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Controller Design of a Variable Stiffness Joint for Catching a Moving
Object

J. Kumle, S.S. Groothuis and R. Carloni

Abstract— In this paper a control method is designed in order
to catch a moving object by means of a robotic joint that
implements a variable stiffness actuator (VSA). The controller
acts as a virtual damper for absorbing the kinetic energy of
the object. The gain of the virtual damping and the physical
stiffness of the VSA are the control variable. To obtain a
critically damped system the damping gain is scheduled on
both, the physical stiffness and the inertia of the system. By
changing the stiffness of the VSA, the internal deflection of the
VSA can be controlled. Experiments on the rotational variable
stiffness actuator vsaUT-II validate the principal functionality
of the method.

I. INTRODUCTION

If a human catches an object different parts of the human
has to interact perfectly. First, the movement of the object
is observed and an location as well as a point of time is
determined for catching the object. The arm muscles are pre-
tensioned for preparing the arm to the momentum the object
will transfer to the arm. As soon as the arm gets in contact
with the object the muscles are tensioned for absorbing the
kinetic energy of the object. Figure 1a and figure 1b show a
manikin catching a falling ball. In figure 1a the manikin does
not tense the arm muscles which results in a big deflection
of the elbow. In figure 1b the manikin does tense the arm
muscles and therefore decreases the deflection.

The objective of this paper is to control a one degree
of freedom actuator for catching an object by imitating the
behaviour of an human arm, as shown in figure 1a and figure
1b. An additionally objective is that the actuator interacts
safely in a human environment. Using a Variable Stiffness
Actuator (VSA) presents the opportunity to adapt the stiffness
of the actuator during the catching process as the human is
able to tense the muscles of the arm. The controller in this
paper is implemented as a virtual damper in order to absorb
the kinetic energy of the moving object. The paper focuses on
controlling the deflection of the VSA. Therefore the stiffness
of the VSA gets adjusted to control the maximum deflection
dependent on the estimated total energy of the system. The
damping gain of the virtual damper get scheduled on the
inertia and the stiffness of the elastic element for achieving
a desired oscillation behaviour. The moving object is not
detected before it collides with the VSA output. Therefore,
it is assumed that the object has always the same trajectory
and gets in contact with the VSA at the same position.
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(a) Arm muscles are not tensed (b) Arm muscles are tensed

Fig. 1: Catching a dropping object without tension in the arm and with
tensed arm.

Furthermore, it is assumed that the mass of the moving object
is known and a mechanism is implemented at the VSA that
rigidly attaches the object to the VSA output after collision.

The literature research is structured in three topics. First,
safely interacting with the environment can be realized by a
compliant actuation. [1], [2] and [6] are using an impedance
control for obtaining a compliant actuation. As in [6] the
controller in this paper is tuned by considering the controller
motor combination as virtual mechanical elements, define the
target dynamics of a pure mechanical system and choose the
control gains for achieving these defined target dynamics.
Compared to the mentioned papers the controller in this
paper is acting as a pure damper and therefore only absorbs
energy. Second, in order for catching a moving object a
damping element, which absorbs the kinetic energy in the
system, is required. In [7], [8] and [9] damping injections
are represented. As in [9] the damping gain in this paper
is scheduled on both, the stiffness and the inertia of the
system but compared to the mentioned papers the control
gains are scheduled on the target dynamics of a linearised
system with respect to the limitations of the system. The last
topic describes different control methods and applications of
VSAs which can be found in [3], [4], [5] and [10]. As in
[3] a gain scheduling is performed on a VSA within this
paper but compared to the mentioned paper this controller is
designed as a virtual damper for catching a moving object.

The paper is structured as follows:
• I Introduction
• II Controller Design
• III Experiments and Results
• IV Discussion
• V Conclusion
• VI Appendix



II. CONTROLLER DESIGN

In this section, the design of a controller for a variable
stiffness actuator is presented.

VSAs have the advantage that their output stiffness at
the output can be changed independently from the output
position. In this paper a VSA is considered which consists
out of two internal motors, an elastic element and an output
where a load can be connected to as shown in figure 2. First
motor tunes the stiffness K(q1) of the elastic element by its
output position q1 to the demands of the application. Second
motor controls the output position of the VSA while the
motor is connected to the output via the elastic element. Let
r be the absolute angular position of the output link with
respect to the frame and q2 the absolute angular position
of the motor with respect to the frame. Additionally, the
inertia Jload of the VSA output is an important parameter
for analysing and controlling the behaviour of the system.

