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Human activity recognition (HAR) aims to label, recognize, track human ac-
tivities accurately, and it has been implemented through several approaches,
such as ambient sensors, cameras, or wearable devices. However, in privacy-
sensitive areas, a camera could collect extraneous ambient information that
a user may not feel restful revealing. Therefore, millimeter wave (mmWave)
radars have been proposed as an alternative for detecting and tracking hu-
man activity. The mmWave radars endure the unique advantage of being
effective under non-line-of-sight scenarios, effectively capture a minimal
subset of the ambient information using micro-Doppler spectrograms pro-
ducing higher accuracy, and can track the user while preserving privacy. The
article proposes an approach that can detect human activity recognition and
track the human user accurately by using two-millimeter wave (mmWave)
radars. The approach focuses on advanced machine learning algorithms,
innovations in hardware architecture, and decreasing monitoring costs. This
paper proposes RadHAR, a framework that performs accurate human ac-
tivity detection using point clouds. The collected human activity data-set
got evaluated, and a comparison of the accuracy of various classifiers on the
data set found that the best-performing deep learning classifier achieves an
accuracy of 97.71%. The evaluation shows the efficacy of using two mmWave
radars for accurate HAR detection and reliable tracking.
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1 INTRODUCTION
HAR aims to recognize the actions and movements of one or more
users from a series of observations of the user’s activities and la-
bel each action. Since human activity recognition is complex and
highly diverse, many HAR systems have been intended and devel-
oped based on the recent development of sensor technologies and
machine learning algorithms. For example, ambient sensors (e.g.,
cameras), wearable devices (e.g., smartwatches), and WiFi signals.
These frameworks are usable and provide practical and accurate
results. Despite that, radars have become a popular activity recog-
nition process since they can operate in any lighting situation and
various environmental situations, such as fog and rain. [2]. The
mmWave radars enable a cost-effective sensing application, are
compact, and have significant bandwidth and ideal range resolution;
the new low-cost technology increased the popularity of mmWave-
based solutions. There exist multiple frameworks regarding human
activity recognition using one mmWave radar. The existing pro-
cedures and framework results using radars for HAR were points
of interest for proposing different modifications and approaches
using two radars to improve the detection results and provide ac-
curate, reliable tracking. Recognizing human activity using two
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mmWave radars reveals more dense information than using one
mmWave radar, as two mmWave radars provide higher resolution
in the distance, velocity, and angle estimation of objects in the scene.
Therefore, it effectively understands human status and motion and
detects human activities more accurately. Hence, this paper will
show the approach and framework of using two mmWave radars
instead of the existing approaches for accurately recognizing human
activities and achieving accurate tracking.
The Article Questions:

• What is the suitable approach for detecting human activities
using two mmWave radars?

• What advancements in using two mmWave radars for HAR?
• What effect do two mmWave radars have on signal interfer-
ence?

• What effect do mmWave radars have on tracking the user?
• What is the influence of noise on user tracking and detection?

The Article Objectives:
• Enhance the accuracy of HAR by utilizing two mmWave
radars.

• Propose two mmWave radars framework and deep learning
classifiers.

• Provide accurate, reliable tracking using two mmWave radars.
The Article Contributions:

• Proposes a suitable approach for HAR using two mmWave
radars.

• Presents frameworks for using the two mmWave radars.
• Presents the advancements of two mmWave radars.
• Evaluates the performance and results of one mmWave radar
and two mmWave radars.

• Presents the approach for tracking human activities using
two mmWave radars.

2 RELATEDWORK
Human activity recognition (HAR) gets widely researched through
several sensing modalities, and numerous approaches have to get
proposed in the literature. Researchers researched human activity
recognition using sensors like cameras [22], WiFi [23], Wearable
Devices [24], and millimeter-wave radar. First, Wearable devices
have a practical approach to human activity recognition because
they are attached to humans and provide incessant information
regarding human activity. Wearable devices offer real-time feedback
to the user based on the embedded processor for processing the data;
thermal profligacy and power consumption are the main factors
for powering the embedded platforms. It is unrealistic to presume
that all people will use wearable devices compatible with the inter-
face model [14]. Therefore, this drawback of wearable devices is the
incentive to use themmWave radar for recognizing human activities.

Second, a camera’s recognition of human activity can provide dense
information regarding human activities. Moreover, depth cameras
exist, also known as three-dimensional (3D) cameras. These depth
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cameras provide distance information from the camera to the ob-
ject besides the standard image and can capture three-dimensional
information that leads to three-dimensional points cloud-based on
the recognition of human activities[7]. Moreover, cameras can track
moving objects and provide the most detailed dimensional infor-
mation [11]. However, cameras are interfering, and it is a privacy
issue, especially in privacy-sensitive areas, which would not let
the user feel at ease with the possibility of capturing unnecessary
ambient information. The mmWave tracking, the human activity
approach, is based on the data points from the collected point cloud
data set and avoids the privacy concern of tracking using the cam-
era. Nonetheless, The accuracy of using a camera is equivalent to
using millimeter wave radars [25]. Therefore, two mmWave radars
can achieve higher accuracy than one mmWave radar and camera,
besides avoiding camera concerns. Despite that, cameras can get
used as ground truth for recognizing human activities using radars
[17]. Hence, using two mmWave radars is adroiter and avoids all
the camera’s drawbacks.

