
Secure Blocking for Record Linkage

Kevin Witlox1

k.h.d.witlox@student.utwente.nl

Supervisors
Dr. Ing. Florian Hahn1

Prof. Dr. Ir. Thijs Veugen2,1
Dr. Ir. M.M.J. Stevens3

Dr. N. Nicola Strisciuglio1

1University of Twente, Enschede – Overijssel, The Netherlands
2TNO, The Hague – Zuid Holland, The Netherlands

3CWI, Amsterdam – Noord Holland, The Netherlands

Abstract – Record linkage is the problem of joining
together datasets without a unique identifier. Record
linkage can be used to combine multiple data sources
for answering research and policy questions, and could
therefore be a valuable tool. However, even if the
desired answer is only an aggregate, record linkage may
be infeasable due to privacy concerns as it requires entire
datasets to be shared between parties. This problem
may be solved by implementing record linkage as a secure
computation, preserving the privacy of the underlying
data. Currently however, no blocking technique (a
pre-processing step to speed up record linkage) is designed
to work as a secure computation, limiting the scalability
of secure record linkage solutions. Therefore, we design
and implement the first secure blocking solution. We
compare the running time of our solution against a secure
record linkage solution, and show that our secure blocking
solution allows for a great reduction in running time.

Keywords – fuzzy matching, approximate matching,
privacy-preserving record linkage, privacy-preserving
blocking

I INTRODUCTION

In our modern data-driven world many different
organizations and institutions process data on natural
persons. Governmental institutions keep records of their
citizens, banks track the transactions of their customers,
and hospitals record the medical information of their
patients. These datasets are kept for administrative
purposes or to execute the primary task of said institution.
However, one can imagine there are many use-cases which
could benefit from data analysis on the joint dataset of
multiple institutions.

Consider for example medical research. Individual
medical institutions may not possess sufficient case data
to draw statistically significant conclusions, especially on
rare diseases and conditions. However, by combining data
from multiple medical institutions one could allow medical
researchers to produce new findings [32, 42].

.

John Doe 1989-08-07

John Smith 1990-01-01

Dataset A

John J. James 1967-04-12

John Smuth 1990-01-01

.

Dataset B

Fig. 1. Simple Example of Record Linkage. The third record of
dataset A and the second record of dataset B likely represent
the same entity.

Joining datasets in the absence of unique identifiers is a
non-trivial task, and is studied as a problem called record
linkage. First described in [5] and later formalized in [9],
record linkage is the problem of linking data entries across
different datasets that refer to the same real world entity
(also referred to as Entity Resolution or Data Matching
[11]). Figure 1 illustrates this concept. In the figure, there
are two datasets, each containing a different representation
of the same real-world entity ‘John Smith‘. The goal for
record linkage here is to match these records as the same
entity.

Standard record linkage is however unpractical for
many use-cases. Sharing vasts amounts of data
between organizations to fulfill specific tasks might be
undesirable given the possibility of the data leaking
or it being used for purposes other than the intended
one. Consequentially, many jurisdictions pose limitations
on the sharing of data between individuals and
organizations, exemplified by Europe’s General Data
Protection Regulation (GDPR) [38].

To address these issues surrounding data privacy,
researchers have investigated a variation on record
linkage called privacy-preserving record linkage (PPRL).
Here, the goal is to perform the record linkage while
keeping Personally Identifiable Information (PII) —
direct identifiers such as Social Security Numbers,
email-addresses but also quasi-identifiers such as Birthday
or ZIP code — private during this process.

Though many different techniques exists for
privacy-preserving record linkage, these techniques often
leak at least some amount of information. For example,
one technique that has seen real-world deployment [36,

1

18] is the probabilistic approach using Bloom Filters [41].
This technique relies on the Bloom Filter for privacy, on
which cryptanalysis attacks have been shown [25].

Instead, ideally we wish to perform privacy-preserving
record linkage without any party learning any information
other than its own and the output of the record linkage.
This is the promise of Secure Multi-Party Computation
(MPC) [47]. Secure Multi-Party Computation is a
technique for constructing computations which do not leak
any information (under computational assumptions). The
technique allows multiple parties, each with private inputs,
to jointly compute a function revealing only the output of
said function and nothing else. Due to innovations in the
field and advancements in computing power, the technique
has become more practically viable in recent years.

Recently, Stammler et al. [42] implemented the first full
record linkage solution as a secure computation. Their
results show good blocking quality performance, but their
method lacks a blocking step. Blocking is a pre-processing
step for record linkage which partitions the datasets into
blocks in such a way that only records within the same
block need to be compared, reducing the amount of
pair-wise computations needed during the matching step
[31, 11]. Such a blocking step is needed to speed up the
process of record linkage, as the matching step of record
linkage is usually expensive.

Blocking is essentially the problem of finding a subset
of record pairs from the space of all record pairs |A| × |B|
between two datasets A and B, such that the subset
still includes all or most of the matching pairs. This is
seemingly incompatible with the standard definition of
MPC. The execution of a MPC computation must be
indistinguishable between different inputs of the same size,
i.e. the memory access patterns and execution paths of a
secure computation may not depend on private inputs.
Computing on a subset of the private inputs based on
other private inputs does not fit in this model.

Recently however, a variation on MPC has gained
traction, called Random Access Machine-based Secure
Computation (RAM-SC) [33, 13]. In this model, one
can construct secure computations with input-dependent
memory accesses that run in sub-linear time. In essence,
the memory accesses are ran outside of the secure
computation, but in such a way that the memory access
pattern is indistinguishable from random access pattern of
equal length and the memory contents remain secret.

To the best of our knowledge, no MPC blocking method
exists as of yet. In this paper, we therefore design and
implement the first secure blocking solution. With this
work, we aim to advance the practicality of using record
linkage in the context of secure computation, which would
make possible a wide range of possible use-cases.

Contributions Our contributions are as follows:
• We design the first secure blocking solution, and show

the adaptations that are needed for blocking to be
implemented as a secure computation.

• We implement a LSH-based blocking technique using
RAM-SC and manage to block two datasets of 10.000

records in under ten hours.
• We implemented the Square-Root ORAM

construction in the MP-SPDZ Framework, a
contribution that has been merged into its public git
repository.

Outline In the next section we cover the related
works in privacy-preserving blocking and secure record
linkage, identifying that no secure blocking solution exists
yet. We also survey existing blocking techniques for
use in our solution. In Section III we introduce the
relevant background knowledge on MPC and RAM-SC.
In Section IV we introduce the definitions relevant to
blocking and formalize the problem. In Section V we
design and implement the secure blocking functionality,
independently of a particular blocking technique. Then,
in Section VI, we describe LSH-based blocking and employ
it in our solution. Section VII describes the experimental
setup for benchmarking our solution and the results from
these experiments. In Section VIII, these results are
discussed. Finally, Section IX concludes this paper.

II RELATED WORK

A Privacy-Preserving Blocking
There is a large body of research in both

privacy-preserving record linkage and privacy-preserving
blocking (also called private blocking). Many techniques
in this body however either use a weak definition of
privacy, or none at all. In this section we briefly
cover the literature on privacy-preserving blocking
and privacy-preserving record linkage techniques which
include a blocking or filtering step.

Al-Lawati, Lee, and McDaniel [26] present one of the
first privacy-preserving record linkage solutions which
include a privacy-preserving blocking step. Their blocking
is an adaptation of Token Blocking. For every unique
token of a record, that record is added to the block
identified with that token. To preserve privacy, a hashed
version of the token is used as the block identifier instead of
the plaintext value. A third party Charlie then compares
the hashed block identifiers to recognize blocks that both
Alice and Bob have in common. The privacy here however
must be guarantees through the third party.

A suite of other early protocols for PPRL are those
based on the embedding approach [39, 46], in which
records are embedded into a shared reference space as
a vector that preserves the similarity relation between
records. These methods reduce the number of pair-wise
distance calculations needed between embedded records
in a pre-processing step to speed up record linkage.
Scannapieco et al. [39] employ a heuristic to rule out
certain pairs; Yakout, Atallah, and Elmagarmid [46] map
their embedding vectors to a single complex number to
serve in a cheap distance calculation. It is assumed
that the vector embeddings hide the underlying records.
However any leakage in such methods is not well
defined [37].

Later, works such as [15, 19] introduce
privacy-preserving blocking protocols which employ

2

conventional privacy definitions to show bounds on the
information leaked by their protocols. Inan et al. [15]
introduce a hybrid approach for privacy-preserving record
linkage, combining k-anonymity based blocking with
secure computation for the matching step. First, the
datasets are anonymized with k-anonymity, relying on
value generalization hierarchies. An initial matching is
performed where records with mismatching generalization
sequences are filtered out. The remaining pairs are then
matched using secure computation.

Another suite of techniques relying on k-anonymity are
the approaches based on reference tables. Karakasidis
and Verykios [19] present a three-party PPRL solution,
in which Alice and Bob cluster a reference set using
the k-Nearest Neighbour algorithm. The reference set
is shared between Alice and Bob, such that Alice and
Bob generate the same clustering, but secret to Charlie.
Alice and Bob then insert their records into the clustered
reference set, sending the obfuscated records together with
their cluster identifier to Charlie. Since the clusters are of
size k, the information given by a cluster identifier may
reflect on at least k records (k-anonymity). Charlie then
creates candidate pairs based on the cluster identifiers
and continues the record linkage process. Vatsalan and
Christen [43] introduce a similar technique based on
the ‘Sorted Neighbourhood’ blocking approach, which
outperforms the former. The major drawback of this
specific suit of techniques is that they only achieve
good accuracy if the reference set is a superset of the
datasets [21]. Furthermore, the privacy definition of
k-anonymity is known to be vulnerable to attacks [28],
especially when attackers have background knowledge —
a reasonable assumption when working with dataset on
natural persons.

A more strict definition of privacy is that of Differential
Privacy [7], which has seen use in more recent works on
PPRL [16, 14, 37]. Inan et al. [16] revisit their scheme
of [15] and employ this definition. Alice and Bob locally
cluster their datasets, and then share the boundaries of
these clusters preserving differential privacy by adding
noise to these boundaries. This allows Alice and Bob
to learn overlapping clusters. Rao et al. [37] extend this
idea and prove their solution to uphold the end-to-end
differential privacy notion introduced by He et al. [14] by
including a third party. Though these techniques are more
promising in terms of data privacy than previous works,
the statistical leakage might still be prohibitive for certain
use-cases.

A recent suite of techniques that has received attention
in the context of privacy-preserving blocking due to its
speed is the suite of Locality Sensitive Hashing based
techniques. Locality Sensitive Hashing techniques work
by producing a hash for each record, which preserves
some distance function. Thus, more similar records are
more likely to be hashed to the same hash. Durham [6]
was the first to suggest the use of LSH as a blocking
technique for private blocking in conjunction with bloom
filters. By sampling random bits from a bloom filter,
one creates a H-LSH family (the family of hash functions

sensitive to the Hamming distance). Karapiperis and
Verykios [22] present a general framework for LSH-based
blocking and conclude that H-LSH outperforms Jaccard
LSH in terms of speed and precision. Karapiperis and
Verykios [21] improve the PQ and RR of this method
by counting how often a pair of records produces hash
collisions. Ranbaduge et al. [35] utilize LSH differently.
The propose a multi-party protocol where each party
locally clusters their records, which are encoded as
bloom filters. Each party then generates a signature
for each local cluster using MinHash, producing cluster
representatives. To avoid pair-wise comparisons between
cluster representatives of all parties, LSH is used to map
similar cluster representatives to the same block. The
disadvantage of these techniques is however that the
leakage of the hashes is not defined.

B Secure Record Linkage and Blocking
With secure record linkage and secure blocking,

as opposed to privacy-preserving record linkage and
privacy-preserving blocking, we refer to techniques which
employ Secure Multi-Party Computation.

