaussian and the intensity distribution of scan
for WM and GM. Lower KL divergence suggests a better intensity normalization. Double
asterisks indicate a significant difference between the original and normalized scan (Bon-
ferroni corrected p-value< 0.05).

sue types. The difference in the outcomes is too small to be relevant. The results are given in

Appendix 8.2, Table 5.

The KL divergence was also calculated for the three different groups separately, see Figure 7.
The effect of the amount of lesions on the normalization method is made clear. The differences
between the original intensity distribution and the normalized intensity distribution become
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smaller when more WMLs are present. There are less significant differences in the high lesion
load group than in the low lesion load group.
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Figure 7: KL divergence between a normal Gaussian and the intensity distribution of WM
and GM for the different groups. Lower KL divergence suggests a better intensity nor-
malization. Double asterisks indicate a significant difference between the original and the
normalized scan (Bonferroni corrected p-value< 0.05).

6.2 Longitudinal

The results of the longitudinal evaluation for the healthy subjects are shown in Figure 8.
Wilcoxon signed rank tests were applied between the original outcomes of the evaluation and
the normalized outcomes of the evaluation. Double asterisks below the bar indicate a significant
difference between the original outcome and the normalized outcome. The effect of the inten-
sity normalization is clearly visible. Especially for WM and GM the difference in intensities is
smaller for all normalization methods.

In Figure 9 the results of the longitudinal evaluation of the pathologic subjects are shown.
The effect of the intensity normalization is clearly visible for WM, GM and WML. Especially
the more advanced methods (HM_ballscale, STI, and MIMECS) provide a smaller difference in
intensities. The performance of the Gaussian and Z-score normalization methods are affected
by the WMLs.

6.3 Interscanner reproducibility

The results of the evaluation of the normalization of 1.5 T and 3 T scanner scans are given in
Figure 10. Wilcoxon signed rank tests were applied between the original outcomes of the evalu-
ation and the normalized outcomes of the evaluation. The effect of the intensity normalization
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Figure 9: Results longitudinal evaluation for pathological subjects. Lower outcomes suggest
a better normalization, for both the normalized mean absolute intensity difference and the
KL divergence. Double asterisks below the bar indicate a significant difference between the
original scan and the normalized scan (Bonferroni corrected p-value< 0.05).

is clearly visible. All methods improve the similarity of the intensity distribution. HM_ballscale
performs the best, especially in the CSF.

6.4 Segmentation

The results of the Dice score (DSC), Hausdorff distance (HD) and volume difference (V) between
the manual segmentation and the kNN segmentation for each tissue type and each normalization
method are shown in Figure 11.
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Figure 11: Results segmentation evaluation; Dice score, Hausdorff distance and volume
difference between the manual segmentation and the kNN segmentation for different tissues
and normalization methods. Double asterisks indicate a significant difference between the
original and the normalized scan according to a paired t-test (Bonferroni corrected p-
value< 0.05).

The results of Figure 11 were ranked and this can be found in Table 4. The HM _ballscale
method is overall the best method to use for intensity normalization when it comes to kNN
segmentation.

In Figure 12, the result of the segmentation by the kNN classifier is given for slice 25 of
test-subject 1 for each normalization method.
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Table 4: Ranking performance of the normalization methods. DSC: Dice coefficient score
(%), HD: Hausdorff distance (mm), V: absolute volume difference (%), Tot: Total of Dice,
HD and V for that specific tissue.

Rank White matter Grey matter Cerebrospinal fluid | Total
DSC HD V Tot | DSC HD V Tot | DSC HD V Tot
Original 7 5 7 19 6 5 7 18 5 7 6 18 55
(Gaussian 4 6 5 15 7 7 6 20 6 5 2 13 48
Z-score 3 7 4 14 5 6 5 16 7 6 7 20 50
HM _median 2 1 3 6 2 1 3 6 2 2 4 8 20
HM _ballscale 1 3 1 5 1 2 2 5 1 1 3 5 15
STI 6 4 6 16 4 4 4 12 4 4 1 9 37
MIMECS 5 2 2 9 3 3 1 7 3 3 5 11 27
kNN Classification
Labels Original Gaussian Z-score

HM median HM ballscale STIL MIMECS

Figure 12: kNN Classifier segmentation for the different normalization methods, k=23. The
ground truth is the manual segmentation, denoted here as ”Labels”.

