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Summary

Human motion capture, the process of recording people’s movements, contributes
to kinematics research, medical rehabilitation, augmented reality, meanwhile com-
mercially succeeds in video game development, the film-making industry, etc. The
captured information is utilized to animate 2-D or 3-D character models. Our work
focuses on the inertial motion tracking system composed of miniature inertial sen-
sors, biomechanical models and sensor fusion algorithms. An inertial measurement
unit(IMU) consists of an accelerometer and a gyroscope, and some include a mag-
netometer as well. It is highly appreciated in motion tracking for being affordable,
trusty and energy-efficient, and has been developed since the early 1930s. The
common wearable motion capture set contains several wireless IMUs allowing users
to receive real-time data after installation.

However, the current installation process of the wearable full-body IMUs set is
inefficient and troubled by human-made errors. Because the sensor-to-segment
placement and alignment are crucial to the reliability and informativeness of the
recording, the wearable motion trackers should be placed on a predefined location
with a specific orientation concerning the segment. Assigning the numbered IMUs to
their corresponding can be time-consuming and prone to error when 20 IMUs, for ex-
ample, are involved. Referring to Xsens MTw Awinda used in this project, attaching
all the 17 IMUs on corresponding segments takes 250 seconds, yet random assign-
ment without restrictions on sensors pairing with specific body segments takes 180
seconds. On the one hand, incorrect placement due to unintentional human error
will directly lead to the failure of the visualization (twisted and misplaced body parts,
etc.) of sensor data in the supporting software. On the other hand, if the calibration
is passed because the switched IMUs, for example, on the left and right shoulder,
are kinematically similar, the following recording task is meaningless based on the
wrong labelled data source. What’s more, the mislabelled data are difficult to be
detected without referring to the previously used hardware.

Therefore, to optimize the current installation process, automatic IMU-to-Segment
(I2S) assignment methods based on recorded inertial data are proposed. The tra-
ditional methods take advantage of a large number of manually-selected features
and shallow machine learning methods. However, shallow machine learning meth-

iii



IV SUMMARY

ods have some common shortcomings: a. Manually selecting features is time-
consuming; b. The feature set is case-by-case and subjective, requiring prior knowl-
edge; c. The commonly used features, like the magnitude of acceleration changing
from individual to individual, are not discriminative enough which causes poor ro-
bustness of the shallow machine learning-based models. In this case, deep learning
methods, which learn the features directly from the data, are considered to address
the mentioned problems. Some previous research is done to minimize the manual
labour in the installation stage of wearing IMUs. The previous researchers success-
fully applied deep learning methods to the I2S assignment task. But the CNN+GRU
model for an arbitrary amount of IMUs is only applied to lower body configuration.
Another method including PointNet and attention model extracting sensor-wise inter-
dependencies surpasses the CNN+GRU model and works for full-body configuration
as well. However, this model lacks flexibility in the number of IMUs.

In this project, we explore if convolution-based models can reduce the man-
ual feature selection and keep the flexibility of the amount of test IMUs in the full-
body I2S assignment tasks based on the acceleration, angular velocity, and rotation
quaternion. The involved full-body motion capturing system from Xsens called MTw
Awinda consists of 17 IMUs. Each IMU is marked by a sticker indicating its corre-
sponding segment currently. The training dataset XsensMotion includes 69 trials on
around 30 subjects, and the self-collected test set involves 30 testing trials collected
on 5 subjects absent from XsensMotion. To increase the prediction accuracy, we
also apply data processing methods including heading correction, walking motion
filter on the dataset. The long trials are sliced into shorter sequences of 2 seconds
using the sliding window method. The proposed model involves three convolutional
layers, one GRU layer, and three linear layers. Dissimilar hyper-parameter settings
in convolutional layers are designed to realize hierarchical feature merging. Besides
the input (acceleration and angular velocity) usually involved in existing approaches,
the effectiveness of rotation quaternion is explored in this project, which to the best
of our knowledge has not been done by previous researchers. The biased trials and
special segments are specifically studied in this project. It has been proved that
hierachical feature merging model with the walking motion filter has the best per-
formance among the mentioned models with all three configurations. The achieved
performance is also comparable to the previous research without losing the system
flexibility. Adding rotation quaternion in input or heading correction can neither con-
tribute to the overall performance. To enhance the performance, we apply majority
voting on predictions based on sliced windows to generate one final label for the
whole trial. The trial-wise performance on lower-body configuration (left and right
foot upper leg, lower leg, and pelvis) achieves 100% accuracy using the proposed
model.



Contents

Summary iii

List of acronyms vii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Report organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related work 7
2.1 IMUs-To-Segment (I2S) assignment and the Calibration Stage of In-

ertial Motion Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Sensor Placement Recognition and HAR . . . . . . . . . . . . . . . . 10
2.3 Time Series Classification . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Traditional Time Series Classification Methods . . . . . . . . . 13
2.3.2 CNN and RNN for Time Series Classification . . . . . . . . . . 14

2.4 Limitations of the Previous Studies . . . . . . . . . . . . . . . . . . . . 15

3 Methods 17
3.1 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Coordinate Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Experimental settings and workflow . . . . . . . . . . . . . . . . . . . 22
3.5 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.2 Walking motion filter (Walking Motion Filter (WMF)) . . . . . . . 25
3.5.3 Heading Correction . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.4 Sliding window . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



VI CONTENTS

4 Results 35
4.1 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Window-wise performance and trial-wise performance . . . . . 35
4.1.2 Typical mislabelling of distinct approaches . . . . . . . . . . . . 38
4.1.3 Look into the selected model . . . . . . . . . . . . . . . . . . . 40

4.2 Segment comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Motion comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Performance on Distinct Subjects . . . . . . . . . . . . . . . . . 48
4.4.2 Left and Right Shoulder Recognition . . . . . . . . . . . . . . . 49
4.4.3 Results on the TotalCapture dataset . . . . . . . . . . . . . . . 51

5 Discussion 53

6 Conclusions 59
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

References 61

Appendices

A Appendix A: methods 69
A.1 Rotation quaternion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B Appendix B: Results 71
B.1 Input methods comparison . . . . . . . . . . . . . . . . . . . . . . . . 71
B.2 Model convergence speed and overfitting . . . . . . . . . . . . . . . . 71
B.3 Confusion matrices of 6-channel Hierarchical Convolutional Feature

Merging (HCFM) with WMF grouped by subjects . . . . . . . . . . . . 73
B.4 Computational performance of the test phase . . . . . . . . . . . . . . 78



List of acronyms

IMU Inertial Measurement Unit

DNN Deep Neural Network

HAR Human Activity Recognition

RNN Recurrent Neural Network

I2S IMUs-To-Segment

CNN Convolutional Neural Network

TSC Time Series Classification

FCN Fully Convolutional Network

ResNet Residual Network

LSTM Long Short-Term Memory

GRU Generalized Recurrent Unit

NN Nearest Neighbour

DTW Dynamic Time Warping

BOSS Bag-of-SFA-Symbols

TSF Time Series Forest

ROCKET Random Convolutional Kernel Transform

MLP Multilayer Perceptron

GVCNN Group-View Convolutional Neural Network

WMF Walking Motion Filter

HCFM Hierarchical Convolutional Feature Merging

vii



VIII LIST OF ACRONYMS



Chapter 1

Introduction

1.1 Background

Human motion capture, the process of recording people’s movements, contributes
to kinematics research [1], medical rehabilitation [2], augmented reality [3], and also
commercially succeeds in video game development, film-making industry, etc. The
captured information is usually used to animate 2-D or 3-D character models. The
capturing systems can be classified as optical and non-optical systems. Optical
systems consist of methods using makers and special camera sensors or marker-
less algorithms based on computer vision. The non-optical system tracks the body
motion by using inertial, magnetic, stretch sensors or directly measuring the joint
angles between two segments.

This work focuses on the inertial motion tracking system which is composed of
miniature inertial sensors, biomechanical models and sensor fusion algorithms [4].
Inertial Measurement Unit (IMU) which consists of an accelerometer, gyroscope
and some also includes a magnetometer, is highly appreciated in motion tracking
for its feature of being affordable, trusty and energy-efficient, which has been hugely
developed since the early 1930s. A common wearable motion capture set contains
several wireless IMUs allowing users to receive real-time data after the process of
installation. The IMUs are fixed on the body using elastic straps, head straps and
wrister depending on the segment, as shown in Figure 1.1.

However, the current installation process of the wearable full-body IMUs set is
not the most efficient and is prone to human-made errors. To begin with, because
the sensor-to-segment placement and alignment are crucial to the reliability and in-
formativeness of the recording [5], [6], and the result of the sensor data could be
influenced by the unexpected changes in the sensor placements among different
subjects, the installation usually requires expert guidance throughout. Moreover,
with a multi-IMU configuration, it is obligatory to know which segment the sensor
is on to accurately record data and reflect them on the corresponding part in the
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2 CHAPTER 1. INTRODUCTION

digital character model. Assigning the numbered IMUs to their corresponding can
be time-consuming and prone to error [7], [8] when 20 IMUs [9], for example, are
involved. Referring to Xsens MTw Awinda, attaching all the 17 IMUs on certain seg-
ments takes 250 seconds, while random assignment without restrictions on sensors
pairing with specific body segments takes 180 seconds. Wrong placement due to
unintentional human error will directly lead to the failure of the visualization(twisted
and misplaced body parts, etc.) of sensor data in the supporting software. The
following recording task can not continue, so the calibration has to be carried out
again from the beginning until the segments are correctly assigned. Moreover, it
is possible that the data from misplaced IMUs successfully generate a kinematic
model if they do not have too different motions, for example, IMUs on the left and
right shoulder. For Xsens MTw Awinda, as long as the data and visualization are
archived, it will be difficult to detect the problem by checking the animation, unless
comparing the log file with the unique number on the motion tracker. It will be harm-
ful if those incorrect data are regarded as correct ones and used in research like
medical rehabilitation.

Therefore, to optimize the current installation stage of the wearable IMUs set, au-
tomatic I2S assignment methods based on recorded inertial data are proposed [7],
[8], [10]. In the field of Human Activity Recognition (HAR), studying the location of
the sensor is also important because the movement of sensors provides information
to HAR on one hand, but also interferes with the data collection, on the other hand,
depending on the type of the movements. Possible movements of the sensors in-
clude three types: (1) on-body movement from hand to back pocket, (2) with-body

(a) A subject with 17
IMUs on different
body segments.

(b) The wrister and strap used to
attach the IMUs to the body.

(c) Each IMU has a sticker
on it to indicate the re-
spective segment.

Figure 1.1: Some plots of using Xsens MTw Awinda(one of the wearable IMU sets)
in real life.
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movement(unexpected shaking in the pocket, etc.), and (3) orientation changes ac-
cording to previous research [11]. Researchers have to use location-independent
features to get rid of the influence caused by unwanted movements or figure out
the sensor placement to take advantage of the useful movements by using the ac-
celeration signal alone [12], some with the help of proximity and light sensors [13].
The traditional methods, as mentioned above, take advantage of a large number
of features of different segments, using shallow machine learning methods to rec-
ognize the IMUs placement based on manually selected features. However, the
shallow machine learning methods have some common shortcomings: first, man-
ually selecting features is time-consuming [7]; second, the selected set of features
is case-by-case and subjective, requiring prior knowledge [11]; third the commonly
used features, like the magnitude of acceleration changing from individual to indi-
vidual, are not discriminative enough. According to research on gait recognition for
human identification [14], the walking gaits can be so different from person to person
which makes the shallow machine learning-based models less robust.

In this case, deep learning methods, which learn the features directly from the
data, are considered to address the mentioned problems. Some previous research
is done to minimize the manual labour in the installation stage of wearing IMUs. The
previous researchers successfully applied deep learning methods to the I2S assign-
ment task. The Deep Neural Network (DNN) performs so well in many fields, it also
achieved 98.57% accuracy using Recurrent Neural Network (RNN) and Convolutional
Neural Network (CNN) for the lower body I2S assignment task [7]. Acceleration and
gyroscope data are used to form a 6-channel input matrix. Later in 2021, Kaichi et
al. proposed a model which combines attention encoder [15] and IMU-wise global
feature in PointNet model [16], with a root sensor, the model achieves 93.1% on
full-body configuration involving 15 IMUs on Mo-cap dataset [17].