Third, WiFi signals can recognize human motions and positions
and detect if the human has fallen. The fundamental intuition is that
different movements and positions introduce various multi-path
distortions in WiFi signals and generate different patterns in the
time series of channel state information (CSI) [1]. Nevertheless, WiFi
needs more range resolution compared to mmWave radars regard-
ing robust classification. Due to atmospheric attenuation, millimeter
radars got limited to short-range applications of around 5 km for a
94 GHz transmission [10]. Since WiFi signals usually reach about
45 meters for a 2.4GHz frequency [9]. However, recognizing the
human activities by two mmWave radars can provide more range
resolution. Range resolution quantifies the capability to detect two
objects separated in range along the same line of sight. Therefore,
detecting human activities using two mmWave radars has more
range resolution than WiFi and, based on higher resolution, indi-
cates higher accuracy [26].

Last is the low-cost single-chip mmWave radar for human activ-
ity recognition and tracking. The mmWave radar modality uses
the minimum amount of ambient information using micro-Doppler
spectrograms. The Doppler of a radar signal is a frequency shift
due to the relative radial velocity between the radar and a target.
Suppose the target consists of multiple scatterers, such as a person’s
limbs; their velocity differences lead to multiple Doppler frequen-
cies, termed micro-Doppler[8]. First, the mmWave radar recognizes
human activity. It produces a point cloud, then a conversion from
the point cloud data to a micro-Doppler spectrogram before using
a CNN to classify it[6]. Lastly, a voxelization representation of the
point clouds for HAR using LSTM and CNN + LSTM classifier.

3 MILLIMETER-WAVE RADAR
This section investigates the potential of using mmWave radars
for HAR and selects the FMCW (frequency modulated continuous
wave) mmWave radars made by Texas Instruments(TI). The FMCW
radars are a type of radar system where a known stable frequency
continuous electromagnetic wave radio energy is transmitted and

received from any reflecting objects and detect human activities in
point clouds. By capturing the reflected signal, a radar system can
determine the objects’ range, velocity, and angle [5] in the scene,
which effectively understands the human status, and motion and
distinguishes the object of interest from the background cluster[4].
In this paper, the frequency modulated continuous wave(FMCW)
mmWave radar is the Texas Instrument’s IWR1443BOOST, with 76-
81 GHz frequency. The mmWave radar contains a chip consisting
of three transmitters and four receivers operating concurrently and
equipped with multiple antennas besides integrated circuits and
hardware accelerators for a complete on-chip data processing chain
[4].

The mmWave radars have a superior range resolution based on
the large bandwidth. The antenna size is inversely proportional to
frequency. So, the higher the frequency spectrum, the smaller the
antenna size. Accordingly, mmWave radars are compact, enclos-
ing many antennas into minimal space, enabling highly directional
beam-forming (1𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦). The narrow beam effectively
allows the two mmWave radar to separate and recognize various
environmental targets, such as intersections. The narrow beam in
the angular direction and distance and velocity is necessary to de-
tect target objects observed by radar separately [21]. The mmWave
radars are resource-constrained; instead of providing raw data, their
output is point clouds. The number of points in each frame captured
by the two mmWave radars varies, increasing the complexity of
constructing a neural network architecture that can process this
data.

3.1 Intermediate Frequency
The mmWave radar transmitters send chirp signals 𝑆𝑡𝑥 (a signal
with the frequency increasing linearly with time) to detect objects
in front of the radar. When the objects reflect 𝑆𝑡𝑥 , the signal gets
received as 𝑆𝑟𝑥 . The radar combines the two signals 𝑆𝑡𝑥 and 𝑆𝑟𝑥
with a mixer and a low-pass filter to produce a mixed intermediate
frequency (IF) signal [4]. The IF signal contains a frequency and
phase equal to the difference between the transmitted signal 𝑆𝑡𝑥
and the received signal 𝑆𝑟𝑥 [5]. Then performing, a data processing
chain over the IF signal to determine the presence of any objects.

3.2 Range Resolution
Micro-movements of minor extremities, such as the legs and arms,
are challenging to recognize. However, configuring the radar resolu-
tion tomake it higher improves the faithfulness of themeasurements
of such activities, besides improving the data quality of the clas-
sifiers for learning it. The range resolution (𝑑𝑟 𝑒𝑠 ) determines the
minimum distance between two objects and distinguishes them. So,
taking (𝑐) the speed of light and (𝐵) the bandwidth of the exhaustive
chirp. So, the range resolution formula is (𝑑𝑟 𝑒𝑠 = 𝑐

2𝐵 ).

3.3 Velocity Resolution
The total bandwidth of a single chirp is the only factor for deter-
mining the final range resolution. The maximum bandwidth of the
IWR 1443Boost radar is 4GHz, yielding a range resolution of 3.75
cm. Despite that, Velocity resolution(𝑉𝑟 𝑒𝑠 ) determines the minimum
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frequency difference between two discrete frequencies. However,
the radar has limited control over the final wavelength, but its high
frequency allows for a firm velocity resolution compared to lower-
frequency radar. So, the radar frame time can get controlled.

