

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 	

	

Design of animation facilities for analysing

cyber-physical system software architectures

T.C. (Tjalling) Ran

MSc Report

C e
Prof.dr.ir.	
 S.	
 Stramigioli

Dr.ir.	
 J.F.	
 Broenink
Dr.ir.	
 M.M.	
 Bezemer	

Dr.ir.	
 J.	
 Kuper	
 	

Z.	
 Lu	
 MSc	

September 2015
	

029RAM2015
Robotics and Mechatronics

EE-Math-CS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands	

ii Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

Ran, T.C. University of Twente

iii

Summary

Design of cyber-physical systems is becoming increasingly difficult, due to increasing demands
on functionality, as well as safety and time-to-market requirements. To efficiently manage this
complexity, a design methodology, or ‘way of working’, has been developed.

The way of working is supported by the TERRA tool suite. Using TERRA’s graphical editors, a
cyber-physical system’s software structure can be designed in a model-driven way. Through
C++ code generation from TERRA, executables implementing the designed CSP model can be
deployed on the target (embedded) system.

The execution flow of (the executable created from) the model is difficult to analyse, however.
This hinders the desired iterative development. Additionally, it means that users new to TERRA
and CSP have no efficient means to understand their own designs.

This thesis aims to address that issue, by adding animation facilities to TERRA. To establish
requirements and planned features, existing animation tooling has been studied.

The execution flow of an executable created from a TERRA CSP model can be logged using
already existing logging facilities. The animation facilities that have been realised, use the
data provided by these logs to visually and textually depict the state changes in the model.
As TERRA’s editor is already graphical, the visual display of state changes can be implemented
using the same representation. This ensures that users can easily understand the state changes
they see in terms of their model. Furthermore, it is efficient in terms of implementation.

A textual view complements the graphical view, showing a history of state changes and describ-
ing them textually. Users can have multiple animations open at once, and step back and forth
through the state changes at their own pace.

Animation results have been verified to be correct using CSP analysis of the models and analysis
of data from the pre-existing logging facilities.

Planned functionality to add server capabilities to TERRRA for directly receiving log data has
not been implemented due to time constraints. It is recommended to add this functionality in
the future, as it would make animation significantly more user friendly.

During experiments, it was observed that the number of transitions taken is quite high, due to
the fact that the CSP model elements each go through a fixed sequence of 3–5 states. Combined
with a large amount of scheduling freedom due to CSP’s Parallel constructs, this results in a
large state space. Focussing on specific states is therefore somewhat difficult. This could be
alleviated in the future by providing options to hide states, effectively reducing the size of the
fixed sequence for each model element.

Additionally, an important recommendation is adding support for TERRA’s Architecture models
and external models. Currently, only CSP models can be animated. Adding this support would
allow animation of more complex models that can, for example, contain communication with
external hardware.

Robotics and Mechatronics Ran, T.C.

iv Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

Ran, T.C. University of Twente

v

Contents

1 Introduction 1

1.1 Context . 1

1.2 Problem description . 1

1.3 Goal . 2

1.4 Approach . 2

1.5 Document outline . 2

2 Design 3

2.1 System overview . 3

2.2 Requirements . 4

2.3 Architecture . 6

2.4 Core functionality
anim.base, anim.csp, anim.csp.luna . 9

2.5 User interface
anim.base.ui, anim.csp.ui . 13

2.6 Graphical animation view
anim.base.view.graphical, anim.csp.view.graphical,

anim.csp.view.graphical.animate . 13

2.7 Textual animation view
anim.base.view.textual . 15

3 Results 16

3.1 Experiment setup . 16

3.2 Test case I . 19

3.3 Test case II . 19

3.4 Discussion . 21

4 Conclusions and Recommendations 24

4.1 Conclusions . 24

4.2 Recommendations . 25

A LUNA CSP States 27

Bibliography 29

Robotics and Mechatronics Ran, T.C.

vi Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

Ran, T.C. University of Twente

1

1 Introduction

1.1 Context

Cyber-Physical Systems (CPS) are becoming increasingly important in areas such as health-
care, industry and in people’s homes. CPS are systems that have physical (often mechanical)
functionality, which are controlled by the cyber part: one or more (often embedded) computer
systems or microcontrollers.

There is an increasing demand in terms of functionality, which makes CPS increasingly more
complex. In order to effectively manage this complexity, a design methodology, or ‘way of
working’ for CPS has been developed (Bezemer, 2013). The way of working extensively uses
Model-Driven Development (MDD) with (co-)simulation of these models and highly iterative
development.

The TERRA tool suite (Bezemer et al., 2012; Bezemer, 2013) supports this design methodology,
offering graphical Model-Driven Development of the software architecture, using (among oth-
ers) a graphical representation of Communicating Sequential Processes (CSP) (Hoare, 1985) as
a design language. Functional components from other tooling, e.g. 20-sim (Controllab Prod-
ucts, 2015), can be integrated in this design.

Implementation and deployment of the modelled software structure is supported through C++
code generation. Building the generated code results in an executable that can be deployed on
the target (embedded) system. The execution flow of the executable adheres to the designed
model.

For brevity, ‘execution flow’ is used hereafter to refer to the execution flow that would be ob-
tained when generating code from a model, building that code and executing it.

1.2 Problem description

The most-used model type in TERRA is the ‘CSP model’, based on the process algebra ‘Commu-
nicating Sequential Processes’ (Hoare, 1985). A CSP meta-model has been developed (Bezemer
et al., 2012), which is used by TERRA to define its CSP models. TERRA’s CSP models are designed
using its graphical CSP editor. TERRA is extensively used in our group’s Master’s course “Real-
Time Software Development” (RTSD). The course is the students’ first acquaintance with CSP,
and our experience in teaching the course shows that students have difficulties understanding
some of the modelling language’s concepts.

A primary example is CSP’s rendez-vous communication. Communication influences the ex-
ecution flow of the model (intentionally), since it requires synchronisation between the trans-
mitting and receiving ends. Analysis can quickly become complicated, especially for students
and new developers that have no experience with the concept or implications of rendez-vous
communication. Providing insight into a model’s execution flow, clearly indicating synchroni-
sation through rendez-vous communication, could therefore be highly beneficial for the learn-
ing process.

More generally, the design methodology for cyber-physical systems prescribes iterative devel-
opment, which requires testing often. This means that analysing the execution flow is essential.
Furthermore, frequent verification, and eventually validation, are required to ensure that the
model’s behaviour (at the interface level) does not change between the design methodology’s
steps.

From the above, it is concluded that insight into the execution flow is essential for effective
modelling. TERRA facilitates this to some extent, by providing code generation of machine-
readable CSP. The generated code can be analysed using tools such as FDR3 (Gibson-Robinson

Robotics and Mechatronics Ran, T.C.

2 Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

et al., 2014). However, a detailed execution flow analysis using these tools is unwieldy for all but
the smallest models. The alternative, analysis of the built (deployable) executable, is difficult
as it relies on console output, requiring manual code additions (e.g. printf statements) and
/ or knowledge of the underlying software framework, LUNA (Bezemer et al., 2011). This thesis
aims to address the lack of insight, as discussed in Section 1.3.

1.3 Goal

This thesis’ goal is to improve insight into the execution flow, by adding ‘animation’ facilities
to the TERRA tool suite. These animation facilities depict execution flow graphically (and in
part textually) in TERRA. The user can run or step through the execution flow manually, while
receiving graphical feedback of the state changes in the model. Inspecting the execution flow
this way allows the user to analyse his model efficiently, improving understanding and saving
time and effort otherwise spent on low level debugging and learning the internals of LUNA.

Definition of Animation. Animation as used in this thesis is a form of ‘software visualisation’,
or, more specifically, a graphical ‘program animation’. Noble and Groves (1992) give the follow-
ing definition of program animation:

“Program animation is the use of computer graphics and animation techniques to
visualise the behaviour of an executing program.”

In practice, this usually means providing a visual representation of stepping through the code
itself, i.e. runtime debugging present in most major IDEs. For TERRA, with its more high-level
graphical modelling, this translates to stepping through the state changes of the CSP model
elements and visualising these changes.

1.4 Approach

LUNA’s real-time logging functionalities (Wilterdink, 2011) are used to collect and transmit ex-
ecution flow information. These functionalities define discrete states for all CSP constructs.
Execution flow is defined as the state changes that occur, and their ordering.

Since models in TERRA are graphically represented and designed, the animation can reuse the
existing representation to depict the state changes of all model elements.