I2S placement classification, which is based on data with ordering notions, be-
longs to Time Series Classification (TSC) problems [18]–[20]. Many TSC algorithms
have been presented in the last decade [21]. Pieces of research done within the
field of TSC successfully achieve higher or equal performance using deep learning
methods, compared to the ones using shallow machine learning methods. There
are some deep learning models that have been proven to work well used in discrim-
inative end-to-end approaches including Fully Convolutional Network (FCN) [22],
Encoder [23], Residual Network (ResNet) [18], [24]. Methods aiming at automatic
pattern learning without using DNNs are also proposed. These methods extract
features from time-series samples and use the features to train a classifier. For in-
stance, Random Convolutional Kernel Transform (ROCKET) uses thousands of vari-
ant kernels to learn different features and then gives the features to a linear classifier.
Technically speaking, it is not a deep learning method because the convolutional ker-
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nels are not being used in typical CNNs. The huge number of convolutional kernels,
in combination, captures the informative patterns and the linear classifier keeps the
computational complexity low, which together guarantees the state-of-art classifica-
tion accuracy on a large dataset [25]. Though these models have not been applied
to the I2S assignment problem, their performance on the related tasks shows the
potential for this problem.

1.2 Motivation

To sum up, the current I2S labelling has inefficient installation steps and is prone
to human-made errors which not only directly cause the failure of calibration on the
other hand but also result in incorrect kinematic data with a high cost to be detected.

This work aims to automatically determine the I2S placement with the full-body
configuration(17 IMUs) using proper convolution-based methods to minimize the
manual operation(feature engineering, etc.) based on the acceleration, angular ve-
locity, and generated orientation information with flexibility in the IMU number. In
another word, the place of the IMU sensor is automatically labelled according to the
inertial data collected by the sensors. For that reason, subjects’ attention on which
sensor to which segment is not needed anymore. The initialization stage will be less
time-consuming and leave fewer human-made mistakes.

To realize this goal, there are several important issues. Firstly, we need to
minimize the manual work. This is addressed by using end-to-end deep learning
methods. Based on the high accuracy achieved by CNN+Generalized Recurrent
Unit (GRU) model on I2S assignment tasks [7], [10] and other TSC tasks, we would
evaluate its performance of it here. Additionally, we found that different hyperparam-
eter settings of each CNN layer realizing feature merging step by step is possible to
enhance the performance of the traditional CNN+GRU model, the comparison will
be conducted between these two models.

Secondly, the calibration of the current wearable IMU set includes two parts:
around 5 seconds’ N-pose (standing still with the feet shoulder-width apart and
hands on the sides of the body, looking straight ahead) and more than 10 sec-
onds’ walking motion. Inspired by previous work [26], we would like to evaluate the
effectiveness of WMF, which extracts only the walking motion in a trial. Because the
composition of calibration is simple and can be easily separated into N-pose and
walking by detecting the frame with a sudden increase in the absolute value of the
acceleration.

Thirdly, most studies have relied on accelerations and angular velocities, but ori-
entation information–rotation quaternion has not been used to solve I2S assignment
before. So we are going to explore their efficiency in this project.
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Fourthly, ideally, we want the IMU assignment system to remain unaffected by
a single IMU out of power, loss, or malfunction. In this case, the system should
be flexible as well. Flexibility here refers to the ability of a model to work properly
with different numbers of IMUs. However, according to Kaichi et al. [10] and Zim-
mermann et al. [7], keeping a balance between flexibility and accuracy of the model
is not easy. Zimmermanna et al. ensure flexibility by using a one-by-one method,
which means the model can recognize a single sensor’s placement. The model
proposed by Kaichi et al., taking advantage of the interdependency between IMUs,
outperforms Zimmermanna et al.’s model. However, it brings a negative impact to
the flexibility, because the model requires all the IMUs’ inertial data to predict a sin-
gle IMU’s placement. So we proposed a model combining the root IMU with the
one-by-one method. Root IMU is used as the reference for the other IMUs. After
some proper data preprocessing, the model can learn the interdependencies be-
tween one root IMU and the other non-root IMUs, without adding more restrictions
to the IMU configuration. Based on the test experiment and the previous work, we
find that the long trials in I2S assignment are usually sliced into shorter sequences
and the accuracy rate related to those sequences is commonly higher than 50%.
Thus we would like to see if majority voting can improve the performance without
hurting the flexibility in IMU number in the test phase.

Finally, previous work has also proved that IMUs on certain body segments are
harder to recognize. For example, upper body recognition is harder than lower body
[8], [10]. So the experiments will be implemented with three body configurations
including lower body, upper body, and full body, which makes it possible to train
different models for each body part, and specific analysis can be done on finer
granularity.

1.3 Research question

Based on the motivation, here is the main research question:
Can convolution-based models reduce the manual feature selection and keep the

flexibility of the amount of test Inertial Measurement Unit(IMU) in the I2S assignment
tasks based on the acceleration, angular velocity, and rotation quaternion?

To be specific, it consists of several sub-questions as follows:
RQ1: What is the performance of HCFM deep learning model compared to the

baseline model [7] Ttrained and tested on our dataset?
RQ2: What is the performance of the model trained and tested only with the

walking motion (by using the WMF)?
RQ3: What is the performance of the model using rotation quaternion directly as

a part of the input or as a necessary element to realize heading correction in deep
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I2S assigning models?
RQ4: How much improvement can be brought to the performance quantitatively

by majority voting?

1.4 Report organization

More related work will be discussed and compared in Chapter 2. In Chapter 3,
the instrumentation, dataset information, data processing methods, neural network
architecture, heading correction, and evaluation methods are introduced. Then, in
Chapter 4, the results of the models with distinct settings and input are shown.
Discussion will be stated in Chapter 5. Finally, in Chapter 6, conclusions and future
work are given.



Chapter 2

Related work

This section will introduce the work related to the I2S assignment. The first part
introduces the I2S assignment designed to optimize the calibration of the joint kine-
matic data recording(Section 2.1). Because there is not much previous work done
exactly on the I2S assignment tasks, we studied other sensor placement recogni-
tion tasks concerning HAR as shown in Section 2.2. They are regarded as related
work because a lot of inertial-data based HAR tasks have a similar process as the
IMU placement recognition tasks. They are both the classification task based on
time series input including but not limited to accelerations and angular velocities.
Additionally, the sensor placement recognition methods mentioned in the prior two
sections can be divided into shallow machine learning methods coupled with man-
ually designed features, and DNNs used to extract discriminative methods in more
recent works. This shift is similar to what happened in the TSC field, motivated by
the prosperity of DNN methods and the increasing size of the available dataset [27].
Therefore, to keep this section concise, the related work of sensor placement recog-
nition will be introduced from the perspective of usage, without repeating the differ-
ences resulting from the involved machine learning models. Section 2.3 introduces
the existing TSC models using different machine learning methods from a broader
perspective because the I2S assignment is regarded as one of the TSC tasks. Sec-
tion 2.3.1 lists classic methods, and Section 2.3.2 discusses some models that use
CNN and RNN related models. The characteristics of the task itself and the dataset
used contribute to the selection of the related models. Figure 2.1 shows the relation-
ship between the mentioned research topics. The most relevant sensor placement
recognition tasks are summarized in Table 2.1. Finally, Section 2.4 summarizes the
limitations of the previous research on sensor placement tasks.

It is worth noticing that the performance of the models depends on the involved
subjects, the recorded motions, the dataset size, etc. Therefore the meaning of the
accuracy of the listed model for our project is limited. The figures are regarded as
referential information instead of specific baselines.

7
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Figure 2.1: The relationship between I2S assignment, sensor placement recogni-
tion and TSC.

2.1 I2S assignment and the Calibration Stage of Iner-
tial Motion Capture

I2S placement is the starting point and basis of the calibration stage for all tasks
as long as they involve IMU-based motion tracking of the human body or specific
segments [7], [8], [10], [28]. Nowadays, more researchers start to focus on optimiz-
ing the installation procedure of inertial motion capture. The range of sensor types
is narrowed down to the IMU here. IMU placement recognition, or automatic I2S
assignment, as a way to reduce human error and time spent on the calibration pro-
cess, especially under a multi-sensor situation, is studied in a more precise context
with many prerequisites. For example, the IMU positions on specific segments and
the I2S orientations are usually pre-defined [29], and a guaranteed amount of effort
is spent to ensure that the placement and orientation of the IMU in different trials are
consistent.

Weenk et al. are the first to study automatic inertial sensor localization for the
realistic scenario of equipping with the wearable IMUs set [8]. The researchers use
the decision tree based on the c4.5 algorithm. 57 features based on acceleration
and angular velocity are manually selected and functionally ranked. Hierarchical
methods are proposed, which consist of segment identification, left and right upper
arm and upper leg identification left and right identification for the rest parts. Strict
prerequisites like subjects are asked to walk at a specific speed (around 5km/h), full-
body configuration, and mandatory coordinate frame transformation are adopted,
which results in weak robustness. For example, the system is not suitable for some
groups of people with disability(wheelchair users, etc.), and it is not able to deal with
the problem that some of the sensors are out of usage. For full-body configuration,
97.5% of the sensors are correctly classified and for the lower body, the accuracy is
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100%. It is worth mentioning that a trial length of around 6 seconds results in the
best performance while an increase makes no progress.

Later in 2018, Zimmermann et al. applied DNNs on this real-life I2S assignment
task for the first time [7], inspired by DeepConvLSTM [30]. The researchers com-
bine CNNs for Long Short-Term Memory (LSTM) recurrent networks, generalized
recurrent units GRU for time dynamic features extraction as well to recognize the
IMU placement out of 7 locations on the lower body as shown in Figure 2.2. 3-axis
acceleration and angular velocity data are concatenated as the 6-channel input,
without direct feature calculation on the dataset. They achieved 98.57% average
accuracy and 100% if the side differences are ignored. Automatic I2S alignment is
also studied in this work using regression models. Automatic I2S assignment on

Figure 2.2: Overview of the network configurations proposed by Zimmermann et
al. [7].

full-body scale approach is also implemented [10]. This paper proposes a combined
deep learning model to automatically extract the sensor interdependencies. Firstly,
the CNN-GRU module learns the local features of each IMU using shared weights.
Then, inspired by a prior work Pointnet [16], a max-pooling layer is applied to ex-
tract the sensor-wise global feature which is concatenated to the local feature later
as the input of the following model. Finally, the transformer encoder [15] module
learns from the merged features and ends up with classification scores through a
linear transformation with a softmax activation function. For IMU configuration, a
root IMU(located on the lower back) is used in this work and it does not include
IMUs on shoulders, which are very vulnerable in I2S assignments. The user can
mount IMUs at a random angle, differing from the previous strict orienting rule. This
piece of research also compares the performance with distinct deep learning mod-
ule settings, and different sensor placements(lower, upper, or full body), on two
independent datasets [17], [31]. It is said that their model over-performs the one-by-
one method proposed by Zimmermann et al. [7] on the same datasets mentioned
above.
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2.2 Sensor Placement Recognition and HAR

More generally, locating sensors has been a way to assist HAR for a long time. HAR
is an important task for both the academic world and industry due to its wide appli-
cability to health monitoring, robotics, human-computer interaction(HCI) and sports
science [32]. Sensor-based activity recognition can be divided into three types: ones
using IMUs [33]–[35], camera [36] or hybrid configuration. The mentioned works
use sensor signals directly training a model or extracting features to conclude the
human activity without knowledge of the location of the sensors. However, human
activity recognition and sensor position recognition are not always independent of
each other. Conversely, the location of sensors serves as an aid to activity detec-
tion [12], [37]–[41]. More specifically speaking, locating the phones to head, pocket,
chest or hand implies possible activities like calling, walking sitting and so on which
allows automatic determination of suitable corresponding modes of the phone, as
an example [13]. Tracking the location of the sensor also reduces the chance of
misusing ambulatory monitors and increases system reliability [42], [43].

