
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

SecBERT: Analyzing reports
with BERT-like models

Matteo Liberato
M.Sc. Thesis in Cyber Security

December 2022

Supervisors:
Dr. Andrea Continella

Thijs van Ede, MSc.
Zsolt Levente Kucsván, MSc.

Comittee Members:
Dr. Anna Sperotto
Dr. Lorenzo Gatti

Services and CyberSecurity Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands



SecBERT: Analyzing reports

using BERT-like models

Liberato Matteo

Abstract - Natural Language Processing
(NLP) is a field of computer science which
enables computers to interact with human
language rough the use of specific software.
Generic NLP tools do not work well on
domain-specific language, as each domain has
unique characteristics that a generic tool is not
trained to handle.

The domain of cyber security, has a vari-
ety of unique difficulties, such as the need to
understand ever-evolving technical terms, and,
in the case of Cyber Threat Intelligence (CTI)
reports, the extraction of Indicators of Com-
promise (IoCs) and attack campaigns.

After evaluating how existing systems ad-
dressed these issues we created SecBERT by
training BERT, a state-of-the-art neural net-
work for NLP tasks, using cyber security data.

We evaluated SecBERT using a Masked
Language Modeling task, in which sentences
from cyber security reports were masked and
SecBERT was used to predict the hidden parts.
The performance of models trained on the cy-
ber security language-domain improved in pre-
cision by 3.4% to 5.2%, compared to the base-
line of models trained on general language per-
forming the same task.

I - Introduction

For larger organizations, defense and recovery
from cyber attacks are handled by a Security Opera-
tion Center (SOC) [1], a centralized location in which
a security team monitors the systems that they are
working with. The purposes of a SOC include taking

care of detecting, preventing and responding to cy-
ber security incidents. Inside a SOC there are several
roles, such as security operators, whose main purpose
is to monitor the infrastructure of an organization and
to respond to possible threats. A useful resource for
the operators of a SOC is Cyber Threat Intelligence
(CTI).

CTI is cyber security data that has been analyzed
and evaluated by experts using specialized techniques,
which account for its source and reliability [2]. CTI
provides security operators with the context of the
threat, which helps them in understanding the threat
actor’s targets, motives, and actions, analyzing it also
allows security operators to remain up to date on in-
formation regarding new attacks, vulnerabilities, and
possible threats. Collecting CTI allows the victim
of the attack, or whoever works on their behalf, to
make faster, more informed security decisions, when
it comes to prevention, defense, and recovery [3].

However, CTI is being released and updated every
day, so it is important to develop methods for the au-
tomation of cyber security knowledge extraction, to
make it easier for experts to access and share [4]. A
system to automate the knowledge extraction from
CTI reports would improve efficiency in SOCs, al-
lowing faster extraction and sharing, which would be
useful for preventing and defending against cyber at-
tacks. CTI reports are written in natural language,
which is not directly understandable for a computer.
Natural Language Processing (NLP) tools could be
used in order to bridge this issue and create such a
system.

Natural Language Processing is the field of com-
puter science that focuses on the interaction between
computer software and human language, in both writ-



ten and spoken form. NLP works combining the use
of machine learning and deep learning models, models
that simulate the behaviour of human brains, learn-
ing from large amount of data through the repeti-
tion of a task. In the context of machine learning
tasks are used to train and evaluate models, form-
ing a prediction based on the data provided to the
model. NLP tools have proven valuable for generic
text on a variety of tasks, including translating text
from one language to another and interpreting voice
commands. The problem is that in specialized do-
mains, such as cyber security, generic-language tools
perform worse [5]. The tasks related to automatic
knowledge processing of CTI face many of the generic
challenges of NLP, such as information retrieval and
the correlation of sentences, made harder by the use
of field-specific terminology. These challenges hinder
the use of NLP tools in the domain of cyber secu-
rity, where they could be used to automate or assist
workers in certain tasks, including the extraction of
information from CTI reports. Our purpose is to help
in the creation of an NLP tool that is suitable for
security-specific language. Our hypothesis is that by
using a domain-specific model we can achieve better
results than a generic model.

For this purpose we work with BERT [6], a neu-
ral network which represents the state-of-the-art in
many NLP tasks. We create SecBERT, a version
of BERT trained on CTI reports and cyber-security-
specific language. We experiment with SecBERT, cre-
ating different versions built with the same process
but different datasets, in order to see the variation in
the performances of the model. The results show that,
compared to a baseline generic-language model, it is
possible to improve the performances of said model in
the execution of NLP tasks on domain-specific texts.

Contributions To verify our hypothesis, that a
domain-specific model can achieve better perfor-
mances than a generic model, starting from BERT1,
we trained SecBERT. SecBERT is a neural network
specialized in cyber security, which could then be used
as the foundation for specialized versions of tools used
for tasks such as knowledge extraction and informa-
tion processing.

In short, in this work:

1. We analyze the precision of the existing NLP
model BERT in predicting masked tokens in
sentences taken from CTI reports.

2. We propose SecBERT, a variant of BERT which
is trained specifically on technical CTI text,
compared to BERT.

3. We create variants of SecBERT, differentiated
by their training dataset, to observe how the
dataset composition affects the precision of the
model.

4. We evaluate the performance of both BERT
and SecBERT on an MLM task and show that
a generic NLP tool trained on specific tech-
nical language can obtain better performances
than an equivalent tool trained only on generic-
purpose language.

II - Background

BERT. A language model is a model built to esti-
mate the probability distribution of linguistic units,
such as words or sentences. BERT itself is a neu-
ral network architecture, and within this architecture
various parameters can be set. Some of the parame-
ters in a transformer are the number of encoder lay-
ers, the hidden size and the number of self-attention
vectors. The number of layers is the amount of neu-
rons clusters, which provide the functionality of the
neural network. The hidden size is the number of neu-
rons inside the neural network, and the self-attention
head is the number of times that the self-attention
module repeats its computations in parallel, improv-
ing the encoding of relationships between words. In
its original configuration BERT has 12 encoder layers
and 768 hidden layers, but other configurations were
introduced by the creators of BERT, such as BERT
Tiny, whose use will be analyzed in the Evaluation
section.