4 SYSTEM DESIGN
The system’s design approach starts by connecting the twommWave
radars via the serial ports to loads, sending the configuration files,
receiving detection results, and filling them into data matrices. The
mmWave radar transmits an RF signal and records its reflections
off objects. Generating point clouds by computing sparse points
and removing those corresponding to static objects, clustering the
detected user by merging individual points into clusters, and remov-
ing noise. Afterward, voxelization is the representation of the point
clouds. Lastly, recognize user activity from each user’s sequential
data, track the user in consecutive frames, and pass the collected
data via the classifier to determine recognization accuracy. This
section will endure the system design in further detail, following
the approach to accomplishing the article’s objectives.

4.1 Software Framework
This article presents an implemented software framework for man-
aging the two mmWave radars and performing post-processing data.
The system is written in python and includes the following modules.

• Radar Handler: Connects to the radar via the serial ports,
loads, sends the configuration files, receives detection results,
and fills them into data matrices.

• Frame Processor: Takes data matrices as input, performs
customized data processing tasks, and outputs data matrices
with the same format.

• Visualizer: Converting the continuous geometric informa-
tion domain data structures into a rasterized image in 3D
space. The visualizer manages several frame processors for a
data processing chain and displays the final output in 2-D or
3-D formats.

• Classifiers: evaluating the mmWave radar data set through
the machine learning implemented classifiers.

4.1.1 Radar Handler. The configuration file gives access to the
user to specify the number of radars, the model of each radar, the
antenna configuration, and the serial port number; the radar’s two
serial ports are accessible by the PC, one for configuring the radar
and the other for transmitting the results. The threats get generated
at startup, and each radar in use will have an independent thread
generated. These threads handle the radar module by connecting to
the serial ports to handle the communication between the host and
the radar. The radar threads for reading the data are from the serial
port constantly and parse them into a suitable structure, despite
only pushing the result into the shared queue if the queue is empty.
Thus, the framework supports multi-threaded environments.

4.1.2 Frame Processor. One visualization thread will produce a
visualizer module and several frame processes to achieve customized
post-processing on the received data. Several data queues will be cre-
ated for each radar thread and shared with the visualization thread.
The visualization thread fetched the data from individual queues.

It fulfilled the user-defined post-processing tasks individually, de-
picting the combined results and fetching the next data cluster. The
designed system operates so that the radar threads only push data
once the visualization thread has finished the last frame. Hence, to
avoid out-of-synchronization caused by different processing speeds
of threads. Lastly, decoding the data from the data port starts when
the radar searches for the data packet header, filters out unused
packets, and extracts the detected object in the frame.

4.1.3 Visualizer. The visualizer’s role is to load the data matrices
from the entire radar threads, apply the user-defined frame proces-
sors, combine them into a single frame, and display the final output.
The display can be configured as 2-D, 3-D, or both and supplies a
suitable method to interpret the result. The frame processors define
the operations to get performed on each radar frame. This article
uses the clustering frame processors module. This module groups
the data points in one frame into clusters according to their distance
and filters out small clusters with a few points. The article uses the
DBScan (density-based spatial clustering of applications with noise)
algorithm [28]. This algorithm does not require prior knowledge
of the scene and can extract all the qualified clusters. Lastly, this
model significantly helps in reducing noise.

4.2 Voxelization
Voxelization converts data structures that store geometric informa-
tion in a continuous domain into a rasterized image (discrete grid).
Furthermore, a voxel represents a value on a three-dimensional grid.
The points in the non-voxelized data in the three-dimensional grid
consist of their x,y, and z coordinates. Although, the data can get
represented as cubic elements with the ability to contain one or
multiple points after voxelizing the data. Therefore, Voxelization
converts the three-dimensional data into a voxelized grid for the
processed data. Despite that, the Voxelization of the gathered data
was according to the script of implemented repositories by Singh et
al. [6]. The voxel size is a crucial aspect of Voxelization; the size of
each voxel size inside the physical dimensions of what got registered
inside a voxel is the size of each voxel.

4.2.1 Voxelization Approach. The Voxelization is responsible
for visualizing the loaded data matrices from all the radar threads. It
displays the final output by applying user-defined frame processors
to combine them into a single frame. The implemented grid in this
paper contains voxels, and each voxel size in the grid is (10 * 32 * 32).
The data gets divided into 60 frames for creating workable samples,
which implies a shape of (60 * 10 * 32 * 32) per instance among
the voxelized representations leading to the classifiers. Moreover,
the radar can have a consistent view of the scene from different
location radars, and this is by combining the data and applying
the appropriate rotation and translation to the coordinated from
different radars. Hence, the display can be configured to 2D or 3D,
providing a convenient way to interrupt the result. Figure 1 shows
an example of the voxelized representation of the point cloud.
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Fig. 1. Voxelized representation of point cloud

4.3 Merging Data
The radars detect human activities and store their point cloud in a
data set. Despite that, using two radars for detecting human activi-
ties can function as two separate radars as every radar generates its
point cloud data set. The aforementioned implies that these data sets
can be previewed as single or combined two mmWave radars data
sets into a combined point cloud data set since they detect the same
scene. Therefore, this paper proposes an algorithm for merging any
two-point cloud data sets generated from the MmWave radars for
detecting the same scene and combined into one point cloud data
set. Although, the algorithm requires the data sets to get generated
from the same scene.