In most cases, inertial sensors are sufficient for sensor placement recognition,
and particularly, acceleration is the primary data source. Research purely based on
non-inertial information(ambient sounds [44], etc.) will not be discussed in this pa-
per. In 2006, a group solely used accelerator signals to determine whether sensors
were on the head, wrist, breast or trouser’s pocket simulating activities in normal
daily life [12]. This paper is based on the norm of acceleration vector to prevent the
influence of sensor orientation. It focuses on walking for its distinct motion signature
by recognizing data frames of 1s before sensor placement recognition. The best
result is achieved by C 4.5 classifier: 100% recognition rate for event-based recog-
nition and 94% for frame-by-frame recognition, after filtering out the non-walking
windows and data smoothing. Later in 2007, a group used a similar model(C4.5
classifier), 6 best features out of 35 acceleration signatures to classify the sensor
placement into 5 classes [37], but on an everyday activities dataset. They also com-
pared two different sizes of the sliding window. The maximum accuracy is 80%, and
if left and right trousers’ pockets are combined into one class the accuracy increases
to 92%. Amini et al. make use of acceleration of 10 sensors combined with an SVM
(support vector machine) classifier to determine the on-body sensor locations and
achieves an accuracy of 89% [41]. It is noteworthy that the subjects(25 in total)
in this study are told no instruction regarding the exact placement and the orien-
tation of the sensors. Lambrecht et al. use a simple classifier for recognizing 17
tasks while the subjects are patients suffering from essential tremor or Parkinson’s
disease [40]. It focuses on upper limb configuration and 18 candidate features are
selected according to previous research on clinical rehabilitation involving poststroke
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patients [45].
Some researchers consider other sensors to assist the placement recognition.

Grokop et al. exploit accelerators and light sensors to classify the motion state into
one of 6 categories and device position is classified into one of 7 categories, which
achieves a macro-averaged F-score of 66.8% for device position recognition [13].

year

Recognized
sensor

sites (total
number)

Dataset
information
(Activities;
subjects;
length)

Selected
Features
(source)

Classif-
ication

methods
validation
method Accuracy

[13] 2006

Head, left
trousers’
pocket,

left breast
pocket,

wrist. (4)

walking and
other daily
activities;

6 subjects;
216 to 270

min

6 features
comfirmed by

initial test
(Acceleration)

C4.5
10-fold
cross-

validation

walking
motion:

94%
(89.81%
without

smoothed
jumping
window)

[37] 2007

Head, front
trousers’

pocket, back
trousers’

pocket, torso,
wrist. (5)

everyday
activities;

3 subjects;
9 hours

6 features
out of 35

(Acceleration)
HMM

Not
disclosed

83%

[41] 2011

forearm×2,
upper arm×2,
shin×2,head,

thigh×2

waist. (10)

daily
activities;

25 subjects;
750 min

5 features
for walking,
1 features

for non-walk,
(Acceleration)

SVM
80% as

validation
set

89%

[8] 2013

shoulder×2,
upper arm×2,

forearm×2,
hand×2,

upper leg×2,
lower leg×2,

foot×2

pelvis,
sternum,

head. (17)

walking;
11 subjects;

35 trials
(6 seconds

each)

57 features
(Acceleration,

angular
velocitie,
angular

acceleration)

C4.5
10-fold
cross-

validation

97.5%
(full-body)

100%
(lower-body)
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[40] 2014

hand, distal
forearm,
proximal

forearm, distal
humerus. (4)

17 daily
tasks;

13 subjects
(affected by
tremor and
Parkinson
disease );

40 seconds
per trial

10 features
(Acceleration)

simple
classifier
based on
feature

rankings

Not
disclosed

91.77%

[38] 2015
arm, ankle
thigh, hip
wrist (5)

28 daily
activities

33 subjects;
around 2000

min

8 features
(Acceleration)

SVM LOSO 91.2%

[28] 2016

Thigh×2,
shank×2,

foot×2

(6)

17 daily
tasks;

healthy
subjects

and
Parkinson
disease
patients

(the number
is not

disclosed);
500 trial,
each for

3 seconds

10 features
(Acceleration)

case-
depended
method.

Not
disclosed

99.7%

[7] 2018

Upper leg×2,
lower leg×2,

foot×2

pelvis. (7)

A: CMU-
MoCap [17];
B: 4 subjects,

walking;
C: 28

subjects,
walking.

No manually
selected
features

(Acceleration
gyroscope)

CNN +
GRU

LOSO 98.57%

[10] 2021

lower body
(7);

upper body
(9);

full body
(15).

Lower back
is the root

sensor

43 subjects
from the

simulated
dataset CMU-
MoCap [17]
5 subjects
from Total-

Capture: [31]

No manually
selected
features

(Acceleration,
gyroscope)

deep
learning
method:

PointCloud
and

Encoder

partial
validation

full body:
93.1% on

CMU-
MoCap;

91.6% on
Total-

Capture

Table 2.1: The mentioned related works involve sensor placement recognition
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2.3 Time Series Classification

Within the past years, time series classification became an important topic in data
mining and researchers proposed hundreds of time series classification algorithms
[21]. According to the previous definition, [18], the TSC tasks aim to map from the
possible univariate time series input into a probability distribution vector indicating
the prediction among N class labels.

2.3.1 Traditional Time Series Classification Methods

Apart from the mentioned shallow machine learning methods like SVM, and decision
tree, which require manual empirical selection of features with non-negligible efforts,
there are some more general methods in the field of TSC. Though no DNNs are
involved, these methods achieve better results through an ensemble of different
models and design special data processing algorithms and distance functions to
reduce the need for insight into the data and inevitable manual labour.

The Nearest Neighbour (NN) classifier is one of the most popular classic TSC
approaches. To use NN classifiers, the selection of distance function by the feature
of the data is necessary. Dynamic Time Warping (DTW) is proved that outperforms
or is equal to other distance functions [46]. Ensembling NN classifiers using different
distance functions performs well, too.

The further study focuses on ensembling classifiers: dictionary-based Bag-of-
SFA-Symbols (BOSS) [47] is trained on an ensemble of NNs classifiers, using a
representation of patterns occurrence frequency; Time Series Forest (TSF) ensem-
bles random forest [48]; COTE [49], is designed to address the problem that each
single TS transformation algorithm(shapelets transform [21], etc.) is suitable for its
specific data type, not standing over the others, consisting of 35 other existing clas-
sifiers like BOSS. Though COTE and the extended version HIVE-COTE are con-
sidered state-of-art algorithms, the intensity in computation is not a trivial thing that
results in infeasibility under some circumstances [50].

It is worth noting that, unlike one-class time series classification, the data used for
sensor-to-segment placement recognition are usually walking records. A complete
walking cycle repeats an indefinite number of times, which means that the length
of the entire time series is not important. Because each step of the subject can be
viewed as a complete sub-series, whether the time series is properly segmented
into each step may seriously affect the performance of these traditional methods. At
the same time, considering the time complexity of these models and the diversity of
raw data used (including clapping, turning, inconsistent length, etc.), traditional time
series classification methods won’t be our first choice.
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2.3.2 CNN and RNN for Time Series Classification

Although there are hundreds of DNNs, only a part of them are proved efficient in TSC
problems like Multilayer Perceptron (MLP), CNNs and Echo State Network [18]. This
project empirically focuses on the convolutional-layer-related models due to their
success in both TSC and sensor-to-segment assignment.

CNNs are famous for exploiting the locality in the data. The development in
image recognition tasks, like image classification, has led to impressive perfor-
mances [51]. Recent research has proved that it also plays an important role in
TSC too [18], [19]. The idea is that 1-d time series data have a similar topology as
images, only one dimensionless, which points to the effectiveness of applying CNNs
in TSC tasks [52]. The layers of CNNs consist of three main classes: convolution
layers, pooling layers and fully connected layers. Convolution layers use kernels
to generate the feature maps, pooling layers decrease the spacial dimensions of
the representation of the images and fully connected layers fulfil the function of the
classification. Combining several groups of convolution layer and pooling layer se-
quentially, the higher-level features can be extracted and the trivial details would be
ignored, being less extreme. Compared to the traditional TSC methods, CNNs make
it possible to get rid of the hand-crafted domain-specific features that required expert
knowledge.

ROCKET [25] integrates random convolutional kernels and linear classifiers, ad-
dressing the problem of the lavish computational expenses of the existing methods.
ROCKET is not a type of deep learning model but is inspired by the effectiveness
of CNN. It trains no neural networks. Instead, it uses the extracted features to train
a simple machine learning model. It achieves state-of-art accuracy on the UCR
archive [53]. Thousands of kernels with different lengths, weights, bias, dilation and
padding are used to transform the time series into a considerable number of features
to train the linear model.

The combination of CNNs and other deep learning models also obtains great
success in this topic. DeepConvLSTM [30] combines CNNs to learn time series’
stable features and the LSTM layer to learn sensor signals’ temporal dynamics.
Outperformance compared to baseline CNNs is observed in experiments on all
datasets [30], [54]. Further research also uses GRUs to replace the LSTM layer
showing better performance on sensor placement classification tasks than LSTM
with comparably fewer parameters [7].

The mentioned gated method GRU and architecture LSTM are parts of the con-
cept of RNN. The fact is that RNNs have drawbacks referring to TSC because of
three main points: (1) RNNs architectures are designed to predict output for each
timestamp, like instant translation as one of the applications; (2) Vanishing gradient
is an essential problem, especially in long time series; (3) Computational complexity
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of RNNs makes it a harder choice for researches [55], [56].
Considering that Kaichi et al. [10] successfully applied some deep learning mod-

els not being one of the main methods in TSC task [18], other groundbreaking mod-
els in computer vision and natural language processing like Group-View Convolu-
tional Neural Network (GVCNN) [57] and PointNet [16] are potential to achieve good
performance as well.

2.4 Limitations of the Previous Studies

However, we argue that previous literature suffers from certain weaknesses.
Firstly, all of the research mentioned using task-based classifiers or shallow ma-

chine learning methods have a common characteristic of the non-negligible amount
of work spent on sorting out pertinent features, and it my be subjective and em-
pirical. Leonard H. Grokop et al. select 6 features by initial test [13]; Kai Kunze
and Paul Lukowicz propose a model based on 6 features out of 35 features [11]; 18
candidate features are selected in Stefan Lambrecht et al.’s sensor location identifi-
cation task, and they have not explained why some of the features are chosen, like
the sum of the maximum between acceleration among three axes [45]. Many pieces
of research have discussed the lack of structural instruction and general standards
of feature extraction [11]. There is an automatic feature extraction tool designed to
speed up and simplify the process of feature extraction [58]. Genetic programming-
based feature selection algorithms are proposed by Kilian Forste et al. [59]. Their
objective is to enlarge the space of features and aim to increase the possibility of
finding good features based on genetic programming, which should fulfil two basic
goals: One can discriminate activity classes; The second is robust enough, es-
pecially for on-body sensor variation. However, the tools and algorithms designed
to help feature engineering can not solve the current problems completely. The
automated feature extraction tool can speed up the process, but prior and expert
knowledge are still required to filter out the features. Kilian Forste et al.’s generated
features indeed outperform the standard features. However, the generated features
depend on the manually selected feature set and combination function set, which
could be subjective.

Secondly, the proposed methods are case-dependent and lack robustness. For
example, Weenk et al.’s method uses a decision tree, a shallow machine learn-
ing method, to determine the segment. The model achieves an accuracy of 100%
with lower body configuration (8 segments in total. 7 are the same as those lower-
body segments defined in this project in Section 3.3, the rest is on sternum), but it
is based on a hierarchical decision process. The decision tree includes rules like
”classifying the data point by the value of root mean square of the magnitude of
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the accelerations(RMS(|a|))”. We explored our dataset and find the RMS(|a|) of
the same segment among trials varies a lot which means the decision tree is less
effective for new subjects.

Thirdly, the number of segments involved in the previous research is small. As
shown in Table 2.1, most of the research use less than ten sensors on a part of the
body. The full-body configuration is used in only two papers [8], [10]. The work uses
a full-body configuration that can place the sensors on different body segments. The
performances on different segments are dissimilar according to results on full-body
configuration. Therefore, the differences in the configuration of each task add to the
uncertainty of our task.

Fourthly, only a few works in literature study the flexibility in the IMU number of
the model. If the model has flexibility in IMU number, it works properly when there
are fewer IMUs in the testing stage than in the training stage. Other than the draw-
backs of re-usability of the methods on another dataset, Weenk et al. have men-
tioned that the system they designed can only be used with full-body configuration
because the decision tree includes rules concerning multiple IMUs, like correlation
efficiency and the rank [7]. When the configuration is unknown, only 75.9% of the
IMUs are identified correctly, because the mentioned multi-sensor features are not
used. Though previous research has proved the effectiveness of the deep learn-
ing model on I2S assignment tasks, some key questions and notions are still not
discussed in the literature. The usage of sensor-wise interdependencies as demon-
strated by Kaichi et al. [10] yields better results than the single sensor method which
uses no connection between IMUs [7], but it also harms the flexibility. Kaichi et
al.’s model consists of the pooling aggregator extracting the global feature and the
transformer learning the dependency between every two sensors, and a root sensor
mechanism to eliminate the influence of walking directions. Therefore, the prediction
depends on all the other IMUs, which are vulnerable to sporadic IMU dysfunction.
New methods are required to keep the balance between the system flexibility in IMU
number and the accuracy of segment recognition.