To establish requirements, related tooling is studied, experiences gained in the RTSD course is
used and architectural considerations of TERRA and LUNA are taken into account. Based on
the requirements, the software architecture and user interface are designed and implemented.
Correctness of the implementation is then demonstrated using tests and requirement coverage.

1.5 Document outline

Requirements and the design of the animation facilities are presented in Chapter 2. Experi-
ments used to verify the correct working of the animation facilities and their results are dis-
cussed in Chapter 3. Lastly, conclusions and recommendations for future work are given in
Chapter 4.

Ran, T.C. University of Twente

3

2 Design

The design of animation facilities is treated in this chapter. Firstly, a typical setup in which
animation would be used is defined in Section 2.1, to make the notion of using animation dur-
ing development more concrete. Next, requirements for the animation facilities are given in
Section 2.2. Per the requirements, the animation facilities have been designed in a modular
manner. The corresponding high level software architecture is presented in Section 2.3. The
architecture can be divided into functional blocks that each implement a role. The design of
these functional blocks is discussed in Sections 2.4 to 2.7.

2.1 System overview

In a typical development setup, TERRA is run on a development machine, the software de-
veloped using TERRA is run on the target. This target platform is typically a hard real-time
embedded system controlling a physical system, as shown in Figure 2.1. The figure is based
on LUNA’s pre-existing logging facilities: a real-time logger is part of the developed executable,
and a standalone ‘loggerserver’ is used to retrieve and store the log data on disk. Using this
setup, TERRA animation uses the log data on disk to animate its CSP models. This is discussed
in more detail below.

LoggerServer

Development platform

File system

TERRA
Animation

Log file Data file

(Embedded) target platform

Real-time executable

Real-time logger

I/O Hardware

DAC
Power

amplifier

Filtering/
Scaling

ADC

Plant

Actuators
Physical
system

Sensors

(a) Collection of execution flow data

LoggerServer

 Development platform

File system

TERRA
Animation

Log file Data file

(b) Animation using the collected execution flow data

Figure 2.1: A control system of which the software structure is animated in TERRA, using offline logging

All active components relevant to animation are shown in black in Figure 2.1, other compo-
nents in grey. The figure depicts ‘offline’ animation. In offline animation, all execution flow
data is collected and saved in log files (Figure 2.1a). Afterwards, the log files are imported in
TERRA and used to animate the corresponding TERRA CSP model (Figure 2.1b).

The physical system, or ‘plant’, is shown on the right-hand side of the setup, together with the
actuators (e.g. motors) used to steer it and the sensors (e.g. encoders) that provide feedback to
the control system.

Robotics and Mechatronics Ran, T.C.

4 Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

Via Input/Output (I/O) hardware, these sensors and actuators are connected to the real-time
executable. The real-time executable, shown running on an (embedded) target platform in Fig-
ure 2.1a, controls the plant. The executable has been developed through modelling its software
structure in TERRA (and, e.g., integrating the controller developed in 20-sim), as described in
Section 1.1.

To analyse the behaviour of the CSP model elements’ implementation in the executable, the
executable includes a real-time logger. This logger transmits its log data to a server program,
the ‘loggerserver’, running on the development platform (shown in the top left of Figure 2.1a).
The loggerserver writes the log data to files on the file system.

Once a sufficient amount of log data has been received, the system can be turned off. Next, the
log data is imported in TERRA (Figure 2.1b) and used to show the execution flow to the user.

Figure 2.1 shows a standalone loggerserver. As an alternative to the setup of Figure 2.1, such
server functionality can be implemented in TERRA’s animation facilities, as shown in Figure 2.2.
That way, the logged data can directly be used for animation. This approach could have support
for ‘online’ animation, in which the executable can be animated while running. While clearly
the superior alternative from a user’s perspective, it does require additional implementation
effort compared to using the pre-existing loggerserver.

Development platform

TERRA

Animation

(Embedded) target platform

Real-time executable

Real-time logger

I/O Hardware

DAC
Power

amplifier

Filtering/
Scaling

ADC

Plant

Actuators
Physical
system

Sensors

Figure 2.2: A control system of which the software structure is animated in TERRA, using online logging

Figures 2.1 and 2.2 show the presence of I/O and plant. In reality, these are often not present in
the early stages of design, when focus is on the software structure, i.e. the TERRA CSP model,
itself. The model is (usually) independent of parameter values and of algorithms (such as 20-
sim control algorithms) embedded in it. Therefore, the executable can be run as is, on the
target or on the development machine itself. This allows for quick analysis of the execution
flow. A schematic showing the executable being run on the development machine is given in
Section 3.1.

2.2 Requirements

This section lists the thesis’ requirements. These have been established using:

• Knowledge of the system architecture (see Section 2.1) and TERRA and LUNA

• Evaluation of features from related work and tooling:

– gCSP’s animation facilities (van der Steen, 2008). gCSP is the predecessor of TERRA.
Studying gCSP mainly led to insights pertaining to a graphical animation view, pro-
gressing through animations, and customisable graphical feedback.

– IBM Rational Rhapsody Developer (IBM, 2015). Rational Rhapsody Developer fea-
tures animation of UML state machine diagrams. Studying this animation mainly
resulted in insights for a graphical animation view.

The requirements are given and discussed in Sections 2.2.1 to 2.2.4. They are prioritised ac-
cording to the MoSCoW method (Clegg and Barker, 1994).

Ran, T.C. University of Twente

CHAPTER 2. DESIGN 5

2.2.1 General requirements

Requirement 1: Animation must be possible, with support for starting, stepping, pausing and
stopping.

The user must be able to follow the CSP executable’s execution flow. This requires facilities for
showing the execution flow and progressing through it. Requirement 2 and / or Requirement 3
is necessary to satisfy this requirement.

Requirement 2: Offline animation should be possible

Execution flow data can be stored in log files by LUNA’s loggerserver. It should be possible to
import these log files in TERRA and animate using the logged data.

Requirement 3: Online animation should be possible.

Animating during a run of the executable allows for a more interactive analysis. For example,
the user could have his model request input during execution, allowing him to influence the
execution flow (e.g. using CSP’s Alternative construct). Performing such activities in an online
run can significantly reduce development overhead compared to offline animation.

2.2.2 Animation view requirements

Requirement 4: The animation must include a graphical model view that visually represents
(changes in) state.

A graphical view is best suited to display a state configuration at a certain point in the exe-
cutable’s execution. The state configuration is the aggregate result of all state changes from the
start of the execution up to that point.

Requirement 5: The animation must include a textual view, showing execution history.

A textual view can complement the graphical view. Firstly, a textual description of state changes
can add detail to the graphical changes. Secondly, it can list all preceding state changes, of
which the graphical view shows the aggregate result (but not how that result came to be). In
other words, a textual view shows history.

Requirement 6: The user could have the option to customise graphical and textual feedback

The depiction of state changes should be easy to interpret by the user. Such depictions, colour
association in particular, are subjective. Therefore, customisation options are useful.

2.2.3 Communication requirements

Requirement 7: TERRA should be able to retrieve log data directly from the RTLogger, without
using the RTLogger-server

TERRA should have server functionality (instead of LUNA’s loggerserver) to receive execution
flow data from the real-time logger. This improves integration and ease of use, and is important
for online animation (see Requirement 3).

Requirement 8: The communication facilities should be platform independent

Executables resulting from development in TERRA are run on multiple target and development
platforms. Therefore, communication of the log data should be implemented in a platform
independent manner.

Requirement 9: The impact of data loss could be minimised.

Robotics and Mechatronics Ran, T.C.

6 Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

Loss of execution flow data can occur. One example is unlogged data due to real-time con-
straints, since LUNA’s real-time logger is assigned a lower priority than the CSP model part of
the executable. Another is data loss due to network issues. TERRA’s animation facilities could
be designed to cope with this (to an extent), without giving the user erroneous animation re-
sults.

2.2.4 Non-functional requirements

Requirement 10: Use of the animation facilities in the modelling suite should be intuitive

Easy to learn and use animation facilities are important for user experience and adoption. The
user should be able to focus on understanding his model during animation, not have difficul-
ties with the animation facilities themselves.

Requirement 11: The animation facilities must be modular with respect to the rest of TERRA
and be architecturally comparable.

TERRA is designed in a modular fashion, as is Eclipse. The animation facilities must adhere to
this design philosophy.