BERT was created with the idea of building a
generic language model, which could later be opti-
mized on specific tasks. BERT is defined as generic

1https://huggingface.co/docs/transformers/model doc/bert

2



because after the pre-training phase, in which the
model is trained on a generic language task, the model
can go trough a second step, in which it is fine-tuned
on a specific task. The idea is that after the pre-
training, in which the neural network is trained to
perform an initial task, the newly obtained model is
used as a starting point for a new task, the down-
stream task. An example of downstream task that
BERT can be fine-tuned for is Question Answering
(QA), in which given a document and a question, the
model can retrieve the answer from the document2. In
specializing the model for the downstream task, the
fine-tuning phase starts from an advantaged position,
because BERT learnt the general language patterns
during the pre-training phase.

NSP. BERT uses two tasks in the pre-training
phase, Next Sentence Prediction (NSP) and Masked
Language Modeling (MLM). NSP is a task used to
train the model to understand the relationship be-
tween sentences. Given a corpus, the NSP task con-
sists in choosing two sentences, and having the model
determine whether the second sentence follows the
first one in the corpus, which it does in 50% of the
cases during the training phase. Training BERT to
understand term dependencies across different sen-
tences is important for downstream tasks such as
Question Answering and Natural Language Inference
(NLI), a task in which the model, given an premise,
determines whether a given hypothesis is true, false
or undetermined3.

MLM. The other task used in the pre-training
phase is MLM, which is executed on a text by divid-
ing it into tokens [7], the input unit of BERT, then
masking at random a percentage of the input tokens.
Each token might represent a whole word or part of
one. The model then predicts the masked token, pro-
ducing a probability distribution for their real value,
based on the information contained in the rest of the
sentences. By predicting masked words, BERT learns
correlation between words in sentences. The model

predicts the masked tokens based on other tokens in
the sentence, training the bidirectionality, meaning
that BERT can consider the context both before and
after the masked tokens.

Before BERT, standard language models were
trained left-to-right or right-to-left, meaning that a
model could only see half of the context surrounding
a token. Trying to see the entire surrounding context
with the techniques used before BERT would allow
each word to see itself, creating a biased model [6].
In the original BERT paper, 15% of the tokens were
masked. Once the output of the model is generated,
in the form of vectors, the part of those vectors that
correspond to the masked token are fed into a softmax
function, which converts vectors into a probability dis-
tribution4. The probability is distributed across the
model’s vocabulary, which is the list of tokens recog-
nized by the model, and the list of predictions for each
token is determined by this probability distribution.
The vocabulary is built by the tokenizer used to train
the model, which divides the input sentences of the
training dataset into a list of tokens, whose length is
set at 30,522 in standard BERT models.

III - Approach

Overview. Our purpose is to create a neural net-
work that could improve the performances of NLP
tools when applied to cyber security data. To accom-
plish this purpose, we design a task which we use to
evaluate the performances of the models. We decided
to focus on MLM instead of NSP, we took this deci-
sion due to previous research into ROBERTA [8] and
ALBERT [9]. These researches show that NSP is in-
effective as a task when compared to MLM, with the
removal of it matching or slightly improving perfor-
mances in downstream tasks5.

Our approach follows a series of steps, shown in
Figure 1, starting from the tokenization of a group
of sentences in batch, meaning that a group of sen-
tences are taken as input and each of them is split
into tokens. After the tokenization, we apply a mask

2https://huggingface.co/tasks/question-answering
3nlpprogress.com/english/natural language inference.html
4https://huggingface.co/docs/transformers/mainclasses/output
5https://www.thepythoncode.com/article/pretraining-bert-huggingface-transformers-in-python

3



to a random token in each sentence. We then pass
the masked sentence to a prediction function, which
uses the model to generate five possible predictions
for each masked token. Once the predictions are gen-
erated, we check whether the correct token has been
found. After executing this process on every sentence
in the batch, we evaluate the overall performance of
the model. This evaluation includes overall precision,
the distribution of the correct answers over the five
predictions predictions-specific precision, and execu-
tion time.

Figure 1: The steps in the MLM task

MLM pipeline. The implementation of the MLM
task works by tokenizing a text and masking a pre-
established percentage of the tokens, substituting
them with mask tokens, which will later be predicted.
The Huggingface implementation6 of this function
works, but it doesn’t allow us to see the logic of the
sub-functions that it uses, working trough a black-box
system in which we just provide the input and receive
the output. In addition the output given by the func-
tion, while relevant, is not perfectly compatible with
the purpose we had in mind, since it made it harder
to obtain data that could be used to create evaluation
metrics, such as the precision of the model. For these
reasons we decided to manually rebuild part of the

functions, in order to have more control on the way
they work and to have more feedback both during
their executions and in the results obtained.

Tokenization pipeline. The first part of the MLM
functions that we implement is a tokenizer, which ex-
ecutes the tokenization. To execute the tokenization
we create a pipeline program, which removes most of
the complex code by offering dedicated API for the
task they are built for. This means that this pipeline
receives the input and produces the output through
the use of pre-built functions, hiding the complexity
behind the production of said output.

Masking. Before masking we filter the sentences,
excluding those that are too short to carry informa-
tion, meaning below 5 tokens in length, and those
who are too long to be real sentences, meaning over
512 tokens in length, because these sentences were
occasionally found in the dataset due to errors in the
parsing of the text. After the batch tokenization, each
sentence is treated individually. The program then
obtains the length of the sentences in tokens, and, as
shown in Image 2, using the length we select a ran-
dom position inside the sentence, and substitute the
associated token with the mask.

Figure 2: Tokenization and mask insertion, 2 and 3
are tokens that mark the beginning and end of a sen-
tence, 103 represents the mask.

6https://huggingface.co/docs/transformers/tasks/language modeling

4



The masking function then returns the tokenized
sentence with the mask, the value of the token that
was substituted by the mask and the index of the
mask, which will be used by the other functions.

Predictions. The prediction of the masked token
works using the tokenized line, with the mask in-
serted, and the index of the mask. From the tok-
enized line we extract the input ids, the token type
ids and the attention mask. The input ids are the
unique identifiers associated to each tokens, and they
are fundamental in the prediction function. The to-
ken type ids is a binary tensor, representing where
individual sequences begin and end. The attention
mask is a binary tensor indicating the position of the
padded indices, if padding is used, allowing the model
to ignore them. Since every sequence contains a sin-
gle sentence, these last two tensors are always identi-
cal to each other fore every individual sequence. We
use the model and these tensors to produce a tensor
containing the predictions. The index of the mask is
used here to select the prediction of the masked to-
ken inside the prediction tensor, obtaining their logits.
The logits are the vector of predictions that a model
generates, which is usually then normalized with a
normalization function, which allows us to adapt the
data to the range used by the prediction function.
We normalize using an exponential function, and af-
ter the normalization, we can obtain the list of the
k most likely predictions for the mask. We choose
to set k to five after observing that setting it to three
would lower the precision of the model, due to a small
amount of tokens found correctly by the fourth and
fifth prediction, while a bigger k would not improve
the precision significantly.