Though sparingly, MPC has been used in the literature
of PPRL. Most methods employing MPC however, do not
use MPC for the entire process such that the entire process
in provably secure. In Inan et al. [15] for example, the
authors use MPC to implement a matching step for record
linkage, but use a k-anonymity based method for blocking.
Lazrig et al. [27] implement their matching step using
MPC, which calculates securely the distance between
Bloom Filters, but information is revealed selectively
to allow for blocking. Essex [8] introduces a novel
cryptographic primitive to perform Bloom Filter distance
calculations securely, but their method does not constitute
a full record linkage solution nor takes into account
blocking.

Most recently, Stammler et al. [42] introduce the first
full secure record linkage solution, taking into account the
varying types and weights of attributes. They implement
their solution using the ABY-framework and achieve a
high record linkage quality. Their solution however does
not include blocking.

C Blocking
In this work, we investigate the feasibility of

implementing blocking as a secure computation. We will
be relying on the vast body of existing blocking methods
to find a method suitable in this setting. In this section
we briefly cover the main techniques in the blocking
literature. We describe the general or the simplest
implementation, but forgo mentioning all methods that
exist within the techniques. The categorization is based on
the surveys done by Durham [6], Schnell [40], and O’Hare,
Jurek-Loughrey, and Campos [31].

This subsection uses the common blocking metrics
Reduction Ratio (RR), Pairs Quality (PQ) and Pairs
Completeness (PC) to describe the blocking quality of the
mentioned techniques. These metrics correspond to the
relative reduction in needed comparisons, the precision of
the generated pairs and the recall of the generated pairs

3

respectively. See Section VII for the complete definitions.

Standard Blocking The first blocking method is called
Standard Blocking, introduced together with the notion of
record linkage itself by Fellegi and Sunter [9]. In Standard
Blocking, each record of a dataset is mapped to one or
multiple blocking keys using some blocking mechanism. A
blocking key is created via a rule which composes one or
multiple attributes or parts thereof. A simple example is
to take the attribute ‘year of birth’ as the blocking key.

Standard blocking has two main drawbacks. First,
its performance greatly depends on the selection of the
blocking keys, which have to be chosen based on expert
knowledge. Second, an error on the blocking key will
result in missed matches. To counteract this, the linkage
is repeated for multiple different blocking keys.

Token Blocking Token Blocking is another older
technique. The technique is schema-agnostic and
considers a record as a plain bag-of-words, i.e. a collection
of all words of all attributes in the record. Each unique
word is a token that identifies a block. Thus, a single
record is mapped to potentially many blocks, one for each
unique word in the record. The method achieves a high
Pairs Completeness, as matching records commonly have
at least one word in common. However, due to the many
tokens that can exist in a dataset, the method has a low
Reduction Ratio. Due to this fact, we do not consider it
for our secure blocking scheme.

Clustering In 2000, McCallum, Nigam, and Ungar
[29] introduced a clustering technique called Canopy
Clustering, which has subsequently been used in the
blocking literature. Say we have a large dataset, a
computationally cheap distance measure for records within
this dataset and two thresholds t1 and t2. The idea is
to create clusters (canopies) at random containing similar
records according to the distance measure, such that
all records are contained in at least one canopy. The
clustering is performed by picking at random a record
(the centroid) from a list, initially holding all records, and
finding all records within some loose distance threshold
t1. Then, all records in the newly formed canopy within a
tight distance threshold t2 are removed from the list. This
processes is repeated until the list is empty.

One disadvantage of Canopy Clustering is that its
performance relies greatly on the choice of parameters for
t1, t2, as well as the similarity function, and the resulting
number of canopies. Depending on the parameter choice,
one may create few large clusters resulting in better
Pairs Completeness but worse Reduction Ratio, or many
smaller clusters resulting in higher Reduction Ratio but
worse Pairs Completeness. Secondly, even though a cheap
distance measure is used, pair-wise distance computations
need to be performed for each centroid with all other
records, which may be infeasible for large datasets.

Sorted Neighborhood Various sorting-based methods
have been proposed for blocking, the most common of

which is the Sorted Neighborhood approach [6]. In its
simplest form, one derives a blocking key and sorts the
entire dataset with this blocking key. Then, the dataset
is processed under a sliding window, where all records
within the window are considered to be in the same block.
Various adaptions have been developed. Some methods
leverage multiple passes with different blocking keys to
increase the Pairs Completeness when errors may occur in
the blocking key. Other techniques consider an adaptive
window size set according to the similarity between the
first and last record in the window, to optimize both the
Pairs Completeness and the Reduction Ratio.

Locality Sensitive Hashing Locality Sensitive
Hashing was initially introduced by Indyk and Motwani
[17] to solve the approximate nearest neighbor problem.
It works by hashing items using hash functions with the
special property that the probability of hash collisions,
i.e. two items producing the same hash, is higher for
items that are similar. This technique has successfully
been used for (privacy-preserving) blocking [6, 22, 21].

III PRELIMINARIES

In this section we will introduce the relevant
background knowledge on the building blocks needed for
this paper. Section III.A gives an introduction on the
standard definition of Secure Multi-Party Computation
(MPC). Section III.B introduces RAM-based Secure
Computation (RAM-SC), the variant of MPC used in
this paper, and Section III.C introduces the Oblivious
RAM (ORAM) — the main building block for RAM-SC.
Section III.D introduces Bloom Filters, which are used
in Section VI as part of the blocking solution. Finally,
Section III.E introduces the MP-SPDZ Framework, which
is used to implemented the design proposed in this paper.

A Secure Multi-Party Computation
Secure Multi-Party Computation (MPC) offers a

method for computing a function securely. It works
by replacing a trusted-third party with a cryptographic
protocol. This allows multiple parties holding sensitive
data to compute the function over the combined set
of data without revealing any information other than
the output of the function to the participating parties.
More formally, given n parties each owning a secret xi,
Secure Multi-Party Computation allows the computation
of function f(x1, . . . , xn) without revealing any of the
private inputs xi.

There are a variety of Secure Multi-Party Computation
protocols, for both boolean and arithmetic inputs.
However, in general these protocols apply the same
principle. In this paper we limit ourselves to record linkage
between two parties, and thus we set n = 2, resulting in
parties P1 and P2. The basic principle is that a secret
input v of some particular party is shared between all n
parties, such that the parties can jointly compute on this
input without directly learning the value of the input. To
illustrate, P1 would like to secretly share private input
v with P2. P1 samples a random value r which it uses

4

to create two shares of v by setting ⟨v1⟩ = v − r and
⟨v2⟩ = r, the latter it sends to P2. It is easy to see that
⟨v1⟩ + ⟨v2⟩ = v and neither ⟨v1⟩ or ⟨v2⟩ alone gives any
information on v due to the random mask r. We say that
P1 has secret shared v with P2, where P1 holds ⟨v⟩1 and
P2 holds ⟨v⟩2.

In the remainder of this paper, we will use the following
notation. A value v that is secret shared is denoted by ⟨v⟩,
implying that all participating parties Pi ∈ {P1, . . . , Pn}
own the share ⟨vi⟩ of value v. We will assume any
Secure Multi-Party Computation protocol provides two
algorithms share and reveal. The former creates shares
from a secret value, denoted ⟨v⟩ ← share(v) and the
latter combines the shares to reveal the underlying value,
denoted v ← reveal(⟨v⟩).

B RAM-based Secure Computation
Advances in both the efficiency and available tooling

in Multi-Party Computation are alleviating the costs
and burdens that are associated with performing general
secure computations, paving the way for practical
adoption of the technology. However, one challenging
aspect that remains in compiling arbitrary programs into
secure computations is that of input-dependent memory
accesses. The problem lies in the requirement that no
information may be leaked about any intermediate value
of the computation, and thus the instructions executed
during the computation may not vary based on the private
inputs.

Now suppose that two parties involved in a secure
computation share a secret index i, with which they
need to access the i’th element in some secret shared
memory. This is analogous to a random access memory
(RAM) instruction. Within the well-known circuit-based
MPC-implementations [47], the solution is a linear search,
requiring the computation to ‘touch’ every memory
element in order to hide the element actually being read
or written. This prevents algorithms from achieving
sub-linear running time complexity in the size of the
inputs, making computations involving large inputs (e.g.
databases) infeasible.

Ostrovsky and Shoup [33] observed that a secure
computation requiring random access memory could be
realised efficiently using Oblivious RAM. Gordon et al.
[13] developed this idea and proposed the first general
framework for so-called RAM-based Secure Computation
(RAM-SC). In short, the ORAM randomizes the access
pattern to a RAM, such that an observer cannot
distinguish access patterns of the same length for
different inputs. In RAM-SC, the ORAM construction is
secret-shared between the parties. To perform a memory
access to a secret index, the parties emulate an ORAM
access within the secure computation. Then, the physical
memory location resulting from the access protocol is
revealed, which can be used to read or write the value at
this memory location from within the secure computation.
Since an ORAM access generally has a time complexity
sub-linear in the size of the memory, this construction
can be used to build secure computations that scale in

sub-linear time in the size of the private inputs.
Though the asymptotic performance of RAM-SC for

memory accesses is a great improvement compared
to linear scan, the practical performance impact of
initializing and emulating an ORAM within a secure
computation does hinder its usage. As a result, Wang
et al. [45] noted that the current ORAM literature, which
focussed on improving the asymptotic complexity memory
accesses in terms of bandwidth overhead, had little impact
on the practical performance of RAM-SC. The authors
noted that in the context of secure computations, one
should optimize for a low circuit complexity. A line of
work was spawned that investigates ORAM-constructions
specifically in the secure computation setting [13, 10, 45,
44, 48, 4].

In this paper, we will make use of the Square-Root
ORAM construction introduced by Zahur et al. [48].
The Square-Root ORAM construction benefits from
a specialized initialization protocol, whereas previous
constructions initialize by inserting the initial dataset
one-by-one via the access protocol [44]. Furthermore,
though the asymptotic complexity of Square-Root ORAM
is worse than the previous construction by Wang, Chan,
and Shi [44], its running time is faster for block amounts
under 214 — which is relevant for our design.

In the next section we give more details on how an
Oblivious RAM construction works and outline the setup
of the Square-Root ORAM used in this paper.

C Oblivious RAM
Oblivious RAM (ORAM) was first introduced by [12]

as a construction aimed at hiding the access pattern by
a processor to its memory within a computer. The
access pattern – the order and location of read and
write instructions to memory – can reveal to an observer
the structure of a program running on the processor
(e.g. loops) and values used in the computation, if these
influence the memory access pattern.

To achieve this, the access protocol of an Oblivious
RAM translates a virtual memory instruction, i.e. the
instruction as needed by the processor, into one or multiple
physical memory instructions, i.e. actual read and
write instructions to the memory. The series of physical
instructions hide the virtual instruction being issued.

Notation We use the following notation to describe
interaction with a generic Oblivious RAM. An Oblivious
RAM is initialized using the initalization function

oram← Oram.init(n, l,D),

which takes in as parameters the required size of the
memory n, the size of each memory location (length) l and
the dataset D to initialize the memory with, returning the
state of the Oblivious RAM.

5

An Oblivious RAM is accessed using the access function

v ← Oram.access(oram, i, w, v),

which takes as parameters the state of the ORAM upon
which to act, the secret virtual location i ∈ {0, . . . , n}
to access, a boolean w indicating whether the instruction
should write to the virtual location, and the value v which
is written if w is true. The output is the (newly written)
value at virtual location i.

1 Square-Root ORAM : Zahur et al. [48] revisit the
Square-Root ORAM construction introduced in [12] and
adapt it to the secure computation setting. In this
section we briefly describe the original algorithm and the
adaptions made in [48].

The idea of Square-Root ORAM is to perform a secure
shuffle on an encrypted memory, in order to hide to
the server the virtual location and contents the client is
accessing. The main complexity of the algorithm lies in
not revealing repeated access to the same virtual location.