Chapter 3

Methods

3.1 Instrumentation

The available training dataset XsensMotion and newly collected test data are recorded
using the full-body motion capture system called MVN Awinda from Xsens (Xsens
Technologies B.V., Enschede, the Netherlands) [9], [60]. The system consists of
17 IMUs, and other supporting stuff like a charger, straps, and so on. The IMUs
are fixed on respective body segments and the position with straps, as well as the
orientation relative to the segments, are predefined. To use the MVN, the subject is
asked to put on a customized T-shirt, a headband, and a pair of gloves with pockets
to attach the IMUs on the sternum, left and right shoulder, head(on the right side
near the ear), and the dorsal side of hands. 8 IMUs are strapped symmetrically on
right and left limbs, one on the back located between the abdomen and the legs cor-
responding to the pelvis. The left two IMUs are placed on the foot. The mentioned
installation can be found respectively in Figure 3.1.

To record motion data, a calibration phase is designed to figure out the sensor-to-
segment alignments. A standard calibration phase in this project starts with N-pose
(as shown in Figure 3.3b) for around 5 seconds and then walking at a normal pace
for more than 10 seconds within the wireless range up to 20 meters indoor and 50
outdoors. Our trials replicate this calibration phase in the MVN installation. There
are no specific restrictions on the walking trajectories and speed of the subjects in
the training and test dataset, but running and jumping are forbidden in this project.
The motions designed for the testing set will be introduced in Section 3.3.

3.2 Coordinate Frames

In this project, we work with two coordinate systems: the local coordinate system
and the sensor coordinate system. The local coordinate system is the fixed frame.

17
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Figure 3.1: From left to right, then up to down, the subplot is for IMU(s) on the
sternum, left and right shoulder, head, hand, upper limb, lower limb,
pelvis, and foot.

For example, the room the subject staying in. The sensor coordinate system is the
frame of the IMUs. there is only one local coordinate system, but each of the 17
IMUs has its sensor coordinate system. There is another kind of coordinate system,
the segment coordinate system as shown in Figure 3.2. In this case, the IMU is re-
garded as stationary relative to its segment. Since the I2S orientation is predefined,
the relationship between a sensor coordinate system and its corresponding sensor
coordinate system is unchanged during the recording and also among different tri-
als. The deviation between the pre-defined and real I2S orientation as well as the
position will not be considered in this project.

The local reference coordinate is defined by the magnetic information. The X-
axis points to the local magnetic North; Y according to right-handed coordinates,
which is the magnetic west; the z-axis is perpendicular to the x and y axes, pointing
up to the sky. The definition of the sensor coordinate system is shown in Figure 3.3a.
The x-axis points up from the face with a charging port to its opposite face, parallel
with the longer side; the y and z axis is also defined according to the right-handed
coordinate system.

The accelerator and gyroscope of the IMU measure the acceleration(including
gravitational acceleration) and angular velocity respectively in the sensor frame, and
the local orientation information is represented with unit quaternions.
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Figure 3.2: Exemplary relationship among local, segment, and sensor coordinate
systems.

(a) (b)

Figure 3.3: (a): The sensor(IMU) reference coordinate. (b): The visualisation of a
subject standing(N-pose) on the starting position concerning the local
coordinate system.

3.3 Dataset

The dataset used in this project consists of two parts: the training set collected by
previous researchers in Xsens and the test set collected in this project. The training
set XsensMotion consists of 69 different trials with a total length of 1123.5 seconds
(around 19 minutes) and an average length of 16.3 seconds. The longest trial is
55.75 seconds and the shortest is 11.2 seconds. The sampling rate of the trials is
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distinct including 60Hz (23 trials ) and 240Hz (46 trials).

Table 3.1: The information of the subjects in the test set.

NO height gender trials info

1 177.5cm male
3 standard trials;
1 infinity walking trial;
2 abnormal trials

2 182.5cm male
3 179.0cm male
4 169.0cm female
5 166.0cm female

The test set is recorded on participants different from those in the training set.
We collect 30 trials on 5 subjects (6 trials per person) as shown in Table 3.1. The
trials add up to 673.2 seconds with a size over 334MB. Each subject has 3 standard
trials, 1 infinity walk trial and 2 abnormal trials. In all trials, the subject starts from
5 seconds’ N-pose and then walks for 10 seconds or longer. In a standard trial,
the trajectory is straight with U-turns linking the walk back and forth. In the infinity
walk trial, the subject walks in a figure-eight pattern keeping on turnings to evaluate
the influence of different trajectories with more turnings and fewer straight lines. In
abnormal trials the subject is free to make slight movements occasionally (3-5 times
in one trial) including clapping hands, picking up phones, waving at someone or
scratching an itch to simulate the unexpected situation during calibration.

Each trial consists of an MVN format file with the information of 17 IMUs in MVN
Awinda. The raw data without biomechanical assumptions are used as the input
of the deep learning models. The orientation is represented by a four-dimensional
rotation quaternion (check Appendix A for further information), three-dimensional
acceleration and angular velocity, and the timestamp in seconds is taken into ac-
count. The acceleration and angular velocity in the sensor coordinate system are
received from IMUs directly and the rotation quaternions within the local coordinate
system are estimated using sensor fusion.

As previous research suggested, the performances of I2S assignment tasks vary
a lot in different groups of involved segments. For example, during the walking mo-
tions, the upper body and lower body have diverse features which directly reflect
on the prediction accuracy, which results in our idea of dividing the IMUs into upper
body and lower body. Because the full body recognition is proved to be harder [8],
[10], also considering the longer model training time, starting from the lower body or
upper body configuration can shorten the process of determining appropriate mod-
els. This configuration setting also allows flexible model design targeting different
parts of the body. The three different segment configurations involved in this project
are as follows:
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• Full body (17): pelvis, sternum (T8), head, right shoulder, right upper arm, right
forearm, right hand, left shoulder, left upper arm, left forearm, left hand, right
upper leg, right lower leg, right foot, left upper leg, left lower leg and left foot;

• Upper body (11): pelvis, sternum (T8), head, right shoulder, right upper arm,
right forearm, right hand, left shoulder, left upper arm, left forearm, left hand.

• Lower body (7): pelvis, right upper leg, right lower leg, right foot, left upper leg,
left lower leg and left foot.

The IMU-on-segment visualization of the mentioned body configuration can be found
in Figure 3.4.

Figure 3.4: The IMUs placement on specific body segments
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3.4 Experimental settings and workflow

Generally speaking, to answer the research questions, 4 types of experiments are
designed in Table 3.2: 2018 model, HCFM model, HCFM model with WMF, and
HCFM model with heading correction. The reasons for this design and detailed
information will be introduced in the following paragraphs.

Table 3.2: The experimental design. There are two CNN+GRU models, one of
which is also combined with two other data processing methods (walking
motion filter and heading correction), three body configurations, and two
input methods. To sum up, there are 4× 3× 2 = 24 different models to be
trained in total.

No. Description model
segment

configuration
Input setting

Exp.1 The baseline model 2018 model
lower body
upper body
full body

a(6 channels):
acceleration,
angular velocity
b(10 channels):
add rotation
quaternion to a

Exp.2
Distinct hyperparameters

on 3 CNN layers
implementing HCFM

HCFM
model

Exp.3 Apply WMF on Exp.2
Exp.4 Apply heading correction on Exp.2

First of all, we involve two types of CNN+GRU deep learning models to answer
RQ1. The baseline of the task is from the model proposed by Zimmermann et
al. [7] in 2018 (hereinafter referred to as the ’2018 model’). To avoid the uncertainty
brought by different characteristics gaits among individuals in the training dataset,
we trained the 2018 model on our XsensMotion to get a comparable baseline. HCFM
model is built to realize the hierarchical input merging by changing the CNN kernel
inspired by Kaichi et al. [10].

Secondly, since HCFM model performs better than the 2018 model according to
test experiments, we additionally applied two data processing methods namely WMF
and heading correction to the former, to answer RQ2 and RQ3 respectively. WMF
drops the N-pose at the beginning of the trials to reduce the noise in the dataset.
We propose the method of heading correction using only one root sensor which
keeps the flexibility of the model as well as exploits the sensor-wise relationships as
a trade-off between flexibility and prediction accuracy.

Thirdly, each experiment has two kinds of input settings listed in the last column
in Table 3.2 to explore the effectiveness of rotation quaternions in the input (RQ3).

Finally, all methods consist of three segment configurations: lower, upper and
full body, since the upper body and lower body motions have significant differences
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according to previous research. Separating the body into upper and lower parts
allows for specific analysis matching the individual features. Additionally, it makes
this work compared with the related work with similar configurations.

Based on the experimental settings, the workflow of the I2S assignment task is
shown in Figure 3.5. To start with, the data processing phase is designed to down-
sample part of inertial data to unify all sampling frequencies to 60Hz, and transform
the CSV files into npy format. After that, the prepared time series inertial data is
sliced into shorter sequences using the sliding window method. Then the ”windows”
are put into the CNN+GRU model in the training phase. Finally, in the evaluation
phase, majority voting is applied to draw the trial-wise conclusion on the segment
with more than half of the votes, based on predictions of all windows.

Figure 3.5: The workflow of the I2S assignment task consists of data processing
phase(yellow), model training phase(green), and evaluation phase(red).

The dataflow starts from the process of the sliding window till the majority voting
of the task is shown in Figure 3.6. Please note that window is a concept introduced
here to stress only the number of serial frames (120 in this case). When we talk
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about ”window” with the background of data processing, it represents a structure
with inertial data from n stacked IMU which is just the way we organize the data; but
when we discuss the window as an input unit in later sections, it includes only one
sensor.

Figure 3.6: An overview of the data flow from the sliding window till majority voting.
All trials include the stacked n IMUs’ inertial data (acceleration and an-
gular velocity, and also rotation quaternion if the input is 10-channel).
Then the trials are sliced into shorter sequences by the sliding window
with 120 frames and shuffled ( mix up windows from all trials and also
the order of staked sensors within the window) for the training stage
before input into the deep learning models. The blue bold rectangle in-
dicates the input composition for 1 frame: 3-D acceleration, 3-D angular
velocity and 4-D rotation quaternion (if 10-channel input method id ap-
plied). For each stacked input unit, the model predicts the placement for
all n IMUs. The window-wise predictions are then grouped by the trials
they belong to. After majority voting, n final segments will be given to
these n IMUs in one trial.
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3.5 Data Processing

3.5.1 Resampling

The sampling rate is the number of samples collected in one second. In the dataset,
there are records of different sampling rates which requires resampling of the data.
In most cases, the sampling rate is 60Hz, which is also commonly used by pre-
vious datasets [31] or research [7] related to walking motion capturing. For those
data sampled using a smaller rate, upsampling or interpolation is needed; And those
rates larger than 60Hz, need to be downsampled. In this project, the sampling rates
of the trials will be unified to 60Hz by down-sampling the 240Hz trials.

3.5.2 Walking motion filter (WMF)

As introduced in Section 2, identifying time periods with walking motion have been
discussed by many authors in literature [61]. Our dataset consists of trials including
N-pose and walking motion. However, there are no strict rules on the length of
N-pose or walking periods for the calibrations which leads to inconsistent n-pose
lengths. Trials that do not contain n-pose phases at all are present in the dataset as
well as trials that contain up to a ten-second upright stance. We are interested in the
usefulness of the n-pose period to the performance of the I2S assignment, while the
main data source is the walking motion. While studying the sensor data, we notice

(a) (b)

Figure 3.7: (a): The acceleration-time curve of a certain trial. (b): The visualization
of the subject’s first step at the 341st frame is indicated by the orange
arrow in Figure 3.7a.
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that the magnitude of acceleration remains close to the gravitational acceleration
value for the n-pose phase, while it fluctuates greatly with footsteps once walking
began. As shown in the figure, after the 400th frame (6.7 seconds), the curve of the
magnitude of the acceleration of the pelvis changes significantly due to the start of
walking.

In this incident, with the considerations described above, we implemented the
walking motion filter simply based on the magnitude of the three-axis acceleration.
Once the absolute difference of the magnitude of the acceleration of the pelvis and
the local gravitational acceleration (9.81060 m/s2) lager than 2 m/s2, the n-pose
is regarded as terminated.

3.5.3 Heading Correction

Figure 3.8: Definition of heading correction.