Requirement 12: The animation facilities must not compromise the integrity of the original
TERRA CSP model

Animation uses the model, and a view thereof, to analyse execution flow data and depict sate
changes. All access to the model should be read-only, as the model itself must not be changed.

2.3 Architecture

The Animation functionality can be divided into functional components, each responsible for
a specific role. This division into components is translated to a division into Eclipse plugins,
resulting in the architecture shown in Figure 2.3. As shown in the figure, an additional division
is made, into a CSP-specific implementation and a more generic ‘base’ implementation (or
specification). This provides a basis for implementing animation of other model types in the
future. For example, support for TERRA Architecture models could be added, as illustrated by
the greyed out, hypothetical plugins in Figure 2.3.

Full plugin names include the common prefix of TERRA’s eclipse plugins,
nl.utwente.ce.terra.. For brevity, this prefix is omitted in the following. For example,
the base animation plugin’s full name is nl.utwente.ce.terra.anim.base, which is
shortened to anim.base.

The roles and corresponding plugins are as follows:

• Core functionality (anim.base, anim.csp, anim.csp.luna). Core animation
functionality includes starting and stopping animations, and interpreting execution
data. The interpreted data is exposed to ‘clients’, who also are also given acces to means
to step through ‘an animation’. This core functionality is discussed in Section 2.4.

In the above and hereafter, ‘an animation’ refers to an animation session, ‘stepping
through an animation’ means progressing through its state changes. ‘Clients’ are objects
(in the programming sense) interested in other objects or the data they expose.

• User interface (anim.base.ui, anim.csp.ui). User interface functionality that is
not related to a specific animation view. This includes starting animations and stepping
through them. Hence, it provides a front end to functionality defined inanim.base and
anim.csp. This role is discussed in Section 2.5.

Ran, T.C. University of Twente

CHAPTER 2. DESIGN 7

anim.base.view.graphical

anim.base.view.textual

anim.base.ui

anim.csp

anim.base

anim.csp.ui

anim.csp.view.graphical.animate

Visualises states of CSP model

anim.csp.view.graphical

anim.csp.luna

anim.csp.u
i

anim.arch anim.arch.view.graphical

<<merge>>

<<merge>>

<<merge>>
<<merge>>

<<merge>>

Figure 2.3: Plugin diagram of the TERRA Animation facilities. Hypothetical future additions are greyed
out.

• Graphical animation view (anim.base.view.graphical,
anim.csp.view.graphical, anim.csp.view.graphical.animate). The
graphical representation of state changes. Discussed in Section 2.6.

• Textual animation view (anim.base.view.textual). Textual representation of
state changes. Discussed in Section 2.7.

There are a number of design decisions, related to Model-Driven Development, that are rele-
vant to the architecture discussed in this section. These are discussed next, in Section 2.3.1.

2.3.1 Design alternatives

Storing execution data

As discussed above, part of the ‘Core functionality’ is exposing execution flow data to clients. As
discussed in Chapter 1, the execution flow data, in the case of LUNA CSP executables, consists
of state changes of the CSP model elements.

These state changes can be stored in multiple ways. One alternative is extending the existing
TERRA CSP model elements with a state property. This would either require changes to the

Robotics and Mechatronics Ran, T.C.

8 Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

existing model itself, or defining a new model that inherits from the existing model. Since the
states only have meaning in the context of animation, adding them in the existing model would
not be good practice. Defining a new model is better option.

An additional issue is that previous and future state changes needs to be stored, to enable step-
ping through the animation. When using the model-based approach, implementing this range
of state changes is not straightforward. Additionally, retrieving a set of state changes is difficult
if the state changes are distributed among the model elements.

Therefore, an alternative that is not model-based has been chosen. The state changes are stored
in a database object, along with references to the model elements they apply to. These model
elements are those defined in the existing (CSP) model, without extending that model. The
database is discussed further in Section 2.4.5.

Mapping logged model elements to TERRA model elements

As the execution flow data consists of state changes of model elements, the logs need to provide
some way to indicate which model element a state change applies to. Combined with the fact
that the executable implements the model, this means that the executable needs to have some
notion of these model elements.

In LUNA this is indeed the case. All model elements are declared in the first part of the log.
When interpreting the log data, these model elements need to be mapped to the correspond-
ing elements in the TERRA CSP model, in order to determine to which model element a state
change applies.

LUNA’s logs give the model elements by their name, so naming information can be used to
perform the mapping. However, TERRA allows names to be used more than once (except in the
same diagram), which makes name-based mapping difficult.

A solution is given by LUNA: the model structure is defined as a hierarchical tree in LUNA. For
example, the constructs contained in a Parallel group are that group’s children, the group is
their parent. All siblings do have mutually unique names, which eases name-based mapping.

One option of implementing the mapping is recreating the LUNA tree from the log, creating a
similar tree from the TERRA model and comparing the resulting trees. This approach has been
implemented, see Section 2.4.5.

Of course, the trees can be considered a specific type of representation of the model. This tree
representation can in itself be a model as well. This would be a model-driven way of looking
at the mapping. A well-defined tree structure meta-model could be useful in the future, for
example for creating a graphical tree view in TERRA.

There is one issue, however: LUNA and TERRA’s C++ LUNA code generation govern the tree
structure as used in the executable. There are subtle hierarchical differences between that tree
structure and a tree structure as it would be defined in TERRA, which presents problems. These
differences could be resolved using a model-to-model transformation, to abstract away from
LUNA specifics.

The tree structure meta-model is determined to be the best alternative. It was only considered
at a state in development, however, where implementation was not feasible anymore. Instead,
an approach fully realised in code has been used. This approach constructs a tree from the
TERRA model in such a way that it adheres to the tree structure as it would be defined in LUNA.

Thus, for both the mapping and the storage of execution data, code-based solutions have been
chosen. Having established this, the animation plugins do not have to take additional GEF
models into account. The design of the plugins is discussed next, in Sections 2.4 to 2.7.

Ran, T.C. University of Twente

CHAPTER 2. DESIGN 9

2.4 Core functionality
anim.base, anim.csp, anim.csp.luna

The core animation functionality can be subdivided into a number of responsibilities. These
are given and discussed in Sections 2.4.1 to 2.4.7. The main classes representing these respon-
sibilities in the anim.base plugin are shown in Figure 2.4. Interfaces for which no realisation
is given in the figure are realised in the anim.csp or anim.csp.luna plugins.

<<Singleton>>
AnimationList

<<Interface>>
IAnimationManager

AnimationManager

<<Interface>>
IExceptionReporter

<<Interface>>
IModelMatcher

<<Interface>>
IAnimationDatabase

<<Interface>>
ILogParser

<<Interface>>
IStepper

<<Interface>>
IAnimationSnapshotPublisher

<<Interface>>
ILogReader

LogReaderAndParserRunnable

<<Interface>>
IAnimationSnapshotSubscriber

PublishingStepper

FileLogReader 1

1

1

1

1

0..*

10..*

1

1

Figure 2.4: Class diagram depicting the core classes in the anim.base plugin

A concise, CSP-specific description of the core plugins’ responsibilities is best illustrated by
describing the creation and usage of a new animation:

1. An animation is created, and added to the list of currently active animations. Clients can
obtain a reference to this animation via the list.

2. Logged execution data is imported by the animation. All CSP model elements found in
the log are located in the TERRA CSP model that is to be animated, to provide a mapping
between the log and the model. Next, all logged state changes of these model elements
are stored. Each log entry containing state changes is assigned a ‘step number’ (or simply
‘step’).

Robotics and Mechatronics Ran, T.C.

10 Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

3. Clients obtain a reference to the animation’s IStepper object, which exposes facil-
ities for ‘stepping’ through the animation, i.e. proceeding to the next step and its
corresponding set of state changes. Clients that have subscribed to the animation’s
IAnimationSnapshotPublisher are notified of each step taking place, and are
passed the corresponding state changes.

2.4.1 Handling and accessing multiple animations
AnimationList

The AnimationList acts as the entry point for clients, to obtain references to animations.
It maintains a list of all currently existing animations and has facilities for ‘focusing’, creating,
and terminating animations. An animation is focused if the user is currently interacting with
that animation. Only a single animation can be focused at a time.

Clients can either obtain a reference to the currently focused animation, or through the anima-
tion’s unique numeric ID, which is assigned by the AnimationList. An alternative means of
identification would be the TERRA CSP model. However, that would imply that only a single
animation per model can be active at a time. This is undesirable, since comparing two different
runs of the same model’s executable is a valid usage scenario.