To achieve this, the client keeps a local stash hidden to
the server. Whenever the client accesses a virtual location,
the contents are retrieved from the physical location and
also stored in the stash. If the client repeats a requests to
the same virtual location, the actual content is retrieved
from the stash, and an independent physical location is
accessed in the physical memory, revealing no information
to the server. When the stash is full after exactly T
accesses, the ORAM is reinitialized (refreshed). The stash
size is equal to this refresh period T , which is set to the
square-root of the ORAM size.

D Bloom Filters
The Bloom Filter, introduced by Bloom [2] in 1970, is a

space-efficient probabilistic data-structure for representing
a set in order to support membership queries. A
membership query returns whether a given element is
contained within a dataset. The solution is space-efficient
in that the Bloom Filter data-structure maps a set with
arbitrarily large elements to a comparitively limited sized
bit-array by utilizing hashing.

The Bloom Filter itself is an array of m bits.
Initially, all bits are set to 0. To add an element
x to the data-structure, one hashes the element with
k independent hash functions h = {h1, . . . , hk}, each
hash function producing an index in the range of the
bit array {1, . . . ,m}. Then, for all hash functions 1 ≤
i ≤ k the bit hi(x) is set to 1. Figure 2 illustrates
hashing the elements {_S, SM,MI, IT, TH,H_} and
{_S, SM,MY, Y T, TH,HS, S_} to a Bloom Filter of
m = 12 bits with k = 2 hash functions.

To query whether an element is contained in the Bloom
Filter, we hash this element using the same family of hash
functions h. We then check all bits in the Bloom Filter
indexed by the outcomes of the hash functions. If one
or more indexed bits are unset, the element cannot be in
the set, as hash functions are deterministic. If all bits are
set however, the element may be in the set, or another
(collection of) element(s) collided on each of those bit

␣S SM MI IT TH H␣

1 1 1 0 0 1 0 0 1 1 1 0

0 1 1 0 1 1 1 0 1 1 1 0

␣S SM MY YT TH H␣
Fig. 2. Visual example of two bloom filters, the top bloom
filter encoding ‘SMITH’ and the bottom bloom filter encoding
‘SMYTHS’. The bloom filters are parameterized with k = 2
hash functions and m = 12 bits. Picture recreated from [42].

positions resulting in a false positive. For a set S of size
|S| = n this false positive rate is given by

f =

(
1−

(
1− 1

m

)kn
)k

.

E MP-SPDZ Framework
To implement the secure computation step of our

scheme, we utilize the MP-SPDZ Framework by Keller
[23]. The MP-SPDZ framework provides a high-level
interface for constructing protocol-independent secure
computations, ideal for benchmarking scenarios. Secure
computations constructed in the high-level Python
interface are compiled into an intermediate assembly-like
representation. This assembly is then interpreted by a
virtual processor that implements a specific cryptographic
protocol to execute the computation securely. The
framework includes different cryptographic protocols for
different attacker models.

The framework included implementations of
TreeORAM, PathORAM and CircuitORAM [24, 44], but
not of Square-Root ORAM. We implemented this ORAM
construction and merged it into the public git repository
of MP-SPDZ.

IV PROBLEM STATEMENT

In this section we introduce the necessary definitions
for blocking and formalize the problem. In our definitions
for blocking, we limit ourselves to a particular model of
blocking which will combine well with secure computation.

A Blocking
Blocking is a pre-processing step in the record linkage

pipeline (see Figure 4) that aims to reduce the number
of pair-wise comparisons between records needed in the
matching step. To this end, the blocking method
formulates a set of records of its own, called the set of
candidate record pairs M̃. The idea is that calculating
the set of candidate record pairs is much cheaper than
directly calculating the set of matching recordsM on the
entire dataset.

6

At a high level, blocking does the following [11]. Assume
we have two datasets A and B following the same database
schema I. By blocking the dataset, we partition the joint
set of records A∪B into groups called blocks. Only those
records a ∈ A, b ∈ B that find themselves in the same
group are added to the set of candidate record pairs M̃,
resulting in fewer comparisons needed in the matching
step. An example of a simple blocking strategy is to
group all records by their ZIP-code, then adding only those
records to M̃ that have the same ZIP-code.

Definition IV.1 (Schema). A dataset schema I is the
power set of datasets that have the same attributes. A
dataset schema is described by a vector of attributes,
denoted as (I1, . . . , Id). A record b in a dataset B of
schema I is a vector of size d, in which element i, 1 <
i ≤ d, is addressed as b.Ii.

B Model of Blocking
In this paper, we aim to construct a blocking scheme

that efficiently runs as a secure computation. Secure
computation is orders of magnitude more computationally
expensive to compute than non-secure computation. Since
blocking is a technique used to scale record linkage to
large datasets, we should aim to minimize the computation
necessary in the secure domain.

To this end, we reduce our scope of blocking to blocking
techniques producing independent blockings (such as [9,
22, 21]). In this model, the result of assigning a
single record to a particular block is independent of the
datasets involved in the blocking process (as apposed
to e.g. clustering or sorting based methods). What
remains of the computation needed in the secure domain is
determining which records coincide in the same blocks. We
describe this model as consisting of one or more blocking
keys that constitute a blocking scheme.

Simply put, a blocking key is a function that maps a
record to a block. To illustrate, consider the blocking
key ‘[Third letter of Surname]‘. This blocking key has
a co-domain of 26 blocks. Applying this blocking key to
a record with surname ‘Smith’ results in the identifier 9,
representing the 9th letter ‘i’ in the alphabet.

Definition IV.2 (Blocking Key). Let I be a schema. A
blocking key bk is a function bk : I → Z that maps a
record onto a block index or block identifier.

We introduce some additional notation for applying a
blocking key to an entire dataset. Assume we have a
dataset B and a blocking key bk. We denote the result
of applying bk to every record in B as BB,bk, the ‘blocked
dataset’. This blocked dataset is a multiset of blocks, each
block containing all records that are mapped to that block
by the blocking key bk. For block h, we have that

BB,bk
h = {b ∈ B : bk(b) = h}.

Now consider what happens in case of a typographical
error. Assume the entity ‘John Smith’ is contained
the dataset of both Alice and Bob, but Bob’s record is
erroneously set to ‘John Smyth’. Our blocking key would

.

John Doe 1989-08-07

John Smith 1990-01-01

Dataset A

John James 12/04/1967

Jon Smith 01/01/1990

.

Dataset B

Fig. 3. Simple Example of Record Linkage

group these two records into different blocks, resulting in
a missed match of these records.

To improve the completeness of this blocking strategy,
we may add a second blocking key to the blocking scheme,
e.g. [First letter of first name]. A blocking scheme,
denoted BK, is a collection of blocking keys. If our
strategy is to perform record linkage on all records
overlapping in at least one block, this would allow us to
catch such a typographical error.

With multiple blocking keys, we must also specify the
exact condition determining when to consider a pair of
records as a candidate record pair. To this end we
introduce a threshold t, where

0 < t ≤ Γ, Γ = |BK|,

specifying exactly how many blocks should overlap
between a record pair (a, b), before the pair is counted
as a candidate pair.

For easy of notation, we introduce a function

collisions : A→ NΓ

(a, b) 7→
∣∣∣{bkγ ∈ BK : b ∈ BB,bkγ

h , h← bkγ(a)
}∣∣∣,

which given a pair of records a, b returns the number of
blocking keys for which a and b are mapped to the same
block index, i.e. the number of collisions between a and b.

C Problem
Following the description of the previous section, we

then obtain the following definition of blocking:

Problem 1 (Blocking). Let A = {a1, . . . , an} and B =
{b1, . . . , bm} be a datasets according to schema I. Let
BK = {bk1, . . . , bkΓ} be a blocking scheme. Find the set
of candidate record pairs

M̃ =
{
(i, j) : |collisions(a, b)| ≥ t, ai ∈ A, bj ∈ B

}
.

that includes every record pair mapped to the same block
at least t times.

V FRAMEWORK FOR SECURE BLOCKING

In this section we describe our general solution to
implementing blocking securely. We first describe the
basic idea of implementing blocking in the context of
secure computation in Section V.A. Next, in Section V.B,
we formalize the functionality to implement. Section V.C
describes what exactly we mean by secure blocking,
and finally Section V.D details how to implement this
functionality. Section V.E and Section V.F analyze and
describe respectively the complexity of and optimizations
to the implementation.

7

Data Pre-
processing

Schema
Selection

Blocking

Matching step

Similariy
Calculation Classification

Fig. 4. Overview of a record linkage pipeline. Data Preprocessing and Schema Selection are not considered in this paper.

A Idea
First we present the idea behind our solution. For ease

of exposition, we fix |BK| = 1 and t = 1 in this section.
Recall that the blocking keys and the resulting blocks

are independent of the input data, i.e. Bob does not need
to know the contents of A in order to compute the blocking
key over his dataset or vice-versa. Note that this is a
consequence of the blocking model we described, not an
inherent property of all blocking techniques.

Now we take the basic case where Alice only holds a
single record a. The output of a blocking solution in this
case are the pairs (a, b) for all record of bob b ∈ BB,bk

h that
reside in block h = bk(a).

The obstacle here is that h depends on secret data a.
Accessing a secret index h in a collection BB,bk cannot be
computed efficiently in the standard MPC model. Instead,
we use the RAM-SC model, which allows us to efficiently
perform this operation using Oblivious RAM.

B Functionality
The overview above describes how we efficiently retrieve

the record pairs that coincide in the same block. This
however, does not solve the entire problem. Problem 1
requires that the result set contains only the candidate
record pairs, meaning that we must find a way to filter
out the pairs which reach the threshold of t collisions
on multiple blocking keys. If we wish to calculate
this set exactly, we would have to keep and update a
dynamically sized result set, as the amount of pairs that
reach the threshold cannot be known in advance. This
however is expensive and difficult in the context of secure
computation.

To get around this, we slightly alter the output of
the functionality. Instead of adding all pairs such that
collisions(a, b) ≥ t, we add for each record a ∈ A the top
x record pairs (a, ·) ranked by the number of collisions
of each pair as defined by collisions(a, b). With a fixed
and publicly known x results per record a ∈ A, we can
unconditionally add these records to M̃. The downside
is that we introduce another parameter which influences
the quality of the blocking process as we will discuss in
Section VIII.

This brings us to the following functionality for
blocking, which we we implement using the MP-SPDZ
Framework.

Functionality 1 (Blocking). Let A = {a1, . . . , an} and
B = {b1, . . . , bm} be a datasets according to schema I.
Let BK = {bk1, . . . , bkΓ} be a blocking scheme. Given
private inputs A and B, public inputs n = |A|,m = |B|

and parameter x, 0 < x ≤ m, find the set M̃x

max(a,B) = argmax
1≤j≤m

(collisions(a, bj))

topx(a,B) : X0 = ∅
Xx+1 = Xx ∪ {max(a,B \ Xx)} for x ≥ 0

M̃x =
{
(i, j) : ai ∈ A, j ∈ topx(ai, B),

}
where |M̃| = n × x, containing for each record a ∈ A
the top x pairs out of all possible pairs {(a, b) : b ∈ B}
according to the number of collisions.

C Threat Model
We wish to securely implement Functionality 1 [1]. In

the ideal world, Alice and Bob send A and B to a trusted
third party T , who then computes the Functionality 1
and sends back only M̃. In this ideal world, each party
learns M̃ and nothing else. Using MPC, we replace this
imaginary trusted third party T with a cryptographic
protocol.

In this paper we consider two-parties, which limits
the relevant cryptographic protocols to those for
the ‘dishonest-majority’ setting, as there can be no
‘honest-majority’. Furthermore, we assume that the
parties behave in a ‘semi-honest’ fashion. This means that
a party will try to learn as much as it can from the data
it obtains during a protocol run, but will not deviate from
the protocol. In use-cases for blocking such as research
or cooperation of institutes within the same jurisdiction,
this should be sufficiently strong. In such a setup, there is
trust between the institutions but the problem is keeping
the data private. Since our implementation uses the
MP-SPDZ Framework, it is trivial to run the computation
using a different cryptographic protocol, e.g. a protocol
guaranteeing security in the malicious attacker model.
However, this will severely impact the running time,
as malicious attacker protocols require additional checks
during the computations.