Fig. 2: Illustration of a variable stiffness actuator, where J is the load
connected to the output represented by a inertia, K(q1) is the stiffness of
the elastic element and q̇1, q̇2, r are angular velocities. The frame represents
the fixed world

A. Desired behaviour and control goals
An object with a known mass moves with a certain

velocity towards the output of the VSA. In this paper it is
assumed that a mechanism rigidly attaches the objects to
the VSA output as soon as the object gets in contact with
the output. If the object is rigidly connected to the VSA
output the inertia of the output increases. If the momentum
of the moving object is transformed by an elastic collision
to the VSA output kinetic Energy is stored in the system
and the output starts moving, ṙ ̸= 0. A movement of r leads
to a deflection of the elastic element and therefore potential
energy are saved in the VSA. During this step energy gets
transferred from kinetic energy Ekin into potential energy
Epot. If the potential energy gets larger than the kinetic
energy Epot > Ekin the object accelerates in the opposite
direction of the original movement of the object. Due to
the goal of stopping the object a change of direction should
be avoided. For safely interacting with the environment a
compliant character can be achieved by a low stiffness of the
VSA. The deflection of r to its equilibrium position should
stay small. With respect to the described desired behaviour,
the following control goals are defined:

• lim
t→tf

ṙ(t) = 0

• Epot(t) ≤ Ekin(t), ∀t ∈ [0, tf ]
• K(q1, t): low ∀t ∈ [0, tf ]
• |r(0)− r(t)|: small ∀t ∈ [0, tf ]

B. Control architecture

Fig. 3: Illustration of a virtual damper with the damping gain cv replacing
the motor for changing q2 in order to design a controller that act as a damper.
Motor for changing q1 is irrelevant for that part and therefore taken out of
the sketch.

The first control goal lim
t→tf

ṙ(t) = 0 defines that the kinetic

energy of the system should be absorbed. For absorbing
kinetic energy the controller-motor combination is consid-
ered as a virtual damper which is connected to the fixed
world. Figure 2 can be redrawn to figure 3, where the motor
for changing q2 is sketched as a damper with the damping
constant cv connecting q2 to the fixed world. The circle in the
figure represents the moving object, which should be caught.
The parameter for the moving object is its mass mobj and
its velocity vobj . If the object gets in contact with the VSA
output the rule for conservation of momentum defines the
rotating speed of r by the formula ṙ =

mobjvobj
J . The VSA

output accelerates according to r̈ = ∂ṙ
∂t . This acceleration

creates an impulsive torque to the output which is transferred
to the elastic element.

On the basis of the illustration in figure 3 a block diagram
as seen in figure 4 can be drawn. The impulsive torque
input Mobj is modelled by two step sources subtracted from
another, where the second has the same final value as the first
with a step time difference of ∆t = 10ms what results in a
pulse with duration of ∆t. Figure 4 shows that the Controller,
as virtual damper, is a proportional controller with a gain of
1
cv

. The input of the controller is the torque τs saved in the
elastic element which results out of the position difference
q2 − r and the stiffness K(q1) of the elastic element. The
output of the controller is a target velocity q̇2 for the motor.
The velocity of the VSA output ṙ results out of the torque τs
saved in the elastic element and the impulsive torque input
Mobj acting on the inertia of the VSA output.

Fig. 4: Block diagram based on the illustration of figure 3. Figure represents
the general control architecture.

.



C. Adapting the stiffness of the elastic element

For interacting safely with the environment and human
beings compliant actuation can be realized by a low stiffness
K(q1) of the elastic element inside the VSA. The stiffness of
the elastic element is a function of q1. Due to Hooke’s Law
the energy of the elastic element depends on the stiffness of
the elast element K(q1) and the deflection (r−q2). Therefore
the most compliant stiffness for a defined maximum deflec-
tion can be calculated by a defined maximum deflection and
the total energy in the system, shown in equation (4). The
total energy in the system is the sum of the kinetic energy and
the potential energy. The kinetic energy in the system can be
calculated by the inertia of the system and the velocity of the
VSA output. The energy functions are shown in equations
(1),(2) and (3).