AnimationList is a singleton, for two reasons: all animations are maintained in a single list
to manage focus, and easy access by clients is essential because of its entry point role.

2.4.2 Creating and managing an animation’s core functionality
IAnimationManager, AnimationManager

IAnimationManager is responsible for the components that together form the core func-
tionality of an individual animation: obtaining and parsing execution data, coupling it to the
model under animation, and stepping through the animation. These components are dis-
cussed in Sections 2.4.3 to 2.4.6.

The IAnimationManager exposes the components that clients are allowed to interact with,
providing them facilities to step through the animation and subscribe to state changes.

The anim.base plugin provides a default implementation, AnimationManager (see Fig-
ure 2.4). For instantiation of its core components, AnimationManager delegates to a fac-
tory. This ensures that it does not need to know implementation details of the correspond-
ing classes, only their interfaces. This allows AnimationManager to be implemented in the
generic anim.base plugin, while specific implementations (and their factories) are located
in specialised plugins.

Reading and parsing logs should be done asynchronously with respect to creating and step-
ping through the animation. Therefore, AnimationManager spawns a thread with a
LogReaderAndParserRunnable (see Figure 2.4) that takes care of these tasks. Similarly,
continuous stepping (i.e. running) should not be performed on the main thread. This is dis-
cussed in Section 2.4.6.

2.4.3 Obtaining execution data
ILogReader, FileLogReader

The execution data logged by LUNA’s real-time logger (or potential future loggers) needs to be
obtained by the animation. This is the ILogReader’s responsibility. It is a generic reader
interface, providing a method to obtain a single log entry at a time. This allows it to be used
for any type of input source and data type. FileLogReader is an implementation that uses
text files as input source, where the text files are assumed to have a single entry per line. This is
consistent with the output format of LUNA’s loggerserver (by design).

Ran, T.C. University of Twente

CHAPTER 2. DESIGN 11

2.4.4 Parsing execution data
ILogParser, LUNACSPLogParser

Once a log entry has been obtained, it needs to be parsed. This is the responsibility of
ILogParser. Since the log format and contents are dependent on modelling language and
logger implementation, no default implementation is provided in the anim.base plugin. The
anim.csp.lunaplugin provides an implementation specific to LUNA’s loggerserver and CSP,
LUNACSPLogParser.

TheLUNACSPLogParser adds all model elements that are provided (one per log entry) in the
log to the IAnimationDatabase, which matches them to the corresponding TERRA CSP
model element. Next, each step (i.e. set of state changes) in the log is parsed and added to the
database, which processes and stores it.

2.4.5 Coupling execution data to the model under animation
IAnimationDatabase, AnimationDatabase IModelMatcher, ModelMatcher

Parsed log data is offered to the database, as stated in Section 2.4.4. These additions to the
database consist of two phases: a registration phase and a state change phase (or main phase).

The registration phase consists of registering all model elements declared in the logs with the
database (an IAnimationDatabase). For CSP models, this includes all Processes, Read-
ers, Writers, Recursions, Code blocks, and Compositional groups. These model elements are
looked up in the TERRA (CSP) model under animation. The database delegates this lookup to
its IModelMatcher.

The model matcher constructs a tree structure from the TERRA model and a second tree from
the model elements from the log, as provided to it by the database, as discussed in Section 2.3.1.
The trees are compared to find matches between model elements from the log and model ele-
ments in the TERRA mode.

If a matching model element is successfully found, a mapping is created between the ID used
for that element in the log and the reference to the model element in TERRA. If no matching
model element can be found, this means that the executable from which the log was created
does not correspond to (the version of) the model under animation. Therefore, a mismatch
is reported to the user (using the error reporting facilities discussed in Section 2.4.7), and the
animation is prevented from continuing.

Once the full model element mapping is complete, updates to model elements’ states can be
added to the database, which marks the beginning of the the state change phase. In practice,
these state updates are provided to the database by the log parser, see Section 2.4.4. In the CSP
implementation of the database in anim.csp (see below), each new log entry adds a new step
to the database. These steps are constructed by comparing the state configuration from the log
entry to the prior state configuration in the database, creating a ‘diff’ of the state changes. These
diffs, combined with metadata such as the step number, are stored in ‘animation snapshots’, i.e.
AnimationSnapshot objects.

The database exposes these snapshots to clients. In practice, the client is an
IAnimationSnapshotPublisher, which distributes the snapshots to its listeners. The
IAnimationSnapshotPublisher is discussed in Section 2.4.6.

Since the database and the model element matching are dependent on modelling lan-
guage, the anim.base plugin only provides interfaces: IAnimationDatabase and
IModelMatcher. Implementations for TERRA CSP models are provided in the anim.csp
plugin: AnimationDatabase and ModelMatcher.

Robotics and Mechatronics Ran, T.C.

12 Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

2.4.6 Progressing through an animation
IStepper, IAnimationSnapshotPublisher, PublishingStepper

Progressing through an animation consists of two tasks. The first is the progressing itself, i.e.
stepping. The second task is publishing the state changes that make up the steps to all inter-
ested parties (i.e. subscribers).

Progressing is performed by an IStepper object, which provides facilities for taking a single
step (forwards or backwards), running up to a certain step, running continuously (until being
paused or the last step is reached), and jumping to a specific step. Using Eclipse’s Job API,
running is offloaded to a worker thread, to ensure that Eclipse remains responsive.

Clients are informed of each step and the state changes therein, by the publisher. The pub-
lisher is an instance of IAnimationSnapshotPublisher. The information about a step is
packaged as an AnimationSnapshot (see Section 2.4.5). Clients can subscribe themselves
to these snapshots through the publisher. If they register after the first step has taken place,
they can request all previous updates to obtain the full history.

As the tasks of progressing and updating are closely related, both interfaces are imple-
mented in a single class, PublishingStepper in the anim.base plugin. Clients are un-
aware of this1, as they obtain references to the object by one of its two interfaces (from the
IAnimationManager).

2.4.7 Reporting problems
IExceptionReporter

As the UI and non-UI facilities are separated by design, the core animation functionality has no
direct facilities for reporting problems to the user. An animation is always started by the user,
and therefore from a UI plugin. This UI plugin can provide facilities for reporting problems.
To allow the core functionality to use these facilities, an IExceptionReporter interface is
defined in theanim.baseplugin. This interface is implemented in theanim.csp.uiplugin
(see Section 2.5).

In anim.base’s AnimationManager, constructor injection2 is used to provide it with an
exception reporter. The AnimationManager handles exceptions thrown by the objects it
instantiates, and instructs the exception reporter to provide feedback to the user.

As the name implies, problem reporting is done through Java exceptions. One reason for this
choice is that it allows using a single, well-defined system for reporting all problem types. Ad-
ditionally, exceptions propagate up the call stack, until they are caught. This means that the
classes throwing the exceptions do not need to know about any exception handling mecha-
nisms.

An alternative is using methods that return error codes. Since methods can only return a single
value, this means that either the error code and desired return value need to be wrapped in
a struct-like object, or the method needs to be passed an object in which to store the value.
Additionally, error checks and error propagation need to be manually implemented. For these
reasons, exceptions are considered the superior option.

1Provided that they do not use Java’s reflection facilities.
2With constructor injection, the constructor method requires a parameter (e.g. a class instance) as one of its

arguments. Therefore, creation of that instance is delegated to code external to the constructor. In this case, it
allows any class implementing IExceptionReporter to be used, without the AnimationManager knowing
about the specific implementation.

Ran, T.C. University of Twente

CHAPTER 2. DESIGN 13

2.5 User interface
anim.base.ui, anim.csp.ui

The UI plugins provide animation functionality that is not related to a specific view (such
as the textual or graphical view). They provide a toolbar to focus animations and progress
through them, context menu entries for starting animations, and an exception reporter (see
Section 2.4.7).

The toolbar has a drop-down box for selecting which animation is currently focused, buttons
for progressing through the focused animation and a button to terminate (close) the focused
animation. It is discussed further in the separate user manual document. The toolbar has been
implemented using Eclipse’s extension points for menus, commands and handlers.

An “Animate” entry has been added to the context menus in TERRA’s CSP Editor. This entry
starts an animation of the CSP model that is open in the editor, after prompting the user for log
files to be used for the animation. A similar context menu entry is shown when right-clicking
on a TERRA CSP model (.cspm file) in Eclipse’s project explorer.

