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PREFACE

Dear reader,

In this master’s thesis, I present the research I have done during my graduation assignment
at the section of nuclear medicine at the department of radiology at the University Medical Cen-
ter Utrecht, in collaboration with the Leiden at the University Medical Center. Over the past
half year, I have researched the added value of [18F]FDG-PET-derived radiomics in predicting
peritoneal and distant metastases in patients with advanced gastric cancer, as a side-study of
the PLASTIC trial. Radiomics is a field of research that aims to extract quantitative metrics of
imaging data that are difficult to recognize by the human eye. It is believed that it can build
prediction models to guide clinical decision-making.
The thesis starts with a general introduction explaining the basics of gastric cancer, PET and
radiomics. An article follows, presenting the methodology, results and a part of the discus-
sion. The discussion is continued in the general discussion, giving more information about the
methodology and future perspectives on radiomics. Lastly, I have written a small acknowledge-
ment.

I hope you will enjoy reading this thesis.

Lieke Pullen, December 2022
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GENERAL INTRODUCTION

Gastric cancer

Epidemiology of gastric cancer

In 2020, the incidences of gastric adenocarcinoma and cardia cancer in the Dutch population
were over 1100 and 512, respectively [1]. It is the 6th most common tumour type, and the 3th
most known reason for cancer-related death [2]. Assuming current incidence rates and pop-
ulation growth of 2020 remain the same, the annual number of new gastric cancer cases is
predicted to increase by 62% from 1.09 million cases to 1.77 million cases by 2040 [3]. In 2040,
the expected global burden will be around 28.4 million cases of gastric cancer [2].

Differences between the Asian and Western populations are long known. Globally, the Asian
population has a much higher gastric cancer incidence, and mortality compared to the Western
population [4]. Risk factors such as smoking, alcohol intake and food preservation increase the
chance of developing gastric cancer. Especially the latter is a high-risk factor in Asian countries
where food is traditionally preserved with salt. Screening programs are currently mainly used
in Japan and South Korea [5] due to their high incidence, and resulted in a 40% reduction in
gastric-cancer mortality [6]. Since a screening program is not implemented in the Dutch sys-
tem [1], gastric cancer in the Dutch population is discovered at a later stage in comparison to the
Asian population.

Diagnosis and staging

Gastric cancer has multiple common symptoms, including indigestion, poor appetite, weight
loss, melaena and abdominal pain. Generally, a primary gastric tumour is diagnosed by endo-
scopic examination, where the tumour is located within the stomach, and a histological biopsy is
taken to confirm the presence of gastric adenocarcinoma [7]. Consequently, a computer tomog-
raphy (CT) scan of the abdomen and chest is performed to stage the disease. Since screening
is not routine in the Netherlands, symptoms of gastric cancer usually occur at a later stage.

Dependent on the penetration of the tumour within the stomach walls and whether or not metas-
tases are present, the tumour is assigned to a particular stage. The anatomy of the stomach
wall is given in figure 1.
Staging of gastric cancer is defined by the depth of tumour invasion of the primary tumour (T),
presence of locoregional lymph node metastases (N) and presence of any distant and/or peri-
toneal metastases (M). The specific descriptions of T-, N- and M-stages are given in table 1.
The classification of staging defined by the Union for International Cancer Control is given in
table 2 [10]. When distant metastases are present, gastric cancer is defined as stage IV and
considered inoperable for radical intent.
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Figure 1: Layers of the stomach wall. The wall of the stomach is made up of the mucosa
(innermost layer), submucosa, muscle layer, subserosa, and serosa (outermost layer) [9].

T-stage Description
Tis Intraepithelial tumour without invasion of the lamina propria, high-grade dysplasia
T1a Tumor invades lamina propria, muscularis mucosae, or submucosa.
T1b Tumor invades submucosa.
T2 Tumor invades muscularis propria.
T3 Tumor penetrates the subserosal connective tissue without invasion of the visceral

peritoneum or adjacent structures.
T4a Tumor invades serosa (visceral peritoneum)
T4b Tumor invades adjacent structures/organs

N-stage Description
N0 No regional lymph node metastasis.
N1 Metastases in 1 or 2 regional lymph nodes.
N2 Metastases in 3 to 6 regional lymph nodes.
N3a Metastases in 7 to 15 regional lymph nodes.
N3b Metastases in 16 or more regional lymph nodes.

M-stage Description
M0 No distant metastases.
M1 Distant metastases.

Table 1: Classification of gastric tumors: T = primary tumor invasion depth, N = regional lymph
node, M = distant metastases; [10]
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N0 N1 N2 N3a N3b M1
T1a IA IB IIA IIB IIIB IV
T1b IA IB IIA IIB IIIA IV
T2 IB IIA IIB IIIA IIIB IV
T3 IIA IIB IIIA IIIB IIIC IV
T4a IIB IIIA IIIB IIIC IIIC IV
T4b IIIA IIIB IIIB IIIC IIIC IV
M1 IV IV IV IV IV IV

Table 2: Classification of gastric cancer stage, defined by the T-, N- and M-stage of the tumour.
If there are any distant metastasis, the cancer is defined as stage IV. [10]

Gastric cancer can be classified into two main types according to Lauren classification: intesti-
nal and diffuse-type carcinoma. Intestinal-type tumours exhibit adhesion and are arranged in
tubular or glandular formations. Diffuse-type tumours lack adhesion, leading to the gathering
of non-cohesive tumour cells [11]. The tumours differ in pathology, epidemiology, and aetiology,
and their classification might be the basis of individual chemotherapy for gastric cancer [12].

Metastases of gastric cancer can be divided into two categories: peritoneal and distant metas-
tases. Peritoneal metastases refer to metastatic involvement of the peritoneum [13]. In 14% of
the advanced stage (stage IV) gastric cancer, peritoneal metastases are already present at first
presentation [14]. Distant metastases are metastases in other organs by hematogenous dissem-
ination or distant lymph nodes via lymphomatous dissemination. Distant metastases of gastric
cancer are most often found in the liver [15].

Treatment

Treatment of gastric cancer is dependent on the tumour stage. In stage I-III gastric cancer,
surgical resection - gastrectomy - of the tumour is often the preferred method [16]. In early-stage
patients with intramucosal tumours, surgical resection can be performed endoscopically.
Surgery can be combined with perioperative or adjuvant chemotherapy, or chemoradiother-
apy [17]. In stage IV, where the tumour is considered inoperable, palliative care is provided
because the disease is no longer curable. This care can consist of palliative systemic therapy,
palliative immunotherapy, combinations of these two, or best supportive care. Palliative ther-
apy focuses on symptom management, pain control, and patient comfort and may be done to
prolong life.

Positron Emission Tomography

Positron emission tomography (PET) is amajor functional imaging technique in nuclearmedicine [19].
PET is used to image the distribution of a radionuclide administered in the body.
The imaging technique is based on the coincidence of two photons. In PET imaging, a radioac-
tive isotope is intravenously injected into the patient [18]. The isotope undergoes decay leading
to a positron being emitted, which has the opposite charge as an electron. After a short travel
through the tissue, the positron loses most of its energy and combines with an electron. This
process is called annihilation, converting the particle’s mass to radiant energy. It produces two
annihilations (gamma) photons of 511 keV moving in the opposite direction, which the scanner
can detect. This event is called annihilation coincidence detection.

The crystals within the PET detector absorb the photons, producing light that is converted to
an electrical signal (figure 2). PET counts the number of detected photons. Since the detected
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photons are annihilated in the opposite direction, the line including both photons can be defined
by a line of response (LOR). With image reconstruction, the position of the coincidence events
can be determined.