Models. The models that we used in the context
of this work were all built on the same skeleton, pro-
vided by the Huggingface BERT implementation. To
create these model we trained them depending on
whether we wanted to use them as a generic-language
comparison baseline, in which case we would use the
Wikipedia dataset7, as a CTI focused model, where
one or both the CTI datasets were used, or as a

model in-between, with a mixed dataset. Both types
of datasets will be further explained in V - Datasets
section.

IV - Implementation

The implementation of the MLM task works by
tokenizing a text and masking a pre-established per-
centage of the tokens, substituting them with mask
tokens, which will later be predicted. The Hugging-
face implementation8 of this function works, but it
doesn’t allow us to see the logic of the sub-functions
that it uses, working trough a black-box system in
which we just provide the input and receive the out-
put. In addition the output given by the function,
while relevant, is not perfectly compatible with the
purpose we had in mind, since it made it harder to
obtain data that could be used to create evaluation
metrics, such as the precision of the model. For these
reasons we decided to manually rebuild part of the
functions, in order to have more control on the way
they work and to have more feedback both during
their executions and in the results obtained.
Tokenization and Masking. We built a program
that would allow us to experiment with various char-
acteristics of the tokenization process. We recall from
the III - Approach section that sentences must be to-
kenized in order to be used as input for SecBERT. To
this end, we used SpaCy to identify individual sen-
tences, and the Huggingface tokenizer to create to-
kens. The tokenization process was initially limited
to individual sentences, and was implemented with
tensors as the output, a data structure that can store
data in different dimensions. We used PyTorch ten-
sors, which we considered more adapt to effectively re-
trieve data such as the tokenized sentences, the input
ids, and to create the dictionary used in the predict
function, which is the list of all the unique tokens rec-
ognized by the model. We experimented with various
parameters of the tokenization such as the padding,
truncation, and the different output formats, start-
ing from simple arrays and later moving to tensors.
We implemented a randomized choice for the mask
token, which was selected in each sentence between

7https://en.wikipedia.org/wiki/Wikipedia:Database download
8https://huggingface.co/docs/transformers/tasks/language modeling

5



all the tokens that we knew to represent parts of the
sentence, avoiding tokens that are used to define the
structure of the sentence, such as padding tokens and
separations tokens.

We also implemented some filtering in the sen-
tences that were passed to the prediction function.
If the tokenized sentences were over 512 tokens long
they were discarded, since that is the maximum length
that BERT-based model can accept. These sentences
were discarded rather than being truncated because
the only sentences that were that long were those
containing URLs in their entirety, or those generated
from parsing errors, both of which do not carry useful
information. Sentences that were less than 5 tokens
long were also removed, because we deemed them too
short to contain information, and were often created
from elements of the web pages being parsed by mis-
take, such as buttons and search bars.

The tokenization process worked, handling each
sentence individually one after the other. We started
working on implementing batch tokenization inside
the program, meaning that group of sentences would
be tokenized together, to improve efficiency. Data in
a batch is saved in a list of strings, each string con-
taining a sentence, and the list is processed by the
tokenization function as a whole.

Prediction. After the tokenization phase, the pro-
gram works on individual sentences. The masked sen-
tence is passed to the prediction function, from which
we obtain the input ids. The token type ids and at-
tention mask ids are generated from the input ids.
These three tensors are used to build a dictionary,
where each of them is associated to their data type, in
a format compatible with BERT-based models. This
dictionary is then fed to the model to extract the log-
its, giving a tensor as output, containing predictions
for each token. We slice this tensor to obtain a smaller
tensor containing only the values corresponding to the
mask, called mask token logits, and we apply a nor-
malization function. We use an exponential function,
ex, applied to every component of the tensor, where
x is the component itself. We normalize in order to

format the output to the range used by the prediction
function. We then use both the mask token logits and
the dictionary to obtain the predictions tensor. From
this last tensor using the function top k, contained in
pytorch, we produce the list of most likely predictions
for that mask.

Evaluation. We implemented the evaluation func-
tions, built on a system of arrays and variables which
stored the masked tokens and the predictions during
the execution. The five predictions for each sentence
are compared to the corresponding correct value for
the mask, which we save in an array containing all
the masked tokens. If the tokens match, the vari-
able counting the number of sentences correctly pre-
dicted is increased. We determine the precision of
the model as the number of sentences correctly pre-
dicted divided by the number of sentences who have
been masked One array keeps track of the distribu-
tion of correct predictions between the five generated
for each sentence, with five cells whose value is in-
creased whenever the corresponding prediction is cor-
rect. This system of array is also used to generate
the confusion matrices for each prediction, which rep-
resents the distribution of the correct answers over
the five possible predictions, detailed to the individ-
ual sentences.

Models. The program we built to generate the
models used in this work follows a series of steps9.
The first part of this process involves preparing the
dataset, creating a split for the training and testing
subsets. We use 80% of the dataset for training and
the remaining 20% for testing. The split dataset is
then saved in two separate files, ready to be used for
testing the model and to train the tokenizer.

The next step is the creation of the tokenizer10, in
doing so we establish a series of parameters. The first
one of these parameter is the size of the vocabulary,
the set of all unique tokens recognized, which is set
as 30,522, the standard size for BERT-based model.
Models usually have a vocabulary size smaller than
50,000, especially if they are built to work only on a

9https://www.thepythoncode.com/article/pretraining-bert-huggingface-transformers-in-python
10https://huggingface.co/docs/tokenizers/api/tokenize
11https://huggingface.co/docs/transformers/tokenizer summary

6



single language, because a bigger size would increase
both memory usage and execution time11. The sec-
ond parameter is the list of special tokens, which are
not part of the vocabulary and have specific functions,
this list is comprised of [UNK],[CLS],[SEP],[PAD] and
[MASK]. [UNK] stands for ”unkwown”, a token which
designates a word that is not in the vocabulary. [CLS]
is the token that represents the class of the input, it
appears at the beginning of each sentence. [SEP] is
the separation token, which separates two different
sentences in the same input. [PAD] is the token used
to pad the input, which is processed in batches which
should all have the same length. The final token is
[MASK], which is set in place of the token that has
been masked in a MLM task12.