Heading correction is a method used in aircraft. It corrects the flight path as if the
plane flies a linear course all the time as Figure 3.8 shows. In this project, the aim is
to transform the trajectory on the x-y plane into a straight line. In real life, the motion
tracker moves in different directions: the subject may walk circularly in a round room
and straightly in the corridor, while smaller space triggers additional turns. Our idea
is to eliminate the influence caused by irregular trajectory which is the thing heading
correction does, thus narrowing the problem space.

However, heading correction is adopted not only because of the reason men-
tioned above but also because it meets our need to balance model flexibility with
the utilization of IMU-wise interdependencies. The previous researchers have not
intended to improve the flexibility of the I2S model as we know. The way to ensure
flexibility is to sacrifice part of the IMU dependency information. After a root sensor
is selected, the input is processed only according to the value of the root sensor
and the matrix conversion method, and the data of other IMUs are converted into
the root sensor’s coordinate. Unlike Kaichi’s method, the dependencies between
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non-root IMUs are not considered here, only the root and non-root relationships are
considered. Therefore, in this setting, only the root IMU needs to be present all the
time, while Kaichi’s method needs to ensure that all IMUs are equipped on the body.
Here we are going to realize the root IMU system by applying the method of heading
correction to all the data.

Figure 3.9: (a) shows the heading of the subject in frame ZA. (b) shows the heading
of the subject in ZB which makes the subject’s heading align to y-axis.
ZB rotating ϕ degree counter-wisely equals ZA. (c) and (d) is the top
view of (a) and (b) respectively.

To present the rotation of the subject heading, we can use Euler angles [62]. To
eliminate the influence of different trajectories, we can assume the subject always
walks along the y-axis(or any other direction) at the beginning. But along the walk-
ing, he or she can turn in another direction as Figure 3.9 shows. The angle between
the current direction and y-axis is ϕ on the xy plane. To correct this, we can rotate
the current frame A counterclockwise around z for ϕ degree which makes the sub-
ject still walking along y-axis relative to a new frame B. In this way, assume v̂A is a
vector (the heading of the subject here) in frame A, the coordinates for the vector in
B are:

v̂B = R(zϕ)v̂A =

cosϕ − sinϕ 0

sinϕ − cosϕ 0

0 0 1

 v̂A (3.1)
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Here, ϕ is already noted on the plot, while in this project, it equals the opposite
number of the rotation angle α around z-axis. Because the rotation of the frame A
to B is the inverse process of the walking deflection. α is determined by the rota-
tion quaternion of IMU on the pelvis. To summarize, we first transform the rotation
quaternion at moment Ti into the format of the Euler angle with the order of zxy
(α, β, γ). Then for each IMU, we correct their accelerations ai ∈ R3 and angular
velocities ωi ∈ R3:

ai
correct = R(z(−α))a

i (3.2)

ωi
correct = R(z(−α))ω

i (3.3)

where

R(z−α) =

cos(−α) − sin(−α) 0

sin(−α) − cos(−α) 0

0 0 1

 (3.4)

We repeat the same operation for each time frame till the end of the trial. The root
sensor will be dropped at the training stage as its location is already known to us.

3.5.4 Sliding window

In the TSC research, the length of the time series sequence is one of the most
important features of the dataset. However, in our dataset, the lengths of the tri-
als are unequal, which is also inevitable in real life. Assuring the same calibration
time for every subject is very difficult. Additionally, RNNs have the shortcoming that
they forget the long-term information. So the sliding window is adopted to slice
the trial into shorter pieces as shown in Figure 3.10. Considering the sampling
frequency is 60Hz, a 120-frame-sized sliding window is designed which equals 2
seconds time span referring to previous work [7], [10]. The window slides every 15
frames, which means 1.75 seconds’ overlapping between neighbouring windows (2-
15/60), to avoid splitting potentially important shapes of the input. The window slides
from the first frame because the sensor data is considered informative from the first
line. The processing methods involving useless data dropping (walking motion filter,
etc) are placed before this process as shown in Figure 3.5.

3.6 Network Architecture

This section presents the network architectures and the involved hyper-parameters
to address the research problems mentioned above. The architecture of the 2018
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Figure 3.10: The process of sliding window mechanism. The data from all trials are
concatenated sequentially. When the sliding window moves along the
same trial if the rest data is smaller than the window size, it will be
dropped. And the window starts from the first frame of the next trial
again.

model has been shown in Figure 2.2, therefore this section mainly introduces the
HCFM model. Figure 3.11 illustrates the architecture consisting of three CNN lay-
ers, one GRU layer, and three MLP layers connect to a linear classifier in the end.
The main difference between HCFM model and the 2018 model is the dissimilar
convolutional kernel settings which will be explained later. The model is trained for
200 epochs and early stopping is applied to avoid overfitting. If the performance of
the model on the validation set stops improving for 100 epochs, the training will be
terminated to save time.
Convolutional Neural Network (CNN) layer

The architecture starts from three CNN layers which respectively consist of a
convolution layer, a batch normalization layer and a ReLU activation layer. The self-
optimised CNN is efficient in image-related tasks. The convolution kernels each
serve as distinct filters generating different feature maps. By customizing the shape
and stride of the kernel according to the input, one-dimensional CNN is powerful
in extracting features automatically in fields like HAR [63]. The batch normalization
layer is used to accelerate and stabilize the training process.

Experiments 2 and 3 involve dissimilar kernel parameter settings realizing the
hierarchical convolutional feature merging. The logic is hierarchically merging the
extracted features till the 6-channel/10-channel input is 1-channel. The size of the
kernel changes among different layers, which indicates the different scales of feature
extracting. To illustrate, the first convolutional kernel has the height of 3 as shown
in Figure 3.12, learning the features from acceleration and gyroscope respectively.
Then the second kernel’s height is 2, fusing the learned features of acceleration
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Figure 3.11: The architecture of the HCFM model. The hyper-parameters in the
first bracket indicate the 3-d kernel size, including the kernel height
Kh, and kernel width Kw which always equals 16. The second round
bracket (Sh,Sw) represents the stride height and stride width when
sliding through the input. Sw is 1 all the time. The kernel depth and
the stride depth not shown on the plot are both equal to 1 for all layers.
Different kernel settings allow distinct experiments as introduced. dim
has too values for 6-channel and 10-channel input methods.

and gyroscope. Finally, the 2d features are merged using a kernel with a height of
1. Because of the unequal dimensions of the sensor data(acceleration is 3d and
rotation quaternion is 4d), methods of 0 padding acceleration and gyroscope into
4-channel input will be implemented in experiment 3 to realize the convolutional
feature merging logically with dissimilar dimensions. The kernel parameters are
listed in Table 3.3.

Table 3.3: Convolution kernel setting in each experiment.

Experiment Kh1 Kh2 Kh3 Sh1 Sh2 Sh3

1 1 1 1 1 1 1
2 3 2 1 3 1 1
3 4 3 1 4 1 1

Recurrent Neural Network (RNN) layer As a recurrent mechanism, GRU can ex-
pose the temporal dynamic behaviour of the input using the memory unit to keep
the history information to the next time step. The traditional RNN structure suf-
fers from a vanishing gradient problem causing difficulty preserving the information
many steps ahead. GRU and LSTM solve this problem by using gates to control if
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Figure 3.12: The process of hierarchical convolutional feature merging.

the history information is being sent to the next step based on its importance to the
whole sequence. GRU outperforms LSTM in I2S classification according to earlier
research [7]. This layer involves 128 GRUs. The output of the RNN layer will be
flattened before input to the next coming MLP layers.

The dataset in this project is limited in size which makes it challenging to avoid
the problem of overfitting. Firstly, inspired by the previous work [7], [10], [30], we
add zero-mean Gaussian noise to the accelerations. Secondly, we use the 5-fold
cross-validation approach as shown in Figure 3.13. The subjects in the testing set
are guaranteed to be absent in the XsensMotion in case the results are biased.

3.7 Performance Evaluation

First of all, to prevent assigning to IMU to the same segment during the test stage,
we adapt a function minimizing the cost of wrong labelling inspired by previous re-
searchers [10]. Here, we assume the number of test IMUs is equal to the training
IMUs. Otherwise, columns for the absent IMUs can be removed according to the
given test IMU configuration in an extra process, to get a square matrix as well.
Given n as the number of stacked input (unlabelled IMUs) in the same window (Fig-
ure 3.6), let Ŷ ∈ Rn×n denotes the output of the neural network, boolean matrix
Yassigned ∈ Rn×n where the sum of each row or column is 1. If Yassigned(i, j) = 1,
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Figure 3.13: The 5-fold cross-validation method. Each trial in XsensMotion will be
used four times as the training data and only once as the validation
data. After determining the architecture and every detail involved, the
model will be trained, taking the whole dataset XsensMotion as the
training set and testing it on a new test set with no overlapping trials
in between.

the i-th IMU is assigned to the j-th segment. The optimization is realized by function:

Ŷassigned = argmax
Y

n∑
i=1

n∑
j=1

Yassigned(i, j) · Ŷ (i, j) (3.5)

Thus Ŷassigned is our window-wise prediction.
To evaluate the performance quantitatively, we firstly think about the commonly-

used metric–prediction accuracy. The normal prediction accuracy(hereinafter re-
ferred to as window-wise accuracy) used in previous work [7], [10] is based on all
single windows (the sliced short sequences) which are shuffled before training to
keep the model unbiased. It is worth mentioning that stacking all IMUs in a window
is just out of structural convenience for model design and optimization function ap-
plication. In the following text, when talking about the word ”window” with prediction
performance, we indicate the minimum unit with the 120-frame inertial data of only
one sensor. The window-wise accuracy is calculated as:

Awindow−wise =
N correct

w

Nw

(3.6)

where Awindow−wise denotes the overall accuracy rate of the 120-frame one-sensor
input, Nw denotes the total number of minimum input units, N correct

w denotes the
corrected classified sensors.
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Figure 3.14: The plot shows how majority voting works here. For all the 2-second
small units generated by the sliding window method, one prediction,
the so-called window-wise prediction, with the highest score is given
based on the output of the linear layer. Those predictions are related
to the same true label (IMU location) and the same trial. Majority vot-
ing is then applied and determines only one result of the whole time
sequence of one IMU’s data in a trial, which is called trial-wise predic-
tion. In an extreme situation, if there are two most frequently voted,
prediction is determined according to the order in which the labels are
entered.

When we look into the trials, we found that some segments are more prone to
error with a lower accuracy which influence the overall performance. However, the
accuracy is still high than, for example, 50%. Therefore, we propose the concept of
trial-wise accuracy to enhance the performance since we aim to assign IMU based
on the whole calibration instead of one window. In another word, all windows belong-
ing to the same trial can be used together to draw the conclusion. We use majority
voting to determine one most reliable final decision for the trial. In one trial t, for a
random segment s, let n denote the number of involved segments,ci(1 ≤ i < n+1)

the amount of windows predicted to be the i-th segments, so C = [c1, c2...cn] ∈ Rn

consists of the votes for all the n possible segments. The most frequent votes will
be the winner:
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Î = argmax
i

ci(1 < i < dim(C) = n + 1) (3.7)

Î is the predicted segment. So instead, the overall trial-wise accuracy is:

Atrial−wise =
N correct

Î

NÎ

(3.8)

where Atrial−wise is the overall accuracy after majority voting for one trial(hereinafter
referred to as trial-wise accuracy). In this case, the smallest constituent unit of input
is all windows belonging to the same segment in a single trial as shown in Fig-
ure 3.14. If there are n segments, then NP = n. N c

P denotes the sum of the
corrected classified segments. For the whole testing set, we use the average of
Atrial−wise:

Atrial−wise =
1

m

m∑
i=1

Ai
trial−wise (3.9)

Besides the accuracy mentioned above, we also use prediction certainty in the
result section. Because when the true label of the input is unknown, we still want
this model to tell something other than the prediction itself. For example, majority
voting gives one prediction per trial for an unknown sensor, so the certainty of the
prediction can help the user decide if the result is taken. A trial-wise prediction with a
certainty less than 50%, for example, is probably rejected. What’s more, prediction
certainty is different from accuracy. It tells quantitatively how confident the model
is. For example, the model also gives a ”switched” prediction with 0% accuracy
but 100% certainty, while it normally performs accurately. This could be the switch
between the true labels of the two sensors. In this case, the value of certainty can
be used to detect abnormal input. The certainty of the prediction on a sensor is:

Pcertainty =
cÎ∑n
i=1 ci

(3.10)

ci is the number of votes for a random possible segment i. Î is the segment with
the highest votes in a trial, so cÎ is the number of votes for Î.
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Results

In this section, we evaluate the performance among all the introduced models window-
wisely and trial-wisely, then includ some typical mistakes made by different models
and show the confusion matrices of the selected model–HCFM model with WMF
(Section 4.1). Then the performance is shown with respect to different segments
(Section 4.2). The impact of the types of trial motion is also explored in Section 4.3.
Eventually, the robustness of the models is investigated from an entry point of indi-
vidual performance of the involved 5 subjects, then left and right shoulder recogni-
tion and finally the performance of the proposed model trained on TotalCapture [31]
dataset (Section 4.4).