7 Discussion

In this study, six intensity normalization methods were evaluated on several aspects. The results
demonstrate the potential capabilities of these methods on creating a more consistent intensity
distribution, within a group of subjects, in repeated scans of the same subject, and in repeated
scans of the same subject on MR scanners with different magnetic field strengths. The effect of
the amount of WMLSs on these methods is also demonstrated.

Although the methods were only evaluated on T1 weighted images, the normalization meth-

ods can also be applied on other MR sequences. For each MR sequence the methods need to
have a reference scan or training set, which are obtained with that specific sequence.

Cross-sectional This part of the evaluation clearly showed the effect of the amount of WMLs
on the normalization methods. All methods are affected by the presence of large WML loads,
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but STI and MIMECS are affected least. Gaussian and Z-score are the most affected by the high
lesion load, because it changes the intensity distribution. Furthermore these methods assume
that the intensity distribution is similar. The HM_ballscale method has difficulties finding the
NAWM in high lesion load scans, because this area is not always the largest connected area. In
three cases with high lesion load, the area detected was not the NAWM area and therefore the
KL divergence had a large variety, see Figure 7. The method performs well when the lesion load
is of low or medium volume.

Longitudinal In general, all normalization methods provide a more similar intensity distri-
bution within the same subject; especially for WM and GM the normalized mean intensity
difference is lower than for the original scans. For CSF, it is harder to provide a more similar
intensity distribution, mainly because this is already similar in the original images. A larger
time span between the two scans can give different intensity distributions, due to real anatom-
ical changes, e.g. atrophy or WMLs. Methods primarily based on intensity distribution, i.e.
Gaussian and Z-score, are affected by this. These methods perform less when there is a large
anatomical difference between the baseline and the follow-up scan. Besides this, the Z-score
method is having difficulties normalizing in the presence of WMLs, due to the change in the
intensity distribution. The mean intensity is shifted owing to the presence of these lesions, which
results in a shifted normalization and a larger KLi divergence, as can be seen in Figure 9.

Interscanner reproducibility The difference in intensities between scanners with a different
magnetic field strength is made smaller by all the normalization methods. The results are
similar to the longitudinal evaluation, but the normalized mean intensity differences and the
KL divergences are larger than for the longitudinal evaluation. This is probably due to the
fact that the 1.5 T and the 3 T MRI scanners produce different intensity values. So the initial
intensity difference was already larger for the interscanner reproducibility evaluation than for
the longitudinal evaluation.

Segmentation A quantitative comparison of the effect of intensity normalization on kNN
segmentation was performed. Although MIMECS provided the most similar scans in the cross-
sectional evaluation, the segmentation was not superior. The reason is probably that voxels of
different tissue types can have the same intensity. This results in an overlap of the different
tissue histograms. This overlap remained after normalization with MIMECS. The methods
HM_median and HM _ballscale decreased the overlap in intensity histograms by enlarging the
difference between the intensities of the tissue types and provide therefore a better outcome for
segmentation (cf Table 5 in Appendix 8.2). The STI method decreased the difference between
the intensities of the tissue types. The significantly larger Hausdorff distance of the Gaussian
and Z-score data, is caused by incorrect and noisy segmentations.

7.1 Limitations of the study

Cross-sectional The visualization of the intensity distribution by presenting the histograms,
the CV, and the slices depicted on a fixed window, provided a clear presentation of the effect of
the normalization methods on the intensity distribution and the effect of the amount of WMLs
on the normalization methods, see Figure 4 and Figure 5.

The KL divergence between a Gaussian and the WM /GM intensity distribution in the cross-
sectional evaluation is not the optimal measure to assess the similarity of the intensity distri-
butions. The WM/GM distributions are not normally distributed and so an increase in the KL
divergence can originate from this or from a misalignment in the intensities by the method. A
distinction between the two causes is not possible. This can be improved by calculating the KL
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divergence between the average tissue intensity probability distributions of all the scans and the
tissue intensity probability distributions.