The program tokenizes the dataset with the tok-
enizer we built, building it’s dictionary, and the model
is then loaded and trained. In the training we started
from BERT as a base, we passed the tokenizer to it
and we loaded the MLM pipeline. In doing so we
initialize the training arguments, setting parameters
such as the batch size and the number of epochs,
which is the number of times that the model works
through the entire training dataset. We set both of
these values to 10, the default for BERT. Other pa-
rameters are information for the creation of check-
points, such as their number and the amount of steps,
set respectively to 3 and 1,000. This structure was
used to train each model, changing the datasets used
to train them.

V - Datasets

Dataset Size in lines Source

CTI
Mitre ATT&CK 489k Mitre ATT&CK
Chainsmith 156k Chainsmith dataset

Wikipedia 1000k English Wikipedia

Table 1: The datasets used in this project, with their
size and the sources used to build them

While working on the creation of the MLM task we
created datasets that will be used in the evaluation of
the models. These datasets, visibile in the table1, are
classifiable in two big categories, those which contain
information extracted from CTI data files, and those
which contain sentences extracted from Wikipedia.
The creation of these datasets allows us to measure
the performance of the models in executing the MLM
task, focusing on the difference in precision when it
comes to predicting tokens from both generic lan-
guage sentences and domain-specific sentences.

Wikipedia. The Wikipedia dataset was created to
be used as a baseline for generic language. The en-
tirety of Wikipedia is available as a dump to down-
load13. Initially we tried to extract information from
this file, isolating only the text part. It was success-
ful, but the file was not ordered and cleaned properly,
with many tags containing metadata still found in
the extracted text. These include the URL address of
the page that had been extracted, links to other pages
mentioned in the article and elements used in the con-
struction of the page, such as the caption of images
contained in it or the titles of the subsection that
formed the page. The file’s handling was also compli-
cated due to the size of the entire Wikipedia dataset,
which consisted of one compressed 20GB file contain-
ing an estimated 1.4 billion lines of text. We also
considered that the amount of data in the Wikipedia
dataset far outnumbers the number of CTI reports
available. This means that training a model with the
entire Wikipedia dataset and the CTI dataset would
dilute the cyber-security-specific data. We also con-
cluded that, even though using a smaller dataset made
it impossible to build models that could be immedi-
ately useful, we could still experiment with models
trained with less data to see how the performances
changed. This information could then be used to
guide future work on larger models. For these reasons,
we took a different approach to extracting information
from Wikipedia after determining that extracting the
entire dataset was not ideal.

In order to balance our datasets, we randomly se-
lected a number of Wikipedia articles. As an addi-

12https://huggingface.co/docs/transformers/model doc/bert
13https://en.wikipedia.org/wiki/Wikipedia:Database download

7



tional benefit, this vastly reduces the time require-
ment, since the extraction of the entire Wikipedia
dataset would take weeks, due to the sheer amount of
data. We decided to extract a million lines, this would
still provide an extensive base, bigger than the CTI
dataset, while removing the problems that came with
working with the entire Wikipedia dataset. For this
reason we created a program that, connecting with
the Wikipedia publicly accessible API, downloads a
number of random articles out of all the articles in the
English Wikipedia. These articles are then cleaned
of all the unnecessary information, such as pictures,
titles, paragraph divisions, labels and metadata, leav-
ing only the content of the textual parts of the article.
This process allowed us to create datasets of generic
language to use in the evaluation of our task.

CTI. The creation of the CTI datasets was more
straightforward, we extracted data from two differ-
ent group of files. The first one was previously cre-
ated to build Chainsmith [10], using ten different
sources, spanning between news websites covering cy-
ber threats, blogs from anti-virus companies and the
personal blogs of security experts, amounting to 14k
articles containing a total of 157k lines. This dataset
contains high quality data, with very few sentences
that do not carry cyber security related informa-
tion. The second dataset was scraped for the purpose
of a project analogous to this one, based on Mitre
ATT&CK, a publicly-accessible knowledge base of ad-
versary tactics and techniques, used for the develop-
ment of threat models and methodologies in the cyber
security field. We scraped the Mitre ATT&CK reposi-
tory14, which consists of a list of sources where we can
find the cyber threat reports referenced in the Mitre
ATT&CK framework, those sources were scraped in
their entirety.

The dataset obtained was then broken into lines,
with each line corresponding to a sentence, and a few
steps were executed in order to improve the quality of
the data. After tokenizing the dataset, as explained
in the IV - Implementation section, lines containing
less than 5 or more than 512 tokens were removed,
since they did not contain information that could be
useful for this work. After this filtering process the

CTI dataset amounts to 489k lines, but many lines
that do not carry useful information can still be found
in it, meaning that while the size of the dataset is
three times the size of the Chainsmith one, more sen-
tences are not useful for our work. These two datasets
summed together amount to roughly 645k lines, each
containing a sentence. With the content of these two
sets of cyber-security-related data, we created three
datasets, one from each source, and one that con-
tained both of them.

For testing purposes, we also created subsets of
both the CTI and Wikipedia datasets, containing 20,
100, 1,000, 10,000, 50,000 and 100,000 lines respec-
tively, which were used to analyze the behaviour of
the programs without running said programs on the
datasets in their entirety, and to obtain indicative re-
sults on the performances of the task.

VI - Evaluation

We want to show that language models trained
over domain-specific text have better performances
than the equivalent generic-language model, when ap-
plied to text in that domain, in particular regarding
the cyber security domain and CTI reports. Proving
this would be an important step in the creation of
domain-specific tools, capable of applying NLP tech-
niques efficiently to text in the domain of cyber secu-
rity. In order to observe the way the performances of
the model change based on the specific datasets used
to train it, we created multiple models, each with dif-
ferent characteristics.