The aforementioned security assumptions limit the
relevant cryptographic protocols implemented in the
MP-SPDZ Framework to the ‘semi’, ‘hemi’, ‘temi’ and
‘soho’ protocols. In our implementation we use the
‘semi2k’ protocol (which resembled integer calculation of
64-bit processor for k = 64), as this resulted in the best
running time performance. This protocol is the result of
stripping the SPDZ2k protocol from all elements needed
for malicious security, leaving the generation of additively
shared Beaver Triples using Oblivious Transfer [23].

8

D Full Procedure
In this section, and the accompanying pseudo-code, the

notation (x1, . . . , xn) is used to denote a n-sized tuple, an
ordered sequence of objects.

Alice and Bob both own a dataset according to the
dataset schema I, datasets A and B respectively. Before
starting the secure computation section of the algorithm,
the parties must first perform local computation to
transform their dataset into a suitable structure, which
differs between Alice and Bob.

In lines 2-5, Alice constructs her input from her dataset
A such that each record in a ∈ A has a corresponding
tuple in A′. Each tuple contains 1 + Γ items, one for
every blocking key bkγ and the index of a. The resulting
tuple has the form (i, bk1(ai), . . . , bkΓ(ai)). The index
i corresponds to the position of ai in dataset A. This
index does not need to be secret, as Bob cannot learn
anything from the indexes alone other than the size of
Alice’s dataset. In line 13, the structure A′ is secret-shared
with Bob.

In lines 6-12, Bob creates the inverse mapping of
Alice’s structure. For every blocking key bkγ , Bob stores
a mapping from values in its co-domain h ∈ bkγ to
records {b : bkγ(b) = h}mapped to this value. For efficient
computation, this mapping is stored as a tuple of |B| = m
bits. In this tuple, the j’th bit indicates whether record
bj is included in block BB,bkγ

h . The resulting mapping T γ

has a size of |bkγ | ×m, holding a m-sized tuple of bits for
every value h in the co-domain of bkγ . Each mapping T γ

is secret-shared with Alice and then used to initialize a
corresponding ORAM oramγ (lines 15 and 16).

Lines 18-28 are the core of the secure computation. For
every record a ∈ A, we wish to find the records of Bob
that collide at least t times. To this end, we keep track of
the collisions using a m-sized tuple of counters initialized
on line 20. For every blocking key bkγ , we retrieve the
block BB,bkγ

h where h = bkγ(a), i.e. Bob’s records that
are blocked to the same block as Alice’s record. Since the
block retrieved is a m-sized tuple of bits, this tuple can be
added element-wise to the counters tuple.

After all the blocks for record a have been retrieved,
the counters tuple needs to be interpreted and used to
populate the set M̃. This task is performed by the
procedure GetTopMatches, taking in the context variables
i, counters and M̃ and the parameter x. As described in
Section V.B, we retrieve for record a the top x matching
records b ∈ B. The procedure starts by splitting the
m-sized tuple of counters in half (resulting in tuples left
and right), and then performing an element-wise secure
comparison between the two resulting tuples. Recall that
the j’th element in counters represents the counter for
record pair (a, bj). The procedure now writes back the ids
of the m

2 highest counters, according to the results of the
secure comparison.

As we will discuss in Section VIII, the result of
GetTopMatches is not guaranteed to be correct but due to
distribution of values in counters works well as a trade-off
between recall and running time.

Algorithm 1 Pseudocode for Secure Blocking
1: procedure SecureBlocking(A,B,BK, x)

where A = {a1, . . . , an}, B = {b1, . . . , bm},
BK = {bk1, . . . , bkΓ}

▷ Local Computation - Alice
2: A′ ← ∅
3: for ai ∈ A do
4: A′ ← A′ ∪ (i, bk1(ai), . . . , bkΓ(ai))
5: end for

▷ Local Computation - Bob
6: for γ ← 1 to Γ do
7: T γ ← 0|bkγ |×m

8: for bj ∈ B do
9: h← bkγ(bj)

10: T γ
hj ← 1

11: end for
12: end for

▷ Secure Computation
13: ⟨A′⟩ ← share((A′))
14: for γ ← 1 to Γ do
15: ⟨T γ⟩ ← share(T γ)
16: ⟨oramγ⟩ ← Oram.init(n, l, ⟨T γ⟩)
17: end for

18: M̃ ← 0n×m

19: for (i, ⟨bk1(ai)⟩, . . . , ⟨bkΓ(ai)⟩) in ⟨A′⟩ do
20: ⟨counters⟩ ← ∅
21: for γ ← 1 to Γ do
22: ⟨h⟩ ← ⟨bkγ(ai)⟩
23: ⟨block⟩ ← Oram.access(⟨oramγ⟩, read, ⟨h⟩)
24: ⟨counters⟩ ← ⟨counters⟩+ ⟨block⟩
25: end for

26: M̃ ← GetTopMatches(i, ⟨counters⟩, ⟨M̃⟩)
27: end for
28: end procedure

29: procedure GetTopMatches(i, ⟨counters⟩, ⟨M̃⟩)
30: r ← |⟨counters⟩|
31: ⟨ids⟩ ← (⟨1⟩, . . . , ⟨m⟩)
32: while |⟨counters⟩| > x do
33: mid← ⌊ r2⌋
34: ⟨left⟩ ← (⟨counters⟩, . . . , ⟨countersmid⟩)
35: ⟨right⟩ ← (⟨countersmid+1⟩, . . . , ⟨countersmid·2⟩)
36: ⟨cond⟩ ← (⟨left⟩, . . . , ⟨leftmid⟩)

?
>

(⟨right⟩, . . . , ⟨rightmid⟩)
37: ⟨ids⟩ ← (⟨cond1⟩ · (⟨ids1⟩ − ⟨idsmid+1⟩) +

⟨idsmid+1⟩, . . . , ⟨condmid⟩ · (⟨idsmid⟩ −
⟨idsmid·2⟩) + ⟨idsmid·2⟩)

38: r ← ⌊ r2⌋
39: end while
40: ⟨M̃i·⟩ ← ⟨M̃i·⟩+ (⟨id1⟩, . . . , ⟨idx⟩)
41: end procedure

9

TABLE I
The local computation, secure computation,

communication and round complexities of Algorithm 1

Local Secure Comm. Rounds

O(Γ× (n+m)) O(n×m) O(n×m) O(n logm)

E Complexity
In this section we analyze the complexity of the

implementation. Recall that the sizes of the inputs are
denoted as n = |A|,m = |B|, the amount of blocking keys
as Γ = |BK|.

First, the time complexity of the local computation.
Both Alice and Bob need to ‘block’ their records, i.e.
apply each blocking key function to each of their records,
resulting in Γ × n computations for Alice and Γ × m
computations for Bob. The time complexity of the local
computation is therefore O(Γ · n+ Γ ·m).

Next we analyze the running time complexity,
communication complexity and rounds complexity of the
secure computation part of the scheme. The entire secure
computation is wrapped in a loop over the records in A′,
which has the same size as the input A. Within each
iteration, there is another for loop over the constant Γ.
Each iteration of Γ includes a single Oram.access and
the addition of two m-sized tuples. The latter
operation is free within our semi-honest attack model.
The Square-Root Oram.access has an amortized secure
computation complexity and communication complexity
of

O
(√
|bk| log3|bk|

)
and a O(log|bk|) round complexity, where |bk| denotes the
amount of blocks stored in the ORAM. After Γ iterations,
the procedure GetTopMatches performed.

The GetTopMatches procedure performs
∑log2

m
x

i
m
2i =

m − x secure comparisons. Since m ≫ x, the procedure
results in a running time and communication cost ofO(m).
Due to the parallel nature of the while loop iteration, the
round complexity scales only with the amount of while
loop iterations which is O

(
log m

x

)
.

The full secure computation and communication
complexity is

n× (Γ×
√
|bk| log3|bk|+m),

with the dominant factor being O(n×m).
The round complexity is n× (Γ× log|bk|+ logm). We

simplify this to O(n logm) as |bk| ≤ m assuming Bob does
not hold empty blocks. The resulting complexity figures
are given in Table I.

F Optimizations
Square-Root ORAM Refresh One major running
time optimization we can make is to run the Square-Root
ORAM refresh operation in a multi-threaded fashion.
Recall from Section III.C that we need to refresh an
ORAM after a period of T accesses. This operation is
the most expensive operation of the ORAM, as it requires

a secure shuffle of the underlying memory. Note however
that the ORAM ⟨blocksγ⟩ for every blocking key bk is
queried the exact same amount of times. Therefore, each
ORAM will need to refresh during the same iteration of
the loop in line 15. Performing the refresh in parallel with
a separate thread per ORAM significantly improves the
running time up to a factor of Γ.

VI SECURE LSH-BASED BLOCKING

As described in our model of blocking, we focus on
blocking techniques which allow parties to independently
and locally produce blocking keys. The blocking
techniques Token Blocking, Standard Blocking and
Locality Sensitive Hashing fit this definition. These
techniques are briefly elaborated in Section II.
Token-based techniques has been shown to have a
poor reduction ratio [6]. Standard Blocking also generally
tends to underperform compared to other blocking
techniques [31, 34]. In this paper we therefore focus on
Locality Sensitive Hashing.

A Locality Sensitive Hashing
Locality Sensitive Hashing (LSH) is a technique

introduced in [17] to solve the nearest neighbor problem.
This problem suffers from the curse of dimensionality,
in that finding the nearest neighbor of a point in a
high dimensional space quickly becomes infeasible using
pair-wise comparisons for all dimensions. LSH is a tool to
solve this problem approximately, by hashing items using
a distance sensitive hashing function such that items that
are spatially close produce the same hash. Hashing is
generally a fast operation, making it an attractive solution
for blocking.

LSH-based blocking is a blocking technique used in
both the record linkage [31] and privacy-preserving record
linkage literature [11]. The idea is to hash a record using a
LSH function to place it into a block. Record pairs that are
placed into the same block are regarded as candidate pairs.
The records are hashed using multiple hashing functions
from the same family to place them in multiple blocks, to
increase the probability of similar records colliding for at
least one hashing function.

Of particular interest in this paper are the LSH-based
approaches which utilize binary vector representations of
records as input, as they work well in a Secure Multi-Party
Computation setting. The usual way to generate such
representations is through adding the N-grams of a record
to a Bloom Filters [6, 22] as described in Section III.D.
Two common LSH families on binary input are Hamming
LSH (H-LSH) and Jaccard LSH. We focus on the former,
as it has been shown that Hamming LSH outperforms
Jaccard LSH in terms of running time and recall [6, 22].

Definition VI.1 (Hamming distance).

Hamming :({0, 1}l, {0, 1}l)→ ZK

(x, y) 7→ |x⊗ y|,

where ⊗ denotes the bit-wise xor operation.

10

The family of Hamming LSH functions is sensitive to
the hamming distance, meaning that a pair of elements
with a small hamming distance is more likely to be hashed
to the same block. In this family, a base hash function h
samples uniformly at random a bit from the input.

Definition VI.2 (Hamming LSH (H-LSH)). Let S =
{0, 1}l. The family of Hamming LSH functions is defined
as the set

H : {h : S → {0, 1} : h(x) = x[i], i ∈ Zl},

where x[i] denotes the i’th bit in x.

The family H is (r,p)-sensitive for the hamming
distance, such that any h ∈ H

if Hamming(x, y) ≤ r

then Pr[h(x) = h(y)] ≥ p ∀x, y ∈ S

where p = 1− r

l
.

B Frequent Pairs Scheme
For the specific implementation of LSH-based blocking,

we use the method by Karapiperis and Verykios [21],
which is to our knowledge the state of the art in
LSH-based blocking. They introduce the Frequent Pairs
Scheme (FPS), which makes use of Hamming LSH hashing
functions to generate collisions between pairs of records,
and describe the optimal parameters for their scheme.