4.3.1 Preliminaries of merging data algorithm. The point
cloud data set contains two significant elements crucial for the
program: frames and point IDs. So, the frame represents the time
frame in the data set, the data set consists of different frames, and
each frame represents the period of detecting human activity. For
example, the radar starts detecting human activity, and the first 60
seconds get stored as frame one, and so on. However, each frame
consists of coordinated points with their point ID. The program
procedure starts by taking each frame from the two data sets and
comparing the point IDs. Further, the program merges them depend-
ing on their IDs.

Some cases in their frame contain more Point IDs than the other
frame. In this case, the extra point IDs get discarded to make it more
reliable. Because if one radar frame contains more point IDs than
the other frame IDs, it becomes difficult to detect the correct data
set from which radar. Therefore, neglecting these IDs make it more
reliable. Nevertheless, if a radar contains more frames than the other
radar but in the correct sequence, the program adds this frame to
the combined point cloud data set.

4.3.2 Program Approach. The process starts by detecting the
human activity by the two mmWave radars and outputs a point
cloud. Nearby, containing two point clouds, need to merge to out-
put a merged point cloud representing the detection of the two
radars. The program procedure takes the frame of the two-point
clouds, compares the two files by their point IDs, and merges them
depending on their IDs. Afterward, the data file passes through the
classifiers and Voxelization. Figure 2 shows the data point cloud.

Fig. 2. Data point cloud

5 EXPERIMENTAL SETUP
5.1 One MmWave Radar Experimental Setup
The experimental setup of one mmWave radar was configured to
use all three transmitter antennas and all four receiver antennas to
generate 3D point cloud data. The start frequency is 77GHz, and the
bandwidth is 4GHz. The sensor was programmed to send 128 chirps
every frame, and the number of frames per second was 33. The
chirp cycle time is 162.14us, and the frequency slope is 70GHz/ms.
So, these configurations provide a range resolution of 4.4cm and a
maximum unambiguous range of 5m. In terms of velocity, it can
measure a maximum radial velocity of 2m/s, with a resolution of
0.26m/s.

5.2 Two MmWave Radars Experimental Setup
There are two experimental scenes for recognizing human activities
using two mmWave radars. The first scene is setting up the radars
for parallel beaming, and the effective horizontal detection angle
of the devices is (60). Furthermore, configuring the two mmWave
radars to different frequencies prevents signal interference; also,
it is possible to set up the chirps, so that frequency bands are not
shared [20]. The antenna size is inversely proportional to frequency.
So, the higher the frequency spectrum, the smaller the antenna size.
A higher frequency for a given antenna size allows the beam to be
more closely focused [27]. The directional beams decline the sig-
nal impression of recognizing each human, allowing higher spatial
reuse where multiple human activities can get detected in parallel
within the scene[28].

The second scene is for the orthogonal beaming of the two mmWave
radars, and the effective horizontal detection angle of the devices is
(45). Moreover, the transmitted signals must be mutually orthogo-
nal to avoid interfering with the other mmWave radar signal [28].
This dual orthogonal configuration secures more returns from static
ground objects [18]. Therefore, beaming orthogonal improves the
angular resolution of the radar system [27]. The wider the beam
becomes, the more its power will be spread across the width.

The radar range is the distance determined along the sight line
from the radar location to the target, and the configurations have
a peak range of (8 m). The radar velocity is the component of the
target’s motion along the radar beam’s direction, and the radar
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velocity peak is (1 m/s). The radar resolution is the ability of the
radar system to distinguish between two or more targets on the
same bearing but at different ranges, and the configured resolution
range is (4 cm) [29]. The velocity resolution is the slightest velocity
difference that can measure between two moving objects using a
given spectrum, and it gets configured to be (0.1 m/s). The chirp per
time is (125 us). The idle time for resetting the chirp is ten us and
(115 us) chirp ramp time, (35 MHz/us) for the slope rate, and (4GHz)
bandwidth utilization for the radar.

Table 1. Two mmWave Radars Configuration
Parameter Value

Number of range samples 240
Number of chirps 16

Frequency 79.210 GHz
Bandwidth 2.55 GHz

PRI 64.2 us
Frame time 33.33 m/s
Max range 10 meter

Range resolution 0.045 meter
Max Doppler +- 4.214 m/s

Doppler resolution 0.615 m/s

Table 2. One mmWave Radar Configuration
Parameter Value

Number of range samples 120
Number of chirps 8

Frequency 77 GHz
Bandwidth 4 GHz

PRI 64 us
Frame time 0.162 m/s
Max range 5 meter

Range resolution 0.044 meter
Max Doppler +- 4.214 m/s

Doppler resolution 0.26 m/s

5.3 Data Collection
Singh et al. materialized research indicating that to ensure human
activities got performed at a constant tempo, each activity must
perform for five trials in a row [6]. Three different activities got
performed in front of the two mmWave radars in the two scenes.
The activities were walking, jogging, and jumping. Moreover, the
three different activities got performed in front of one mmWave
radar with the same tempo and trails as for the two mmWave radar
scenes. The table below shows the amount of data collected, and
each activity trial’s measured activities took 30 seconds to perform.