Longitudinal and Interscanner reproducibility In the longitudinal and interscanner re-
producibility evaluation, the scans were all registered to the MNI-152 atlas, because the prob-
ability masks of the MNI-152 atlas were already available for the STI method. The result was
a transformation and resampling from 38 slices to 193 slices. This resulted in an interpolation
of the intensities and blurring of the scan, which deteriorated the quality of the scan. However
the comparison is still valid, since all the scans were affected equally by this. The registration
to the MNI-152 atlas is probably the best solution to make a fair comparison between the scans
and to have good probability masks available.

The tissue probability masks obtained by SPM (WM, GM, and CSF)and WML masks were
not optimal. A high threshold was set to the probability masks to produce the binary masks
with a high specificity. Still, voxels from a different tissue type might be included in a mask.
Especially WMLs were hard to distinguish from other tissue types for automatic software.

Segmentation This study suggests that some methods (HM_median and HM _ballscale) im-
prove the outcome of a simple, intensity based kNN segmentation. This does not automatically
mean that these methods also improve the outcomes of other image processing tasks. For exam-
ple, a more consistent intensity distribution provided by STI or MIMECS might provide better
outcomes for other, more advanced, segmentation methods (i.e. SPM or FreeSurfer [21]), than
HM_median and HM _ballscale. Further research can give more conclusive answers on this topic.

Also the WMLs were classified as WM tissue and therefore the ability to make a distinction
between these two tissues on intensity basis was not tested.

7.2 Intensity normalization methods

Several intensity normalization methods were evaluated during this study. The simplistic meth-
ods, as Gaussian and Z-score, are fast but perform less than other methods and are not robust
to the presence of pathologies, such as WML.

HM _median is a fast method and increases the relative distance between intensity peaks of
different tissue types, but it gives mediocre results when it comes to similarity of the intensity
distributions. The ability to improve the intensity consistency and the segmentation was already
verified, even when pathologies are present in the brain [4, 9, 21].

The STI method provides a more consistent intensity distribution than the original data
and the HM_median method, which is concordant to Robitaille et al. [2]. The limitations of this
method are the reliance on registration, and the need of a representative reference scan.

HM _ballscale gives good results and is semi-robust to the presence of pathologies. It was
already shown that this method provides consistent intensities better than the original data
and the HM_median method [3]. It also increases the relative difference between the intensity
peaks of different tissues. The limitations are that the determination of the landmark in the
subject scan takes some computational time and is not fully automatic. The implementation of
this method was based on the method described by Madabhushi and Udupa [3], with a major
difference in the selection of the landmark. In our study only one slice was used to generate the
landmark and in the original method the whole 3D scan was used. The use of the whole scan
might improve the stability of the landmark selection. Another deviation from the described
method is the training part. The median landmark was defined by taking the average of the
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median of the determined NAWM area of the original intensity scale, instead of the median on
the standard scale.

The MIMECS method computes the same intensity distribution as the reference scan and
creates therefore very similar intensity distributions. The pathologies present in the subject scan
need to be present in the reference scan. A careful choice of a reference scan is recommended
for the method to assign the right intensity to the right pathology. Other limitations are the
large computational time (approximately 4 hours) and the need to provide the WM peak when
the scan is not skull stripped.

7.3 Conclusion

Intensity normalization is a difficult task, however the methods HM_ballscale, STI, and MIMECS
provided the best results for our study. MIMECS creates the most similar intensity distribu-
tions; for longitudinal and cross-sectional purposes. This method is recommended when the
pathologies present are known and computational time is not an issue. HM _ballscale is the
best semi-automatic method, had the best effect on the kNN segmentation, and yields the most
similar intensity distributions in the interscanner reproducibility. It is recommended when im-
age processing tasks are based on the intensity distributions and a large volume of NAWM is
available in the scan. STI is recommended in other cases.

It is still unclear whether other (non-intensity based) image processing tasks benefit from
the intensity normalization. Concerning this part, further research is recommended.
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8 Appendices
8.1 Intensity distributions for GM, CSF, and WML
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Figure 13: Intensity distributions of the GM of 30 subjects. The three lesion load groups
can be recognized by the colour of the histogram.
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Figure 14: Intensity distributions of the CSF of 30 subjects. The three lesion load groups
can be recognized by the colour of the histogram.
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Figure 15: Intensity distributions of the WML of 30 subjects. The three lesion load groups

can be recognized by the colour of the histogram.