Given the Hamming LSH family H, to generate
blocking identifiers of κ bits we pick a composite hash
function H consisting of κ base hash function as the
blocking key function:

H = h1 ∈R H|| . . . ||hκ ∈R H

The hashing table generated by applying the hashing
function over the entire dataset generates the blocked
dataset. The hashing function H is thus analogous to the
notion of a blocking key.

To increase the recall of this method, authors [22, 21]
redundantly use Γ blocking keys. Generating multiple
blocking keys for each record increases the probability
that a truly matching pair will collide for one of the
blocking keys. We denote the blocking key for iteration
γ ∈ {1, . . . ,Γ} as bkγ = Hγ .

LSH-based methods thus employ multiple blocking keys
to achieve a high recall. The negative consequence of
this practise is a reduced precision as more false positives
are generated. Therefore, the authors [21] introduce the
notion of collisions and filter out only those candidate
pairs that have a higher-than-average number of hash
collisions for the desired distance threshold.

Parameters The quality of the FPS scheme is
determined by three parameters, κ, δ and θ. The
parameter κ, which has already been introduced, specifies
the amount of bits of which the blocking identifiers should
consist. The parameter θ specifies the fault tolerance
of the scheme. Specifically, it specifies the maximum

amount of bits which are expected to differ between two
Bloom Filters of two records which represent the same
entity. The higher this distance, the more typographic
errors can be caught by the scheme. Lastly, δ is the
confidence parameter which bounds from above the failure
probability of two Bloom Filters with distance θ missing
the collision threshold.

The mentioned collision threshold will serve as the
threshold t as defined in Section IV.B. Both the threshold
t and the number of blocking keys Γ are derived from κ, δ
and θ (we refer to [21] for details).

VII RESULTS

This section describes the experimental setup used to
test the performance of Algorithm 1 using the LSH-based
blocking technique of Karapiperis and Verykios [21]
introduced in the previous section, and reports the results.

The results are discussed in Section VIII.

A Benchmarking setup
The secure computation step of the scheme is

implemented using the high-level interface of the
MP-SPDZ Framework. The implementation makes use
of multi-threading were applicable to speed up the
computation. The compilation step which compiles the
high-level code into ‘secure assembly’ is not included in
the benchmarks. As explained in Section V.C, the ‘semi2k’
cryptographic protocol was used to run the assembly. The
computation was compiled using a ring-size of 64 bits, a
computational security level of 128, a statistical security
level of 40, the default settings for MP-SPDZ, and edaBit
enabled. The computation is also compiled with the
‘–invperm’ flag, which enables the inverse permutation
operation used by Sqrt-ORAM [48]. The execution spawns
two processes, one for each party. Both parties run on the
same machine, meaning the computations are not bound
by bandwidth limitations. The running times reported
in the results are the combined running time of both the
offline and the online phases of the secure computation.

The benchmarks were run on virtual machines deployed
in the Google Compute Engine. The virtual machines were
equipped with 32GB of RAM and 8-vCPUs (4 physical
cores) of type C2, the compute optimized CPU family
of the platform. The specific model is Intel Xeon Gold
6253CL Processor running at 3.1GHz base frequency and
3.8GHz boost frequency.

B Blocking Quality
In this section we verify whether the quality of the

blocking solution is in line with expectations. We
describe the metrics relevant to blocking, followed by the
benchmarking setup used to test the blocking quality.

1 Metrics: The quality of a blocking solution can be
measured using the three standard metrics of the blocking
literature [3].

The first metric is the Pairs Completeness (PC). This
metric measures the ratio of truly matching pairs found
by the blocking method, i.e. the recall. It is defined
as PC = |M̃∩M |

|M | , where M̃ is the set of candidate pairs

11

generated by the blocking solution, and M is the set of
truly matching pairs. A low PC results in subsequent
poor record linkage performance, as pairs that would
be matched by RL are not placed in the same blocks.
The second metric Reduction Ratio (RR) is defined as
RR = 1.0− |A×B|

|M̃| . The Reduction Ratio captures the
reduction in the comparison space of record linkage, where
a high reduction ratio means a highly reduced space. The
metric is only relevant for blocking solutions to measure
their effectiveness as a preprocessing step to improve
performance of the record linkage step (see Figure 4).

The third metric is the Pairs Quality (PQ). It is defined
as PQ = |M̃∩M |

|M̃| . The Pairs Quality reflects the precision
of the blocking solution in finding truly matching pairs.

2 Benchmark : To test the blocking quality we use the
same experimental setup as in Stammler et al. [42]. Alice
and Bob each sample a dataset of a 10.000 records, where
A and B overlap in exactly 60% of the records, i.e. A and
B both contain 6.000 identical records. The datasets have
the attributes ‘First Name’, ‘Surname’, ‘Birth date’ and
‘SSN’. In their comparison, Stammler et al. [42] use the
non-free ‘Mockaroo’ service to generate a synthetic dataset
of 50.000 records from which the required records for each
experiment are sampled. In our experiments, we use a
random subset of 50.000 records of the North Carolina
Voter Registration Database [30]. This results in similar,
but not identical datasets.

Next, the database of Bob is perturbed. Each field is
probabilistically perturbed by two permutations, either a
deletion of a random character or the exchange of two
random characters. Each permutation is applied with
equal probability, such that the total probability of a
permutation of a field is 40%.

The fuzziness parameter θ used to generate the blocks
was optimally set to 440. This parameter sets the
maximum expected bit distance between two Bloom
Filters representing the same entity. Given the expected
change in bits for a deletion (30) and for a transposition
(80) according to [21], the Bloom Filter distance for a true
positive pair should be at most 4 × (30 + 80) = 440 (the
maximum amount of permutation per field is known to be
a single deletion and a single transposition).

The blocking quality was benchmarked using various
settings of the parameters κ and δ. The results are shown
in Table II. The general observation is that the number of
false negatives is very low for δ ≤ 0.001, resulting in a near
optimal Pairs Completeness (PC). The Reduction Ratio
(RR) of 0, 9375 is high and translates into a large search
space reduction, but is lower than that in [21]. Similarly,
the Pairs Quality (PQ) is much smaller than in [21] due
to the high number of false positives.

C Running Time
Algorithm 1 has four parameters, |A|, |B|, BK and x.

The parameters of interest are the dataset sizes |A| and |B|
as these are the parameters we wish to scale. As shown in
the the complexity analysis, the number of blocking groups
Γ = |BK| also influences the running time. However, this
parameter is set independently of |A| and |B| according to

TABLE II
The quality of the blocking output for various values of κ
and δ with x fixed to 625. The results are snapshots of a

single execution of the Algorithm.

κ δ Time (s) TP FN PC PQ RR

6 0,01 24907 5954 44 0,9927 0,00095 0,9375
7 0,01 35727 5989 9 0,9985 0,00096 0,9375
8 0,01 57037 5991 7 0,9988 0,00096 0,9375
6 0,001 35324 5991 8 0,9987 0,00096 0,9375
7 0,001 51543 5994 5 0,9992 0,00096 0,9375
8 0,001 86455 5995 3 0,9995 0,00096 0,9375
6 0,0001 47060 5995 2 0,9997 0,00096 0,9375
7 0,0001 68075 5990 4 0,9993 0,00096 0,9375
8 0,0001 110198 5996 3 0,9995 0,00096 0,9375

0 2,000 4,000 6,000 8,000 10,000
0

2,000

4,000

6,000

8,000

10,000

12,000

Size of dataset Alice, |A|

R
un

ni
ng

ti
m
e
in

se
co
nd

s

|B| = |A|
|B| = 100

|B| = 1000

Fig. 5. Running Time for varying values of |A| and |B|

the blocking quality desired for the use case.
To benchmark the running time, |A| is varied between

1 and 10.000 in increments of 500. For each value of
|A|, timings are reported for three different values for |B|,
namely |B| = |A|, |B| = 100, and |B| = 1000.

The results of this experiment are shown in Figure 5.
The graph shows that the experimental results are in line
with the complexity analysis. When |B| is set to |A|, the
running time scales with |B| × |A|. When |B| is fixed, the
running time scales linearly with |A|.

D Parameter x
To confirm that the parameter x has a negligible

effect on the computational complexity, as claimed in the
complexity analysis, we run several benchmarks for x with
all other parameters being equal. Figure 6 shows the
running time plotted against x. The graph shows the
running time increasing slightly for increasing values of
parameter x. This is due to the fact that the complexity
analysis posed the assumption that x≪ |B|, whereas the
graph plots much larger values for x.

Furthermore, parameter x determines the size of the
result set M̃, and thus influences the blocking quality
metrics. To analyze the effect of parameter x on the
blocking quality, we must first differentiate between false
negatives resulting from the choice of parameter x and

12

4 8 16 32 64 128 256 512 1024
0

200

400

600

800

1,000

1,200

Parameter x

T
im

e
in

se
co
nd

s

|A| = |B| = 2048

Fig. 6. Running times for different values of parameter x.
The benchmarks use parameters κ = 6, δ = 0.001, θ = 440.

2 4 8 16 32 64 128 256 5121024
1

2

4

8

16

32

64

128

Parameter x

D
ro
pp

ed
m
at
ch
es

κ = 5, |B| = 512

κ = 5, |B| = 1024

κ = 5, |B| = 2048

κ = 7, |B| = 512

κ = 7, |B| = 1024

κ = 7, |B| = 2048

Fig. 7. The amount of dropped matches for varying values of
x over the same dataset. The experiment was run using

different values of κ. The remaining parameters were set to
|A| = |B| = 2048, δ = 0.001, θ = 440.

the false negatives resulting from the failure probability of
Locality Sensitive Hashing. The former set will be called
the dropped pairs, i.e. pairs that didn’t fit into the result
set. The latter set is called the set of missed pairs. For
parameter x we are interested in the set of dropped pairs.

We run several benchmarks with varying values of
parameter x. The dataset sizes |A| and |B| were set to
2048, allowing for a wide range of values for x to be tested.
The blocking quality parameters θ and δ were set such
that the amount of matches missed is negligible. Each
benchmark was run five times, gathering the average and
the standard deviation.

Figure 7 shows the results of this experiment. Note that
both axis are logarithmic scales. The graph shows a strong
correlation between the parameter x and the number of
dropped matches. Furthermore, the graph shows that for
a higher value of κ, the number of dropped matches is
lower overall.

0 2,000 4,000 6,000 8,000 10,000
0

50,000

1 · 105

1.5 · 105

2 · 105

Size of the datasets of Alice and Bob n = |A| = |B|

R
un

ni
ng

ti
m
e
in

se
co
nd

s

Our Work
Stammler et al. [42]

Fig. 8. Comparison of running times between our work and
that of Stammler et al. [42].

E Comparison to Stammler et al. [42]
In order to show that the blocking solution indeed

results in a practical decrease in running time, we compare
the running time of our blocking solution to the record
linkage solution of Stammler et al. [42]. Do note that in
a real-world scenario a secure record linkage step would
be needed after the secure blocking step to achieve the
same functionality. However, the record linkage step after
blocking is only computed on a greatly reduced subset of
records.

To compare the solutions, we benchmarked both
solutions (using the original code for Stammler et al. [42])
on the same machine described in Section VII.A. Both
solutions were compiled for 32-bit computation with a
computational security level of 128 bits. Both solutions
were compiled in release mode for optimal performance.
Both parties in a computation run on the same machine,
such that no bandwidth restrictions are imposed.

For our solution, we chose to use the parameters κ =
6, θ = 440, δ = 0.001, which are the smallest parameters
that would result in near-optimal blocking performance on
a heavily permuted dataset as described in Section VII.B.

For the work of Stammler et al. [42], the GMW/A
version of their solution is used which showed the best
performance in their paper. For all attributes, the ‘dice’
comperator is used, which uses bloom filters to fuzzy
match strings, the same as in this paper.