4.1 Model comparison

4.1.1 Window-wise performance and trial-wise performance

The average Awindow wise of 30 trials are shown in Table 4.1. Lower-body The
best performance is achieved by HCFM architecture with WMF for each body con-
figuration. Compared to the baseline model–previous proposed 2018 model, the
prediction accuracy is 6.5% higher on lower-body configuration (8.8% better on the
upper body and 9.3% full body). Without WMF, HCFM performs worse, but still bet-
ter than the 2018 model when the input is 6-channel. For lower-body configuration,
except for WMF model, the other models perform similarly with the prediction ac-
curacy around 90%, and the lowest and the second lowest accuracy are only 1%
per cent apart. However, the poorest performance is both found when using the
heading correction model, which is at least 8.4% and 4.9% less accurate than the
other models with upper-body and full-body configurations respectively. It has been
demonstrated that when the model and data processing methods are unchanged,
directly adding rotation quaternion to the input doesn’t enhance the accuracy except
for the heading correction model. A table comparing the performance before and

35
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after adding rotation quaternion to the input is available in Appendix B.1. The 10-
channel heading correction model has better performance on lower and upper body
configurations.

Table 4.1: The window-wise accuracies (Awindow−wise) of all models. Each method
consists of 2 input methods and 3 body configurations as introduced in
Section 3.4. The listed prediction accuracy is the average of 30 trials
(including three trial types introduced in Section 3.3). 6-channel input
includes acceleration and angular velocity, while 10-channel input has the
additional four-dimensional rotation quaternion. The best combination of
model and input data for each body configuration is highlighted in the
table.

No. Description
Input

channels
Lower body Upper body Full body

Exp.1 2018 model
6 0.924 0.781 0.803
10 0.888 0.745 0.779

Exp.2 HCFM
6 0.937 0.800 0.823
10 0.878 0.744 0.777

Exp.3 HCFM+WMF
6 0.989 0.869 0.896
10 0.982 0.869 0.885

Exp.4
HCFM+heading
correction

6 0.900 0.660 0.738
10 0.935 0.691 0.728

Table 4.2: The majority voted trial-wise accuracies (Atrial−wise) of all models. Mod-
els achieving the highest prediction accuracy are highlighted for each
segment. Different from window-wise performance, the predictions are
more similar after majority voting, especially on lower-body configura-
tion.

No. Description
Input

channels
Lower body Upper body Full body

Exp.1 2018 model
6 1.000 0.927 0.953
10 1.000 0.909 0.949

Exp.2 HCFM
6 1.000 0.918 0.953
10 0.990 0.900 0.953

Exp.3 HCFM+WMF
6 1.000 0.924 0.947
10 1.000 0.924 0.949

Exp.4
HCFM+heading
correction

6 1.000 0.880 0.910
10 1.000 0.827 0.854
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Figure 4.1: Confusion matrix of 10-channel lower-body HCFM model (Exp.2).

After applying majority voting to the window-wise predictions, the accuracy is
increased for all models. The differences between best and poorest accuracy are
reduced by 10% for all configurations. As shown in Table 4.2, the accuracy is 1 for all
models on lower-body configuration except for 10-channel HCFM model. Because
the majority voting only generates one prediction of a segment per trial, for each
segment there are finally 30 (equals to the number of trials) predictions. The values
of accuracy are more sensitive to a few different predictions. For example, as shown
in Figure 4.1 and Figure 4.4b (the lower-body configuration), 2 failed predictions
between left upper leg and pelvis from the same person (subject-1) result in the
different accuracy between lower-body 10-channel HCFM model and other model.

The situation is similar between window-wise best model–6-channel WMF model,
and trial-wise best model – 6-channel 2018 model when comparing their majority
vote prediction: the poorer performances on upper and full body models are caused
by 1 and 3 failed predictions (indicated in Figure 4.4 using black boxes), which are
related to the same subjects (subject-1), if look into the results grouped by subjects
in Figure 4.3a and Figure 4.3b.

In this case, 6-channel HCFM+WMF model is still selected as the best model
in this project. The majority voting has been proved to be efficient in enhancing
prediction accuracy. However, the majority vote accuracy between the 2018 model
and HCFM+WMF is close to each other and the gap was caused by a few biased
test trials of the same subject, thus we end up opting for the best model by evaluating
window-wise accuracy.
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4.1.2 Typical mislabelling of distinct approaches

Analysing the overall Awindow−wise and Atrial−wise gives limited information on spe-
cific situation of IMU assignments. Thus to discuss the typical mistakes of each
method, we select upper-body configuration models as examples. The models with
other configurations will not be included here as they are showing similar issues.

Four confusion matrices are included (see Figure 4.2). The comparison will be
drawn between 6-channel HCFM model (Figure 4.2a) and 4 other models: first,
baseline (2018) model (Figure 4.2d) discussing the superior performance of HCFM
model and the different distributions of these predictions; second, 10-channel HCFM
(Figure 4.2b) model, to introduce the results of using rotation quaternions as input;
third, 6-channel HCFM model with heading correction method (Figure 4.2c); finally,
6-channel HCFM model with the walking motion filter (Figure 4.4a).

As Figure 4.2a and Figure 4.2d show, 2018 model has many types of misla-
belling (the black rectangle) not in HCFM model and most of them are around 1%.
The small blue triangles in both Figures indicate the pelvis-to-right-upper-arm mis-
labelling. Besides the 6-channel upper-body model, all HCFM models have higher
pelvis-to-right-upper-arm accuracy compared to their corresponding 2018 model.
Figure 4.2b gives an example of the consequences of inputting rotation quaternions
in the neural network. 10-channel models perform poorer on most of the l/r recogni-
tion: for example, 19% of the IMUs on the right upper arm is assigned to the left side
based on 10-channel HCFM model, while the number is 5% in 10-channel model.
Additionally, it has pelvis-sternum (T8) switching problems and low accuracy related
to the left and right upper arms indicated by the black arrows.

Applying heading correction to HCFM model decreases the overall accuracy sig-
nificantly from 80% to 66%. Comparing Figure 4.2c and Figure 4.2a, also bring
about notable errors on segments like forearms and hands which are physically
close to each other (Figure 1.1b) and have even more types of mislabelling com-
pared with the 2018 model (Figure 4.2d). Prediction on all segments is less accurate
comparing the accuracy rates on the diagonal of the confusion matrices. However,
the l/r recognition mislabelling rates indicated by red boxes are not remarkably in-
creased, and some of them are even lower (l/r shoulder switches, left-to-right upper
arm mislabelling rate) after applying heading correction.

Using WMF on HCFM model enhances the recognition accuracy for nearly all
segments. There are no big differences between the coloured blocks in the two
Figures. In Figure 4.4a (subplot in the middle) the Awindow wise of each segment
(numbers on the diagonal) increases, and most of the mislabelling rates decrease.
The only poorer performance on WMF and HCFM model is l/r upper arm recognition.
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(a) 6-channel HCFM model (b) 10-channel HCFM model.

(c) 6-channel HCFM model + heading correc-
tion

(d) 6-channel 2018 model.

Figure 4.2: Confusion matrices of the models with upper-body configuration. Red
boxes in Figure 4.2aFigure 4.2b and Figure 4.2c indicate the mistakes
on l/r side recognition. The black arrow indicates the poor performance
on upper arms and blue triangles for the pelvis-to-right-upper-arm error.
Green boxes indicate some notable segment switches. In Figure 4.2d,
black rectangles show the errors absent in Figure 4.2a and red rectan-
gles are errors in Figure 4.2a but not shown here.
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4.1.3 Look into the selected model

Representative confusion matrices of the other methods are already given before.
Therefore only the selected method– 6-channel HCFM model + WMF are investi-
gated in this section by showing 6 confusion matrices.

Figure 4.4 shows the assignment results of 6-channel HCFM+WMF model. From
the confusion matrices, we find the proposed method is reliable on lower limbs (up-
per leg, lower leg and foot) prediction. IMUs mounted on lower limbs (legs and feet)
all achieve accuracy over 96% with both lower-body and full-body configurations.
The matrix of full-body configuration also shows the correctness of the upper or
lower body assignment (u/l assignment). In another word, few IMUs mounted on the
upper body are assigned to the lower body and vice versa.

Incorrect u/l assignments take up less than 0.005 of all predictions, thus not
shown in the matrices after rounded to the hundredths place. More specific results
and analysis for segments can be found in Section 4.2. The trial-wise assignment

(a) Upper body (b) Full body

Figure 4.3: The absolute trial-wise prediction of Subjet-1 (Exp.3). There are 6
trials related to Subject-1. The 4 failed predictions (highlighted use
black boxes) shown in Figure 4.4 all from two trials belong to the
same subject. Two Pelvis-RightUpperArm mislabelling Figure 4.3a and
Figure 4.3b, and one LeftUpperArm-to-LeftForeArm mislabelling come
from one ”abnormal” trial; the rest Pelvis-to-RightUpperArm mislabelling
in Figure 4.3b is from a ”standard” trial.

of the proposed model is illustrated in Figure 4.4 on the right side. Among all the
trials, the majority of the segments generate the expected correct assignment based
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on their respective window-wise predictions above 50%. The failed predictions all
fall into the same type of mistake: l/r shoulder switch. Figure 4.4 indicates the
particular low prediction accuracy on the left and right shoulder assignment which
will be further investigated in Section 4.4.
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(a) Window-wise accuracy. (b) Trial-wise accuracy (window-wise accu-
racy after majority voting).

Figure 4.4: Confusion matrices of the model with best window-wise prediction ac-
curacy: 6-channel HCFM+WMF model (Exp.3). Elements smaller than
0.5% of the number of windows in a trial are masked in the plots to guar-
antee the visibility after rounded to the hundredths place as 0.
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4.2 Segment comparison

Figure 4.5: Bar plots of accuracy(y-axis)-model(x-axis) relationship. Model names
can be found at the bottom under x-axes. The names include ”quat”
represent 10-channel input, ”WMF” for HCFM with WMF (Exp.3) and
”root” for HCFM with heading correction (Exp.4).
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According to Table 4.1 and Table 4.2, for all 8 methods, both window-wise and trial-
wise performance on lower-body configuration is the best, followed by full-body con-
figuration, and upper-body configuration is the poorest.

Different models have the dissimilar ability to recognise the segments respec-
tively as illustrated in Figure 4.5. As the model has the best performance evaluated
by window-wise average prediction accuracy, 6-channel HCFM+WMF is optimal for
most of the segments but not all of them. For example, with a full-body configuration,
10-channel HCFM+WMF is better on assignment right upper arm, right lower leg
and sternum (T8), and the 10-channel 2018 model achieves the highest accuracy
on head. For some models, the high accuracy on upper/lower body configuration
is not maintained with full-body configuration (e.g., on l/r foot, 2018 model’s perfor-
mance is poorer with full-body configuration than lower-body, however, HCFM and
HCFM+WMF can keep their prime performance). The inability to accurately assign
l/r shoulders is not limited to the two models mentioned in Section 4.1.3, but in all
experiments.

Figure 4.6: The window-wise prediction accuracy of the proposed model on the
whole test set (30 trials). Symmetrical body segments are grouped.
Single segments are put on the spot of the ”Left” segment. The order of
x tick label is sorted in ascending order by the corresponding left seg-
ments’ accuracy rates.

Though all 17 segment-wise prediction accuracies with full-body configuration
are surpassed by those with upper or lower-body configuration, the gap between
two (or three for pelvis) types of performance is not significant as the model is
trained without dependency on multiple sensors. Therefore, the following segment
comparison is concentrating on full-body configuration. Figure 4.6 shows the aver-
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age window-wise accuracy of each segment of the proposed model. From the plot,
there is no evidence to say that the model is more accurate on the left or right side.
Except for the shoulder, the other segments’ accuracy rates are higher than 70%.
Foot recognition has the highest accuracy rounded up to 100%, while the shoulder
is lower than 50%.