Model
Precision

Wikipedia CTI
BERT 78.65% 67.06%
BERT Tiny 52.07% 40.99%
SecBERT BASE 20.21% 15.90%
SecBERT CTI 18.01% 20.62%
SecBERT FULL 20.38% 21.10%
SecBERT SCRAPE 18.96% 19.34%
SecBERT Tiny 35.02% 33.03%

Table 2: The models and their precision

14https://attack.mitre.org/datasources/

8



For each of the models visible in Table 2, we ran our
MLM pipeline on subsets of the CTI and Wikipedia
dataset, according to what aspects of each model we
wanted to evaluate. We repeated this process grad-
ually increasing the size of the subset, starting from
10k lines, then 50k lines and finally 100k lines, run-
ning the MLM pipeline multiple times for each dataset
size. Precisely, the pipeline was run 10 times using
files containing 10k lines, 5 times using files containing
50k lines and 3 times using files containing 100k lines.
This process was repeated twice for each model, once
with lines taken randomly from the CTI dataset, and
once with lines taken randomly from the Wikipedia
dataset.

Evaluation Metrics. During the execution of the
task the real value of the token that we mask is saved,
the list of predictions is compared to the real value of
the token, as visible in Table 3, and it is determined
whether one of the predictions was correct.

Target Token
Prediction

Number Value Result

the (1419)

1 ? (37) ×
2 . (20) ×
3 the (1419)

√

4 and (1444) ×
5 , (18) ×

Table 3: Checking the validity of a prediction, number
3 is correct

The results of the prediction of every individual sen-
tence is sent back to the MLM pipeline, which after
predicting every sentence in the file produces evalua-
tion metrics, visible in Table 4, used to calculate the
performances of the different models. The main met-
ric is general precision, meaning the percentage of sen-
tences that had the mask token inserted in them and
then correctly predicted in five attempts, compared
to the total amount of sentences that the model ap-
plied the mask to. Other metrics include the number
of times in which the first prediction is the correct
one out of all five of them, and the same is done for
the other four predictions. The MLM pipeline also
creates arrays in which to save the values of every

prediction made, in order to create confusion matri-
ces representing the overall effectiveness of each of the
five predictions. The final metrics are precision and
accuracy applied to the individual predictions, which
indicates in percentage how the correct predictions
were distributed between the five attempts.

Metrics Results
Duration: 0:17:45
Total predictions: 99,989
Not found: 65,073
Found: 34,916
Precision: 34.92%
Prediction 1 precision: 62.40%
Prediction 2 precision: 16.35%
Prediction 3 precision: 9.43%
Prediction 4 precision: 6.61%
Prediction 5 precision: 5.21%
Confusion matrix prediction 1: [1, 1, 0, 0, 0, 1, ... 0]
Confusion matrix prediction 2: [0, 0, 0, 1, 0, 0, ... 1]
Confusion matrix prediction 3: [0, 0, 0, 0, 0, 0, ... 0]
Confusion matrix prediction 4: [0, 0, 0, 0, 0, 0, ... 0]
Confusion matrix prediction 5: [0, 0, 0, 0, 1, 0, ... 0]
Distribution of the correct
answers over the 5 predictions:

[1, 1, 0, 0, 0]

Table 4: Evaluation of a group of predictions, the
confusion matrix is 99.989 cells long, and the num-
ber of total predictions is below 10.000 because some
sentences were discarded before the mask application.

BERT. The first model we experimented with is the
basic BERT model, imported as the module bert-base-
uncased, which was tested using both the sentences
extracted fromWikipedia and the sentences extracted
from the full CTI dataset. This model obtains high
performances in the testing task, with an average pre-
cision of 78.65% in the prediction applied to sentences
extracted from Wikipedia. The performance worsens
in predicting the masked token in sentences obtained
from the CTI database, with an average precision of
67.06%. This drop in the quality of the prediction
is indicative of the problem that originated this re-
search, the lower performance of generic NLP tools
applied to domain-specific text.
All of the subsequent models, except BERT Tiny,

9



were constructed using the modeling program that
was created during this research, and they have been
evaluated with our MLM task. The structure of each
model is similar, with the main difference found in
the dataset used, and in the division of the aforemen-
tioned dataset into the training and testing sets.

SecBERT CTI. The first prototype of SecBERT,
referred to as SecBERT CTI, was trained using only
the CTI dataset, in its entirety. The performances of
this protoype in the testing experiment are consider-
ably lower than the base version of BERT. We tested
it with sentences extracted from Wikipedia and sen-
tences obtained from the training itself, which creates
a testing subset from the dataset used. In the pre-
diction of sentences extracted from Wikipedia, it ob-
tains an average precision of 18.01%, and on the CTI
dataset it averages a precision of 20.62%. The de-
crease in precision is ascribable to the lower amount
of data and the absence of generic-domain language in
the training phase of the model, which was focused en-
tirely on the CTI dataset. The precision of the model
is overall lower, but there is a noticeable improvement
in the performances when it comes to predicting the
masked token in a sentence whose language is domain-
specific for cyber security. These results supports the
idea that a generic NLP tool trained specifically to
work in a domain-specific context can obtain better
results than an equivalent generic tool.

SecBERT BASE. Having re-evaluated the scope
of the project, we decided that it would be correct
to re-evaluate the baseline for the results of these ex-
periments. In order to establish a baseline for these
models we trained SecBERT BASE, a model trained
exclusively on the Wikipedia dataset. The model ob-
tained is conceptually similar to the base version of
BERT, but also shows the limitations that are inher-
ent in SecBERT due to the technical obstacles to cre-
ating a model trained on the entire Wikipedia corpus.
For this reason it provides the lower level of the base-
line when it is used to predict masked tokens in the
context of cyber security domain-specific language.
We tested this model on sentences taken from both
the Wikipedia dataset and CTI dataset, similarly to
the original BERT. This model achieves an average

precision of 20.21% in the evaluation of sentences ex-
tracted from random Wikipedia articles, as opposed
to an average precision of 15.90% when applied to
lines obtained from the CTI dataset. The relationship
between these two results is in line with the results ob-
tained by BERT, with an higher precision when the
model is applied to generic-purpose language, and the
difference in the baseline is attributable to the differ-
ence in the size of the training dataset.