8.2 KL divergences between different tissue intensity distributions.

Table 5: Average Kullback-Leibler divergences between tissue types. A higher value sug-
gests a larger difference between the tissue intensity distributions and is therefore better.
A bold printed value indicates a difference from the original.

KL divergence | WM - GM | WM - WML | GM - CSF | GM - WML
Original 13.5 7.9 13.1 2.6
Gaussian 13.5 7.9 13.1 2.6
Z-score 13.5 7.9 13.2 2.6
HM _median 13.5 7.9 13.1 2.6
HM _ballscale 13.6 7.9 13.3 2.7
STI 13.1 7.7 13.1 2.4
MIMECS 13.5 7.9 13.1 2.6
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8.3 Normalization methods

A more extended explanation of the six intensity normalization methods applied in this study
is given in this part. An overview of the properties of the methods is also given at the end.

Gaussian [7] This method, referred to as Gaussian, is the simplest and the fastest method.
It rescales the intensities by a global linear scaling using I,e,, = I/SD. Where [ is the intensity
and SD is the standard deviation of the whole scan. The intensities are scaled based on the
assumption that each scan has the same intensity distribution [7]. The presence of pathologies
can alter the intensity distribution and the consequence is a shift in the normalization. The
computational time is approximately 2 seconds.

Z-score or zero mean, unit variance [7] This method, referred to as Z-score, is also known
as zero mean unit variance. It rescales the intensities by a global linear shift and scaling, using
Inew = (I — p)/SD. Where I is the intensity, u is the mean intensity and SD is the standard
deviation of the whole scan. The intensities are scaled and shifted based on the assumption that
each scan has the same intensity distribution. All means are shifted to zero, but the means do
not automatically correspond to the same tissue type in different scans, especially when a large
amount of WML is present. The computational time is approximately 2 seconds.

Histogram matching on median [4, 22] This method, referred to as HM_median, was first
described by Nyl and Udupa (2000) [4]. This two-stage method consists of a training step and
a transformation step.

Transformation
Take the overall mean intensity of the scan and threshold the scan by this value to get the
foreground. Take the median of the foreground as landmark psg. Get the 0 and 99.8" per-
centile intensity of the scan (p; and pg respectively). Map the intensity values piece wise linearly
with the obtained landmarks (i.e.p1, pe2 and usg) to the standard landmarks (s1, s2, and s,
respectively). See Figure 16. The standard landmarks are obtained during the training step.

Training

In this step the histogram is rescaled to the pre-set landmarks s; and sy. These values are
chosen by the user in such a way that the histogram is not compressed after the normalization,
so the s; and sg should be larger than the expected minimum and maximum intensity of the
subject histogram, respectively. These values of s; and ss depend on the MRI sequence and
brand of the MRI scanner, since the intensity ranges can differ between them. The intensity
values of p; and p2 are determined and the rescaling is applied by mapping [p1, p2] to [s1, s2]
linearly. Next, the mean of the intensities is set as threshold and the median of the foreground
is taken as landmark. This procedure is repeated for several times and the rounded mean of the
determined median landmarks is taken as the standard median landmark ssg.

This method is semi-robust to WML. The computational time for the transformation step
is approximately 6 seconds.

Generalized ball scale histogram matching [3, 11] This method was first described by
Madabhushi and Udupa (2006) [3] and is a variation of the HM_median method. The difference
is the way to retrieve the WM peak/landmark. For each voxel a radius of a ball is determined.
This radius is growing, as long as 83 percent of the outer voxels satisfy a predefined homogeneity
criterion. The homogeneity criterion is determined by the manually selected voxels (the value is
the mean difference between adjacent voxels in the selected region plus three times the standard
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Figure 16: Transformation step of HM median. A) Compute intensity histogram of scan.
B) Set the mean intensity as threshold for the foreground. C) Get the median intensity
50y D1, and po as landmarks. D) Linear piece-wise mapping to standard landmarks.

deviation of this difference). The 83 percent is the adviced threshold.