To study the performance of the best model with respect to a different segment
in each trial to provide a more in-depth view, the distribution of window-wise predic-
tion accuracy is visualized in Figure 4.7. It can be observed that the segments that
belong to the same category, that is, regardless of the left and right sides, have sim-
ilar performance. All IMUs mounted on lower limbs outperform the ones on upper
limbs, which is consistent with common sense as the movement of lower limbs is
more recognizable in walking motions. The distributions of the prediction accuracy
of upper-body segments, including hands, forearms and upper arms, are broader
compared to lower-body segments. The spread-out distribution suggests the partic-
ularity of upper limb movements in different subjects. Additionally, the distribution of
shoulder prediction accuracy is special as its accuracy scale ranges from about 0 to
1. In around half of the trials, the shoulder recognition failed completely (accuracy
close to 0%), but in the other half, the model achieves accuracy approaching nearly
100%. The shoulders achieve an average accuracy of less than 55%. Combined
with Figure 4.4, if we pay attention to the red box in the full-body confusion matrix,
the proposed model is prone to l/r shoulder switch mistakes. Ignoring the incorrect-
ness of side recognition, the prediction accuracy rate has increased to 98%.
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Figure 4.7: The histogram shows frequencies of window-wise prediction accuracy
among 30 test trials within full-body HCFM +WMF model for each seg-
ment. Histogram without left side border line indicates the minimum
accuracy rate among 30 trials and right for the maximum.
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4.3 Motion comparison

As mentioned in Section 3.3, there are three trial types: standard, infinity and ab-
normal. The average window-wise and trial-wise prediction accuracy grouped by
motions are shown in Figure 4.8. Except for 10-channel HCFM+headning correc-
tion (labelled as ”root-quat” on the plot), the model performs best on ”infinity” trials
and worst on abnormal trials. The majority voting bridges the gap between different
walking motions which indicates tolerance for unexpected motions as the trial-wise
bars are similarly tall.

Figure 4.8: Bar plots of the prediction accuracy grouped by trial types. The y-axis
starts from 0.5 for both plots. The average window-wise accuracy rates
of abnormal, standard and infinity trials are 0.756, 0.817, 0.834, respec-
tively; after majority voting the rates end up with 0.936, 0.931, 0.937
correspondingly. ”root” is for heading correction methods, and ”quat” is
for the 10-channel input setting.
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4.4 Robustness

4.4.1 Performance on Distinct Subjects

As formerly discussed, Figure 4.3 indicates the individual features of the subjects
which are reflected in the prediction accuracy. For this reason, to further study the
performance of the proposed model (full body), the window-wise and trial-wise ac-
curacy rates are grouped by subjects as shown in Figure 4.9. The gap between
the best and poorest subjects is comparably huge: window-wise 0.11 and trial-wise
0.12. The best subject achieves the window-wise accuracy of 96% with full-body
configuration which is 6% higher than the average. What’s more, its trial-wise ac-
curacy is 100%, which suggests a high probability of commercial application in the
future. Nevertheless, the poorest two subjects’ accuracy rates are less than the
average window-wise accuracy after majority voting.

To explore the reason, confusion matrices of the best and poorest subjects are
generated (Figure 4.10). Respective confusion matrices of all subjects with three
configurations of the proposed model can be found in Appendix B.3. According to
4.10a, the prediction accuracy of l/r shoulders is rounded up to 0, which means the
proposed model fails to recognize l/r for all the trials. The l/r shoulder switch issue
will be further discussed in Section 4.4.2.

Figure 4.9: Accuracy-Subject bar plot comparing the window-wise (blue bar, left)
and trial-wise (orange bar, right) performance of the full-body 6-channel
HCFM+WMF model. The dashed lines represent the average accuracy.
The lower one is for window-wise accuracy, and the higher line is for
trial-wise accuracy.
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(a) Subject-2 (b) Subject-5

Figure 4.10: Full-body HCFM+WMF model performance on two subjects. Consid-
ering all motion types, Subject-2 has the poorest average accuracy
rate, and subject-5 has the highest among all the subjects. Except
for l/r shoulders, the prediction accuracy between two subjects among
the rest segments is relatively close: the gap in between is 0.018 on
average and 0.07 at most. The distinction between shoulder recog-
nition performances of two subjects causes a noticeable difference in
the overall accuracy.

4.4.2 Left and Right Shoulder Recognition

By analysing the overall confusion matrices (Figure 4.4) and segment accuracy
(Section 4.2), the notable low recognition accuracy on the shoulders of the pro-
posed model has been displayed. Section 4.4.1 indicated the connection between
low shoulder accuracy and certain subjects. To provide targeted information, the
window-wise accuracy of full-body HCFM+WMF model on l/r shoulder is listed in
Figure 4.11. For Subject-1,5,3 the performance of shoulder recognition is close to
or higher than the overall accuracy rate. For Subject-2,4 the l/r shoulder recognition
seems like a complete ”failure” as the average accuracy of 0% and 0.8%.
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Figure 4.11: 5 test subjects’ window-wise prediction accuracy on the left and right
shoulder of full-body HCFM+WMF model to the motion type. The sub-
jects are sorted by their average shoulder accuracy rates in descend-
ing order. The average window-wise accuracy rates on all segments
are 0.908, 0.956, 0.917, 0.856, and 0.855 corresponding to the sub-
jects in the first column from top to bottom.

However, 0% is an unusual accuracy rate in a classifier. First of all, the failure
on shoulders is caused mostly by l/r switch as shown in Figure B.3 and Figure B.5.
Additionally, as illustrated in Figure 4.12, the prediction certainty of the shoulders is
higher than 95%, meaning that guessing the segment is not the case. On the con-
trary, it shows the confidence of the model in its choices. Finally, a similar situation
(l/r shoulder switch on Subject-2,4) exists among all of the models demonstrated in
Table 3.2.

Figure 4.12: Box plot of the prediction certainty of each segment HCFM+WMF
model on full body configuration. The certainty of the left and right
shoulder is 0.951 and 0.979 respectively, which are both higher than
the average certainty value of 0.945 based on all 17 IMUs. The Left
and Right shoulders are marked by semi-transparent red strips in the
plot.



4.4. ROBUSTNESS 51

4.4.3 Results on the TotalCapture dataset

To compare the performance of our selected model with the previous work [7], [10],
we trained the model on the dataset TotalCapture [31]. Though Zimmermann et al.
do not train their model on the TotalCapture dataset [7], Kaichi et al. [10] provide the
results trained on the mentioned dataset using the model proposed by the former
research group. We adopt the same dataset division to train (subject 1, 2, 3) and
test (subject 5) the model use only trials of the walking motion as Kaichi et al. do.
Additionally, since the root sensor is used in the previous model, it is in neither
three body configurations, and they also include no IMUs on shoulders. In this
case, we only trained our model with a lower-body configuration without the pelvis to
ensure the comparability of the results. The confusion matrix of HCFM+WMF model
trained on dataset TotalCapture can be found in Figure 4.13a. Confusion matrix
in terms of model trained on XsensMotion introduced in Section 3.3 is illustrated
in Figure 4.13b. The model trained on TotalCapture has inferior general window-
wise accuracy. Despite that, it has more certain predictions on the left and right
upper legs and right foot than the model trained on the XsensMotion dataset. The
incorrect labels only show up in l/r lower leg recognition in the former model while
the latter has a relatively scattered distribution of the errors.

(a) Training set: TotalCapture [31] (b) Training set: XsensMotion

Figure 4.13: Confusion matrices of 6-channel lower-body HCFM+WMF model with-
out Pelvis. The previously proposed model achieved an accuracy of
96.7% and the confusion matrix can be found in the relevant paper [10]
(Figure 9a).
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Discussion

This work aims to evaluate CNN+GRU models combined with data processing meth-
ods for I2S assignment using 6-channel (3-axis acceleration and 3-axis angular ve-
locity) or 10-channel (extra rotation quaternion) input data, to find a flexible and ac-
curate way realizing automatic I2S assignment. The proposed approach combines
WMF and 6-channel deep learning model HCFM achieved the goal with flexibility in
IMU number, which answers the research question defined in Section 1.3.

The baseline model [7] with the same kernel setting for all convolutional layers
is outperformed by HCFM model (with and without WMF) according to the window-
wise accuracy in Tabel 4.1. The method of step-by-step change in kernel size for
each CNN layer proposed by Kaichi et al. [10] is thus proved to be efficient in I2S
assignment tasks based on inertial sensor data. Though their overall performance
is close, the prediction of the 2018 model includes more types of errors with low
rates (1%), while HCFM models’ errors are concentrated in fewer places with higher
rates. However, the baseline model has better performance after the majority voting.
According to Figure 4.2a and Figure 4.2d, the HCFM model is more prone to pelvis-
to-right-upper-arm which results in that contributes to the lower ranking based on
trial-wise performance. After studying the predictions by trials, it has been observed
that the inferior trial-wise performance is because of one certain subject. It has to
be further researched what kind of gaits causes the pelvis-to-right-upper-arm error.

To further improve the performance of the deep learning model, we compared
two data processing methods: WMF and heading correction with a root sensor.
The superior performance results in WMF are in line with previous findings [12],
[64] which stressed the distinct motion signature of walking. The reason for the
remarkable decrease in the heading correction model’s accuracy can be information
lost during reference transformation of the non-root sensors, or the absence of the
IMU data on the pelvis, which could be crucial to the whole model.

Compared to the previous work, the proposed model is comparatively accurate
and flexible at the same time, meanwhile involving a larger scope of body segments.
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The proposed model trained and tested on XsensMotion achieves the accuracy of
98.6%, 86.9%, and 89.6% on the lower, upper and full body respectively which are
in line with the latest research (Tabel 2.1). In comparison with the shallow ma-
chine learning approaches [8], [13], the proposed model is not restrained by com-
plex manual feature selection and has comparable performance after majority vot-
ing. Considering the related deep learning approaches, the lower-body performance
of the proposed model (96%) is close to Kaichi et al.(96.7%) and Zimmermann et
al.(93.6%) [10] trained and tested on the same dataset TotalCapture [31]. It is worth
mentioning that if the model is trained on XsensMotion, the performance is better
(97%). XsensMotion has over 1000 seconds of data with around 30 subjects and
the training set of TotalCapture is 500 seconds on 3 subjects which could explain
the inferior performance. Besides the high accuracy, our model is flexible in IMU
number. Weenk et al.’s work achieves the full-body accuracy of 97.5% but depends
on multi-sensor features (correlation coefficients of a sensor with all other sensors,
etc.) so ”the sensor configuration needs to be known” as they said in their paper.
Otherwise, without features like ranking and correlation coefficients, only 75.9% of
the sensors’ classification results are correct. [8]. Kaichi et al. depend on the root
sensor and a global feature learned from all IMUs, which makes it impossible to use
only part of the full set in the test stage (calibration for the users).

Generally speaking, using rotation quaternion does not efficiently enhance per-
formance. The usage of the rotation quaternion can be divided into two types: one
attaches it directly to the 6-channel input, and the other uses the orientation informa-
tion to realize root sensor-based heading correction. Putting together the validation
and test performance, the inferior accuracy rates of the 10-channel 2018 model,
HCFM model with and without WMF can be the result of overfitting on the validation
dataset. At the same time, the 10-channel input setting is better than 6-channel
referring to the heading correction method. Heading correction method rotates all
IMUs to let the subject (based on the pelvis) face the direction towards the y-axis
and pollutes the non-root information unintentionally while using rotation quaternions
under these circumstances compensates for the loss thus increasing the accuracy
rate.

On different segments, the proposed model (HCFM+WMF) achieves unequal
prediction accuracy respectively. Generally speaking, the lower-body configuration
has the best performance, followed by the full body and finally the upper body ac-
cording to the prediction accuracy. Because the upper body is adjusted to remain
stable by the central nervous system during the bipedal gait of humans [65]. The
lack of motions damages the feature salience of the inertial data and causes inferior
upper-body performance compared with lower-body performance as in Table4.1.
Each segment has been involved in two configurations (pelvis is in all three con-
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figurations). The full body is the combination of the lower and upper body thus it
has intermediate performance. From the point of view of the segment types, IMUs
mounted on feet are the least likely to be mislabeled, as expected. These two IMUs
are fixed on the instep horizontally, while the rests are vertically attached to the body
segments.