SecBERT FULL. The second SecBERT proto-
type, referred to as SecBERT FULL, was created us-
ing both the CTI dataset in it’s entirety, and the
Wikipedia dataset. It was built as an evolution of
SecBERT CTI, to observe whether the addition of
non-domain-specific language to the dataset used in
the training of this version of SecBERT would improve
the performance of the model. To test this model, we
had to create a testing subset from the CTI dataset
before the creation of the model. We had to create
the testing set manually because the testing set cre-
ated by this model would have been an hybrid of both
the datasets used, meaning that we could not have
used it to test performances on CTI and Wikipedia
separately. The performance of this model is similar
to the performance of SecBERT CTI, with an aver-
age precision of 20.38% for the evaluation of generic-
domain sentences, and an average precision of 21.10%
for sentences extracted from the CTI dataset. The
small improvement in performances can be attributed
to the addition of the data obtained from Wikipedia,
which improved the precision on non-domain-specific
language, supporting the idea behind the creation of
SecBERT FULL.

SecBERT SCRAPE. The third SecBERT proto-
type, referred to as SecBERT SCRAPE, has been
built using the lines extracted from Wikipedia and
the part of the CTI dataset that was scraped for the
purpose of this project. This model was created to
observe whether using a single source for the domain-
specific data could improve performances, as opposed
to the multiple sources used for the previous exper-
iment. This model, when tested on CTI data ob-
tained exclusively from the Chainsmith dataset, ob-
tained an average precision of 18.96%, lower than the

10



19.34% obtained on average applying the model to
the mixed CTI dataset, meaning that the use of sep-
arated sources in this case did not improve perfor-
mances. The performances of this model are worse
than the performances of SecBERT FULL when it
comes to predicting the mask token in sentences ex-
tracted from either dataset. The possible reasons for
these results might be multiple. The reason for the
drop in performances on the Wikipedia dataset might
be due to the smaller size of the training set, regard-
less of the provenience of the dataset. For the drop in
performance over the CTI dataset, it might be the fact
that the training was done using a small part of the
whole CTI dataset. This part might be too small to
significantly improve the performances on sentences
taken from the CTI dataset compared to those from
the Wikipedia dataset.

BERT Tiny & SecBERT Tiny. Lastly, we de-
cided to change the base model used in creating
SecBERT, and we tried using BERT Tiny [11] in-
stead of BERT. BERT Tiny is the smaller pre-trained
BERT variant, built with 2 encoder layers stacked on
top of each other and 128 hidden layer, as opposed to
the 12 encoder layer and 768 hidden layers of BERT.
The smaller number of layer lowers the overall perfor-
mances, BERT Tiny, used as its original implemen-
tation, analogously to BERT, obtained a 52.07% av-
erage precision in the task when applied to sentences
from the Wikipedia dataset, and 40.99% on sentences
from the CTI dataset. This lower performances, com-
pared to the original BERT, are accompanied by a
much faster execution time. We experimented with
this model to see if this model would work better with
the reduced size of the dataset used in this project.
We built SecBERT Tiny analogous to SecBERT
FULL, meaning that both the Wikipedia dataset and
the entire CTI dataset were used in the training, and
we tested it using the sentences from Wikipedia and a
subset of the CTI dataset that we prepared before the
training. This model averages a precision of 35.02%
on the Wikipedia dataset and 33.03% on the CTI
dataset. We can see a loss of precision from BERT
Tiny to SecBERT Tiny, similar to the loss of precision
from BERT to the SecBERT models, ascribable to the
same reason, the lower amount of general-purpose lan-

guage data used in the training. Despite the loss of
precision from BERT Tiny, this model is the better
performing version of SecBERT. The reason for this
might be found in the fact that the smaller size of
the model, in terms of layers, works better with the
smaller amount of data used to train it [12].

Summary. Overall, the results obtained with these
experiments are promising, we saw a fall in perfor-
mances in the baseline, but an improvement when
adapting to the new baseline. Considering the new
baseline, the data obtained seems to support our
theory, that training language models over domain-
specific data improves performances compared to
equivalent generic-language model. We can see this in
the improvements of SecBERT FULL and SCRAPE
over SecBERT BASE, although it seems that to create
NLP tools capable of surpassing the performances of
BERT, even on domain-specific text, it would require
an enormous amount of training data.

Runtime Performance. The amount of time re-
quired to complete the training changed depending
on the model and the size of the datasets. The fastest
was SecBERT Tiny built on BERT Tiny trained with
the full CTI dataset, which took 140 minutes, the
slowest was SecBERT trained with both the entire
CTI dataset and the Wikipedia dataset, which took 3
days. SecBERT Tiny was also the fastest model when
it comes to execution time, with the task being exe-
cuted on 50k lines in 10 minutes, as opposed to the
other models taking between 1 and 3 hours.

11



Model Size
Runtime

Wikipedia CTI

BERT
50k 01:52:37 01:00:34
100k 01:09:11 01:17:48

BERT Tiny
50k 00:08:48 00:06:19
100k 00:16:25 00:17:42

SecBERT BASE
50k 02:30:01 01:38:36
100k 06:16:02 06:34:49

SecBERT CTI
50k 00:59:32 02:14:28
100k 01:17:59 06:11:15

SecBERT FULL
50k 02:32:33 01:46:56
100k 06:28:29 06:13:29

SecBERT SCRAPE
50k 02:48:16 01:56:26
100k 06:13:37 06:18:36

SecBERT Tiny
50k 00:06:32 00:04:30
100k 00:18:34 00:17:39

Table 5: The models and their average runtime on
batches of 50.000 and 100.000 sentences extracted
from the CTI and Wikipedia datasets.

VII - Discussion

The work done during this research resulted in data
that supports our hypothesis, that by using a model
trained with domain-specific language we can achieve
better results than an equivalent non-domain-specific
model. This data was obtained trough an initial re-
search phase, followed by the creation of an evaluation
task, the construction of two datasets, the creation of
several models and then experimenting with the task
to evaluate the models.
Resources. An important aspect in the proceeding
of this work was the use of resources. Initially we
wanted to train a neural network in a way similar to
the training that the original BERT underwent to, us-
ing the entire textual part of Wikipedia. We worked
on the creation of this task on a personal laptop, with
an Intel i7-7500U CPU and 8GB of RAM, these tech-
nical constraints forced us to change the scope of our
plans. We realized that this process would have taken
weeks on this machine, and that would have just been
the time necessary to obtain a general language base-
line. This time scale for the creation of a model would
also mean that we would have been able to create just
a single model focused on cyber security language. We

would have not been able to experiment with different
compositions for the dataset or any other parameter
for the creation of the model, and any possible mis-
take in the creation of said models could have costed
us weeks of work. On top of these issues, the use
of the entire Wikipedia dataset would have created a
strong imbalance in the amount of generic-language
data compared to cyber-security-related data, dilut-
ing the information found in the CTI dataset.
These are the reasons why we decided the scale of
the experiment should be smaller than the creation of
full models. For this purpose we extracted a million
sentences from random Wikipedia articles, to be used
as the generic-language dataset. This change meant
that the performance baseline of these models fell.
Despite the loss in absolute performance, the exper-
imentation with these models allowed us to see the
improved performances that these model presents in
working with cyber-security-specific language, com-
pared to a generic-purpose language baseline.