Data collection for scene 1 for the three performed activities showed
that when the user is close to the mmWave radar, the radar can-
not scan the entire body of the user because the sufficient vertical
monitoring angle of the device is less than (20). Hence, the setup
for scene 1 is that the two mmWave radars are 1 meter away from
the user, the height of the mmWave radars is 1 meter, and the angle
between the radars is (0). In scene 2, Two mmWave radars tripped

at the height of 1 meter, with an angle between the radars of (45).
For the scene of one mmWave radar, the height of the radar is 0.90
meters and 1 meter away from the user to illustrate a wide beaming
angle for user activity recognition.
Table 3. Human Activity Dataset:

Activity Records Duration (seconds)

Walking 12 480
Jacking 12 480
Jumping 12 480

5.4 Data Training
The data training is the procedure after collecting the data from
the two MmWave radars and getting performed on the mentioned
machine learning classifiers. These classifiers contain different algo-
rithms resulting in different accuracy results. Therefore, the accura-
cies of these classifiers will result in different previewing of the best
classifier to achieve the research goal and objectives. The classifier
parameters are a crucial aspect of achieving the best performance.
So, for all the classifiers, each input data first frame flattened to a
vector dimension of 16000. The classifiers used the Adam optimizer
with a dropout ratio of 0.5. Despite that, the training-to-test sample
ratio is 11:1, implying a balanced data set to decrease over-fitting.
The model got trained for 30 epochs.

6 CLASSIFIERS
The different classifiers evaluated the mmWave radar data set. The
authors of [4] presented and trained the following classifiers. First,
there is the Support Vector Machine(SVM), Multi-layer perceptron
(MLP), Long Short term Memory (LSTM), and Convolution neural
network (CNN) combined with LSTM [4]. Therefore, this paper’s
accuracies compared to their accuracies gives fascinating insights.

6.0.1 SVM Classifier. First, the Support Vector Machine (SVM)
classifier gets generated by flattening the time window voxelized
representation by the provided frames (frames * 10 *32 *32)[4]. Sec-
ond, the principal component analysis (PCA) reduces the training
data’s dimensions. The principal component analysis is a popular
technique for analyzing large data sets with a significant number of
dimensions/features per observation, enhancing data’s interoper-
ability while preserving the maximum amount of information and
enabling the visualization of multidimensional data[12]. However,
the number of components the PCA uses on the data set is 200
because PCA requires much computational performance from a
computer. So, to train the SVM classifier, the PCA must be applied
first.

6.0.2 MLP Classifier. First, the multilayer perceptron (MLP) com-
prises three fully connected layers and an output layer[4]. Second,
MLP is a class of artificial neural networks (ANN). ANN model is
an inspiration for the human brain. Last, the time window voxel
representation can get sized by specifying the number of frames to
create an input of the wanted dimensions.

6.0.3 Bi-directional LSTM Classifier. The bi-directional LSTM
layer preserves information from the future and the past [4] and
consists of two LSTM layers operating in parallel[4]. One layer runs
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from the past to the future, and the other layer from the future to
the past. Hence, the two layers run as two ways input layers.

6.0.4 Time-distributed CNN + Bi-directional LSTMClassifier.
The Time-distributed CNN + Bi-directional LSTM Classifier consists
of five layers. The first three layers are the convolution layer, con-
volution layer, and max-pooling layer. Moreover, the fourth layer
is the bi-directional LSTM layer, and the fifth layer is the output
layer. Furthermore, every secular data part passes through the CNN
layers [4].

7 TRACKING
The tracking system exploits the properties of the mmWave radar.
The operation starts by transmitting an RF signal and recording its
reflections off the objects. Then, analyzing the point cloud generated
infers people’s trajectory and identifies them from the database. The
tracking system consists of three stages operating concurrently.

• Point Cloud Generation: The FMCW radar transmits mil-
limeter waves and records the reflections from the scene.
Then, it computes the sparse point cloud and removes those
points corresponding to static objects. For example, the points
that appeared in the previous frame.

• Point Cloud Clustering: Detecting potential human objects
by merging individual points into clusters.

• Tracking: Tracking and identifying the exact human object
in subsequent frames and using numerous object tracking
algorithms.

7.1 Point Cloud Clustering
The mmWave-generated sparse point clouds need to be more infor-
mative for detecting distinct objects because the spare point clouds
are scattered. Even though static objects get discarded via clutter
removal, moving humans only inevitably all reflect the remaining
points. However, the noise can be significant and leads to confusion
with the points from a nearby human user.