2.6 Graphical animation view
anim.base.view.graphical, anim.csp.view.graphical,

anim.csp.view.graphical.animate

The graphical animation view derives from the TERRA editor. As such, the CSP graphical ani-
mation view reuses figure classes defined in the TERRA CSP editor. The view visualises model
elements’ states by formatting these figures, i.e. changing their colouring and border thickness.

The main changes with respect to the TERRA CSP editor are:

• Read-only-ness. The graphical view is read-only to prevent users from modifying the
model during animation. This is discussed in Section 2.6.1.

• Animation facilities. Extensible facilities for visualising state (changes) have been added
to the anim.csp.view.graphical plugin. These are discussed in Section 2.6.2.

2.6.1 Read-only-ness

The graphical view maintains TERRA’s editor architecture and, therefore, that of the Graph-
ical Editing Framework (GEF) (Rubel et al., 2011). GEF uses the Model-View-Controller de-
sign pattern (MVC) (Krasner and Pope, 1988). In GEF’s implementation, EditParts are
the controllers and are responsible for creating the view’s figures and editing the (CSP)
model. EditParts (mostly) delegate their tasks to EditPolicy objects. Therefore, the
EditPolicy objects installed on an EditPart determine the EditPart’s capabilities.

The graphical animation view uses custom EditParts and EditPolicy objects for all
model elements: the only policies that are installed are one that allows selection of figures in
the view and policies used to visualise state. The EditParts ignore ‘Direct Editing’ requests
to prevent in-editor renaming of model elements.

A drawback of this approach is that it requires all EditParts in TERRA’s csp.editor plugin
to be extended individually in the anim.csp.view.graphical plugin, each with (nearly)
identical implementation changes. This negatively impacts maintainability. This is offset by
the straightforwardness of the implementation, which adheres to standard practice for GEF
editors.

One alternative solution is using EditParts that wrap the EditParts in TERRA’s
csp.editor plugin. However, this has the drawback of needing to wrap all of the origi-
nal Editparts’ methods, of which there are many. More significantly, it would interfere with
code using instanceof checks. Therefore, this alternative has not been chosen.

Robotics and Mechatronics Ran, T.C.

14 Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

A second alternative would be extending EditParts with methods to remove all installed
EditPolicy objects. In practice, this results in first installing all edit policies as used in
TERRA’s csp.editor, then removing all edit policies, and installing the edit policies used
in animation. This is wasteful and considered to interfere with intended behaviour, which is
why this alternative has not been chosen either.

Besides a read-only editor, Eclipse’s properties view also needs to be read-only. Therefore, the
graphical view uses a custom provider for Eclipse’s properties view. Contrary to the CSP editor’s
provider, it creates property descriptors that do not allow properties to be edited, effectively
making the properties view read-only.

2.6.2 Animation facilities

Edit policies

Visualisation of state changes is implemented through EditPolicy objects. The
anim.csp.view.graphical plugin defines an extension point for adding edit poli-
cies. These edit policies are automatically installed on all edit parts, using a factory. This
approach enables future extensions to the visualisation, by contributing additional edit poli-
cies. Currently, an EditPolicy is included which can handle requests to set figures’ fore-
and background colours and linewidth. This is both for animation purposes and an example
for clients wishing to extend animation functionality.

The edit policies add capabilities to an edit part, by handling requests. In order to use these
capabilities, a request must first be passed to the edit part. Generating these requests is dis-
cussed in section ‘Animator’ below. The edit part queries each of its edit policies whether they
can handle the request type. The edit policies that can, do so.

Animator

To visualise state changes on a CSP model element’s figure, requests to do so must be generated
and passed to the corresponding edit part (see section ‘Edit policies’ above). An extension point
to do so has been defined in the anim.csp.view.graphical plugin. In the following,
implementers of this extension point are called ‘animators’.

In the implementation used in this thesis, the anim.csp.view.graphical.animator
plugin implements the extension point. The animator subscribes to the animation’s
IAnimationSnapshotPublisher (see Section 2.4.6) and generates visualisation requests
based on the state changes it receives. Whenever it receives a new AnimationSnapshot
from the publisher, it locates the EditParts corresponding to the changed states, and has
them visualise their new state by creating a corresponding request. The EditParts delegate
this request to their corresponding EditPolicy.

The extension point can be implemented by other plugins, which allows additional visualisa-
tion functionality in the future.

Figures

To fulfil the request, the EditPolicy requires figure formatting capabilities. The figures used
by TERRA’s EditParts have been refactored (as high up the hierarchy as possible) to derive
from the newly created FormattedFigure class. This class provides default fore- and back-
ground colours and allows its line width to be set.

The graphical view plugins add colour and line width settings to the Eclipse preferences, for
each state. These settings define the formatting used by the EditPolicy.

Ran, T.C. University of Twente

CHAPTER 2. DESIGN 15

2.7 Textual animation view
anim.base.view.textual

This view shows state changes textually, in a table. It complements the graphical view in two
ways. Firstly, it clearly states the state changes, in a flat (i.e. non-hierarchical) representation.
Secondly, the table shows all previous steps and can therefore be used to see the execution flow
history without stepping back. The graphical view, on the other hand, shows the current state
configuration.

The textual view has been implemented using Eclipse JFace’s TableViewer, which uses
an MVC approach. The TableViewer itself is the entry point, which delegates pro-
cessing of its input to provider classes, ContentProvider and LabelProvider. The
ContentProvider receives new animation state changes from a publisher and instructs
the TableViewer to add this data to the table. Upon receiving this instruction, the
TableViewer creates a new row (if necessary) and delegates filling its contents to its
LabelProvider. This way, the TableViewer does not need to know about the underly-
ing data model.

As no CSP-specific model information is required, the anim.base.view.textual plugin
contains the full implementation.

Robotics and Mechatronics Ran, T.C.

16 Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

3 Results

In this chapter, the animation functionality is verified to work correctly. Two conceptually sim-
ilar experiments have been performed. Their setup is presented and motivated in Section 3.1.
The individual experiments are presented in Section 3.2 and Section 3.3. Section 3.4 discusses
their results and general observations.

3.1 Experiment setup

The test procedure is based on visually verifying correctness of the animation, using the graph-
ical and textual animation views. This automatically tests the core functionality and the UI
facilities, as these are required for the views to display the correct state changes.

Due to time constraints, online animation has not been implemented. Therefore, the experi-
ments are conducted as offline animation sessions, using the loggerserver to collect log data.
For the purposes of these experiments, there is no difference between running the executable
and / or the loggerserver on a development machine and running them on a target. The reason
is that the logging facilities are pre-existing and known to provide the same log output indepen-
dent of their exact distribution among machines. This is to be expected, as they communicate
using TCP/IP regardless of the setup.

Given the above, it is most convenient to conduct the experiments on a single development
machine. This setup is shown in Figure 3.1. The setup is similar to that presented Section 2.1,
the difference being that the executable is run on the development PC (compare Figure 2.1).
Again, active components relevant to animation are shown in black, other components in grey.

In Figure 3.1, the prefix ‘real-time’ has been omitted from the logger and executable to indicate
that hard real-time execution is not supported on the development PC. This does not influence
the order of execution; only timing is affected.

LoggerServer

Development PC (Ubuntu 15.04, 64-bit)

File system

TERRA
Animation

Log file Data file

Executable

Logger

(a) Collection of execution flow data

LoggerServer

Development PC (Ubuntu 15.04, 64-bit)

File system

TERRA
Animation

Log file Data file

Executable

Logger

(b) Animation using the collected execution flow
data

Figure 3.1: Overview of the PC setup used to perform animation experiments

The test procedure is explained in Sections 3.1.1 to 3.1.3 and illustraded in the activity diagram
shown in Figure 3.2

3.1.1 Obtaining animation data

The procedure is as follows. First, a model is created in TERRA. From this model, LUNA C++
code is generated, user code is added to code blocks insofar necessary, and an executable is
built, using a LUNA build that includes real-time logging facilities. Next, the loggerserver is
started. It waits for a real-time logger to connect. Once the executable has started, its logger
connects to the loggerserver, which stores the log data in log files on the file system. Once the
logs are complete, i.e. a sufficient number of iterations has been achieved, the executable and

Ran, T.C. University of Twente

CHAPTER 3. RESULTS 17

Modelling

Design CSP model in TERRA

CSP machine code analysis

Generate CSP machine code
from the CSP model

Execution flow data collection

Generate LUNA C++ code
from the CSP model

Build an executable from the
C++ code (compiling & linking)

Start loggerserver, specifying
port and log files

Start executable,specifying
server IP address and port

Wait until sufficient execution
flow data has been logged

Terminate executable and
loggerserver

Animation

Start animation of the CSP
model in TERRA

Specify the log files used by
the loggerserver

Step through the animation,
manually keeping track of

state changes

Generate an LTS from the CSP
machine code

Extend the CSP machine code
to include state transitions

Perform refinement checking
to verify the extended code.