Epot =
1

2
K(q1)(r − q2)

2 (1)

Ekin =
1

2
Jṙ2 (2)

Etotal = Epot + Ekin (3)

Kdes =
Etotal

2dmax
(4)

Since the stiffness K(q1) is a function of q1 a desired
stiffness of the elastic element defines a desired q1. This
leads to a position controller on q1, shown in figure 5. The
first block transfers a desired stiffness Kdes into a desired
position of the pivot point q1desired . After this block there is
a closed loop containing the position controller and the plant
of the system. The output of the plant is the position of q1
which leads to the stiffness of the elastic element.

Fig. 5: Position control on q1 for achieving Kdesired

.

D. Choose damping gain

The control goal Epot(t) ≤ Ekin(t), ∀t ∈ [0, tf ] defines
that overshoot of r should be avoided and because of the
control goal |r(0)−r(t)|: small ∀t ∈ [0, tf ] a critical damped
system is required.

By analysing the block diagram in figure 4 a transfer
function from the momentum of the moving object Mobj

to the velocity of the VSA output ṙ can be created. Shown
in equation (5).

ṙ

Mobj
=

1

J

s+ K
cv

s2 + sK
cv

+ K
J

(5)

T =
Y

U
=

Kω2

s2 + 2ζωs+ ω2
(6)

The transfer function of the system, shown in (5) is of
order two and compared to the standard transfer function of a
second-order systems, shown in equation (6), the undamped
angular frequency ω can be calculated, as shown in equation
(7).

ω =

√
K

J
(7)

By using the natural frequency and the transfer function
for the standard form of a second-order system the damping
ratio of the system ζ can be determined by the formula (9),
which results out of equation (8. The gain for the virtual
damper results out of a desired damping ratio, shown in
equation (10). The damping ratio ζ describes the damping
behaviour of the system.

• ζ < 1 - under-damped system
• ζ = 1 - critically damped system
• ζ > 1 - over-damped system

2ζω =
K

cv
(8)

ζ =
K

2cvω
=

K

2cv

√
K
J

=

√
KJ

2cv
(9)

cv =

√
KJ

2ζ
(10)

Because a variable stiffness actuator can vary the stiffness
of the elastic element K(q1) the damping factor is scheduled
on both the stiffness and the inertia of the System.

III. EXPERIMENTS AND RESULTS

In this paper the method is applied on the vsaUT-II, a
rotational variable stiffness actuator [12], shown in figure 6.

Fig. 6: Picture of the vsaUT-II [12].



A. Experimental set-up

The VSA contains a motor-transmission combination for
changing q1 and q2. A non-linear relation leads from the
position of r, q2 and q1 to the stiffness of the elastic element
explained by equation (11), where k is the elastic constant
for the internal elastic elements and L is the lever arm length.
Along the lever arm a pivot point q1 can be moved for
changing the stiffness of the elastic element from 0.7 Nm/rad
to 400 Nm/rad. An initial stiffness of 1Nm/rad was chosen
so that the natural frequency of the system ω is smaller
than the crossover frequency of the system wc for changing
the position of q2 and therefore being able to follow the
movement of r. Due to mechanical end-stops of the system
q2 can move from −0.5...0.5 rad and r can move dependent
of the position of q2 from q2−0.7 rad...q2+0.7 rad. Further
important values for implementing the controller are shown
in tables I - III.

K :=
∂τr
∂r

= 2kL2 (L− q1)
2

q21
cos(2(r − q2)) (11)

TABLE I: Parameters for the path of q1.

max. motor speed 872 [rad s]
max. continuous torque 0.0263 [Nm]
stall torque 0.243 [Nm]
speed reduction ratio 0.0022 [−]
motor shaft inertia 1.07 · 10−6 [kg m2]
motor friction 6.4 · 10−6 [Ns/m]
transmission input inertia 4 · 10−8 [kg m2]
max. transmission efficiency 0.59 [−]

TABLE II: Parameters for q2.

max. motor speed 726 [rad/s]
max. continuous torque 0.17 [Nm]
stall torque 2.28 [Nm]
speed reduction ratio 0.0044 [−]
motor shaft inertia 1.38 · 10−5 [kg m2]
motor friction 3 · 10−6 [Ns/m]
transmission input inertia 9.1 · 10−7 [kg m2]
max. transmission efficiency 0.72 [−]

TABLE III: Parameters for the bath between q2 and r.

friction 1.2 · 10−2 [Ns/m]
inertia 1.1 · 10−2 [kg m2]

The parameters, shown in tables I - III are used for creating
a simplified plant on which the control method can be tested.
The simplified model was validated by comparing it to a
complex model of the system described in [12].