Meanwhile, the shoulders achieve an accuracy of less than 55% according to
Figure 4.4 and l/r shoulder switch mistakes account for the vast majority of misla-
belling related to shoulders for all the models. It seems that the proposed model is
purely guessing between the left and right sides. However, as shown in Figure 4.11,
the accuracy of close to 50% is caused by the average of three subjects with high
accuracy of over 90% and two with very low accuracy of nearly 0%. This can be
explained by the particularity of the shoulder configuration. The IMUs are attached
close to the coracoid process of the scapula on the upper body, and they are the
only paired sensors on the trunk. Additionally, the differences between the unilat-
eral limbs’ periodical activities are crucial for side recognition. However, the trunk
has no noticeable pendular activity as upper limbs do and no periodical stance and
swing motions as lower limbs do [66]. Thus, the lack of distinguishable movements
between left and right shoulders reduces the accuracy greatly, so probably only on
subjects with certain gaits the l/r shoulders can be well recognized. However, it is
not clear what kind of common features the subjects with high shoulder recogni-
tion accuracy have. To determine the reason for this, further exploration would be
necessary.

Three types of testing trials were recorded. Trials containing walking in infinity tra-
jectory outperform the others. Infinity walking contains more turnings than standard
and abnormal trials. The latter ones include fewer U-turns per trial which implies the
idea that turnings are informative as investigated in previous research [67]. Abnor-
mal trials, as expected, include many motions absent from the training dataset. The
training set mainly contains motion types of walking, turning+walking, slower down
or accelerating and N-pose (standing still).

Different prediction performance among subjects indicates identical human gaits.
Except for the nearly contrary performance related to the l/r shoulder recognition,
dissimilar features are observed in other segments as well. As an example, in Fig-
ure 4.10a and Figure 4.10b it could be observed that most of the corresponding
segments have a close accuracy rate. However, their mislabelled predictions are
different. For example, the left upper arm of Subject-2 is mistakenly assigned to the
right upper arm (5%), left forearm(1%) and T8 (1%), however, the incorrectly pre-
dicted labels of Subject-5 are the right upper arm (4%), right forearm(2%). What’s
more, the proposed model has problems recognizing lower legs on Subject-5 (accu-
racy of 93% for both sides), but it achieves 100% lower leg accuracy on Subject-2.
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The dissimilarity of the human gaits thus proves the necessity of involving various
subjects in the training set.

In this research, majority voting has greatly improved the performance of the
model. It raises the window-wise accuracy of the non-shoulder segments to 100%
for most of the test subjects (except for Subject-1 with 3 failed predictions out of
450). It also bridges the gap between different models making it more tolerant of
abnormal trials as shown in Figure 4.8. Since the limited scenario of this study is
the calibration phase using the wearable IMU suit, the model only needs to answer
the whole process. Thus it improves the fault tolerance of the model: as long as
the window-wise prediction accuracy is above 50%, the accuracy rate on this seg-
ment will be improved to 100% in the end. This allows models with slightly inferior
performance to be trained using lenient early stopping criteria. For instance, quick
model retraining within 10 epochs is possible, as long as the accuracy rates are
higher than 50% (majority voting can give correct prediction). In this case, the users
are provided with real-time feedback, which can be commercially important to the
company, as the current speed for testing is already quite fast (Appendix B.4).

Figure 5.1: Some examples of strange visualization of the training set.

Additionally, the training dataset is imperfect as Figure 5.1 shows. The visu-
alization flaws imply possible misplacement of the IMUs, though to maintain the
variety and robustness of the dataset, we kept some of the trials (first three trials
in Figure 5.1, etc.). However, it is difficult to detect the faults that do intervene with
the model training (the last subplot in Figure 5.1). Among those human-made mis-
takes, switching around IMUs is easier to recognize by checking the property file
and unique hardware numbers for the involved IMUs. But it becomes harder when
the Awinda set used for data recording is unavailable to the researcher. The orien-
tation and slight displacement can not be recognized currently. Ensuring that data
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is 100% compliant without human errors is hard. It results for three reasons: firstly,
the I2S relative position and orientation have a crucial impact on the prediction, but
the minor deflection and displacement are hard to notice; secondly, users who are
unfamiliar with the system can ignore obvious switches of two or more IMUs. With
the misplacement, the calibration and visualization programs stillhave a chance of
success. Currently, it is almost impossible to go back and check the compliance of
the sensor data after the recording stage. For the obvious misplacement, reviewing
the visualization is efficient, but the software is unable to detect the minor orientation
rotation and displacement of the IMU. Those noises are kept in the dataset, though
on the other hand, can help with the robustness of the model because the users
also make mistakes during the calibration.

This model could serve as a misplacement recognizer or anomaly detector for
the recorded data. The used program now only informs the user to restart after the
calibration fails without telling the cause of the error. If the certainty of the prediction
is too low (10%, etc.), the I2S location and orientation of the specific IMU may be
undesirable. The low accuracy rates compared to validation are also caused by
abnormal motions during calibration trials as mentioned above including running
and jumping. The original XsensMotion set also includes running trials which are
filtered out by watching all the visualization in person. In this case, for inaccurate
predictions, the program can output a reminder asking the user to check specific
segments instead of only informing the user to restart after the calibration failure as
the program in use now does.
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Conclusions

6.1 Conclusions

In this work, we proved that it is possible to apply CNN+GRU model on automatic I2S
labelling tasks trained on walking motion dataset achieving comparable accuracy to
the previous research while keeping the flexibility in testing the different amount of
IMUs. For RQ1, the baseline model [7] with the same kernel setting for all convolu-
tional layers is outperformed by HCFM model with distinct hyperparameters for each
convolutional layer. The performance of the HCFM model trained and tested on pure
walking motions is better than using the whole trial including the extra 5 seconds’
N-pose. Therefore, for RQ2, it has been proved that the WMF method enhances the
performance of HCFM model, for example, to 98.6% on the lower body. Generally
speaking, adding rotation quaternion in input or utilizing it for heading correction can
not improve the overall performance (RQ3). For the first time, the paired IMUs on
shoulders are studied and proved to be unrecognizable for all CNN+GRU models
mentioned as nearly full left and right shoulder switch takes place on specific sub-
jects. Concerning the motion type of the test trial, infinity walking is tested to be the
best motion with the highest accuracy rate. As the answer to RQ4, after majority vot-
ing, in most trials, the non-shoulder segments are about 100% correctly assigned.
The real-time and high-accuracy I2S assignment achieved by the proposed model
indicates the possibility of the imminent application on commercial products and
being an anomaly detector of the recorded trial in near the future.

6.2 Future Work

According to the results, each model has its ability to learn certain features. There-
fore they have different abilities to predict different segments. Based on the perfor-
mance among distinct models on the validation set, we can train a set of coefficient
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matrices that give the most accurate results utilizing all models rather than selecting
the best model as the sole source of information.

The knowledge of the training set is limited. It is known that the involved subjects
are the employees of the company (healthy people aged between 20 to 50), but
the specific information (height, gender, etc.) of the subjects is unavailable in the
training dataset. There are also some irregular motions in the training set, but no
related statistics are available. Meanwhile, the test set with five subjects could be
biased. To verify if the model is feasible for all users, a larger number of subjects
should be involved in training and test sets in the future.

The results indicate that appending rotation quaternion to the commonly used
acceleration and angular velocity triggers overfitting the validation set. Future work
can be done to determine appropriate approaches to exploit orientation information.

The proposed model learns the specific l/r shoulder features for some people but
meanwhile makes l/r switch mistakes for the other subjects. It is crucial to find out if
this is due to individual differences in gait. According to some test experiments, the
stimulated rotation of the left shoulder impacts the performance of the model more,
though it does not influence the results of majority voting significantly if the rotation is
180 degrees. In the future, the model can be retrained with different sliding window
sizes and sampling rates other than 60Hz, for example. If sacrificing some flexibility
is acceptable, the dependency between shoulders and other body segments, for
example, forearms, can be considered.

In the test experiment, the performance of the pure CNN network is close to
CNN+GRU model (the former is 6% and 2% lower in accuracy with lower-body and
full-body configuration respectively). The former has less than half the training time
of the latter. This gives reason to choose a time-efficient model for example pure
CNN without GRU layer facing the cost-performance trade-off. Research could be
done to further study the efficiency of the model to provide the ability to retrain the
model.

Currently, using IMU number less than the trained model in the test stage is
possible. However, as the cost function of optimal linear sum assignment is used
to improve the accuracy, the sensor configuration has to be known. Without using
the optimization which can prevent assigning two or more IMUs to the same seg-
ment, the performance of the proposed model decreases to 84.4% and 92.2% (after
majority voting) with full-body configuration. If an unknown configuration is required,
future research needs to especially increase the accuracy of some segments (upper
arms and hands, etc.) with notable decreases without the optimization function.
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Appendix A: methods

A.1 Rotation quaternion

The fluctuation of orientation around 180(-180)°can be solved by using rotation
quaternion to replace the 3-axis orientation as shown in Figure A.1. The orienta-
tion triplet (ax, ay, aj) consists of three angles ranging from -180 °to 180 °indicating
the rotation respectively projected to three planes perpendicular to the x, y and z-
axis. Quaternion, instead, can represent the orientation with an Euler axis and the
rotation angle of that axis.

Figure A.1: The representation of a rotation in 3D sphere: Euler axis (û) by an
angle of θ.

Since the mathematical proof process is not the focus of this project, this part will be
omitted. Only important steps will be introduced. As shown in Figure A.1, u⃗ is a unit
vector:

u⃗ = (ux, uy, uz) = uxi + uyj + uzk

Let q denote the extension of Euler’s formula:

q = e
θ
2
(uxi+uyj+uzk) = cos

θ

2
+ (uxi + uyj + uzk) sin

θ

2
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Quaternion is (C,X S, Y S, Z S), where C = cos(θ/2) , S = sin(θ/2), and X =

uxi , Y = uyj , Z = uzk. Using this notation, the value of orientation changes
smoothly during the trial.

To our best knowledge, there is no closely related work considering the usage
of orientation information. Therefore, the format of rotation quaternion is adopted
due to its feature of gradual change in critical situations. The rotation quaternion
is used in three ways: firstly it is directly appended to the input with acceleration
and angular velocity on the right side; the second way is exploiting its information in
heading correction; the third way is combining the previous two methods.
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Appendix B: Results

B.1 Input methods comparison

Table B.1: The prediction accuracy changes after adding rotation quaternion in
(namely the result of accuracy rate of the 10-channel model minus the
corresponding 6-channel model). The red triangle pointing down means
the performance is poorer using rotation quaternion; the green triangle
pointing up means better performance.

No.
Accuracy

type
Lower body Upper body Full body

Exp.1
window-wise -0.036▼ -0.036▼ -0.024▼

trial-wise 0 -0.018▼ -0.004▼

Exp.2
window-wise -0.059▼ -0.056▼ -0.046▼

trial-wise -0.010▼ -0.018▼ 0

Exp.3
window-wise -0.007▼ 0 -0.011▼

trial-wise 0 0 0.002▲

Exp.4
window-wise 0.035▲ 0.031▲ -0.010▼

trial-wise 0 -0.053▼ -0.056▼

B.2 Model convergence speed and overfitting

In this project, we set early-stop patience of 100 epochs, and the training will be
terminated if there is no further improvement in validation loss. To sum up, the
2018 model converges faster and the validation loss starts to increase earlier than
HCFM model. Using heading correction increases the validation loss compared
to the other models. Adding rotation quaternion in also makes the model overfits
sooner as shown in Figures B.1:
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Figure B.1: The loss(y-axis)-epoch(x-axis) plot. The blue curve is for the validation
loss, the orange curve is for the training loss. Darker ones are normal-
ized curves. All plots are with full-body configuration.
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B.3 Confusion matrices of 6-channel HCFM with WMF
grouped by subjects

(a) Window-wise prediction. (b) Trial-wise prediction.

Figure B.2: Subject1
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(a) Window-wise prediction. (b) Trial-wise prediction.

Figure B.3: Subject2
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(a) Window-wise prediction. (b) Trial-wise prediction.

Figure B.4: Subject3
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(a) Window-wise prediction. (b) Trial-wise prediction.

Figure B.5: Subject4
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(a) Window-wise prediction. (b) Trial-wise prediction.

Figure B.6: Subject5
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B.4 Computational performance of the test phase

Table B.2: Runtime of the testing phase of the proposed model (6-channel HCFM
with WMF).

segment
configurations
(IMUs number)

model
loading(s)

testing
(s)

total
runtime(s)

average runtime
per trial(s)

lower body (7) 3.078 18.547 21.625 0.721
upper body (11) 3.633 29.574 33.206 1.107
full body (17) 4.143 75.373 79.517 2.512
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