Verification

Compare animated state
changes to LTS

Declare animation results
verified

Declare animation results
incorrect

[else]
[animated state changes form
a valid path through the LTS]

[refinement
check failed]

[refinement check
successful]

Figure 3.2: Activity diagram of the test procedure

Robotics and Mechatronics Ran, T.C.

18 Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

loggerserver are stopped. An animation is then started in TERRA, using the model and the log
files.

3.1.2 Verifying animation data

To verify correctness of the animation results, CSP machine code is generated from the TERRA
model, and analysed using FDR3. In FDR3, a Labelled Transition System (LTS) of the model can
be generated. In an LTS, each node corresponds to one of the system’s possible state configu-
rations. Each edge is a named transition to another state configuration. See Figure 3.3b for an
example.

(a) CSP model of Test case I

0

1

activate_ParallelP1P2

2

activate_Process1

3

activate_Process2

4

activate_Process2 activate_Process1

τ

(b) LTS of Test case I

Figure 3.3: Test case I CSP model and LTS

The valid transitions from a state configuration are given in the LTS. Therefore, an LTS can be
used to manually verify that the animation results are valid in terms of the CSP model.

LUNA’s logging facilities define five types of states. For each individual element, the transition
order of these states is fixed, although the exact order depends on the type of CSP construct.
These states are Activate, Run, Activating other processes, Waiting, and Done. These states are
discussed in Appendix A.

Due to this high number of states, combined with the randomness of parallel constructs, a
model’s state space quickly becomes too large to report on. Therefore, a simplified state space
is used instead, as explained next.

If a model is deadlock-free, this means that each of its model elements can complete their iter-
ations (unless the model element is not run at all, e.g. a non-activated Alternative branch). This
implies that the corresponding states defined for that model element (as given in Appendix A)
are visited. For example, if a Code Block finishes its iteration, this means that the states Done
→ Activate → Running → Done have been visited, in that order. Since this order is fixed, this
can be condensed to two states, e.g.: Done → Activate → Done.

Given the above, the state space of a deadlock-free model can be condensed to a single state
per model element, plus an (implicit) return to the model elements’ initial configurations. Such
a reduced state space is shown in Figure 3.3b.

There is a drawback to this approach. In reality, LUNA’s scheduler can, for example, schedule a
construct, A, to become active while another construct, B, is in its Running state. The reduced
state space considers all of B’s states (other than Done) to be the same state. Therefore, such
scheduling subtleties are lost. This means that the condensed state space cannot be used to
completely verify animation correctness. It does allow for verification of the order of activation,
as well as deadlock freedom, in a manner that can be reported on.

Ran, T.C. University of Twente

CHAPTER 3. RESULTS 19

The verification as presented here, therefore, is based on reduced state spaces and correspond-
ing LTSes, supplemented with reporting on manual inspection of the execution flow animation.

In the reduced state space LTSes, a labeled transition to the condensed non-Done state of a pro-
cess P is named activate_P. The reasoning is that it most closely resembles LUNA’s Activate
state, showing order of activation. The return to the Done state is not explicitly indicated.

To define these transitions, custom CSP code has been added to that generated by TERRA.
Equivalence to the TERRA-generated code is proven using FDR3’s refinement checking, as in-
dicated in Figure 3.2.

3.1.3 Test coverage

Together, the models used in testing should contain all CSP constructs, TERRA’s ports and
TERRA’s / LUNA’s recursion construct and alternative guard types to achieve proper test cover-
age.

The model discussed in Section 3.3 achieves this. Since its state space is too large to show all
relevant screenshots in this report, the experiment concept is illustrated using a smaller model,
in Section 3.2.

3.2 Test case I

This model, shown in Figure 3.3a, consists of a parallel group of two processes, Process1 and
Process2. Due to a recursion on the parallel group, the model iterates indefinitely. Each itera-
tion, either Process1 or Process2 is activated, after which the other process is activated. In the
LTS of Figure 3.3b, this is shown by the two routes from state configuration 1 to 4.

In the logged run of this model’s executable, animation showed results consistent with the LTS.
In the first iteration, Process1 was shown to activate before Process2, corresponding to the left-
most branch in Figure 3.3b. This has been indicated by greying out the other branch.

Screenshots of the corresponding state configurations in the animations are shown in Fig-
ure 3.4. The figures’ captions list the LTS configuration they correspond with. Since the re-
cursion has been excluded from the LTS’s edges, Figures 3.4a to 3.4c are all considered to be the
initial configuration (labelled ‘0’) in the LTS.

As shown in the figure, blue represents the Done state, green the Activate state. The additional
turquoise state in between Activate and Done, hidden in the LTS, is Activating other
processes. These colours are adjustable by the user.

Figure 3.4d shows that two processes can be running at the same time, which is, of course, legal
in a CSP Parallel construct. The scheduler activates them one at a time, as can be seen from
comparing figures Figures 3.4d to 3.4f.

3.3 Test case II

Test case I has been used to illustrate the experiment procedure and to show that the animation
behaves correctly for at least the subset of CSP constructs used in it. Test case II is more exten-
sive. It contains all constructs except for a PriParallel. Additionally, Test case II uses Alternative
constructs with expression-guards and channel-guards. The channel-guarded constructs are
Sequential groups of which Readers are the first elements.

The model is shown in Figure 3.5. In Producer, a channel to write to is selected by the Code
Block CbChannelSelector, which ensures that one of the three Writers’ guard conditions eval-
uates to true. The Readers on the AltConsumer side are channel-guarded. The Alternative’s
branch selection in Producer therefore determines which of the consumer CodeBlocks is run
in an iteration.

Robotics and Mechatronics Ran, T.C.

20 Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

(a) Initial (Done) configuration (LTS node ‘0’).
Next configuration: Figure 3.4b

↓

(b) Recursion Activated (LTS node ‘0’).
Next configuration: Figure 3.4c

↓

(c) Recursion Activating other processes (LTS
node ‘0’). Next configuration: Figure 3.4e

↓

(d) Process2 Activated (LTS node ‘4’).
Next configuration: Figure 3.4c
←

(e) ParallelP1P2 Activated (LTS node ‘1’).
Next configuration: Figure 3.4f →

(f) Process1 Activated (LTS node ‘2’).
Next configuration: Figure 3.4d ↑

Figure 3.4: Animation of Test case I state configurations. LTS node numbers refer to Figure 3.3b

The corresponding LTS is shown in Figure 3.6. The choice of channel and resulting Code Block
execution is clearly visible from nodes 8–12. The branching options in nodes 1–8 and 13–16
are the result of the Parallel group ParProducerConsumers. The path taken in the first iteration,
as observed using animation, is indicated by the black transitions and nodes. This (already
reduced) state space is too large to include all corresponding figures. Instead, a single figure,
showing the transition labelled ‘channel1’ is shown in Figure 3.7.

Figure 3.7b shows that CbChannelSelector and CbDataGenerator have completed their execu-
tion (blue), and AltWriters is activating (turquoise) its top Writer (green). On the top level, the
Writers’ states are depicted by animation of the corresponding ports. The top level also indi-
cates that SeqConsumer1 has not been activated yet (i.e. it’s in the Done state from a potential
previous iteration). The orange colouring indicates that those constructs are Waiting for their
children to complete their execution.

Ran, T.C. University of Twente

CHAPTER 3. RESULTS 21

(a) (b)

Figure 3.5: CSP model of Test case II. (a) Top level (b) Contents of the Producer process

3.4 Discussion

Animation of both Test case I and II showed transition sequences that are valid according to
the models’ LTSes, as indicated by the black paths in Figure 3.3b and Figure 3.6.

The additional state changes in-between those depicted in the LTSes have been manually de-
termined to be correct.