The solutions were benchmarked under varying dataset
sizes ranging from 500 to 10000 in increments of 500. The
records in the datasets have four string attributes. The
results are shown in Figure 8.

VIII DISCUSSION

A Blocking Quality
The goal of blocking is to reduce the number of

comparisons needed in the matching step (the next step
in a full record-linkage pipeline as depicted in Figure 4).
As such, blocking should have a high Reduction Ratio and
Pairs Completeness. A high PC ensures that the quality
degradation of the matching step is negligible. Every false

13

negative produced by the blocking step will consequently
be missed in the matching step. Furthermore, a high RR
is needed for the combination of the blocking step and
matching step to run faster than a standalone matching
step.

As observed in Section VII, the blocking solution
performs well. This is expected, as our Secure Blocking
solution implements the blocking technique of Karapiperis
and Verykios [21]. For a deeper analysis of the impact of
κ, δ and θ on the blocking quality, we refer to this paper.
Instead, we will point out the differences in results between
our solution and that of [21].

Though our solution uses the technique of [21] to
block the datasets of Alice and Bob, the decision on
which records to include in the result set M̃ differs
in our implementation, as the method in [21] does not
translate well into the context of secure computation.In
our implementation, the procedure GetTopMatches takes
care of this step.

First of all, instead of filtering out record pairs with
exactly t or more collisions, the procedure, for a single
record a ∈ A aims to return the set of exactly the
top x records pairs {(a, b) : b ∈ B} ranked according
to their number of collisions. Setting x such that
x > |{(a, b) : collisions(a, b) ≥ t, b ∈ B}|, guarantees false
positives. Idem if x is smaller, false negatives are
guaranteed.

The number of false positives is thus fixed to n×x−TP .
This directly impacts the RR and PQ. The results
indicate that a good albeit lower RR is achieved compared
to [21]. The PQ metric is more sensitive to the amount
of false positives and thus is much smaller in our results.
The results show that although that our implementation
significantly reduces the comparison space, it produces
more false positives than [21].

Secondly, as mentioned in Section V.D, the procedure
GetTopMatches does not guarantee correctness.

The incorrectness stems from the fact that the
procedure only performs a maximum of m secure
comparisons to determine the top x counters in a vector
of m counts. To illustrate, consider the vector [2, 3, 1, 4].
This vector is reduced to

[2, 3]
?
> [1, 4] = [2, 4]

after one iteration of GetTopMatches, causing the 3 to be
missed.

Upon analyzing the debugging information, it becomes
clear that all false negatives generated in the benchmarks
of Table II are in fact caused by the procedure
GetTopMatches. The absence of missed pairs is in line
with expectations, as true matching record pairs often
have a distance lower than that of θ, resulting in a failure
probability much smaller than δ. To verify, the same
benchmarks were ran using a much smaller value θ = 176,
which did generate missed pairs.

Overall, our implementation results in a high RR and
a high PC, but sacrifices PQ to achieve a faster secure
computation.

B Parameter x
To reduce the chance of dropped pairs, the parameter x

must be set generously. In terms of running time, this is
not an issue. Figure 6 confirms the complexity analysis
that parameter x has little influence on the running
time. However, a larger x directly translates to a lower
Reduction Ratio, which reduces the effectiveness of the
blocking solution.

The experiment in Section VII.D gives us insight into
the appropriate value for x (results depicted in Figure 7).
We observe that x must scale with both the size of the
dataset |B|, and with κ, to keep the amount of dropped
pairs to a minimum. This first is straightforward. The
procedure GetTopMatches collects the top x pairs from
a vector of |B| pairs. As the ration between x and |B|
becomes smaller, the chance that a valid candidate pair is
‘pushed out’ increases.

Second is κ. Recall that κ represents the amount of bits
of a block identifier, thus determining the amount of blocks
are contained in a single blocking table. Karapiperis
and Verykios [21] note in their paper that κ must be
set sufficiently large for a decent Pairs Quality. This is
because the chance that a pair of dissimilar records finds
itself in the same block increases as the amount of blocks
decreases. In our setup, a smaller k not only indirectly
reduces the PQ, but also directly the PC. This is
because pairs of dissimilar records have a higher chance of
generating t or more collisions, thus making them compete
with true positive pairs for a spot in the vector produces
by GetTopMatches.

The finding that κ must scale with |A| and |B| to
achieve good blocking performance is in line with the
earlier conclusions of [20, 21]. In our implementation
however, there is an additional degradation in not only
PQ but also PC due to the impact of κ on GetTopMatches.
However, as can be seen Table II, near-optimal PC can be
achieved on datasets of sizes in the order of 213 for values
of κ as low as 6.

C Running Time
There are two paths to take when designing a fast

blocking solution. Either the algorithm must have a better
algorithmic complexity than |A| × |B| or the algorithm
must perform a very cheap comparison, ideally both.
In the context of secure record linkage, we focus on
the complexity and computational cost of the secure
computation as this step dominates the running time.

In our solution, we aim to construct a cheap comparison
by limiting the work that needs to be done in the
secure computation. To this end, we limit our scope to
independent blocking techniques, such that computation
of the blocked datasets can be performed locally outside
of a secure computation. What is left for the secure
computation phase is only the comparison of blocking
identifiers. Intuitively, this should be faster than running
a more involved matching step.

Table II includes the running times in seconds for
various benchmarks. The main result is that we managed
to block two datasets of sizes |A| = |B| = 10000 in under

14

ten hours κ = 6, δ = 0.001, including both the offline and
online phase of the computation. Although this is orders
of magnitude slower than a non-secure computation, the
running times are small enough for some real-world uses
on smaller datasets.

One promising use-case is blacklist checking. In such a
setup, one party has a blacklist with a limited number
of entries. Another party with a much larger dataset
could check whether any of its records are contained in
the blacklist. In general, use-cases where one dataset is
much smaller than the others would suit well. In these
scenarios, the run-time scales with |A| = n.

In terms of computational complexity, we can conclude
from Figure 5 that our solution scales with O(n×m) as
predicted by our complexity analysis.

The main issue that prevents our design from reaching a
smaller running time complexity has to do with the block
length. In our current design we fixed the block-length to
m. This length is used to store a single bit for each record
b ∈ B, indicating its presence in the block. This allows
us to efficiently count the collisions of a record of Alice a
with each b ∈ B. However, in the end we must perform m
secure comparisons to filter out the candidate record pairs.
If we wish to perform less computation (asymptotically)
for a single record a of Alice, the blocks retrieved from
Bob should be smaller in length than m. This introduces
a new problem. Now the blocks can no longer store a
single bit for each b ∈ B and must instead store a smaller
number of integers, namely the indexes of Bob’s records
which are contained in the block. This complicates the
process of counting the collisions. We would then have to
introduce a new ORAM to be able to count the collisions
based on the secret indexes retrieved from a block of Bob.
We would end up with a complexity in the form

n× Γ× (Oram.read+ l × Oram.write),

i.e. for every blocking key, we read a block of length
l. For every index in the block, we would need an
ORAM write instruction to increase the collision counter
for this index. Problematically, if we wish to reduce the
average block length l = n

|bk| (disregarding the deviation,
which also needs to be taken into account), we would have
to increase the number of blocks |bk| = 2κ. In turn, we
would need to increase Γ as Γ scales with κ.

The problem here is thus that to reduce the complexity,
we need to reduce the block length by increasing κ which
in turn increases the needed amount of blocking keys to
retain the blocking quality. A blocking scheme with a
completely independent number of blocking keys (likely
not a hashing based method) might not suffer from this
limitation.

D Comparison to Stammler et al. [42]
In Section VII we also compared the running time of

our blocking method to the record linkage solution of
Stammler et al. [42]. As their work is the only one that
provides a complete record linkage solution built as a
secure computation, this is currently the only work that
would benefit from a secure blocking step. Therefore, it is

interesting to analyze whether our solution would actually
speed up this method.

The results in Figure 8 clearly show that although
both solutions scale quadratically, the running time of
our solution is much smaller. Fitting both curves to the
quadratic function a + C × n2, we get that our solution
achieves roughly a 7x fold reduction in running time.
The benchmarks were ran assuming a heavily permuted
dataset, which might not be necessary for real-world use.
Reducing the fuzziness parameter of θ our solution would
furthermore significantly reduce the running time, whereas
this scaling is not applicable in [42].

It should however be noted that the secure
computations were implemented using different
frameworks. While our work uses MP-SPDZ, [42] uses
the ABY framework. For a more definitive benchmark,
both solutions would have to be implemented in the same
framework. Furthermore, the benchmark should compare
the running times of record linkage with and without
blocking, not only stand-alone blocking.

One limitation of our secure blocking solution in
comparison to the record linkage solution [42], is that our
solution only considers string attributes. The solution in
[42] also considers integer attributes, for which a different
distance metric is implemented.

IX CONCLUSION

In this work, we have presented the first secure
blocking solution. With this solution, we make a step
towards realizing a full record-linkage pipeline as a secure
computation.

We say our solution is secure as it reveals no information
other than the result set M̃ given the CDH assumption.
The results in this paper were all generated under the
assumption of the ‘semi-honest’ or ‘honest-but-curious’
attacker model. This model assumes that the parties
in the protocol will not deviate from the protocol. As
this solution was built using the MP-SPDZ framework, it
can easily be compiled to the ‘malicious’ attacker model,
although at a significant hit to run-time performance. The
framework also implements protocols based on different
security assumptions. Thus, if post-quantum security is
desired, the algorithm could be compiled to use oblivious
transfers based on the LWE assumption.

To achieve secure blocking, we have taken the idea of
Stammler et al. [42] to employ Oblivious RAM (ORAM)
for implementing a secure blocking solution, and shown
its feasibility. The solution produces very low false
negative rates for large datasets in the context of secure
computation using the blocking technique of Karapiperis
and Verykios [21], meaning the quality of the result set is
applicable to real-world use-cases.

Furthermore, the solution presented in this paper is
not limited to the blocking technique of [21]. Any
blocking technique which allows parties to locally and
independently partition their dataset could be used to
implement a secure blocking solution. As such, this paper
more generally demonstrates the applicability of ORAM
for this problem.

15

Our benchmarks comparing the running time of our
solution to the record linkage solution of Stammler et al.
[42] show that our solution runs much faster on datasets of
the same size, and thus our solution can be used to reduce
the overall running time of a record linkage solution.

Future Work In this paper we chose to implement the
Sqrt-ORAM construction by Zahur et al. [48] as building
block for our secure blocking solution. A more recent work
published by Doerner and Shelat [4] presents the FloRAM
construction. This construction requires plaintext local
computation, which does not fit the MP-SPDZ framework
well. However, the FloRAM construction does not
require an expensive initialization procedure, requires
asymptotically less secure computation and outperforms
all previous construction in terms of concrete running-time
for a large range of parameters. This construction would
likely result in faster running times.

LIST OF SYMBOLS

δ The confidence parameter, which gives that a pair of
records with a bloom filter hamming distance equal
to θ fails to reach the required the collision threshold..

κ The bit-length of a blocking identifier. A bit-length
of k results in 2κ blocks in a single blocking table..

θ The fuzziness parameter specifying the expected
amount of bits to differ between the bloom filters of
a pair of records which represent the same entity..

m Size of Bob’s dataset, |B|.
n Size of Alice’s dataset, |A|.
t The collision threshold, i.e. the amount of blocking

tables on which a pair of records should collide before
being counted as a candidate record pair. This value
is derived from δ, κ and θ..

x The amount of candidate record pairs to generate for
a single record. Used in the quadratic complexity
version of the Algorithm..

REFERENCES

[1] A Pragmatic Introduction to Secure Multi-Party
Computation. url: https://securecomputation.
org/ (visited on 03/09/2022).

[2] Burton H. Bloom. “Space/Time Trade-Offs in Hash
Coding with Allowable Errors”. In: Communications
of the ACM 13.7 (July 1, 1970), pp. 422–426. issn:
0001-0782. doi: 10 . 1145 / 362686 . 362692. url:
http://doi.org/10.1145/362686.362692 (visited
on 02/17/2022).