Density-aware clustering method separates cloud points based on
the Euclidean distance in the three-dimensional space. To deter-
mine which points in the scene are caused by human reflection, first
merging points into clusters using DBScan algorithms. Moreover,
the DBScan algorithm can automatically mark outliers to cope with
noise without requiring the number of clusters to be specified.

The points clustering gets based on the Euclidean distance. In the
study, the points of the human user are coherent in the horizontal
(X-Y) plane [13]. The human user points are more scattered and diffi-
cult to merge along the (Z) axis. Therefore, modifying the Euclidean
distance algorithm to place less weight on the contribution from
the vertical z-axis in clustering [13]. According to Peijun Zhao, the
modified Euclidean distance formula will be

𝐷 (𝑝𝑖 , 𝑝 𝑗 ) = (𝑝𝑖𝑥 − 𝑝 𝑗𝑥 )2 + (𝑝𝑖𝑦 − 𝑝 𝑗𝑦)2 + 𝛼 ∗ (𝑝𝑖𝑧 − 𝑝
𝑗
𝑧 )2

[14]. Where 𝑝𝑖 and 𝑝 𝑗 are two different points, the parameter 𝛼
regulates the contribution of vertical distance.

Applying the Euclidean algorithm formula regarding this article
experiment, the points in the range of 10 cm will get classified into
one cluster. Despite that, The points with a distance of more than
10 cm will be treated as noise and discarded. The Kalman filter al-
gorithm detects and removes the noise after applying the DBScan
algorithm. Figure 3 shows how the DBScan algorithms get applied
to the data.

Fig. 3. Data clusters

7.2 DBScan Algorithm Parameters
DBScan algorithm has a parameter for indicating the maximum
distance of two points in the same cluster. The parameter for this
indication is (Eps). Moreover, the DBScan algorithm has a second
parameter, which indicates the minimum point number in a cluster
to cope with noise points. This parameter for this indication is
(MinPts). This article experiment demonstrated the Eps to 0.05 and
20 as MinPts. Nevertheless, the 𝛼 got set to 0.25 in the customized
distance function.

7.3 Moving Object Tracking
Tracking a person requires capturing continuous individual point
clouds, requiring an influential temporal association of detections,
correction, and prediction of sensor noise. The procedure starts
by creating ad maintaining tracks for object detection from each
frame. Next, a new track gets created for each object detection from
the first incoming frame or one that cannot be associated with an
existing track. Hungarian algorithm gets dedicated to the Inter-
frame object association. Nonetheless, if a track object is undetected
for D continuous frames, the track receives marked inactive and is
excluded from successive associations. Kalman filter algorithm gets
applied for predicting and correcting tracks. Figure 4 displays the
workflow of moving object tracking.

Fig. 4. Moving Object Tracking Workflow
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7.3.1 Tracking Detection. The Hungarian algorithm is a practi-
cal combinatorial optimization algorithm.Minimizing the integrated
distance loss is a purpose for constructing an association between
each object detection and maintained track objects. However, the
active tracks 𝐾1 and the number of object detections at the current
timestamp 𝐾2 imply that the cost matrix can be non-square, direct-
ing considerable assignment problems [13]. The argument is that
matrix 𝑀 were (𝑀𝑖 , 𝑗 ) represents the distance of centers between
track object 𝑖 and object detection 𝑗 in the current frame. So, giving
that 𝐾 as the greater of 𝐾1 and 𝐾2 implies the essential argument
that the actual cost matrix with form entries constructs a 𝐾𝑥𝐾 ma-
trix𝑀 .

Additionally, for the case that (𝑀𝑖 , 𝑗 ) exceeded the step size threshold
𝜃 , then setting the cost to a large number 𝐿 to avoid the association
given the intuition that 𝑗 should be joining person [13]. The case
for ignoring such mappings and creating a new track for detection
is in the case the detection is mapped to an augmented dimension
or mapped to a correspondence with coast 𝐿 [13]. Likewise, if a
track object gets mapped to an increased dimension or a correspon-
dence with cost 𝐿, then the tracked object is regaled as undetected
to maintain tracks of detections successfully.

7.3.2 Tracking Correction. The Kalman filter intends to correct
the sensor noise and offer predictive guidance in scenarios where
tracked objects are undetected due to closure or temporary loss from
the sensing region, starting by maintaining a state which consists
of the location of the human user along the 𝑥 and 𝑦 axes. So, for
each track, the initial state consists of the first detection location
at each time frame. The Kalman filter updates the current state
variables with a transition matrix by interconnected indecisiveness.
The Kalman filter estimates the new position plus the covariance
based on the current position. Thus, the Kalman filter algorithm
calculates the cultivation more accurately than those established on
a single sensor measurement.

8 RESULTS
This section presents the deep learning classifier accuracy results
on the one and two mmWave radars for human activity recognition.
Moreover, sensitivity and precision are necessary for evaluating the
performance of the one and two-mmWave radars. To explore the
best artificial neural network architecture for identification, a com-
parison of 4 different architectures got used. Each architecturemodel
got trained under the same settings. The settings are 30 epochs and
a dropout ratio. The table shows the accuracy of detecting human
activities using mmWave radar based on these architectures and
shows the sensitivity and precision of the mmWave radar.