Additionally a magnet was mounted to the VSA output
for attaching the object rigidly to the output. The object is
an iron ring, with a weight of mobj = 0.108 kg rolling down
from a ramp before hitting the output. The iron ring hits the
output at t = 1 s. If the iron ring is connected to the output

the inertia of the VSA output changes to 0.0205 kg m2. The
height of the ramp is 0.3 m and therefore the velocity can be
calculated by considering the energy. The experimental set-
up is schematic shown in figure 7, where (1) is the object
rolling down from the ramp (2) and hitting the magnet (3)
which is rigidly connected to the output (4) of the VSA (5).

Fig. 7: Schema of experimental set-up. Where (1) is the object rolling down
from the ramp (2) and hitting the magnet (3) which is rigidly connected to
the output (4) of the VSA (5).

The VSA is equipped with three position sensors for
measuring q1, q2 and r. An Adruino µ-Controller commu-
nicates to the sensors and actuators. This µ-Controller has
an interface to Matlab-Simulink so that the controller can be
implemented in Matlab-Simulink. The motor controller for
q1 and q2 are ELMO Whistle controllers.

The limitations of the system are the end-stops of q2 and
r and the maximum motor speed of q1 and q2. The end-
stops limit the movement of the VSA output. The maximum
motor speed for q2 limits the maximum damping factor of the
virtual damper and the maximum motor speed for q1 limits
the rate of change for the stiffness of the elastic element. The
experiments described in this paper were performed within
the limitations of the system.

B. Results
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Fig. 8: Validation of simulation on experimental set up at an uncontrolled
system. The iron ring hits the VSA output at t = 17.3 s
.

After setting up the controller and applying the described
method in section II simulations and experiments were
performed. First, the behaviour of the uncontrolled system of
the experimental set up was compared to the simulation at a
stiffness of 1 Nm/rad while the virtual damper was inactive



(q̇2 = 0 rad/s,∀t ∈ [0, tf ]). The results are shown in figure
8. While the simulation and the experiment show similar
oscillation behaviour, differences in the damping behaviour
can be seen. For the simulation a simplified friction model
by a constant friction gain is modelled which leads to these
differences. The validation of the simulation model shows a
sufficient result for implementing and testing the controller
in a simulation before applying it at the experimental set up.

The second experiment, shown in figure 9, was performed
by implementing the virtual damper. The behaviour of the
damped system is compared to the undamped system (dotted
line). The behaviour of a critically damped system was
analysed at the experimental set up (dashed line) and in a
simulation (solid line). The stiffness of the elastic element is
constant at 1 Nm/rad during this experience. A damping ratio
of ζ = 1 results in a damping gain for the virtual damper of
0.071 Ns/m. The plot on the top shows the movement of r.
The plot in the middle shows the movement of q2. The plot
at the bottom shows the motor activity for changing q2. In
the experiment q2 reacts on the requested motor speed slower
than in the simulation. Likely this is the case due to a time
delay within the communication between Matlab-Simulink,
µ-controller and motor controllers. Due to a slower reaction
of q2 in the experiment the deflection of r and q2 is greater,
a greater deflection leads to a greater force in the elastic
element counteracting the movement of r and therefore the
total deflection of r to its equilibrium point is smaller. No
overshoot of r can be detected and the system is indeed
close to being critically damped. The result of the experiment
and the simulation of the controlled system show the desired
behaviour described in section II and fulfil the control goals.

Varying the gain of the virtual damper should has an
influence on the damping ratio. Therefore experiments were
performed with slightly changed damping gains and the
behaviour is compared to the critically damped system.

Figure 10 compares the gain for the critically damped
system with a gain for a slightly over-damped system. In
the experiment and at the simulation a higher damping ratio
request a faster change of q2 and therefore a smaller force
counteracts the movement of r. As in the last experiment
q2 reacts slower in the experimental set up than in the
simulation which leads to a smaller total deflection of r to
its equilibrium point at the experimental set up.

Figure 11 compares the gain for the critically damped
system with a gain for a slightly under-damped system. The
results of the experimental set up show a clear overshoot for
r, whereas a close look is needed to see the overshoot in the
simulation. Again, the difference between the simulation and
the experimental set up regarding the deflection are obvious.