Possible Future Developments. During this pro-
cess we were presented with a number of possible fu-
ture developments that could not be investigated due
to constrictions dictated by time and resources. These
possible future development regard various aspect of
the work, which could be explored more in depth by
a larger study which does not have the time and re-
source constrictions that our study did.
The first aspect regards the CTI data used in this
project. A bigger study could explore in which way
the quality of CTI reports scraped influences and re-
flects the quality of the model generated. For this
project we worked with two CTI databases, one built
for the creation of Chainsmith, and one scraped for
a project analogous to this one. The Chainsmith
dataset presents a smaller amount of data, but the
quality is higher, with very few non-relevant sentences
or sentences that have been parsed improperly. The
second dataset is three times larger, but the quality
of the data is lower. Many of the sentences are non-
relevant, containing parts of the sites where the infor-
mation was gathered from, such as links for sharing
the content, search bars and other HTML elements
that do not contain CTI data. Also some of the text
was not scraped properly, resulting in strings of char-

12



acters that do not form coherent sentences, probably
due to the use of different fonts, encoding and other
factors that interfered with the scraping process. So
it would be interesting to explore whether a more pol-
ished dataset of similar or even bigger size than those
used in this work would improve performances of the
model.
The second aspect is the amount of data used for
training the models. Due to time and resources con-
strictions we decided to use a subset of Wikipedia as
the general-domain language to train the models, so
it would be interesting to explore how would the use
of more data impact the performances. We suspect
that increasing the size of the general-domain lan-
guage data would generate diminishing returns. On
one side the models would improve their understand-
ing on general language, as visible from the gap in
performances between BERT and SecBERT, but on
the other side the CTI-specific data would end up be-
ing diluted in the training process. Ideally to mitigate
this last problem we would have a much larger CTI
dataset, but as far as we know such a dataset does not
exist, so possible ways to create it should be explored.
Another aspect that could be explored more is the cre-
ation of the models themselves. In creating the model
a single blueprint was followed every time, changing
only the dataset used and a few variables which re-
flected the technical capabilities of the device used,
such as the batch size used during the training. Other
variables could be changed, such as the vocabulary
size or the way the data is split between training and
testing data. This could be explored after the creation
of the larger dataset mentioned before, using subsets
of it too observe the performance of models that use
different subsets of the same size. Another possibility
is to investigate how much of the performance dif-
ference between models was due to data quality and
how much was due to data quantity. This could be
investigated after the creation of the larger dataset
mentioned earlier, using subsets of it to observe the
performance of models that are created using different
subsets of the same size.
We also saw interesting results when using BERT
Tiny as the basis for the model, instead of BERT
Base. SecBERT Tiny, built with the entire CTI
and Wikipedia datasets, outperformed every other

SecBERT model. We speculate that the reason for
these performances might be derived from the re-
duced size of the model, which might work better
with the smaller amount of data, compared to the
dataset used to build BERT Base. If this hypothesis
was found to be correct, it would mean that increas-
ing the size of the dataset would produce diminishing
returns in the improvement of the model. Presumably
other SecBERT models would outperform SecBERT
Tiny when trained on the same dataset, with datasets
larger than a certain size. It would be interesting to
experiment with these same models and more datasets
of different sizes to verify these hypothesis. It would
be also interesting to work with other models as a
basis, such as BERT Small and BERT Large, to see
what kind of performances they would produce.
Finally, another aspect that could be explored is the
integration with other tools in order to create special-
ized versions of said tools, which could now perform
better in the domain of cyber security.

VIII - Related Work

We decided to approach this problem by building on
BERT, a tool for general text, to create SecBERT, a
specialized version that focuses on CTI data. Other
researchers tried different approaches to improve the
state-of-the-art in applying NLP to cyber security
text.
TTPDrill [13] is one of the tools built to work
specifically with cyber security language, introduced
in 2017, it has been outperformed, but it served as
a basis for many other state-of-the-art tools used
in cyber security. TTPDrill was created to ex-
tract MITRE ATT&CK patterns from cyber secu-
rity reports, mapping MITRE techniques, tactics and
phases. TTPDrill does this using a set of NLP rules
to identify a threat action, which is then divided into
specifications, such as verb, object, and action goal.
These specifications are then used to construct an at-
tack pattern mapping these actions to the sequence
of events that constitute a cyber attack.
Another tool is Chainsmith, created in 2018, it is
built to extract Indicator of Compromise (IOCs) from
a report and associate them to a 4-stage model, ob-

13



taining the attack campaign. IOCs are evidence that
a system might have been compromised by a cyber
threat, and the idea behind this system is to connect
multiple sources, such as reports and field measure-
ments, to reconstruct all the phases of the described
attack, aiming to produce new insights on attacks,
analyzing how the parts of the attack might be con-
nected in non-immediately noticeable ways. It works
using a series of functions, such as syntactic parser,
semantic parser and IOC classifier. These functions
identify a possible IOC using regular expressions, and
using the parsers on the surrounding context of the
sentence they determine whether the candidate is an
IOC and the corresponding stage in the attack cam-
paign.
iACE [14] is a tool presented in 2016, based on the
observation that, in a technical article, IOCs are usu-
ally described in a consistent way, re-using the same
sentence structure and terms. Identifying these terms
iACE isolates possible IOCs, and then converts them
into relationship graphs to identify the relationship
with other terms, identifying relevant elements.
The same idea was used by AttacKG [15], which
works using Cyber Threat Intelligence (CTI), in-
formation regarding cyber attacks and the tech-
niques used to perform them, presented as struc-
tured, machine-digestible IOCs, or reports written
in natural language. AttacKG was created to ex-
tract structured attack behavior graphs from reports,
which show the IOCs and the way they interact with
each other, converting unstructured information into
structured information. AttacKG was built to out-
perform both iACE and Chainsmith in the extraction
of IOCs, it works identifying the attack technique us-
ing the MITRE ATT&CK knowledge base, which is
continuously updated to keep up with the evolution of
techniques and threats. AttacKG handles IOCs in a
similar way to iACE, with parsers that are capable of
recognizing domain-specific terms, but it also gather
information that is not contained in IOCs (such as
the word ”email”, that can indicate a phishing at-
tack) and aggregates multiple sources of information.
This is more powerful than using just IOCs, since it
manages to add the context obtained from non IOCs
entities. The behaviour graphs enhanced with this in-
formation are then called technique knowledge graphs