The raw data from the PET scan are stored in a list mode file, which next to the coordinates
of the position for the individual events, stores the millisecond interval at which the event oc-
curred [20]. The image can be reconstructed from the list mode file using iterative reconstruction
algorithms. In such algorithms, an initial guess of the radioactivity distribution is made and com-
pared to the measured data. From this comparison, an image correction factor is determined
and applied to the reconstructed image. This new guess is then compared to the measured
data, and so on, until the reconstructed image is equal to the measured image.

Figure 2: The basic principle of a positron emission tomography (PET) system: A PET detector
ring detects a pair of gamma photons with an energy of 511 keV (red arrows) which results from
the annihilation of an electron with a positron emitted by the radiotracer ([18F]FDG). [19]

[18F]FDG

2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) is a radiotracer used for PET imaging and is a glu-
cose analogue, wherein the glucose molecule, the -OH group is replaced with a radioactive
18F. Due to its relatively short half-life of 109.7 minutes (approximately two hours), it has a rela-
tively low radiation dose but enough dose for imaging. The injected activity is determined using
a dosage regimen based on the patient’s body weight. Since its attachment to glucose, the
radiotracer is taken up by living cells via glucose transporters on the cell membrane using hex-
okinase. [18F]FDG uptake reflects the tissue glucose metabolism.

Cancer cells generally take up more glucose than healthy cells, and [18F]FDG accumulation
in cells is proportional to its utilisation. More [18F]FDG will thus be present in cancer cells and
other organs and tissues with high metabolisms, such as the brain, the liver and the kidneys or
other sites with active inflammation. After 18F has decayed, the deoxyglucose molecules will
become part of the glycolytic pathway [21].
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Computed Tomography

Computed Tomography (CT) is a 3D anatomical imaging technique that reflects X-ray attenu-
ation by different tissues. CT uses quickly rotating x-ray tubes and an oppositely placed row
of detectors placed in a gantry to produce an attenuation profile of the patient. It consists of
a varying number of detector rows (8-64), which hold between 1000 and 2000 detectors per
row. An x-ray source moves around the patient, and with each rotation, a 2D image slice of the
patient is constructed. The intensity of the x-ray beam depends on the total attenuation of the
tissue it passes. Every slice leads to another attenuation profile stored in a sinogram.

Radiomics

Radiomics is a field of research that aims to extract quantitative metrics of imaging data that are
difficult to recognise by the human eye [22]. When combined with clinical, genomic or histologic
data, it may give information about tumour characterisation, treatment response prediction or
other tumour characteristics. It is believed that it can build prediction models in order to guide
clinical decision-making.

The pipeline of radiomics starts with image acquisition and reconstruction, including attenua-
tion correction, artefact correction, and filtering. From these images, a volume of interest (VOI)
is segmented either manually or (semi-)automatically. The VOIs are used for feature extrac-
tion. The next step is feature selection, where unimportant features are discarded to reduce
the dimensions and more important features remain. A model is trained by implementing the
selected features to predict an outcome measure. After training based on the selected features,
the model is validated to investigate its performance. With a high-performance model, it can
predict the outcome for new data sets [23].

Feature extraction

Radiomics pipelines can be divided into two categories: handcrafted and deep learning pipelines
(figure 3). Handcrafted radiomics is considered the traditional form. In this pipeline, predefined
features are extracted from the VOI. With deep learning radiomics, raw images are used and
the extraction, selection, training and classification are performed by the algorithm. [24].

Three types of handcrafted features are extracted from the imaging data: shape features, in-
tensity features, and texture features. Shape features describe the shape and size of the VOI.
Intensity features quantify the tracer uptake within the lesion but do not describe any hetero-
geneity within the VOI. The intensity features can be quantitatively described by the standard-
ised uptake value (SUV) and are commonly used in PET studies [25].
The SUV expresses the regional tracer uptake by the lesion, normalised by the injected ra-
dioactivity and weight of the patient. Its variations, such as SUVmin (minimum SUV), SUVmax
(maximum SUV) and SUVpeak (average SUV within 1 cm3 of the VOI [26]) can objectively give
these features. Features such as skewness and kurtosis describe the shape of the intensity
distribution with the VOI and are also commonly used parameters to describe intensity fea-
tures [22]. The heterogeneity of the tracer uptake is described by the last category of features:
texture features. These features express the relationship between neighbouring voxels and
thus say something about the spatial heterogeneity of the tracer uptake, such as Small Area
Emphasis. This feature measures the distribution of small size zones, with the size zone being
a number of connected voxels. A greater value indicates smaller size zones and more fine tex-
tures [27]. A schematic overview of the pipelines and features is given in figure 3.
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Figure 3: Schematic overview of feature selection in A) handcrafted and B) deep learning
pipelines. [24]

Feature selection or dimensionality reduction

Since hundreds or even thousands of features can be extracted from each VOI, not all features
hold important information about the outcome measure of interest. An important challenge of
radiomics is the large number of features compared to the number of patients, which intro-
duces the curse of dimensionality [28]. The curse refers to analysing high-dimensional spaces
on a small amount of data. As the number of radiomics features increases, the data space
increases exponentially. When applied to a small amount of data, this leads to overfitting of the
model [29]. Furthermore, the computational time and storage requirements increase when im-
plementing more variables, from which deep learning suffers more than handcrafted radiomics.
The balance between the right amount of features regarding the amount of data is fragile, and
of great importance for a good performing model [30]. Therefore, reducing the number of fea-
tures is important to prevent the overfitting of the radiomics models. Overfitting occurs with a
large number of features for a relatively small number of patients and may lead to unbalanced
results [31]. Feature selection can be performed supervised by the outcome measure or unsu-
pervised.

In supervised feature selection, labelled data sets with a known outcome measure are used
for feature selection. The outcome measure indicates whether or not the lesion belongs to a
certain category. The algorithm then tries to find features that predict the outcome measure of
lesions [23].
Supervisedmethods include least absolute shrinkage and selection operator (LASSO) andmax-
imum relevance-minimum redundancy (mRMR). LASSO uses regression analysis on the train-
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ing data and ranks the features based on their predictive accuracy via parameter λ. After regres-
sion, most of these coefficients will shrink to zero, and the remaining are selected as predicting
features [32]. mRMR uses a similar method, adding a feature to a set of predictive features.
However, if the feature contradicts another feature in the set, it will not be added [31].

With unsupervised feature selection or dimensionality reduction, the outcome is unknown. The
algorithm will process unlabeled data and structure it into clusters or relationship patterns. The
new data will be assigned to clusters rather than categories.
Unsupervised methods for feature selection include principal component analysis (PCA) and
clustering correlation matrix. PCA aims to describe the total variation in the data set from only
a few latent components and uses these to indicate grouping within the data set. Clustering
clusters the data into groups with high intertwined correlation but with a little or high correlation
to the other clusters (depending on the type of clustering). It is mostly visualised in a correlation
map [33].

Classification algorithms

After feature extraction and selection, classification of the features is necessary to train the
model correctly [34]. The data set is split into a training and validation set. The training set is
used for training the model, and the validation set is used to classify the model’s performance.

• Logistic regression (LR): finds the probability that data belongs to a certain category and
gives it a score between 0 and 1. A threshold must be installed to assign the data to the
different categories.

• Support vector machine (SVM): the number of features are mapped onto an equal number
of dimensions. Then, it divides the features into two classes with maximum separation
between the two.

• Decision tree (DT): classifies data into a tree-like structure with multiple levels. Each
internal node represents a ’choice’, redirecting to the sub-level with another node etc.

• Random forest (RF): very similar to DT but less sensitive to changes in training data. It
divided the data into several DTs, with each tree using different parts of the training data
set. The forest chooses the classification by majority votes of all DTs.