Furthermore, a simulation was performed for changing the
maximum deflection between r and q2 which results in a
change of the stiffness of the elastic element. The results
are shown in figure 12. For the first simulation a maximum
deflection of 0.5 rad is defined. Since 1 Nm/rad is the initial
stiffness and the deflection for the initial stiffness does not
exceed 0.075 rad a change of stiffness is not required for
achieving a smaller deflection than the maximum defined
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Fig. 9: Comparison of the oscillation behaviour from uncontrolled system
to the controlled system. At a constant stiffness of 1 Nm/rad. The behaviour
of the simulation is compared to the behaviour of the experimental set up.
The iron ring hits the VSA output at t = 1 s.

time [s]
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

r 
[r

ad
]

0

0.2

0.4

ζ=1(exp) ζ=1.2(exp) ζ=1(sim) ζ=1.2(sim)

time [s]
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

q
2
 [r

ad
]

0

0.2

0.4

time [s]
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

m
ot

or
 s

pe
ed

 [r
ad

/s
]

0

100

200

300

Fig. 10: Comparing an over-damped system to a critically damped system at
a constant stiffness of 1 Nm/rad. Results of the simulations are compared
with the results of the experimental set up. The iron ring hits the VSA
output at t = 1 s.



time [s]
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

r 
[r

ad
]

0

0.2

0.4

ζ=1(exp) ζ=0.8(exp) ζ=1(sim) ζ=0.8(sim)

time [s]
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

q
2
 [r

ad
]

0

0.2

0.4

time [s]
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

m
ot

or
 s

pe
ed

 [r
ad

/s
]

0

100

200

300

Fig. 11: Comparing an under-damped system to a critically damped system
at a constant stiffness of 1 Nm/rad. Analysing the differences between
simulations and the experimental set up. The iron ring hits the VSA output
at t = 1 s.
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Fig. 12: Using the energy function for defining a maximum deflection of
r to q2. K = Kdesired at the idealized system. The figure shows that
the idealized system is able to meet the desired behaviour by requiring a
motor speed of 5000 rad/s. K and Kd lay above each other in the ideal
system and in the simulation with a maximum desired deflection of 0.5 rad.
Therefore only the trajectories of Kd are shown for these two simulations.
The iron ring hits the VSA output at t = 1 s.

deflection and the stiffness stays constant at 1 Nm/rad.
The second simulation is performed by assuming that the
motor for changing the stiffness is ideal and therefore K =
Kdesired. A maximum deflection of 0.05 rad is defined.
The figure shows that the stiffness gets adjusted to the total
energy in the system and the deflection converges nicely to
the defined maximum deflection. The ideal system where
K = Kdesired would require a motor speed of 5000 rad/s
whereby the maximum motor speed of the system has only
a maximum motor speed of 872 rad/s. The third simulation
is performed by staying within the motor limitations. Figure
12 shows that K can not follow Kdesired fast enough. The
deflection is smaller than the deflection at the first simula-
tion but compared to the ideal situation defined maximum
deflection of 0.05 rad is exceeded.

IV. DISCUSSION

The results shown in section III demonstrate that the
implementation of a virtual damper for controlling a VSA
leads to a definable catching behaviour of an object within
the system limitations. Using the energy function for cal-
culating the maximum deflection requires a rapid change
of the stiffness of the elastic element. The dynamics of
the presented experimental set up are to slow to keep the
deflection smaller than the defined maximum deflection. A
faster change of the stiffness by a more powerful motor or a
mechanical redesign could solve this problem. The validation
of the simulation shows the same behaviour due to the
oscillation frequency but the gain of the friction differs from
the set up to the simulation. Modelling friction is a difficult
task and in this case a model by a constant parameter is
probably too simple.

V. CONCLUSION

The paper describes a control method for catching a
moving object. Therefore, a controller for a variable stiffness
actuator is designed. The controller acts as virtual damper
for absorbing the kinetic energy of the system. The control
variables are the gain of the virtual damper and the stiffness
of the elastic element. The gain of the virtual damper is
scheduled on both the stiffness and the inertia of the system.
The stiffness of the elastic element is chosen in order to
control the maximum deflection of motor position and the po-
sition of the VSA output. Simulations and experiments were
performed based on the vsaUT-II. Although the performance
is limited by physical limitation of the system it was shown
that the damping gain of the virtual damper can be adjusted
to achieve a desired damping ratio of the system and that the
deflection of the output to the motor can be controlled by
the stiffness of the elastic element by considering the total
energy in the system.