(TKGs), they represents the attack chain, and they
are built by aggregating extracted information ac-
cording to MITRE ATT&CK technique. A system
to automate the knowledge extraction from CTI re-
ports using NLP techniques would greatly improve
efficiency in SOCs, especially if that information were
to be converted in the form of MITRE ATT&CK con-
cepts. While AttacKG is powerful, it’s focus is on
uniting information coming from multiple sources in
order to build the graph and specifically identify the
attack technique, which is outside of our scope.
An important characteristic of these tools is that
they are specifically designed for working with cyber-
security-related data, which means that issues rel-
evant to dealing with cyber security reports, such
as IOC recognition, are already taken into account.
However, because they were designed specifically for
this purpose, these tools lack the flexibility that a
BERT-based approach can provide, as its perfor-
mance is not specifically centered on structure recog-
nition. Another limitation of the other tools is the
lack of bidirectionality, which BERT possesses, which
improves understanding of the context surrounding
IOCs. For these reasons, we choose to focus on
BERT.

IX - Conclusion

NLP tools have proven useful for generic text on vari-
ous tasks, but their efficacy is diminished by domain-
specific terminology in CTI tasks. Generic NLP chal-
lenges, such as information retrieval and sentence cor-
relation, are exacerbated by domain-specific terminol-
ogy in CTI tasks. These obstacles hamper the use
of NLP tools in cyber security to automate or as-
sist workers in specific tasks, such as information ex-
traction from CTI reports. Our goal is to assist in
the development of a domain-specific NLP tool, and
our hypothesis is that using a domain-specific model
yields better results than using a generic mode.
We developed SecBERT, a BERT-based model
trained on CTI reports and cyber-security-specific
language, and found it outperforms baseline generic-
language models in NLP tasks in the domain of
cyber security. Despite the constrictions on time
and resources, the results obtained were promising:

14



SecBERT outperformed BERT in masked language
modeling for cyber-security-specific language, show-
ing that domain-specific models can improve the per-
formances of a generic-language model in the execu-
tion of NLP tasks on domain-specific texts.
SecBERT could serve as the foundation for special-
ized tools tasks such as knowledge extraction and in-

formation processing in the context of cyber secu-
rity. Larger datasets, different model compositions,
and training parameter experimentation could im-
prove performances. This research paves the way for
additional research into the development of NLP tools
to automate and assist workers in specific cyber secu-
rity tasks.

15



References

[1] Renaud Bidou. Security operation center con-
cepts & implementation. avalable at http://www.
iv2-technologies. com, 2005.

[2] Md Sahrom Abu, Siti Rahayu Selamat, Aswami
Ariffin, and Robiah Yusof. Cyber threat
intelligence–issue and challenges. Indonesian
Journal of Electrical Engineering and Computer
Science, 10(1):371–379, 2018.

[3] Wiem Tounsi. What is cyber threat intelligence
and how is it evolving? Cyber-Vigilance and Dig-
ital Trust: Cyber Security in the Era of Cloud
Computing and IoT, pages 1–49, 2019.

[4] Casey Hanks, Michael Maiden, Priyanka Ranade,
Tim Finin, and Anupam Joshi. Recognizing and
extracting cybersecurtity-relevant entities from
text. 2022.

[5] Hao Cheng Michael Lucas Naoto Usuyama Xi-
aodong Liu Tristan Naumann Jianfeng Gao Hoi-
fung Poon Yu Gu, Robert Tinn. Domain-specific
language model pretraining for biomedical natu-
ral language processing. ACM Transactions on
Computing for Healthcare, 3(1):1–23, jan 2022.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language under-
standing, 2018. cite arxiv:1810.04805.

[7] Jonathan J Webster and Chunyu Kit. Tokeniza-
tion as the initial phase in nlp. In COLING 1992
volume 4: The 14th international conference on
computational linguistics, 1992.

[8] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized bert pretraining
approach, 2019.

[9] Zhenzhong Lan, Mingda Chen, Sebastian Good-
man, Kevin Gimpel, Piyush Sharma, and Radu

Soricut. Albert: A lite bert for self-supervised
learning of language representations, 2019.

[10] Ziyun Zhu and Tudor Dumitras. Chainsmith:
Automatically learning the semantics of mali-
cious campaigns by mining threat intelligence re-
ports. In 2018 IEEE European Symposium on
Security and Privacy, EuroS&P 2018, London,
United Kingdom, April 24-26, 2018, pages 458–
472. IEEE, 2018.

[11] Prajjwal Bhargava, Aleksandr Drozd, and Anna
Rogers. Generalization in nli: Ways (not) to go
beyond simple heuristics, 2021.

[12] Iulia Turc, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Well-read students learn
better: The impact of student initialization on
knowledge distillation. CoRR, abs/1908.08962,
2019.

[13] Ghaith Husari, Ehab Al-Shaer, Mohiuddin
Ahmed, Bill Chu, and Xi Niu. Ttpdrill: Au-
tomatic and accurate extraction of threat ac-
tions from unstructured text of cti sources. In
Proceedings of the 33rd Annual Computer Secu-
rity Applications Conference, ACSAC 2017, page
103–115, 2017.

[14] Xiaojing Liao, Kan Yuan, XiaoFeng Wang, Zhou
Li, Luyi Xing, and Raheem Beyah. Acing the
ioc game: Toward automatic discovery and anal-
ysis of open-source cyber threat intelligence. In
Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Secu-
rity, CCS ’16, page 755–766, New York, NY,
USA, 2016. Association for Computing Machin-
ery.

[15] Zhenyuan Li, Jun Zeng, Yan Chen, and Zhenkai
Liang. Attackg: Constructing technique knowl-
edge graph from cyber threat intelligence reports,
2021.

16