The result is an image in which the voxel values represent the largest radius for that voxel,
see Figure 17. This image is thresholded by 2 voxels in this study. The largest connected vol-
ume of this thresholded image is considered NAWM in brain scans. The median intensity of this
volume is taken as a landmark. The other two landmarks are again the 0'h percentile and the
99.8'h percentile of the entire intensity histogram. The intensities are piece-wise linear mapped
to the standard scale landmarks. The standard landmarks are obtained during the training step
with the use of multiple scans. This training part is the same as for the HM_median method,
described above.

In the method described the whole scan is included, but due to an otherwise long computa-
tional time, only the middle slice is used in this study. When large areas of WMLs are present
in the brain, the algorithm might not detect the NAWM, because this is no longer the largest
connected area. The computational time is approximately 80 seconds, including the manual
selection of NAWM.

STI [2] This method is called Standardization of Intensities (STI), and was proposed by Ro-
bitaille et al. (2011)[2]. The subject scan is nonlinear registered to a reference scan. The
intensities of the reference scan are rescaled to intensities between 0 and 100. The masks of
WM, GM and CSF of the reference scan are applied to both the reference and the subject scan.
A joint histogram is created for each tissue separately and this is filtered with a Gaussian fil-
ter. The mode of the joint histogram is selected as landmark. The minimum intensity and the
maximum intensity of the subject scan are set to 0 and 100 respectively and are also used as
landmarks. The transformation is a linear piece-wise mapping between the five landmarks. See
Figure 18.

A proper reference scan has a similar intensity distribution as the subject scan. This reference
scan needs to be carefully selected. STI is a WML robust method and can handle atrophy.
Unfortunately it yields loss of intensity information. The computational time is approximately
80 seconds.

MIMECS [5] This method was developed by Roy, Carass, and Prince (2013) and the software
is called MIMECS [5, 12]. The intensities of the subject scan are normalized to the intensities
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Figure 17: Steps in HM ballscale method. A) For all voxels the largest ball radii for which
the homogeneity criterion still holds is given. B) Largest connected volume after thresh-
olding at a radius of 2 voxels.
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Figure 18: Steps for STI. A) WM masks from reference to apply on the subject and reference
scan. B) Gaussian filtered joint histogram for WM. C) Linear piece-wise mapping between
the five landmarks.

of a reference scan with the use of 3 x 3 x 3 voxel patches. At first a similar intensity range is
needed for a better matching of voxels, so both scans are normalized by the WM peak. This
WM peak is predetermined by the user. This can be done fast, accurate and automatically,
when tissue masks of the reference and of the subject scan are available. The masks are applied
to the scans. Then all the voxels of WM can be obtained and the median intensity of these
voxels is the WM peak. When the scan is skull stripped, this WM peak does not have to be
given to the method, since it determines the WM peak automatically.

Next for each voxel a surrounding patch is defined. The best matching reference patch for
each subject patch is defined by the maximum likelihood and found using the expectation max-
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imization algorithm [5]. The central voxel intensity of the subject is replaced with the matching
central voxel intensity of the reference.

The reference scan should contain all the pathologies that are expected in the subject scan

for a good intensity normalization. The reference scan should therefore be carefully chosen. The
computational time is approximately 4 hours, which makes it a very time consuming method.
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Table 6: Overview of properties of intensity normalization methods described in this study.

Robust to | Reference Computational | Fully automatic | Pre-processing | Assumption
WML needed time steps needed of similar
intensity distri-
bution
Gaussian No No 2 seconds Yes No Yes
Z-score No No 2 seconds Yes No Yes
HM _median | Partly Training set | 6 seconds Yes, during the | No Yes
needed transformation
step
HM _ballscale | Partly Training set | 80 seconds No, manual selec- | No No
needed tion of NAWM
STI Yes Yes, with a com- | 80 seconds Yes Yes, registration Yes
parable intensity
distribution and
no pathologies
MIMECS Yes, when | Yes, the expected | 4 hours Yes, when the | No No
pathologies pathologies in the WM peak selec-

are also present
in reference.

subject, need to
be present in the
reference scan.

tion is automatic.