PLASTIC study

In the Netherlands, 60% of the patients [35] with gastric cancer undergo a curative gastrectomy
since most tumours are irresectable or metastases are present at first clinical presentation.
In addition, the prognosis after curative treatment is poor, with a five-year survival rate of 36-
45% [36] [37]. As mentioned earlier, gastrectomy is the preferred method but might not be the
best treatment for the patients considering the relatively poor survival rate is mainly due to the
recurrence of the disease.
A gastrectomy can be considered futile if unexpected intraoperative peritoneal metastases or
an irresectable tumour are detected, or when recurrence or distant metastases occur shortly af-
ter gastrectomy (within six months). Such situations lead to inappropriate health care because
patients undergo curative treatment with substantial morbidity, mortality and costs related to
gastrectomy since gastric cancer surgery cannot cure their disease. Hence, accurate preoper-
ative evaluation of tumour resectability, the presence of metastases and the risk of recurrence
is of great importance to reduce the number of futile gastrectomies and improve individual pa-
tient care in gastric cancer. This is currently done with a gastroscopy to determine the size and
location of the tumour and take a biopsy, and CT, to detect metastases.
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Preoperative evaluation of tumour resectability, the presence of metastases and the risk of
recurrence is therefore of great importance to reduce the number of futile gastrectomies. This
is currently done with a gastroscopy [17] to determine the size and location of the tumour and
take a biopsy, and CT, to detect metastases. Unfortunately, as mentioned, the sensitivity of CT
is low [38]. Currently, CT of the thorax and abdomen is performed to detect metastases. How-
ever, this modality’s sensitivity for peritoneal metastasis is low (0.33, 95% Cl 0.16-0.56) [39].

Because CT has suboptimal accuracy in detecting distant and peritoneal metastases [8], ac-
cording to international guidelines, PET scans and staging laparoscopy (SL) were implemented
in Dutch hospitals [17]. The aim is to stage locally advanced gastric cancer (T3-4 and/or cN+)
to detect occult metastases that were not diagnosed with CT [7]. Previous studies showed that
[18F]FDG-PET/CT improves the sensitivity of detecting distant metastases but still has poor sen-
sitivity to detect peritoneal metastases (0.28, 95% Cl 0.17-0.44) [39]. Staging laparoscopy can
detect peritoneal metastases and/or irresectable gastric cancer. After detecting distant/peritoneal
metastases or irresectable disease, the treatment strategy is changed from curative treatment
to treatment with palliative intent.

The PLASTIC study by Gertsen et al. was conducted between August 2017 and February 2020
and included 394 patients [40]. This research evaluated the added value of [18F]FDG-PET/CT
and SL, in addition to initial staging through gastroscopy and CT in patients with locally ad-
vanced gastric cancer. [18F]FDG-PET/CT detected distant metastases in 3% of the patients. In
contrast, SL detected peritoneal metastases and/or locally irresectable disease in 19% of the
patients, with a 2% overlap between [18F]FDG-PET/CT and SL where both modalities detected
non-curable disease. In 16% of the patients, the treatment intent was changed from curative to
palliative care. This study concluded that [18F]FDG-PET/CT has limited added value, whereas
SL considerably reduced futile gastrectomies due to detecting non-curable disease. There-
fore, routine use of [18F]FDG-PET/CT is not recommended, whereas SL should be routinely
performed in staging locally advanced gastric cancer.
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Simple Summary: Patients with locally advanced gastric cancer have a five-year survival rate of 36-

45% after curatively intended D2-gastrectomy combined with perioperative chemotherapy. This 

relatively poor survival is mainly due to the recurrence of the disease. This study aimed to improve 

the detection of distant and peritoneal metastases on [18F]FDG-PET images in patients with 

advanced gastric cancer by extracting and analysing imaging features from these images, known as 

radiomics. Three predictive models were developed to determine the added value of implementing 

radiomics: with clinical variables only, radiomic features only, and a combination of both. 

[18F]FDG-PET-based radiomics showed no additional value in predicting distant nor peritoneal 

metastases in locally advanced gastric cancer patients. 

Abstract: Distant and peritoneal metastases from gastric cancer are frequently missed on CT and 

[18F]FDG-PET/CT during clinical and radiological evaluation, resulting in patients undergoing 

unnecessary D2-gastrectomy. This study aimed to improve the prediction of distant and peritoneal 

metastases on [18F]FDG-PET by implementing radiomics. Data from 18 Dutch hospitals 

participating in the prospective multicenter PLASTIC-study were used to develop the radiomics 

model. From [18F]FDG-PET images of 206 patients, 105 radiomic features were extracted. Three 

machine-learning models were constructed to predict metastases from the extracted features: 1) 

11

mailto:w.a.noortman@lumc.nl
mailto:f.h.p.van_velden@lumc.nl
mailto:g.m.kalisvaart@lumc.nl
mailto:L.F.de_Geus-Oei@lumc.nl
mailto:L.Triemstra@umcutrecht.nl
mailto:C.deJongh@umcutrecht.nl
mailto:E.C.Gertsen-2@umcutrecht.nl
mailto:R.vanHillegersberg@umcutrecht.nl
mailto:J.P.Ruurda@umcutrecht.nl
mailto:f.j.rademaker@student.utwente.nl
mailto:r.spijkerman@student.utwente.nl
mailto:N.Tolboom@umcutrecht.nl
mailto:w.o.de_steur@lumc.nl
mailto:m.dantuma@utwente.nl
mailto:r.h.j.a.slart@umcg.nl
mailto:peter.siersema@radboudumc.nl
mailto:e.vegt@erasmusmc.nl


Cancers 2022  
 

 

with clinical variables only, 2) with radiomic features only, and 3) a clinicoradiomic model. 

Oversampling was performed to reduce class imbalance. In addition, subgroup analysis based on 

Lauren classification was performed. Spearman rank’s correlation and least absolute shrinkage and 

selection operator regression were used for feature selection, and logistic regression was used as a 

classifying algorithm. Performance was scored based on the area under the curve (AUC) and 

accuracy. Sham experiments were performed to validate the findings. Of the 206 patients included, 

21% had confirmed peritoneal or distant metastases. For the complete dataset, no model correctly 

predicted metastases (AUC of 0.31, 0.35 and 0.30, respectively). Neither of the models predicted 

metastases correctly in intestinal/mixed and diffuse-type tumours. None of the models correctly 

predicted distant and peritoneal metastases from advanced gastric cancer. Overall, [18F]FDG PET-

based radiomics showed no added value compared to the clinical model. 

Keywords: [18F]FDG-PET/CT; gastric cancer; radiomics; metastases  

 

1. Introduction 

Gastric cancer is the 3rd most common cause of cancer-related death worldwide [1]. 

The prognosis after curatively intended treatment is relatively poor, with a five-year 

survival rate of 36-45% after perioperative chemotherapy combined with D2-gastrectomy. 

The main reasons for failure of curative treatment are distant metastases during 

neoadjuvant chemotherapy, unexpected intraoperative peritoneal metastases or tumour 

irresectability at the onset of gastrectomy, or local or distant recurrences shortly after 

surgery [2][3]. In the Netherlands, only 60% of gastric cancer patients undergo curative 

D2-gastrectomy since the remaining patients present with irresectable tumours or distant 

metastases [4]. After detecting distant metastases or irresectable disease, treatment is 

changed from curative to palliative intent. Hence, accurate primary staging is crucial. 