[3] Peter Christen. “A Survey of Indexing Techniques
for Scalable Record Linkage and Deduplication”.
In: IEEE Transactions on Knowledge and Data
Engineering 24.9 (Sept. 2012), pp. 1537–1555. issn:
1558-2191. doi: 10.1109/TKDE.2011.127.

[4] Jack Doerner and Abhi Shelat. “Scaling ORAM
for Secure Computation”. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’17. New York,
NY, USA: Association for Computing Machinery,
Oct. 30, 2017, pp. 523–535. isbn: 978-1-4503-4946-8.
doi: 10.1145/3133956.3133967. url: https://
doi.org/10.1145/3133956.3133967 (visited on
03/10/2022).

[5] Halbert L. Dunn. “Record Linkage”. In: American
Journal of Public Health and the Nations Health
36.12 (1946), pp. 1412–1416.

[6] Elizabeth Ashley Durham. “A Framework for
Accurate, Efficient Private Record Linkage”. In:
(Apr. 9, 2012). url: https://ir.vanderbilt.edu/
handle/1803/11417 (visited on 04/06/2022).

[7] Cynthia Dwork. “Differential Privacy”. In:
Automata, Languages and Programming. Ed. by
Michele Bugliesi et al. Berlin, Heidelberg: Springer,
2006, pp. 1–12. isbn: 978-3-540-35908-1. doi:
10.1007/11787006_1.

[8] Aleksander Essex. “Secure Approximate String
Matching for Privacy-Preserving Record Linkage”.
In: IEEE Transactions on Information Forensics
and Security 14.10 (Oct. 2019), pp. 2623–2632. issn:
1556-6013, 1556-6021. doi: 10.1109/TIFS.2019.
2903651. url: https://ieeexplore.ieee.org/
document/8662592/ (visited on 02/03/2022).

[9] Ivan P. Fellegi and Alan B. Sunter. “A Theory
for Record Linkage”. In: Journal of the American
Statistical Association 64.328 (Dec. 1, 1969),
pp. 1183–1210. issn: 0162-1459. doi: 10 . 1080 /
01621459 . 1969 . 10501049. url: https : / / www .
tandfonline.com/doi/abs/10.1080/01621459.
1969.10501049 (visited on 02/16/2022).

[10] Craig Gentry et al. “Optimizing ORAM and
Using It Efficiently for Secure Computation”. In:
Privacy Enhancing Technologies. Ed. by Emiliano
De Cristofaro and Matthew Wright. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer,
2013, pp. 1–18. isbn: 978-3-642-39077-7. doi: 10.
1007/978-3-642-39077-7_1.

[11] Aris Gkoulalas-Divanis et al. “Modern
Privacy-Preserving Record Linkage Techniques: An
Overview”. In: IEEE Transactions on Information
Forensics and Security 16 (2021), pp. 4966–4987.
issn: 1556-6021. doi: 10 . 1109 / TIFS . 2021 .
3114026.

[12] Oded Goldreich and Rafail Ostrovsky. “Software
Protection and Simulation on Oblivious RAMs”.
In: Journal of the ACM 43.3 (May 1, 1996),
pp. 431–473. issn: 0004-5411. doi: 10 . 1145 /
233551.233553. url: http://doi.org/10.1145/
233551.233553 (visited on 03/04/2022).

16

https://securecomputation.org/
https://securecomputation.org/
https://doi.org/10.1145/362686.362692
http://doi.org/10.1145/362686.362692
https://doi.org/10.1109/TKDE.2011.127
https://doi.org/10.1145/3133956.3133967
https://doi.org/10.1145/3133956.3133967
https://doi.org/10.1145/3133956.3133967
https://ir.vanderbilt.edu/handle/1803/11417
https://ir.vanderbilt.edu/handle/1803/11417
https://doi.org/10.1007/11787006_1
https://doi.org/10.1109/TIFS.2019.2903651
https://doi.org/10.1109/TIFS.2019.2903651
https://ieeexplore.ieee.org/document/8662592/
https://ieeexplore.ieee.org/document/8662592/
https://doi.org/10.1080/01621459.1969.10501049
https://doi.org/10.1080/01621459.1969.10501049
https://www.tandfonline.com/doi/abs/10.1080/01621459.1969.10501049
https://www.tandfonline.com/doi/abs/10.1080/01621459.1969.10501049
https://www.tandfonline.com/doi/abs/10.1080/01621459.1969.10501049
https://doi.org/10.1007/978-3-642-39077-7_1
https://doi.org/10.1007/978-3-642-39077-7_1
https://doi.org/10.1109/TIFS.2021.3114026
https://doi.org/10.1109/TIFS.2021.3114026
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
http://doi.org/10.1145/233551.233553
http://doi.org/10.1145/233551.233553

[13] S. Dov Gordon et al. “Secure Two-Party
Computation in Sublinear (Amortized) Time”.
In: Proceedings of the 2012 ACM Conference
on Computer and Communications Security.
CCS ’12. New York, NY, USA: Association
for Computing Machinery, Oct. 16, 2012,
pp. 513–524. isbn: 978-1-4503-1651-4. doi:
10 . 1145 / 2382196 . 2382251. url: https :
//doi.org/10.1145/2382196.2382251 (visited on
03/07/2022).

[14] Xi He et al. “Composing Differential Privacy and
Secure Computation: A Case Study on Scaling
Private Record Linkage”. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’17. New
York, NY, USA: Association for Computing
Machinery, Oct. 30, 2017, pp. 1389–1406. isbn:
978-1-4503-4946-8. doi: 10 . 1145 / 3133956 .
3134030. url: https : / / doi . org / 10 . 1145 /
3133956.3134030 (visited on 03/05/2022).

[15] Ali Inan et al. “A Hybrid Approach to Private
Record Linkage”. In: 2008 IEEE 24th International
Conference on Data Engineering. 2008 IEEE 24th
International Conference on Data Engineering. Apr.
2008, pp. 496–505. doi: 10 . 1109 / ICDE . 2008 .
4497458.

[16] Ali Inan et al. “Private Record Matching Using
Differential Privacy”. In: Proceedings of the 13th
International Conference on Extending Database
Technology. EDBT ’10. New York, NY, USA:
Association for Computing Machinery, Mar. 22,
2010, pp. 123–134. isbn: 978-1-60558-945-9. doi:
10 . 1145 / 1739041 . 1739059. url: https : / /
doi.org/10.1145/1739041.1739059 (visited on
03/21/2022).

[17] Piotr Indyk and Rajeev Motwani. “Approximate
Nearest Neighbors: Towards Removing the Curse
of Dimensionality”. In: Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing.
STOC ’98. New York, NY, USA: Association for
Computing Machinery, May 23, 1998, pp. 604–613.
isbn: 978-0-89791-962-3. doi: 10 . 1145 / 276698 .
276876. url: https://doi.org/10.1145/276698.
276876 (visited on 04/20/2022).

[18] Katie Irvine et al. “Real World Performance
of Privacy Preserving Record Linkage”. In:
International Journal of Population Data Science 3
(Sept. 10, 2018). doi: 10.23889/ijpds.v3i4.990.

[19] Alexandros Karakasidis and Vassilios S. Verykios.
“Reference Table Based K-Anonymous Private
Blocking”. In: Proceedings of the 27th Annual
ACM Symposium on Applied Computing. SAC ’12.
New York, NY, USA: Association for Computing
Machinery, Mar. 26, 2012, pp. 859–864. isbn:
978-1-4503-0857-1. doi: 10 . 1145 / 2245276 .
2245444. url: https : / / doi . org / 10 . 1145 /
2245276.2245444 (visited on 04/06/2022).

[20] Alexandros Karakasidis and Vassilios S. Verykios.
“Secure Blocking + Secure Matching = Secure
Record Linkage”. In: Journal of Computing Science
and Engineering 5.3 (2011), pp. 223–235. issn:
1976-4677. doi: 10 . 5626 / JCSE . 2011 . 5 . 3 .
223. url: https://www.koreascience.or.kr/
article/JAKO201128762648380.page (visited on
04/05/2022).

[21] Dimitrios Karapiperis and Vassilios S. Verykios. “A
Fast and Efficient Hamming LSH-based Scheme for
Accurate Linkage”. In: Knowledge and Information
Systems 49.3 (Dec. 1, 2016), pp. 861–884. issn:
0219-3116. doi: 10.1007/s10115- 016- 0919- y.
url: https://doi.org/10.1007/s10115- 016-
0919-y (visited on 04/07/2022).

[22] Dimitrios Karapiperis and Vassilios S. Verykios.
“An LSH-Based Blocking Approach with
a Homomorphic Matching Technique for
Privacy-Preserving Record Linkage”. In: IEEE
Transactions on Knowledge and Data Engineering
27.4 (Apr. 2015), pp. 909–921. issn: 1558-2191. doi:
10.1109/TKDE.2014.2349916.

[23] Marcel Keller. “MP-SPDZ: A Versatile Framework
for Multi-Party Computation”. In: Proceedings of
the 2020 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’20: 2020
ACM SIGSAC Conference on Computer and
Communications Security. Virtual Event USA:
ACM, Oct. 30, 2020, pp. 1575–1590. isbn:
978-1-4503-7089-9. doi: 10 . 1145 / 3372297 .
3417872. url: https://dl.acm.org/doi/10.
1145/3372297.3417872 (visited on 05/04/2022).

[24] Marcel Keller and Peter Scholl. “Efficient,
Oblivious Data Structures for MPC”. In: Advances
in Cryptology – ASIACRYPT 2014. Ed. by
Palash Sarkar and Tetsu Iwata. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer,
2014, pp. 506–525. isbn: 978-3-662-45608-8. doi:
10.1007/978-3-662-45608-8_27.

[25] Mehmet Kuzu et al. “A Constraint Satisfaction
Cryptanalysis of Bloom Filters in Private Record
Linkage”. In: Privacy Enhancing Technologies.
Ed. by Simone Fischer-Hübner and Nicholas
Hopper. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2011, pp. 226–245. isbn:
978-3-642-22263-4. doi: 10 . 1007 / 978 - 3 - 642 -
22263-4_13.

[26] Ali Al-Lawati, Dongwon Lee, and Patrick McDaniel.
“Blocking-Aware Private Record Linkage”. In:
Proceedings of the 2nd International Workshop
on Information Quality in Information Systems.
IQIS ’05. New York, NY, USA: Association for
Computing Machinery, June 17, 2005, pp. 59–68.
isbn: 978-1-59593-160-3. doi: 10.1145/1077501.
1077513. url: https : / / doi . org / 10 . 1145 /
1077501.1077513 (visited on 04/05/2022).

17

https://doi.org/10.1145/2382196.2382251
https://doi.org/10.1145/2382196.2382251
https://doi.org/10.1145/2382196.2382251
https://doi.org/10.1145/3133956.3134030
https://doi.org/10.1145/3133956.3134030
https://doi.org/10.1145/3133956.3134030
https://doi.org/10.1145/3133956.3134030
https://doi.org/10.1109/ICDE.2008.4497458
https://doi.org/10.1109/ICDE.2008.4497458
https://doi.org/10.1145/1739041.1739059
https://doi.org/10.1145/1739041.1739059
https://doi.org/10.1145/1739041.1739059
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.23889/ijpds.v3i4.990
https://doi.org/10.1145/2245276.2245444
https://doi.org/10.1145/2245276.2245444
https://doi.org/10.1145/2245276.2245444
https://doi.org/10.1145/2245276.2245444
https://doi.org/10.5626/JCSE.2011.5.3.223
https://doi.org/10.5626/JCSE.2011.5.3.223
https://www.koreascience.or.kr/article/JAKO201128762648380.page
https://www.koreascience.or.kr/article/JAKO201128762648380.page
https://doi.org/10.1007/s10115-016-0919-y
https://doi.org/10.1007/s10115-016-0919-y
https://doi.org/10.1007/s10115-016-0919-y
https://doi.org/10.1109/TKDE.2014.2349916
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://dl.acm.org/doi/10.1145/3372297.3417872
https://dl.acm.org/doi/10.1145/3372297.3417872
https://doi.org/10.1007/978-3-662-45608-8_27
https://doi.org/10.1007/978-3-642-22263-4_13
https://doi.org/10.1007/978-3-642-22263-4_13
https://doi.org/10.1145/1077501.1077513
https://doi.org/10.1145/1077501.1077513
https://doi.org/10.1145/1077501.1077513
https://doi.org/10.1145/1077501.1077513

[27] Ibrahim Lazrig et al. “Privacy Preserving
Probabilistic Record Linkage Without Trusted
Third Party”. In: 2018 16th Annual Conference
on Privacy, Security and Trust (PST). 2018
16th Annual Conference on Privacy, Security
and Trust (PST). Aug. 2018, pp. 1–10. doi:
10.1109/PST.2018.8514192.