Starting with the SVM classifier, as it performs poorly, achieving the
lowest accuracy. There exist several reasons for this performance.
The SVM classifier does not operate directly on the time window
voxel data compared to the other classifiers that operate directly
with the window voxel data. The SVM classifier needs to perform
better with the data set that contains much noise (i.e., overlapping
target classes). SVM is not suitable for classifying large data sets
because the training complexity of SVM is highly dependent on the

size of the data set. [15]

The MLP classifier is a multilayer perceptron and relies on an under-
lying neural network to perform the classification task. Its multiple
layers and non-linear activation indicate MLP from a linear per-
ceptron and can differentiate data that is not linearly separable.
However, MLP includes too many parameters because it is fully
connected. Each node gets connected to another in a very dense
web. Hence, resulting in redundancy and inefficiency. Therefore,
the MLP classifier achieves a reasonable accuracy but needs to be
sufficiently high compared to the other classifiers. Regardless, MLP
uses back-propagation for training the network.

The Bi-directional LSTM classifier uses LSTM variants as it showed
to be performing for end-to-end learning of time sequence data.
The used LSTM layer has the size of 256 and 128 hidden units. Bi-
directional LSTM converges faster and significantly outperforms
the other two architectures within fewer guesses [16]. Bi-directional
LSTM can model the rich temporal correlations in a long sequence
of frames from both ends. In contrast, a standard LSTM is essentially
a feed-forward network that is difficult to encode the information
from the beginning of a long sequence [16]. Such information loss
degrades the identity inference performance.

The Time-distributed CNN + Bi-directional LSTM classifier per-
forms better with higher accuracy for the following reasons. First,
the used CNN classifier includes two convolution layers, with a
max pooling layer after each convolution layer. The CNN is time
distributed, implying the data of each frame is first sent into a two-
layer 3D CNN for feature extraction, then the sequence data is sent
into LSTM for classification [16]. Thus, this classifier’s accuracy is
the highest as it combines the functionalities of the LSTM classifier
besides the CNN.

False detection is when the radar detects noise or other objects
and is falsely detected as human. The radar’s sensitivity is the abil-
ity to detect a human in the detection area reliably, and the radar
precision is the ability to differentiate humans from false detection.
Hence, an ideal system should contain high sensitivity and high
precision. However, the experiment setup, human activities, and
activities period were the same; for detection, using one mmWave
radar and two mmWave radars. However, with one radar, the 46.9%
precision indicates that more than half of the detections would be
false detections. Two radars reduced the system sensitivity slightly,
but the precision improved significantly to 98.6%. So this implies a
greater than 50% probability that it is a false detection using one
mmWave radar but highly precise detection with two radars.

Performance Evaluation of the Radars:

Sensitivity Precision
One mmWave radar 96.4% 46.9%
Two mmWave radars 90.4% 98.6%

Two mmWave radars accuracy test of different activity recog-
nition classifiers trained on the human activity Dataset:
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Classifier Accuracy

SVM 65.32%
MLP 81.37 %

Bi-directional LSTM 91.17 %
Time-distributed CNN+ Bi-directional LSTM 97.71%

One mmWave radar accuracy test of different activity recog-
nition classifiers trained on the human activity Dataset:

Classifier Accuracy

SVM 63.74%
MLP 80.34 %

Bi-directional LSTM 88.42 %
Time-distributed CNN+ Bi-directional LSTM 90.47%

9 EVALUATION
9.1 Radars Evaluation
To evaluate the human activity recognition accuracy of using two
mmWave radars. This article compared the usage of one mmWave
radar to two mmWave radars. The collected data from the mmWave
radar was for the same scene as the two mmWave radars and the
same human activities. Nonetheless, the collected data went through
the same framework and machine learning classifiers. Hence, com-
paring the results of using one mmWave radar and two mmWave
radars, it evaluated that using two mmWave radars for detecting
human activities achieves an improved accuracy than using one
mmWave radar.

9.1.1 Performance Factors. False positive detection is a factor in
the accuracy difference. The false positive detections can be noise
or other objects in the detection area that got falsely detected as
a human activity. However, the one mmWave radar indicates that
more than the two mmWave radars detection would be false detec-
tions. Otherwise stated, the one mmWave radar detection is more
likely to contain false detection than the two mmWave radars [3].

The one radar detection system reports many false alarms due to
noise and flicking of the results [3]. The flicking got discovered due
to the fast Fourier transform (FFT) process. The process begins when
a slight shift in the signal can change the FFT bins once it arrives via
the FFT. The angle FFT is when the FFT across the corresponding
peaks in the series of antennas, and peaks in this angle FFT directly
correspond to the angle of arrival of objects. So, a few meters of
displacement on the object coordinates [3]. Further, this effect will
expand, where a removal in the angle will result in a much larger
displacement in the 3D space [3]. Conversely, utilizing two radars
provides a system that permits two independent detections and can
verify the results jointly.