Currently, computed tomography (CT) of the thorax and abdomen is performed to 

detect any metastases. However, the sensitivity of CT for detecting peritoneal 

carcinomatosis (22-33%) and distant metastases (33%, 95% CI: 16-56%) is low [5]. The  

Dutch multicenter PLASTIC study assessed the diagnostic performance and clinical and 

financial impact of 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography 

combined with CT ([18F]FDG-PET/CT) and staging laparoscopy (SL), in addition to initial 

staging with CT for locally advanced gastric cancer (cT3-4 and/or cN+) as the standard of 

care according to Dutch national guidelines [4][6]. Nevertheless, the sensitivity of visual 

radiological assessment of [18F]FDG-PET/CT for the detection of distant metastases was 

only 33% (95% CI: 17-53%). The PLASTIC-study did not find additional value of 

qualitative assessment of [18F]FDG-PET/CT in gastric cancer. However, medical images 

might contain more information than can be assessed visually by a human reader 

(experienced nuclear medicine physician), and a more in-depth quantitative assessment 

might be of added value [7]. Radiomics, the extraction of large amounts of quantitative 

imaging features from medical imaging and subsequent modelling to associate the 

imaging features with clinical outcome measures, is a rapidly evolving field in medical 

imaging [8][9]. Radiomics aims to find stable and clinically relevant image-derived 

biomarkers and imaging markers that may provide new insights into tumour biology and 

guide patient management. 

Several previous studies showed promising results of CT-based radiomics for the 

identification of metastases in gastric cancer [10-12], but only a few investigated the 

predictive value of [18F]FDG-PET/CT radiomics [13][14]. Hence, the added value of FDG-

PET/CT-radiomics for gastric cancer is unclear. 

This study aimed to assess the added value of [18F]FDG-PET-based radiomics and 

clinical characteristics for identifying peritoneal and distant metastases in patients with 

advanced gastric cancer. 
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2. Materials and Methods 

Patient inclusion 

[18F]FDG-PET/CT scans were collected from the PLASTIC study hospitals [15]. Only 

patients with an [18F]FDG-avid primary tumour were included and readily available for 

radiomic analysis before October 1, 2022. A non-WMO declaration (METC 16-633/C) had 

been obtained from the Medical Ethical Review Board of the University Medical Center 

Utrecht. In addition, the trial was approved by the institutional review boards in each of 

the 18 participating centres. Written informed consent was obtained from all patients. The 

patient population consisted of patients with surgically resectable, advanced gastric 

adenocarcinoma (cT3-4b, N0-3, M0) who were scheduled for treatment with curative 

intent after initial staging with gastroscopy and CT. Patients first underwent an [18F]FDG-

PET/CT, followed by a staging laparoscopy if [18F]FDG-PET/CT was negative, as the 

standard of care according to Dutch national guidelines [4]. The presence of metastases 

was confirmed based on (histo)pathological biopsy/cytology and/or follow-up imaging. 

  

Image acquisition & reconstruction 

 The [18F]FDG-PET/CT acquisitions were performed using site-specific scanning 

protocols, with most hospitals in the Netherlands following the European Association of 

Nuclear Medicine (EANM) guidelines version 1.0 for tumour PET imaging [15]. When 

these EARL-compliant PET images were unavailable, the PET images included were 

reconstructed according to the site-specific reconstruction protocol. Patients had to refrain 

from exercise and fast for at least 4 to 6 hours before injecting [18F]FDG. Patients were 

prehydrated by drinking approximately 1 litre of water in the 2 hours before injection. 

Fasting blood glucose had to be preferably below 11 mmol/L. After the injection of 

[18F]FDG, patients remained seated or lying and silent for 1 hour in a warm room. The 

acquisition of a PET scan from the eyes to thighs started approximately 60 min the 

injection of [18F]FDG, being accompanied by a low-dose CT of the same scanning range 

[6]. 

 

VOI delineation  

Volume of interest (VOI) delineation was performed using 3DSlicer (version 4.11.2, 

www.slicer.org) with the extensions PET-IndiC and PETDICOMExtension, and in-house 

built software implemented in Python (version 3.7, Python Software Foundation, 

Wilmington, Delaware, USA) [16][17]. VOIs were delineated using an isocontour that 

applies an adaptive threshold of 50% of the peak standardized uptake value (SUVpeak), 

obtained using a sphere of 12 mm diameter [18], corrected for local background [19]. In 

addition, boxing was applied to exclude surrounding [18F]FDG-avid tissues. 

 

Radiomic pipeline 

Radiomic features were extracted from the VOI using PyRadiomics (version 3.0.1) in 

Python (version 3.7) [20]. For each VOI, the standard feature set of 105 radiomic features 

was extracted: 18 first order, 14 shape, 24 grey level co-occurrence matrix (GLCM), 16 

grey-level run-length matrix (GLRLM), 16 grey-level size zone matrix (GLSZM), 14 grey-

level dependence matrix (GLDM) and 5 neighbouring grey tone difference (NGTDM) 

features (Appendix 1). In addition, a fixed bin width of 0.5 g/mL was applied [21]. 

Furthermore, the VOIs were interpolated to isotropic voxels of 4x4x4 mm³ to meet the 

EANM guidelines, using B-spline interpolation (grids aligned by centre, PyRadiomics 

default). 

 

Statistical analysis 

To predict the presence of metastases from the extracted radiomic features and 

clinical variables, a clinical model, radiomics model and clinicoradiomics model was built. 

A Kolmogorov-Smirnov test was performed to test the significance of the SUVmean 

between the EARL-compliant and non-EARL-compliant scans [22]. ComBat 

harmonisation was applied between radiomic features derived from EARL-compliant and 
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non-EARL-compliant scans to reduce variability by scanning protocols using 

neuroCombat in Python (version 3.9) [23]. 

The dataset was split into a training and test set (80:20), stratified for the presence of 

distant metastases. Radiomic features were scaled (µ=0, σ=1) to prevent a large 

contribution of high-valued features. To exclude features with high mutual correlations, 

features were first clustered into 40 clusters based on Spearman’s rank correlation. The 

features with the best representation of the individual cluster were used as input for least 

absolute shrinkage and selection operator (LASSO) regression [24]. Features were further 

reduced using LASSO by calculating hyperparameter λ using stratified 5-fold cross-

validation. As recommended in the literature, selected radiomic features were introduced 

in a Logistic Regression algorithm to identify metastases [25]. A clinical model was created 

with the variables: clinical T-stage, clinical N-stage, Lauren classification, degree of 

differentiation and Her2Neu-status [26]. The clinical variables Lauren classification, 

degree of differentiation and Her2Neu-status were imputed based on fourteen other 

variables (Appendix 2) due to a high percentage of unknown classes (21%, 43% and 54%, 

respectively). The clinicoradiomics model was created with all clinical variables and 

radiomic features selected based on the absolute regression coefficient. To compensate for 

the class imbalance for metastases, the training set was oversampled randomly and 

compared to the analysis with a non-oversampled training set. The function oversamples 

the minority class by picking samples at random with replacement [27]. 

Classification performances were presented by the area under the curve (AUC) (AUC 

of 0.5 represents no discrimination, AUC between 0.5 and 0.7 poor discrimination, AUC 

between 0.7 and 0.8 acceptable discrimination, AUC between 0.8 and 0.9 excellent 

discrimination and an AUC of 0.9 and higher outstanding discrimination) and accuracy 

for both the training set as the validation set. 

 

Subgroup analyses were performed based on the Lauren classification [26]. Tumours 

with mixed classification were considered intestinal tumours based on their similarity in 

pathology. 

A sham experiment was performed to validate the findings and to eliminate spurious 

correlations and confounding effects in radiomic studies [28]. To that end, the outcome 

labels were randomly shuffled for 100 iterations. Randomisation of the outcome labels 

preserves the multicollinearity and distributions of the radiomic features and the 

prevalence of the outcome, but it uncouples their potential relation. In the sham 

experiment, an AUC of 0.50 was expected. 

 

3. Results 

Patient characteristics 

A total of 236 patients were considered for radiomic analysis, of which thirty were 

excluded. Reasons for exclusion were: doubtful tumour segmentation (n=12), corrupt 

DICOM files (n=10) or missing clinical variables (n=8). Thus 206 remaining patients with 

advanced gastric adenocarcinoma were analyzed, of which 43 (21%) had metastases (table 

1). An example of VOI segmentation using 3DSlicer is given in figure 1. 