[28] Ashwin Machanavajjhala et al. “L-Diversity: Privacy
beyond k-Anonymity”. In: ACM Transactions on
Knowledge Discovery from Data 1.1 (Mar. 1, 2007),
3–es. issn: 1556-4681. doi: 10 . 1145 / 1217299 .
1217302. url: https : / / doi . org / 10 . 1145 /
1217299.1217302 (visited on 10/20/2022).

[29] Andrew McCallum, Kamal Nigam, and Lyle H.
Ungar. “Efficient Clustering of High-Dimensional
Data Sets with Application to Reference Matching”.
In: Proceedings of the Sixth ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining. 2000, pp. 169–178.

[30] “North Carolina Statewide Voter Registration”. In:
(). url: https : / / www . ncsbe . gov / results -
data / voter - registration - data (visited on
10/22/2022).

[31] Kevin O’Hare, Anna Jurek-Loughrey, and
Cassio de Campos. “A Review of Unsupervised
and Semi-supervised Blocking Methods for
Record Linkage”. In: Linking and Mining
Heterogeneous and Multi-view Data. Ed. by
Deepak P and Anna Jurek-Loughrey. Cham:
Springer International Publishing, 2019, pp. 79–105.
isbn: 978-3-030-01872-6. doi: 10.1007/978-3-030-
01872-6_4. url: https://doi.org/10.1007/978-
3-030-01872-6_4 (visited on 04/08/2022).

[32] Optimising Care by Encrypting Patient Data. TNO.
url: https://www.tno.nl/en/focus- areas/
information - communication - technology /
roadmaps / data - sharing / optimising - care -
by - encrypting - patient - data/ (visited on
03/23/2022).

[33] Rafail Ostrovsky and Victor Shoup. “Private
Information Storage”. In: Conference Proceedings
of the Annual ACM Symposium on Theory of
Computing. 1997, pp. 294–303.

[34] George Papadakis et al. “Blocking and Filtering
Techniques for Entity Resolution: A Survey”. In:
ACM Computing Surveys 53.2 (Mar. 13, 2020),
31:1–31:42. issn: 0360-0300. doi: 10.1145/3377455.
url: https://doi.org/10.1145/3377455 (visited
on 04/05/2022).

[35] Thilina Ranbaduge et al. “Hashing-Based
Distributed Multi-party Blocking for
Privacy-Preserving Record Linkage”. In: Advances
in Knowledge Discovery and Data Mining. Ed. by
James Bailey et al. Lecture Notes in Computer
Science. Cham: Springer International Publishing,
2016, pp. 415–427. isbn: 978-3-319-31750-2. doi:
10.1007/978-3-319-31750-2_33.

[36] Sean M. Randall et al. “Privacy-Preserving Record
Linkage on Large Real World Datasets”. In:
Journal of Biomedical Informatics 50 (Aug. 2014),
pp. 205–212. issn: 1532-0480. doi: 10.1016/j.jbi.
2013.12.003. pmid: 24333482.

[37] Fang-Yu Rao et al. “Hybrid Private Record
Linkage: Separating Differentially Private Synopses
from Matching Records”. In: ACM Transactions
on Privacy and Security 22.3 (Apr. 26, 2019),
15:1–15:36. issn: 2471-2566. doi: 10.1145/3318462.
url: https://doi.org/10.1145/3318462 (visited
on 04/07/2022).

[38] Regulation (EU) 2016/679 of the European
Parliament and of the council of 27 April 2016
on the protection of natural persons with regard
to the processing of personal data and on the
free movement of such data, and repealing
Directive 96/46/EC (General Data protection
Regulation). European Commission. Apr. 5, 2016.
url: https : / / eur - lex . europa . eu / legal -
content / EN / TXT / ?uri = CELEX : 02016R0679 -
20160504 (visited on 03/23/2022).

[39] Monica Scannapieco et al. “Privacy Preserving
Schema and Data Matching”. In: Proceedings of
the 2007 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’07. New York,
NY, USA: Association for Computing Machinery,
June 11, 2007, pp. 653–664. isbn: 978-1-59593-686-8.
doi: 10.1145/1247480.1247553. url: https://
doi.org/10.1145/1247480.1247553 (visited on
03/21/2022).

[40] Rainer Schnell. “Privacy-Preserving Record
Linkage”. In: (2015).

[41] Rainer Schnell, Tobias Bachteler, and Jörg Reiher.
“Privacy-Preserving Record Linkage Using Bloom
Filters”. In: BMC Medical Informatics and Decision
Making 9.1 (Dec. 2009), p. 41. issn: 1472-6947.
doi: 10 . 1186 / 1472 - 6947 - 9 - 41. url: https :
//bmcmedinformdecismak.biomedcentral.com/
articles/10.1186/1472-6947-9-41 (visited on
02/17/2022).

[42] Sebastian Stammler et al. “Mainzelliste
SecureEpiLinker (MainSEL): Privacy-Preserving
Record Linkage Using Secure Multi-Party
Computation”. In: Bioinformatics (Sept. 1,
2020), btaa764. issn: 1367-4803. doi: 10 .
1093 / bioinformatics / btaa764. url: https :
//doi.org/10.1093/bioinformatics/btaa764
(visited on 02/25/2022).

[43] Dinusha Vatsalan and Peter Christen. “Sorted
Nearest Neighborhood Clustering for Efficient
Private Blocking”. In: Advances in Knowledge
Discovery and Data Mining. Ed. by Jian Pei
et al. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2013, pp. 341–352. isbn:
978-3-642-37456-2. doi: 10 . 1007 / 978 - 3 - 642 -
37456-2_29.

18

https://doi.org/10.1109/PST.2018.8514192
https://doi.org/10.1145/1217299.1217302
https://doi.org/10.1145/1217299.1217302
https://doi.org/10.1145/1217299.1217302
https://doi.org/10.1145/1217299.1217302
https://www.ncsbe.gov/results-data/voter-registration-data
https://www.ncsbe.gov/results-data/voter-registration-data
https://doi.org/10.1007/978-3-030-01872-6_4
https://doi.org/10.1007/978-3-030-01872-6_4
https://doi.org/10.1007/978-3-030-01872-6_4
https://doi.org/10.1007/978-3-030-01872-6_4
https://www.tno.nl/en/focus-areas/information-communication-technology/roadmaps/data-sharing/optimising-care-by-encrypting-patient-data/
https://www.tno.nl/en/focus-areas/information-communication-technology/roadmaps/data-sharing/optimising-care-by-encrypting-patient-data/
https://www.tno.nl/en/focus-areas/information-communication-technology/roadmaps/data-sharing/optimising-care-by-encrypting-patient-data/
https://www.tno.nl/en/focus-areas/information-communication-technology/roadmaps/data-sharing/optimising-care-by-encrypting-patient-data/
https://doi.org/10.1145/3377455
https://doi.org/10.1145/3377455
https://doi.org/10.1007/978-3-319-31750-2_33
https://doi.org/10.1016/j.jbi.2013.12.003
https://doi.org/10.1016/j.jbi.2013.12.003
24333482
https://doi.org/10.1145/3318462
https://doi.org/10.1145/3318462
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02016R0679-20160504
https://doi.org/10.1145/1247480.1247553
https://doi.org/10.1145/1247480.1247553
https://doi.org/10.1145/1247480.1247553
https://doi.org/10.1186/1472-6947-9-41
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/1472-6947-9-41
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/1472-6947-9-41
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/1472-6947-9-41
https://doi.org/10.1093/bioinformatics/btaa764
https://doi.org/10.1093/bioinformatics/btaa764
https://doi.org/10.1093/bioinformatics/btaa764
https://doi.org/10.1093/bioinformatics/btaa764
https://doi.org/10.1007/978-3-642-37456-2_29
https://doi.org/10.1007/978-3-642-37456-2_29

[44] Xiao Wang, Hubert Chan, and Elaine Shi. “Circuit
ORAM: On Tightness of the Goldreich-Ostrovsky
Lower Bound”. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and
Communications Security. CCS ’15. New York,
NY, USA: Association for Computing Machinery,
Oct. 12, 2015, pp. 850–861. isbn: 978-1-4503-3832-5.
doi: 10.1145/2810103.2813634. url: https://
doi.org/10.1145/2810103.2813634 (visited on
03/13/2022).

[45] Xiao Shaun Wang et al. “SCORAM: Oblivious RAM
for Secure Computation”. In: Proceedings of the
2014 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’14. New York, NY,
USA: Association for Computing Machinery, Nov. 3,
2014, pp. 191–202. isbn: 978-1-4503-2957-6. doi:
10 . 1145 / 2660267 . 2660365. url: https : / /
doi.org/10.1145/2660267.2660365 (visited on
03/09/2022).

[46] Mohamed Yakout, Mikhail J. Atallah, and Ahmed
Elmagarmid. “Efficient Private Record Linkage”.
In: 2009 IEEE 25th International Conference on
Data Engineering. 2009 IEEE 25th International
Conference on Data Engineering. Mar. 2009,
pp. 1283–1286. doi: 10.1109/ICDE.2009.221.

[47] Andrew Chi-Chih Yao. “How to Generate and
Exchange Secrets”. In: 27th Annual Symposium on
Foundations of Computer Science (Sfcs 1986). 27th
Annual Symposium on Foundations of Computer
Science (Sfcs 1986). Oct. 1986, pp. 162–167. doi:
10.1109/SFCS.1986.25.

[48] Samee Zahur et al. “Revisiting Square-Root
ORAM: Efficient Random Access in Multi-party
Computation”. In: 2016 IEEE Symposium on
Security and Privacy (SP). 2016 IEEE Symposium
on Security and Privacy (SP). May 2016,
pp. 218–234. doi: 10.1109/SP.2016.21.

19

https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2660267.2660365
https://doi.org/10.1145/2660267.2660365
https://doi.org/10.1145/2660267.2660365
https://doi.org/10.1109/ICDE.2009.221
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SP.2016.21

	INTRODUCTION
	RELATED WORK
	Privacy-Preserving Blocking
	Secure Record Linkage and Blocking
	Blocking

	PRELIMINARIES
	Secure Multi-Party Computation
	RAM-based Secure Computation
	Oblivious RAM
	Bloom Filters
	MP-SPDZ Framework

	PROBLEM STATEMENT
	Blocking
	Model of Blocking
	Problem

	FRAMEWORK FOR SECURE BLOCKING
	Idea
	Functionality
	Threat Model
	Full Procedure
	Complexity
	Optimizations

	SECURE LSH-BASED BLOCKING
	Locality Sensitive Hashing
	Frequent Pairs Scheme

	RESULTS
	Benchmarking setup
	Blocking Quality
	Running Time
	Parameter x
	Comparison to stammlerMainzellisteSecureEpiLinkerMainSEL2020

	DISCUSSION
	Blocking Quality
	Parameter x
	Running Time
	Comparison to stammlerMainzellisteSecureEpiLinkerMainSEL2020

	CONCLUSION