9.2 Tracking Evaluation
A testing environment got created to observe the reliability of the
tracking and to evaluate the tracking range and tracking error of
mmWave radar. The testing environment got set to track the user
from a marked place to a specific destination. Even though time gets
synchronized through an NTP server, the system’s coordinate trans-
formation matrices got measured. The radars performance table

showed that two mmWave radars construct a positive determina-
tion when both radars detect the person, reducing the impact of
noise and increasing precision. So, evaluating the tracking error
by comparing the trajectories between the two and one mmWave
radars and measuring the trajectories by calculating the distance
between all the clusters in the current frame and the previous frame
using the Euclidean distance. The comparison of trajectories showed
that the median tracking error of using one mmWave radar is 0.16 m
and for two mmWave radars is 0.10 m. Besides, the tracking range of
two mmWave radars is more significant as it can track at a distance
of more than 5.5 m, while one mmWave radar can track at a distance
of 4.5 m. The testing results show that the two mmWave radars can
maintain reliable, accurate tracking on a large tracking area.

9.2.1 Non-line-of-sight Conditions. The first experiment ana-
lyzes the robustness of mmWave radar under obstructed conditions
because optical imaging-based tracking and identification methods,
such as Depth cameras, cannot cope with obstructions [13]. Hence,
an evaluation of the robustness of millimeter wave radar with some
obstructions, such as aluminum foil sheet. The aluminum foil sheet
thickness was approximately 4mm with a size of 105̂ mm2̂, and
placed this obstacle 1 cm away from the sensor so that the signals
could not get transmitted in a line of sight condition. Then, let the
user walk back and forth ahead of the mmWave radar while col-
lecting sensor readings. Afterward, the generated 3D point cloud
from the mmWave radar was used for tracking and identification to
compare the percentage of change in point cloud density.

The impact of the aluminum foil sheet on the point cloud den-
sity of the mmWave radar was approximately 0.80%. Hence, the
difference in point cloud density is below 1%. Therefore, that im-
plies that the mmWave radar is robust against non-line-of-sight
interference with less than a 1% change in point cloud density[13].
Thus, the robustness of the mmWave radar to thin obstructions can
detect human activities and perform tracking and identification, for
example, under furniture [13].

9.2.2 Impact of weighting the vertical axis in DBScan. An
adequate clustering method produces a lower within-cluster vari-
ation, which indicates good clustering [18]. The evaluation of the
compactness of clusters got based on distance measures. Such as the
cluster-wise within average/median distance between observations
[18]. Therefore, the cluster evaluation got based on similarity or
dissimilarity, such as the distance between cluster points. So, the
clustering algorithm performs well when separating dissimilar ob-
servations apart and similar observations [19].

DBScan algorithm requires defining the weighting parameter for
improving the DBScan algorithm. In rehearsal, determining that
(alpha = 0.25) results in a helpful clustering performance, as shown
in figure 5. In contrast, points are effectively projected onto the
x-y plane when (alpha =0), and the outliers merge into the cluster.
Moreover, points corresponding to a person are split into two clus-
ters when (alpha = 1) (standard Euclidean distance). Thus, finding
a suitable value of (alpha) for obtaining a good clustering result
[13]. Clustering results with a different (alpha), as shown in figure 5,
indicates that a small (alpha) leads to loose clusters containing many
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noise points. A significant (alpha) splits a human object into two
clusters. Therefore, setting (alpha =0.25) results in the best empirical
performance.

Fig. 5. Clustering results with different 𝛼

10 LIMITATION AND FUTURE SEARCH
This paper procedure performs pleasingly for tracking and iden-
tification. The paper elaborates on the approach limitations and
enumerates future research directions.

10.1 Considerable Number Of Users
The paper exemplified the reliable performance of tracking and
identification on one user. However, tracking and identifying over
one user remains a genuine concern because the mmWave radar
point cloud is sparse and periodically disturbs human detection and
tracking significantly.

10.2 Monitoring Range
The range of the mmWave radar can be as extensive as 30 m, but the
increased the range gets, the reduced spatial precision and worse the
signal-to-noise ratio gets. If the user is far from the sensor, detecting
and distinguishing the user from background noise is challenging.

10.3 Classifiers Dependencies
The classifiers’ accuracy tables show that the MLP classifier per-
forms poorly. Perhaps, the reason is that fully connected layers in
the MLP classifier make no spatial and temporal assumption about
the data. Conversely, the Time-distributed CNN + Bi-directional
LSTM classifier assumes spatial and temporal dependency in the
data and performs better.

11 CONCLUSION
The paper presented a two mmWave radar framework using a time
window voxel representation of sparse mmWave radar point clouds.
Furthermore, presented setups for avoiding signal interference and
the influence of noise in tracking showed the advancements of
using two radars for recognizing and tracking human activities to
approach the research objective. The machine learning classifiers
can learn the feature extraction transformation by directly training
on the voxels and are designed to handle data’s spatial and temporal
dependencies. The evaluation of the deep learning classifier achieved

an accuracy of 97.71%. Lastly, the article achieved the mentioned
objectives and answered the research questions.
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