   

(a) (b) (c) 

Figure 1. VOI segmentation of the tumors in (a) transversal, (b) coronal and (c) sagittal direction. 

The VOI derived with an adaptive threshold method is shown in red and is used for radiomic 

feature extraction. 
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Table 1. Baseline characteristics of the 206 included patients, divided in a training set 

(n=165) and a validation set (n=41) Statistically significant differences are indicated 

in bold.  
a Mann-Whitney U test 
b Fisher’s exact test 
c Pearson’s chi-squared test 

Characteristic (n (%)) Training set (n=165) Validation set (n=41) p-value 

Age (years), mean ± standard 

deviation) 
68 ± 10 66 ± 11 0.35a 

Sex 

Male 

Female 

 

101 (61%) 

64 (39%) 

 

29 (71%) 

12 (29%) 

1b 

Presence of metastases 

Yes 

No 

 

35 (21%) 

130 (79%) 

 

8(20%) 

33 (80%) 

1b 

Clinical T-stage 

T3 

T4a 

T4b 

Missing 

 

13 (8%) 

121 (73%) 

29 (18%) 

2 (1%) 

 

2 (5%) 

35 (85%) 

4 (10%) 

0 (0%) 

0.009c 

Clinical N-stage 

N0 

N+ 

Missing 

 

80 (48%) 

81 (49%) 

4 (2%) 

 

16 (39%) 

25 (61%) 

0 (0%) 

0.12c 

Tumour location 

Cardia 

Corpus & fundus 

Antrum & pylorus 

Diffuse 

Missing 

 

30 (18%) 

46 (28%) 

66 (40%)  

18 (11%) 

5 (3%) 

 

10 (24%) 

11 (27%) 

19 (46%)  

1 (2%) 

0 (0%) 

0.48c 

Lauren classification*,† 

Intestinal 

Diffuse 

 

98 (59%) 

67 (41%) 

 

27 (66%) 

14 (34%) 

0.51b 

Differentiation† 

Well 

Moderate 

Poor 

Undifferentiated 

 

9 (5) 

72 (44%) 

81 (49%) 

3 (2%) 

 

0 (0%) 

15 (37%) 

26 (63%) 

0 (0%) 

0.37c 

Her2Neu status† 

Positive 

Negative 

 

12 (7%) 

153 (93%) 

 

1 (2%) 

40 (98%) 

1b 

EARL-compliant PET scan  

Yes 

No 

 

74 (45%) 

91 (55%) 

 

20 (49%) 

21 (51%) 

0.12b 

* Tumors with mixed classification were considered intestinal tumors based on their 

similarity in pathology. 
† Characteristics were imputed. 
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ComBat harmonization 

  

(a) (b) 

Figure 2. Violin plots of SUVmean values for EARL-compliant and non-EARL-compliant PET images 

(a) before and (b) after ComBat harmonization. 

SUVmean values significantly differed between EARL-compliant and non-EARL-

compliant images (figure 2a, p=0.04). Therefore, ComBat harmonization was performed, 

resulting in no significant differences in SUVmean (figure 2b, p=0.95). Therefore, the 

remainder of the manuscript uses the harmonized data. 

 

Neither of the models could identify metastases with AUCs of 0.31, 0.35, and 0.30 for 

the clinical, radiomic, and clinicoradiomic model, respectively (table 2, figure 3). In the 

sham experiment, no model yielded a validation AUC different from 0.5 (range: 0.49–

0.51), thereby validating the results. Oversampling the dataset to reduce the class 

imbalance between patients with and without metastases did not improve the 

classification performance with AUCs of 0.26, 0.37, and 0.31, respectively (table S1, figure 

S1). 

Table 2. The AUC and accuracy of the classifier for the training and validation sets of the complete 

dataset. The values are given for clinical variables, radiomic features and both combined using a 

logistic regression classifier. 

  Training set Validation set 

  AUC Accuracy AUC Accuracy 

Clinical model Lauren Classification (intestinal/mixed or diffuse-type) 

Clinical T-stage (T3, T4a or T4b) 

Degree of Differentiation (well-moderate or poor-

undifferentiated) 

Her2Neu-status (negative or positive) 

Clinical N-stage (N0 or N+) 

0.71 79% 0.31 81% 

Radiomics model Cluster Prominence (GLCM) 

Autocorrelation (GLCM) 

Variance (First Order) 

Large Area High Gray Level Emphasis (GLSZM) 

Surface Volume Ratio (Shape) 

Coarseness (NGTDM) 

Inverse Difference Normalized (GLCM) 

0.66 

 

79% 0.35 80% 
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Small Dependence Low Gray Level Emphasis (GLDM) 

Size Zone Non Uniformity Normalized (GLSZM) 

Large Dependence High Gray Level Emphasis (GLDM) 

Clinicoradiomic 

model 
All variables specified above 

0.76 78% 0.30 81% 

 

Figure 3. ROC curves of the three models for the validation set. The dashed blue line is the reference 

line with an AUC of 0.5.  

Subgroup analysis based on the Lauren classification did not improve the predictive 

performance of the investigated models. In intestinal and mixed-type tumors, neither of 

the models could identify metastases with AUCs of 0.60, 0.35, and 0.33 for the clinical, 

radiomic, and clinicoradiomic model, respectively (table 3, figure 4). In the sham 

experiment, no model yielded a validation AUC different from 0.5 (range: 0.5–0.51). 

Table 3. The AUC and accuracy of the classifier for the validation and training set of the intestinal- 

and mixed-type tumors. The values are given for clinical variables, radiomic features and when both 

are combined using a logistic regression classifier.  

  Training set Validation set 

  AUC Accuracy AUC Accuracy 

Clinical model Clinical T-stage (T3, T4a or T4b) 

Degree of Differentiation (well-moderate or poor-

undifferentiated) 

Her2Neu-status (negative or positive) 

Clinical N-stage (N0 or N+) 

0.68 82% 0.60 80% 

Radiomics model Skewness (First Order) 

Small Dependence Low Gray Level Emphasis (GLDM) 

Flatness (Shape) 

Gray Level Non Uniformity (GLSZM) 

Informational Measure of Correlation (IMC) 2 (GLCM) 

0.84 

 

87% 0.35 84% 
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Elongation (Shape) 

Clinicoradiomic 

model 
All variables specified above 

0.87 89% 0.33 80% 

 

Figure 4. ROC curves of the three models for the validation set of intestinal- and mixed-type tumors. 

The dashed blue line is the reference line with an AUC of 0.5.  

In diffuse tumors, no model could identify metastases, with AUCs of 0.56, 0.51 and 

0.49 for the clinical, radiomic, and clinicoradiomic model, respectively (table 4, figure 5). 

In the sham experiment, no model yielded a validation AUC different from 0.5 (range: 

0.49–0.5).  

Table 4. The AUC and accuracy of the classifier for the validation and training set of the diffuse-

type tumors. The values are given for clinical variables, radiomic features and when both are 

combined using a logistic regression classifier.  

  Training set Validation set 

  AUC Accuracy AUC Accuracy 

Clinical model Clinical T-stage (T3, T4a or T4b) 

Degree of Differentiation (well-moderate or 

poor-undifferentiated) 

Her2Neu-status (negative or positive) 

Clinical N-stage (N0 or N+) 

0.60 77% 0.56 81% 

Radiomics model Uniformity (First Order) 

Coarseness (NGTDM) 

Small Area Emphasis (GLSZM) 

Small Area Low Gray Level Emphasis (GLSZM) 

0.89 

 

83% 0.51 88% 

Clinicoradiomic 

model 
All variables specified above 

0.94 85% 0.49 81% 
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Figure 5. ROC curves of the three models for the validation set of diffuse-type tumors. The dashed 

blue line is the reference line with an AUC of 0.5.  