During the experiments, it was observed that the state space is quite large, and that a lot of
transitions need to occur per model element. This results in ‘flooding’ of the textual view, and
distractions from the elements of interest in the graphical view. Therefore, it is desirable to
provide settings to disable animation of certain states. For example, states Running and Acti-
vating other processes could be ignored, showing only Activate, and Done. Waiting is important
for Readers and Writers, as it clarifies rendez-vous communication and is a good indication of
deadlock issues. For all other constructs, Waiting could be disabled as well.

Another cause of confusion could be that the Activate state, in terms of implementation, means
that the Activated construct is placed in the LUNA scheduler’s ready queue. Therefore, the
scheduler is free to continue with another process first. It will often do so if a FIFO scheduling
policy (with priority support) is used. FIFO is mandatory during animation, so this is always the
case. While this is proper and intended scheduling behaviour, it makes execution flow harder
to interpret by the user. In particular, focussing on a select set of processes becomes difficult,
as context is often switched to other parts of the model.

In conclusion, there seems to be a trade-off between an accurate depiction of LUNA’s CSP
scheduling (which can be useful for debugging) and efficient, easily understandable anima-
tion.

A solution would be to group, or hide, states in TERRA, much like the reduced state space used
in this chapter. For example, the Waiting state of compositional groups could be mapped to
the Activating other processes state, as the distinction usually does not matter to the user: they
already know that the compositional group will not reach the Done state until its children are
Done. For Readers and Writers on the other hand, animating the Waiting state is essential, as it
shows that no Writer or Reader is ready on the opposite channel end, which provides informa-
tion on synchronisation and potential deadlocks.

Robotics and Mechatronics Ran, T.C.

22 Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

Grouping multiple states should be implemented in TERRA and be optional. This way, LUNA
log output provides the maximum amount of information, allowing the user to toggle state
grouping on and off on the fly. This feature could be implemented in the database or the step-
per and / or publisher.

0

1

activate_ParProducerConsumers

2

activate_Producer

3

activate_AltConsumers

13

activate_SeqProducer

4

activate_AltConsumersactivate_Producer

5

activate_AltConsumers

14

activate_CbChannelSelector
activate_SeqProducer

6

activate_CbChannelSelector

7

activate_CbDataGenerator

8

activate_AltWriters

9

channel1

10

channel2

11

channel3

12

activate_CbConsumer1activate_CbConsumer2 activate_CbConsumer3

τ
activate_AltConsumers

15

activate_CbDataGenerator

activate_AltConsumers

16

activate_AltWriters

activate_AltConsumers

Figure 3.6: LTS of Test case II

Ran, T.C. University of Twente

CHAPTER 3. RESULTS 23

(a) (b)

Figure 3.7: Animated TERRA CSP model of Test case II, in transition from configuration ‘8’ to ‘9’ (see
Figure 3.6). (a) Top level (b) Contents of the Producer process

Robotics and Mechatronics Ran, T.C.

24 Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

4 Conclusions and Recommendations

In this chapter, the thesis’ results are evaluated, its added value is discussed and the extent to
which the requirements have been realised is determined. Furthermore, recommendations are
given for future work on the animation facilities.

4.1 Conclusions

The problem description given in Section 1.2 is revisited in Section 4.1.1, showing and evaluat-
ing this thesis’ contributions. Secondly, the requirements established in Section 2.2 are evalu-
ated.

4.1.1 Evaluation of thesis goal

Insight into the execution flow is essential for effective modelling. Without this insight, de-
bugging is difficult and validation of the model is not feasible. Furthermore, experience with
students shows that understanding CSP often proves difficult, a prime example being rendez-
vous communication.

Using the animation facilities developed in this thesis, such insight has become more easily
accessible for TERRA CSP models. The animation shows CSP processes’ states in both a textual
and graphical manner, allowing the user to inspect execution order and, for example, the state
configuration when a deadlock occurs.

Synchronisation using rendez-vous communication is an essential part of CSP and can be dif-
ficult to grasp and analyse. As a result of the hierarchical views of TERRA, communication
channels can cross diagram levels, potentially obscuring Readers and Writers from view, mak-
ing analysis even more difficult. To compensate, animation of ports has been implemented.
Animated ports mimic their channel end’s Reader or Writer, such that both sides of the rendez-
vous communication are visualised even when the connected Reader and / or Writer is not in
view.

Experiences during testing show that the number of states is likely higher than the optimum
value for general analysis and educational purposes. This could potentially limit the amount of
insight gained through animation. A solution would be grouping multiple states together into
a single state.

4.1.2 Requirement evaluation

In this section, the requirements established in Section 2.2 are evaluated.

General requirements

• Animation is possible, with support for stepping forwards and backwards, running,
jumping, pausing and terminating. This satisfies Requirement 1. The animation facil-
ities have been shown to work correctly (see Chapter 3).

• Offline animation (Requirement 2) is possible, using the pre-existing LUNA loggerserver
to receive log data from the real-time logger and write it to disk. The resulting log files
can be imported by TERRA and used for animation.

• Online (‘live’) animation has not been implemented, due to time constraints. Therefore,
Requirement 3 has not been met.

Ran, T.C. University of Twente

CHAPTER 4. CONCLUSIONS AND RECOMMENDATIONS 25

Modelling suite requirements (TERRA)

• A graphical animation view has been implemented, satisfying Requirement 4. The graph-
ical animation updates its view based on the user’s stepping (or running or jumping), de-
picting all of LUNA’s states by colouring and setting line thickness on the corresponding
figures. Ports connected to a Reader or Writer on another diagram are animated accord-
ing to that Reader or Writer’s state, which eases analysis of CSP’s rendez-vous communi-
cation.

• The textual animation view satisfies Requirement 5. It adds a view to the animation his-
tory and order of state changes, whereas the graphical view shows the state configuration
at a certain point in time (i.e. a certain step number). Additionally, as it is a flat view, it
allows the user to track state changes of model elements that are not visible on the graph-
ical view’s current diagram level.

• The user can change colours and line thickness for all states using Eclipse’s preference
menu. This largely satisfies Requirement 6. The textual view is not configurable. An
important customisation feature that can be added is hiding of states (see Section 4.2).

Communication requirements (TERRA and LUNA)

• Direct communication between TERRA and the logger, Requirement 7 has not been im-
plemented. This hinders usability, as the user is required to use an additional program
and import the resulting log files in TERRA.

• Pre-existing tooling is used for logging, as direct communication between TERRA and the
logger has not been implemented. The existing platform independence and limitations
remain: there is platform independence in the sense that QNX, regular Linux and RTAI
are supported by the real-time logging facilities. However, the real-time logger and the
loggerserver must run on and be built using the same word size (e.g. both on a 64-bit plat-
form). Thus, Requirement 8 is automatically partially satisfied, while no improvements
have been made.

• No specific facilities for handling data loss (Requirement 9) have been implemented. If
missing or illegal information is encountered in the logs, the user is notified and anima-
tion can continue up to the step before the incorrect information is encountered.

Non-functional requirements

• Per Requirement 10, using the animation facilities should be intuitive. Progressing
through an animation is indeed intuitive and switching between animations is straight-
forward. However, the absence of online animation makes setting up an animation sys-
tem cumbersome: it requires a separate command-line program to write two log files,
which then have to be selected in TERRA for use in animation. Future additions can sig-
nificantly improve intuitiveness. An example is using the textual view to select a step to
jump to.

• The animation facilities comprise a set of Eclipse plugins that separate the base imple-
mentation and CSP-specifics. Furthermore, the design is such that additional views and
visualisation facilities can be added in the future. Thus, Requirement 11 is satisfied.

• The animation facilities only use TERRA models to obtain information from, no models
are changed. This satisfies Requirement 12.

4.2 Recommendations

This section provides recommendations for future work.

Robotics and Mechatronics Ran, T.C.

26 Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

Firstly, direct communication between TERRA and the logger should be implemented, as de-
scribed in Requirement 7. This is important for ease of use.

Secondly, several smaller improvements can significantly improve user experience. These im-
provements are listed below:

• Wizard. A wizard to start a new animation session would be more user-friendly than the
current implementation, especially if it could remember previous settings.

• Navigating via textual view. Intuitively, one would expect that the textual view allows
interacting with the animation. For example, jumping the animation to the selected step
in the view, or opening the diagram that contains the selected step’s state in the graphical
viewer.

• Indicating state changes on a different level. In the graphical view, state changes often oc-
cur in a model element that is not visible in the current view. The view could, for example,
indicate such state changes by decorating a parent or child process that is in view. This
would guide the user, navigating them through the hierarchy to the process that changed
state. Another option is adding a tree view of the model, which allows all model elements
to be shown in a single view

Support for architecture models and external models is essential for using the animation facil-
ities in typical development scenarios. These scenarios usually include an architecture model
connecting linkdrivers to an external CSP model, as well as control using 20-sim external mod-
els.