VI. APPENDIX

A. Basic model of VSA

By using the bond graph theory described in [11] a bond
graph is created based on the sketch of figure 3, shown in
figure 13. Since the moving object produces an impulsive



torque on the output it can be characterized by an effort
source modulated by an impulse. Furthermore, because the
object is rigidly attached to the output after getting in contact
with it the inertia of the object Jobj gets added to the inertia
of the output Jload.

Fig. 13: Bond graph of the system sketched in figure 3. The controller acts
as virtual damper cv and therefore the motor for changing q2 is replaced
by a damping element. The environment is modelled by an effort source
due to the impulsive torque input when the object hits the VSA output.

As the bond graph in figure 13 shows, the virtual damper
R : cv acts as an admittance by using a torque as input
for generating a flow q̇2 and therefore the plant acts as
an impedance. In this method it is assumed that the motor
including the motor controller is able to follow the desired
motor speed quickly.

The system description leads to a bond graph model as
shown in figure 14. For analysing the system it is assumed
that |r− q2| stays small and therefore the stiffness K(q1) of
the elastic element depends only on the position of the pivot
point q1, what is represented by the box around the stiffness
of the elastic element C : Kinv. The dependency of K on
q1 is non-linear.

Fig. 14: Bondgraph of a VSA. The stiffness of the elastic element K has a
non-linear dependency on the pivot position q1, this is represented by the
Look-up table and the box around C:Kinv.

The First model represents the behaviour of the main
system its input is τm2 and its output is the velocity of the
load r. The stiffness of the elastic element acts inside that
system as a variable parameter. The state space equations
(12) - (16) represent the system behaviour.

ẋ = Ax+Bτm2
(12)

y = Cx (13)

where:

ẋ =


∂ṙ
∂t
∂r
∂t
∂q̇2
∂t
∂q̇2
∂t

 ;x =


ṙ

r

q̇2

q2

 (14)

A =


− cm2+cm2

Jm2
− K

Jm2

cm2

Jm2

K
Jm2

1 0 0 0
cm2

Jload

K
Jload

− cm2

Jload
− K

Jload

0 0 1 0

 (15)

B =


1

Jm2

0

0

0

 ;C =
[
1 0 0 0

]
(16)

The system in form of a block diagram gives the opportu-
nity of including non-linear behaviour. This is necessary for
implementing physical limitations of a system. For example
maximum motor torque and maximum motor speed. Figure
15 shows the block diagram. The block diagram can be used
for analysing the behaviour of a VSA without interacting
with the environment.

Fig. 15: Block diagram from τm2 to ṙ. Non-linear saturation elements for
the physical limitations of the motor are included. The stiffness of the elastic
element is modelled constant.

The simplified model shown in 15 was validated to a 20-
sim experiment created by S.S. Groothuis during the system
identification and parameter estimation in [12]. Therefore,
the dynamics of the simplified model are compared to the
20-sim experiment by using the same impulsive input torque
on the motor for changing q2 and compare the position of
the output r. This validation is performed at a stiffness of
400Nm/rad shown in figure 16 and at a stiffness of 1Nm/rad
shown in figure 17. Both cases show a similar behaviour.
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Fig. 16: Validating the dynamic behaviour of the simplified model to the
20-sim experiment at a stiffness of 400Nm/rad by applying an impulsive
torque at the motor for changing q2.
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Fig. 17: Validating the dynamic behaviour of the simplified model to the 20-
sim experiment at a stiffness of 1Nm/rad by applying an impulsive torque
at the motor for changing q2.

B. Calculating the inertia of the VSA output after the object
is rigidly attached to the output

Lcog =
marmLarm/2 +mobjLobj

marm +mobj
(17)

Jarm2cog = Jarm +marm(
Larm

2
− Lcog)

2 (18)

Jobj2cog = Jobj +mobj(Lobj − Lcog)2 (19)

J = Jarm2cog + Jobj2cog + (marm +mobj)L
2
cog (20)

Lcog is the distance of the center of gravity of the VSA
output and the object to the rotation axis. Larm

2 is the distance
of the rotation axis and the centre of gravity of the arm and
Lobj is the distance from the rotation axis to the center of
gravity of the object.
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