4. Discussion 

In this multicenter study, we built and validated an [18F]FDG-PET radiomics model 

to preoperatively identify peritoneal and distant metastases in 206 patients with surgically 

resectable, advanced gastric adenocarcinoma (cT3-4b, N0-3, M0). However, we found that 

neither the radiomics model nor radiomics combined with clinical variables showed any 

added value in identifying distant metastases. In addition, subgroup analyses based on 

the Lauren classification did not identify a tumour subtype that could benefit from 

[18F]FDG-PET radiomics. In addition to the PLASTIC study, which did not find added 

value in the qualitative assessment of [18F]FDG-PET/CT in gastric cancer, this study shows 

that quantitative assessment does not have added value either. 

In the complete dataset, none of the investigated models could predict the presence 

of metastases. Contrarily, Liu et al. [13] found that distant metastases could be correctly 

predicted by a PET radiomics model (accuracy: 85.2%) in 355 patients with gastric cancer 

who underwent total or radical gastrectomy, while some metastases in the validation 

cohort were incorrectly predicted by the visual assessment of the [18F]FDG-PET/CT scan 

(accuracy: 55%). Furthermore, Xue et al. [14] compared a clinical model, an [18F]FDG-PET-

based radiomics model, and a clinicoradiomic model to predict peritoneal metastases in 

gastric cancer and found in a single-centred study that all models can predict these 

metastases with validation AUCs of 0.87, 0.69 and 0.90, respectively. However, fewer 

radiomic features were extracted, fewer clinical parameters were implemented in the 

model, and only peritoneal metastases were predicted. Another reason for the low 

performance of the clinical and clinicoradiomic model in our study might be that only 

21% of the patients had metastases in comparison to 31% in the study by Xue et al.. 

Therefore in our study, the model was trained on fewer events, possibly making our 

model less robust. In addition, the class imbalance in our dataset complicated the 

classification task since a machine learning model might focus on learning the 

characteristics of the majority class while neglecting the characteristics of the minority 

class, i.e., the presence of metastases, which are of more interest. Class imbalance might 

be solved using oversampling techniques, a form of data augmentation that synthesizes 

new examples of the minority class [29]. 

In contrast to the study of Lv et al. [30] in lung adenocarcinoma, oversampling of the 

minority class in our training set did not result in higher AUCs for all three models (results 
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shown in table S1 and figure S1). Please note that oversampling will result in a distribution 

with half of the patient population with metastases, which might improve the 

classification task. However, the target class is based on only a small sample of patients, 

which might reduce the model's generalizability [31]. Also, from a clinical perspective, 

oversampling might be unrealistic. In our study, oversampling had no additional value, 

indicating that increasing the number of metastases in our dataset would not improve the 

model performance. Therefore, radiomics showed no added value in our cohort. 

Contrary to our expectations, the subgroup analyses based on the Lauren 

classification showed neither model could predict metastases better in intestinal/mixed 

type or diffuse-type tumours. Since intestinal type and diffuse type tumours show 

different metastatic patterns and [18F]FDG-uptake [32], it was hypothesized that [18F]FDG-

PET radiomics could identify metastases in at least a specific subgroup of patients. 

Diffuse-type tumours more frequently present with peritoneal metastases, while 

intestinal-type tumours more often result in other distant metastases (i.e. liver, lung) [26]. 

Also, according to a study by Kim et al., intestinal-type tumours showed significantly 

higher [18F]FDG-uptake compared to diffuse-type tumours [32]. Furthermore, [18F]FDG-

PET/CT has shown a higher sensitivity for detecting recurrence in gastric cancer in 

[18F]FDG-avid primary tumours compared to non-[18F]FDG-avid tumours [33]. Therefore, 

it was hypothesized that radiomics performs better in [18F]FDG-avid tumours (such as 

intestinal-type tumours) than in [18F]FDG-non-avid tumours since, in the case of a fixed 

bin width, the larger range of voxel values within the VOI enables more variation in the 

values of some texture features. Nevertheless, for the intestinal/mixed type features, the 

shape features elongation and flatness demonstrated significant differences in values 

between patients with and without metastases, but this did not result in better model 

performances. Shape features are, to a lesser extent, affected by [18F]FDG avidity than 

intensity and texture features. 

A study by Wang et al. [11] showed that a Lauren classification-based model on CT-

based radiomics can predict lymph node metastases in gastric cancer (validation AUC 

0.84). However, to the best of our knowledge, no other study has been conducted on PET-

based radiomics for distant metastases yet. Our subgroup analysis based on the Lauren 

classification showed that PET-based radiomics could not predict distant or peritoneal 

metastases in intestinal and mixed-type tumours or diffuse-type tumours in our cohort. 

The AUCs of the training sets are much higher than those of the validation set, which 

may indicate that the model is overfitting due to many features compared to a relatively 

small number of patients [34]. Due to the large number of features, the model describes 

random error in the data rather than relationships between variables. This seems 

especially the case in the radiomics and clinicoradiomic model. Further analysis is needed 

to understand how to tune the algorithms more accurately, decreasing overfitting. 

All analyses have been validated by sham experiments. It is advised to perform such 

sham experiments to ensure the results are present in the data and do not rely on 

coincidence [28]. No model yielded an AUC different from 0.5 in these sham experiments, 

validating the algorithms. 

There are some limitations to this research. The data were collected from sixteen 

healthcare institutes in the Netherlands. The advantage of this is a larger patient 

population which is representative of daily clinical practice. However, it also resulted in 

[18F]FDG-PET/CT scans made by different scanners and different reconstruction 

protocols, as is often the case in clinical practice. Although acquisition of the [18F]FDG-

PET/CT was performed following the EANM guidelines, reconstructions were not all 

performed according to the EARL 18F standard 1, increasing variability and reducing 

repeatability and reproducibility of the extracted radiomic features [35]. To minimize the 

difference between EARL-compliant images and images reconstructed with site-specific 

reconstruction protocols, ComBat harmonization towards the EARL-compliant scans has 

been performed in the current study, so the impact on the repeatability and 

reproducibility of the extracted features is expected to be minimal. 
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Furthermore, for three of the eight clinical variables, more than 20% of the values 

were unknown and imputed based on fourteen other clinical variables (Appendix 3). This 

might lead to a biased outcome since the imputed values were substituted based on 

available data, assuming that these are similar to the ones present in the dataset. 

According to research by Jakobsen et al. [36], variables with 40% or more missing values 

should be discarded. In our data set, this would mean discarding over 60% of the data, 

thereby decreasing the data set substantially. Since the missing values were at random, 

the choice has been made to include all data and impute missing variables.  

5. Conclusions 

Quantitative [18F]FDG PET assessment using radiomics did not contribute to the 

preoperative identification of distant and peritoneal metastases in patients with surgically 

resectable, locally advanced gastric adenocarcinoma (cT3-4b, N0-3, M0) in a large Dutch 

multicentric cohort.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, Collaborators PLASTIC Study Group, Table S1. The AUC and accuracy 

of the classifier for the validation and training set of the oversampled dataset. The values are given 

for clinical variables, radiomic features and when both are combined using a logistic regression 

classifier. Figure S1. ROC curves of the three models for the validation set of the oversampled 

dataset. The dashed blue line is the reference line with an AUC of 0.5.  
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Table S1. The AUC and accuracy of the classifier for the validation and training set of the 

oversampled dataset. The values are given for clinical variables, radiomic features and when both 

are combined using a logistic regression classifier.  