Logging and showing variable values can greatly increase debugging potential. This is espe-
cially true for variables that influence the execution flow, e.g. those used in guards and recur-
sion conditions.

Lastly, the number of logged state changes is quite high, making orientation difficult and ob-
scuring activation order. On the other hand, such a level of detail may be needed for debugging.
Therefore, there should be options to include or exclude states from animations.

Ran, T.C. University of Twente

27

A LUNA CSP States

LUNA defines five possible states in total: Activate, Running, Done, Waiting, and Activating
other processes. The possible states and transitions are different per type of CSP Construct, as
shown in the state machine diagrams in Figure A.1.

Done
Activating other

processes

Waiting

Activate

(a) State machine diagram of Sequential con-
structs

Done
Activating other

processes

Waiting

Activate

(b) State machine diagram of Alternative and Par-
allel constructs

Done Running

Activating other
processes

Activate

Waiting

(c) State machine diagram of Recursions

Done RunningActivate

(d) State machine diagram of Code Blocks

Done

Running

Activate Waiting

(e) State machine diagram of Readers and Writers

Done
Activating other

processes
Running

(f) State machine diagram of channel-guarded
Readers and Writers guarding a Sequential con-
struct

Figure A.1: State machine diagrams for the various CSP constructs, as defined in LUNA

The states have the following meaning:

• Done indicates that a CSP construct is inactive. This is the start and end state of each
iteration of a CSP construct. Recursions are an exception (see Figure A.1c), as their itera-
tions consist of transitioning between Acting other processes and Waiting (except for the
first and last iteration).

• Activate is the activation of a CSP construct from its Done state.

• Activating other processes is mainly used for compositional groups, and refers to activat-
ing the CSP constructs contained in these groups, i.e. their ‘children’ (opposite: ‘parent’,
which is always singular).

As Sequential groups need to wait for a child to finish before activating the next, they
transition between Activating other processes and Waiting until the last child has been
activated (see Figure A.1a).

Parallel constructs are free to activate all children. Therefore, they remain in state Acti-
vating other processes until all children have been activated. For Alternative constructs,

Robotics and Mechatronics Ran, T.C.

28 Design of Animation Facilities for Analysing Cyber-Physical System Software Architectures

Activating other processes applies to activating a single child, namely the (first) one of
which the guard condition is met. Both Parallel and Alternative constructs consequently
have the same state machine diagram, shown in Figure A.1b.

A channel-guarded Reader or Writer can be part of a Sequential group which is itself a
child of an Alternative construct—hence the guarding. It must be the first construct in
the Sequential group. In the LUNA C++ code, however, the Sequential group does not
contain the channel-guarded Reader (or Writer). Rather, the Reader is the parent of the
Sequential group. If the guard condition is met (i.e. a Writer is ready on the other channel
end), the Reader and Writer perform rendez-vous communication. This happens in the
Running state, as explained below. Next, the Reader activates the Sequential construct,
thereby transitioning to the Activating other processes state. See Figure A.1f.

• Running applies to all non-compositional group constructs. For Readers and Writers, it
signifies the occurrence of rendez-vous communication, and hence synchronisation and
data transfer. For Code Blocks, it signifies execution of their code, e.g. 20-sim controller
code.

• Waiting applies to compositional groups and Readers and Writers. For compositional
groups, it indicates that the group is waiting for (one of) its children to finish execution,
i.e. transition to the Done state.

For Readers and Writers, it indicates that the Writer or Reader on the other end of the
channel is not (yet) ready for communication. If a Reader or Writer is in its Waiting state,
the opposite Writer or Reader can transition to Running without going through the Wait-
ing state, as indicated in Figure A.1e.

Ran, T.C. University of Twente

29

Bibliography
Bezemer, M. M. (2013), Cyber-Physical Systems Software Development - way of working and tool

suite, Ph.D. thesis, University of Twente, doi:10.3990/1.9789036518796.

Bezemer, M. M., R. J. W. Wilterdink and J. F. Broenink (2011), LUNA: Hard Real-Time,
Multi-Threaded, CSP-Capable Execution Framework, in Communicating Process
Architectures 2011, Limmerick, volume 68 of Concurrent System Engineering Series, Eds.
P. Welch, A. T. Sampson, J. B. Pedersen, J. M. Kerridge, J. F. Broenink and F. R. M. Barnes, IOS
Press BV, Amsterdam, pp. 157–175, ISBN 978-1-60750-773-4, ISSN 1383-7575,
doi:10.3233/978-1-60750-774-1-157.
http://wotug.org/papers/CPA-2011/Bezemer11/Bezemer11.pdf

Bezemer, M. M., R. J. W. Wilterdink and J. F. Broenink (2012), Design and Use of CSP
Meta-Model for Embedded Control Software Development, in Communicating Process
Architectures 2012, volume 69 of Concurrent System Engineering Series, Eds. P. Welch,
F. R. M. Barnes, K. Chalmers, J. B. Pedersen and A. T. Sampson, Open Channel Publishing,
pp. 185–199, ISBN 978-0-9565409-5-9.
http://wotug.org/papers/CPA-2012/Bezemer12a/Bezemer12a.pdf

Clegg, D. and R. Barker (1994), Case method fast-track: a RAD approach, Addison-Wesley
Longman Publishing Co., Inc.

Controllab Products (2015), 20-sim.
http://www.20sim.com/

Gibson-Robinson, T., P. Armstrong, A. Boulgakov and A. W. Roscoe (2014), FDR3 — A Modern
Refinement Checker for CSP, in Tools and Algorithms for the Construction and Analysis of
Systems, volume 8413 of Lecture Notes in Computer Science, Eds. E. Ábrahám and
K. Havelund, Springer Berlin Heidelberg, pp. 187–201, ISBN 978-3-642-54861-1,
doi:10.1007/978-3-642-54862-8_13.
http://dx.doi.org/10.1007/978-3-642-54862-8_13

Hoare, C. A. R. (1985), Communicating Sequential Processes, Prentice Hall International.
http://www.usingcsp.com/cspbook.pdf

IBM (2015), Rational Rhapsody Developer,
www.ibm.com/software/products/en/ratirhap, accessed: 2015-09-25.

Krasner, G. E. and S. T. Pope (1988), A Description of the Model-View-Controller User Interface
Paradigm in the Smalltalk-80 System.

Noble, K. and L. Groves (1992), Tarraingím - a program animation environment, New Zealand
Journal of Computing, vol. 4, pp. 29–40.

Rubel, D., J. Wren and E. Clayberg (2011), The eclipse graphical editing framework (gef),
Addison-Wesley Professional.

van der Steen, T. T. J. (2008), Design of animation and debug facilities for gCSP, Msc report
020ce2008, University of Twente.
http://essay.utwente.nl/58120/

Wilterdink, R. J. W. (2011), Design of a hard real-time, multi-threaded and CSP-capable
execution framework, Msc thesis 009ce2011, University of Twente.
http://essay.utwente.nl/61066/

Robotics and Mechatronics Ran, T.C.

http://wotug.org/papers/CPA-2011/Bezemer11/Bezemer11.pdf
http://wotug.org/papers/CPA-2012/Bezemer12a/Bezemer12a.pdf
http://www.20sim.com/
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://www.usingcsp.com/cspbook.pdf
www.ibm.com/software/products/en/ratirhap
http://essay.utwente.nl/58120/
http://essay.utwente.nl/61066/

	Summary
	Contents
	1 Introduction
	1.1 Context
	1.2 Problem description
	1.3 Goal
	1.4 Approach
	1.5 Document outline

	2 Design
	2.1 System overview
	2.2 Requirements
	2.3 Architecture
	2.4 Core functionality anim.base, anim.csp, anim.csp.luna
	2.5 User interface anim.base.ui, anim.csp.ui
	2.6 Graphical animation view anim.base.view.graphical, anim.csp.view.graphical,anim.csp.view.graphical.animate
	2.7 Textual animation view anim.base.view.textual

	3 Results
	3.1 Experiment setup
	3.2 Test case I
	3.3 Test case II
	3.4 Discussion

	4 Conclusions and Recommendations
	4.1 Conclusions
	4.2 Recommendations

	A LUNA CSP States
	Bibliography