  Training set Validation set 

  AUC Accuracy AUC Accuracy 

Clinical model Clinical T-stage 

Degree of Differentiation 

Her2Neu-status 

Clinical N-stage 

0.57 55% 0.26 39% 

Radiomics model Skewness (First Order) 

Small Dependence Low Gray Level Emphasis (GLDM) 

Flatness (Shape) 

Gray Level Non Uniformity (GLSZM) 

Informational Measure of Correlation (IMC) 2 (GLCM) 

Elongation (Shape) 

0.65 

 

60% 0.37 24% 

Clinicoradiomic      

model 
All variables specified above 

0.67 62% 0.31 24% 
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Figure S1. ROC curves of the three models for the validation set of the oversampled dataset. The 

dashed blue line is the reference line with an AUC of 0.5.  
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Appendix 1: Overview of extracted radiomic features 

Shape 

• Elongation 

• Flatness 

• Least Axis Length 

• Major Axis Length 

• Maximum 2D Diameter Column 

• Maximum 2D Diameter Row 

• Maximum 2D Diameter Slice 

• Maximum 3D Diameter 

• Mesh Volume 

• Minor Axis Length 

• Sphericity 

• Surface Area 

• Surface Volume Ratio 

• Voxel Volume 

 

First Order 

• 10 Percentile 

• 90 Percentile 

• Energy 

• Entropy 

• Interquartile Range 

• Kurtosis 

• Maximum 

• Mean Absolute Deviation 

• Mean 

• Median 

• Minimum 

• Range 

• Robust Mean Absolute Deviation 

• Root Mean Squared 

• Skewness 

• Total Energy 

• Uniformity 

• Variance 

 

Gray Level Co-Occurrence Matrix (GLCM) 

• Autocorrelation 

• Joint Average 

• Cluster Prominence 

• Cluster Shade 

• Cluster Tendency 

• Contrast 

• Correlation 

• Difference Average 

• Difference Entropy 

• Difference Variance 

• Joint Energy 

• Joint Entropy 

• Informational Measure of Correlation (IMC) 1 

• Informational Measure of Correlation (IMC) 2 

• Inverse Difference Moment  

• Inverse Difference Moment Normalized 

• Inverse Difference 
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• Inverse Difference Normalized 

• Inverse Variance 

• Maximum Probability 

• Sum Entropy 

• Sum Squares 

 

Grayscale Run-Length Matrices (GLRLM) 

• Gray Level Non Uniformity 

• Gray Level Non Uniformity Normalized 

• Gray Level Variance 

• High Gray Level Run Emphasis 

• Long Run Emphasis 

• Long Run High Gray Level Emphasis 

• Long Run Low Gray Level Emphasis 

• Low Gray Level Run Emphasis 

• Run Entropy 

• Run Length Non Uniformity 

• Run Length Non Uniformity Normalized 

• Run Percentage 

• Run Variance 

• Short Run Emphasis 

• Short Run High Gray Level Emphasis 

• Short Run Low Gray Level Emphasis 

 

Gray Level Size Zone Matrix (GLSZM) 

• Gray Level Non Uniformity 

• Gray Level Non Uniformity Normalized 

• Gray Level Variance 

• High Gray Level Zone Emphasis 

• Large Area Emphasis 

• Large Area High Gray Level Emphasis 

• Large Area Low Gray Level Emphasis 

• Low Gray Level Zone Emphasis 

• Size Zone Non Uniformity 

• Size Zone Non Uniformity Normalized 

• Small Area Emphasis 

• Small Area High Gray Level Emphasis 

• Small Area Low Gray Level Emphasis 

• Zone Entropy 

• Zone Percentage 

• Zone Variance 

 

Gray Level Dependence Matrix (GLDM) 

• Dependence Entropy 

• Dependence Non Uniformity 

• Dependence Non Uniformity Normalized 

• Dependence Variance 

• Gray Level Non Uniformity 

• Gray Level Variance 

• High Gray Level Emphasis 

• Large Dependence Emphasis 

• Large Dependence High Gray Level Emphasis 

• Large Dependence Low Gray Level Emphasis 

• Low Gray Level Emphasis 

• Small Dependence Emphasis 
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• Small Dependence High Gray Level Emphasis 

• Small Dependence Low Gray Level Emphasis 

 

Neighboring Gray Tone Difference Matrix (NGTDM) 

• Busyness 

• Coarseness 

• Complexity 

• Contrast 

• Strength 
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Appendix 2: Overview of ground variables for imputation 

● PET positive 

● Diagnostic laparoscopy positive 

● Primary tumor positive on PET 

● Lymph node positive on PET 

● Fluid on diagnostic laparoscopy 

● Curative or palliative treatment 

● Gastric resection 

● Curative treatment plan 

● Type of resection 

● Type of treatment 

● Scheme chemotherapy 

● Recurrence after six months 

● Location of recurrence after six months 

● Alive after six months  
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Appendix 3: Statistical analysis of clinical variables and radiomic features for complete 

dataset and subgroup analysis 

Table 1A. P-values of Mann Whitney U-test for clinical variables and radiomic features included in 

the complete dataset. P < 0.05 is considered significant, given in green.  

Clinical variables p-value 

Lauren Classification 0.46 

Clinical T-stage 0.01 

Degree of Differentiation 0.14 

Her2Neu-status 0.84 

Clinical N-stage 0.03 

 Radiomic features p-value 

Cluster Prominence (GLCM) 0.15 

Autocorrelation (GLCM) 0.87 
Variance (First Order) 0.11 

Large Area High Gray Level Emphasis (GLSZM) 0.07 
Surface Volume Ratio (Shape) 0.75 

Coarseness (NGTDM) 0.66 
Inverse Difference Normalized (GLCM) 0.22 

Small Dependence Low Gray Level Emphasis (GLDM) 0.78 
Size Zone Non Uniformity Normalized (GLSZM) 0.52 

Large Dependence High Gray Level Emphasis (GLDM) 0.82 

Table 1B. P-values of Mann Whitney U-test for clinical variables and radiomic features included in 

the subgroup analysis for intestinal- and mixed-type tumors. P < 0.05 is considered significant, given 

in green.  

Clinical variables p-value 

Clinical T-stage 0.03 

Degree of Differentiation 0.01 

Her2Neu-status 0.82 

Clinical N-stage 0.02 

Radiomic features p-value 

Skewness (First Order) 0.04 

Small Dependence Low Gray Level Emphasis (GLDM) 0.31 
Flatness (Shape) 0.79 

Gray Level Non Uniformity (GLSZM) 0.61 
Informational Measure of Correlation (IMC) 2 (GLCM) 0.23 

Elongation (Shape) 0.01 

Table 1C. P-values of Mann Whitney U-test for clinical variables and radiomic features included in 

the subgroup analysis for diffuse-type tumors. Neither variables or features showed significance.  

Clinical variables p-value 

Clinical T-stage 0.07 

Degree of Differentiation 0.23 

Her2Neu-status 0.08 

Clinical N-stage 0.35 

Radiomic features p-value 

Uniformity (First Order) 0.98 

Coarseness (NDGTDM) 0.78 
Small Area Emphasis (GLSZM) 0.87 

Small Area Low Gray Level Emphasis (GLSZM) 0.06 
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GENERAL DISCUSSION

Patient inclusion, image acquisition, reconstruction & VOI segmentation

The data from this research comes from a multi-centre study. Next to the previously mentioned
limitation with EARL and non-EARL scanned scans, other issues arose when using the PET
scans. Some scans had to be excluded since they missed DICOM tags or only fused PET/CT
scans were available. In most cases, the missing DICOM tags were PatientWeight and Series-
Time. The SeriesTime was implemented manually, but the PatientWeight caused some issues.
Since the data was only available anonymized, healthcare institutes were unable to find the
matching patient numbers and, therefore unable to find the weight. The PatientWeight is par-
ticularly important since the SUV measurements are scaled to the patient’s weight.

To prevent this from happening, a document has been set up with requirements that scans
must meet to be considered for inclusion. The document can be found in Appendix A. A small
number of patients (n=8) also had to be excluded because all clinical variables were missing.
Moreover, the subgroup analysis for the Lauren classification has been done with imputed data
where the Lauren classification, degree of differentiation and Her2Neu-status was imputed to
increase the number of subjects per subgroup. This might create a bias for the Lauren classifi-
cation.

Furthermore, the VOI segmentation has been done by only one assessor. Scans with doubtful
VOIs have been discussed with a nuclear medicine physician, but scans that the assessor does
not doubt are automatically assumed to be true. Since the assessor has little experience with
lesion detection, there might be some differences when compared to the segmentation of an
experienced assessor. However, since the adaptive threshold is used, it is assumed that these
differences will be minor.

Radiomics pipeline

In total, 105 radiomic features are extracted from the VOIs. In the field of radiomics, over 5000
radiomic features are known to this day [41]. Only a fraction of the available radiomic features
has been extracted, yielding only a small amount of information. Including other features can
lead to more optimal features being selected and may increase the models’ performance in
detecting metastases. However, it is not the case that more features should be included. The
more features included in the model, the higher the chances of overfitting due to the curse of
dimensionality. The balance between the number of features and the size of the data set is
fragile and an interesting topic for future research.

In supervised feature selection, labelled data sets with a known outcome measure are used
for feature selection. With unsupervised feature selection or dimensionality reduction, the out-
come is unknown. The algorithm will process unlabeled data and structure it into clusters or
relationship patterns. Supervised methods have advantages and disadvantages over unsuper-
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vised methods for PET radiomics. Features can be selected more specifically with the desired
outcome, but manual feature selection may only capture some of the underlying imaging infor-
mation. The latter is solved with unsupervised methods, which may result in finding unknown
patterns in the data. Unsupervised learning is generally more robust, but the selection of the
features and training of the model is without human intervention [42]. A study by Shakir et al.
regarding supervised and unsupervised CT radiomics for different types of cancers found that
unsupervised methods outperformed the supervised methods in diagnosing the cancer type [43].
To our knowledge, no study has yet validated the differences between supervised and unsuper-
vised PET radiomics.

LASSO is used to select the features implemented in the model from the clustering. LASSO
directly sorts the features based on their predictive performance. Goméz et al. investigated
the use of different supervised machine learning algorithms in combination with classifiers for
metabolic response prediction of metastatic breast cancer lesions in PET/CT imaging [44]. It
was found that out of seven feature selection - both supervised and unsupervised - algorithms,
LASSOpredicted themetabolic response the best. When in combination with classifiers, LASSO
in combination with SVM (AUC = 0.93 ± 0.06) followed by LASSO in combination with RF (AUC
= 0.92 ± 0.03). LASSO is a commonly used feature selection algorithm for PET radiomics [32]
due to its value use in discarding unimportant features.

Originally, random forest was used as a classifying algorithm due to its positive reputation for
complex models [45]. The results using this classifier are given in Appendix 2. The main reason
for choosing another classifier was the clinical validation parameters of the training set. Even
though the results for most models and data sets are better than the used logistic regression
algorithm, the AUC and accuracy are remarkably high for all training sets. Classification tech-
niques such as the used random forest draw a uniform random sample from the data. Due to
the minority character of the group with metastases, the model tends to be biased for the group
without metastases [46]. The no metastases group is often predicted correctly, while the group
with metastases is not, resulting in high accuracy, even though the group with metastases is
predicted poorly in all models.
Furthermore, the random forest algorithm is overfitting much more than the logistic regression
algorithm. Decision trees are known to be more prone to overfitting noise due to the strict
boundary character of the decision trees for the training samples [45]. Logistic regression is
more flexible since it bases its final prediction on the relationship between all included features
without strict decision boundaries. The combination of the minority bias and overfitting leads to
higher training clinical validation parameters of random forest compared to logistic regression.

Future perspective

Although PET radiomics showed great results in gastric cancer, future research might lean
more towards deep learning and artificial intelligence. Volume segmentation and complex le-
sions can benefit from (semi-)-automatic segmentation, reducing the time-consuming task of
VOI segmentation [47]. Deep learning methods in gastric cancer showed great potential and can
unravel patterns that have not been seen before [42]. Since both qualitative and quantitative
assessments did not find additional value, more complex algorithms might be. Deep learning
models require a large collection of data, hence why deep learning has not been the scope
of this study [48]. Furthermore, features often do not have a clear biological or physical model,
making the deep learning model an incomprehensible ”black box”.

Lastly, radiomics remains a complex and abstract field of machine learning for most clinicians.
It is hard to visualize and does not directly impact the procedure of imaging itself [49]. Therefore,
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many steps need to be taken to normalize using radiomics in a clinical setting to make patients
benefit from the innovations in the field of radiomics in health care.
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A REQUIREMENTS SCANS

Scans to be considered for the radiomics research need to have certain requirements to be
feasible for tumor segmentation. The requirements and its importance are based on tumor
segmentation in 3D Slicer version 4.11.

What scans are needed?

An individual PET scan and individual low dose CT scan is necessary. The PET scan is up-
loaded into 3D Slicer and used for the segmentation itself, the CT scan is used for anatomical
congruence between the PET and CT scan. A fused scan is not usable, since 3D Slicer cannot
demount the PET and CT scan from each other.

What are the requirements of the PET scan?

The most important requirements are the DICOM tags of the PET scan. DICOM tags are meta-
data elements that are associated with each DICOM image object. These tags are helpful in
the organization of the patient images. A user can search for these images based on the data
within the DICOM tags.

The required DICOM tags for tumor segmentation in PET scan are the following:

• Units in BQML
• Scale Factor (if Units in CNTS)
• Series Date
• Series Time
• Acquisition Date
• Acquisition Time
• Radiopharmaceutical Start DateTime
• Radiopharmaceutical Information Sequence
• Radionuclide Total Dose
• Patient Weight

What data needs to be saved?

After the VOI is segmented, but before the adaptive threshold is applied, the following data from
3D Slicer needs to be noted:

• SUVmean
• SUVmedian
• SUVmin
• SUVmax
• SUVpeak
• Volume (mL)

The original PET image is saved as IMAG.nrrd, and the VOI segmentation is saved asPET_VOI_label.nrrd.
Standarizing these variables makes creating the batch input for the feature extraction easier.
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B RANDOM FOREST CLASSIFIER

Training set Validation set
Clinical Radiomic Clinicoradiomic Clinical Radiomic Clinicoradiomic

AUC 0.81 1.00 1.00 0.43 0.56 0.53
Accuracy 84% 98% 99% 65% 76% 76%

Table B.1: The AUC and accuracy of the classifier for the training and validation set of the
complete dataset. The values are given for clinical variables, radiomic features and when both
are combined using a random forest classifier.

Training set Validation set
Clinical Radiomic Clinicoradiomic Clinical Radiomic Clinicoradiomic

AUC 0.66 0.94 0.95 0.37 0.70 0.69
Accuracy 60% 88% 88% 43% 67% 66%

Table B.2: The AUC and accuracy of the classifier for the training and validation set of the
oversampled dataset. The values are given for clinical variables, radiomic features and when
both are combined using a random forest classifier.

Training set Validation set
Clinical Radiomic Clinicoradiomic Clinical Radiomic Clinicoradiomic

AUC 0.79 1.00 1.00 0.62 0.47 0.53
Accuracy 84% 99% 99% 79% 75% 77%

Table B.3: The AUC and accuracy of the classifier for the training and validation set of the
intestinal- and mixed-type tumors. The values are given for clinical variables, radiomic features
and when both are combined using a random forest classifier.

Training set Validation set
Clinical Radiomic Clinicoradiomic Clinical Radiomic Clinicoradiomic

AUC 0.71 1.00 1.00 0.55 0.38 0.40
Accuracy 80% 98% 98% 66% 72% 73%

Table B.4: The AUC and accuracy of the classifier for the training and validation set of the
diffuse-type tumors. The values are given for clinical variables, radiomic features and when
both are combined using a random forest classifier.
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